Show simple item record

Computational group theory

dc.date.accessioned2019-02-13T12:34:20Z
dc.date.available2019-02-13T12:34:20Z
dc.date.issued1988
dc.identifier.urihttps://oda.mfo.de/handle/mfo/764
dc.identifier.urnurn:nbn:de:bsz:frei3c-oda-bsz3250905644
dc.identifier.doi10.14760/TB-1988-22
dc.identifier.archive-call-noE20/02121
dc.title8820
local.sortindex703
local.date-range15.5. bis 21.5.1988
local.pages24 S.
local.workshopcode8820
local.workshoptitleComputational group theory
local.organizersJoachim Neubüser, Aachen; Charles C. Sims, New Brunswick
local.participantsM. D. Atkinson, Ottawa; R. Brandl, Würzburg; C. M. Campbell, St. Andrews; J. R. Cannon, Sydney; A. Caranti, Povo; M. Clausen, Kaiserslautern; A. M. Cohen, Amsterdam; L. Di Martino, Milano; J.D. Dixon, Ottawa; V. Felsch, Aachen; L. Finkelstein, Boston; B. Fischer, Bielefeld; R. Gilman, Hoboken; S. P. Glasby, Sydney; P. Hauek, Freiburg; G. Havas, Canberra; G. Hiß, Aachen; D.F. Holt, Coventry; I.M.Isaacs, Madison; L. Johnson, Nottingham; W.M. Kantor, Eugene; O.H. Kegel, Freiburg; A. Kerber, Bayreuth; Le Chenadet, Le Chesnay; C. R. Leedham-Green, London; R. J. List, Birmingham; E. M. Luks, Eugene; K. Lux, Aachen; S.S. Magliveras, Lincoln; B.H. Matzat, Berlin; J. McKay, Montral; F. Menegazzo, Padova; J. Neubüser, Aachen; P.M. Neumann, Oxford; M.F. Newman, Canberra; E. A. O'Brien, Canberra; H. Pahlings, Aachen; R. Parker, Cambridge; W. Plesken, Aachen; M. Pohst, Düsseldorf; C. E. Praeger, Nedlends; S. Rees, Coventry; R. Riley, Binghamton; E.F. Robertson, St. Andrews Fife; A. Ryba, Ann Arbor; R. Sandling, Manchester; G. J. A. Schneider, Essen; M. Schönert; S. Sidki, Brasilia; Ch. Sims, New Brunswick; M. C. Slattery, Milwauke; G. C. Smith, Bath; L. H. Soicher. London; M. R. Vaughan-Lee, Oxford; V. Zaychenko, Moskau;
local.report-nameWorkshop Report 1988,22
local.ba-page-1111
local.ba-handle-1mfo/134
local.ba-link-text-1Book of Abstracts No. 78: images 112 - 142 (pages 107 - 137)


Downloads

Thumbnail
Report

This item appears in the following Collection(s)

Show simple item record