

MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 36/1984

Topologie

12.8. bis 18.8.1984

Die Tagung fand unter der Leitung der Herren D. Puppe (Heidelberg), A. Ranickí (Edinburgh) und L. Siebenmann (Orsay) statt. Behandelt wurden verschiedene klassische Gegenstände der algebraischen Topologie, u.a. stabile Homotopietheorie, Poincarekomplexe, Transformationsgruppen, Raumformen und geometrische Darstellungen von Gruppen, Klassifikation von Singularitäten, Gestalttheorie, Konstruktion von Kettenmodellen, Kontaktformen, und Topologie in den Dimensionen 2,3 und 4. Letzterer galt besonderes Interesse: In der Hälfte aller Vorträge wurden Fragen aus diesem Spezialgebiet behandelt. Dabei standen insbesondere geometrische Untersuchungen im Vordergrund, etwa über die Geometrie von Knoten und Verkettungen, über die Beziehungen zwischen diskreten Gruppen und Geometrie, und der Hyperbolisationssatz von Thurston. Dies spiegelt die großen Fortschritte wider, die hierbei in den letzten Jahren erzielt worden sind.

Vortragsauszüge

A.H. ASSADI:

Concordance of finite group actions on Sn

Let C_n be the abelian group of concordance classes of semifree smooth G-actions on S^n with tangential representation g such that $\dim g - \dim g^G > 2$. Let C_n^{AL} be the almost linear concordance classes of almost linear smooth actions on S^n (almost line means $(S^n, (S^n)^G)$ is diffeomorphic to (S^n, S^k)). Let $\mathcal{O}_k(0)$ be the mod q h- cobordism classes of mod q k- spheres with g-structure on their normal bundle and with vanishing Swan invariant in $K_0(ZG)$, where q = |G|.

Theorem. There exists a homomorphism $\,\Delta\,$ such that the sequence

$$\cdots \longrightarrow \mathbb{C}_n^{\mathrm{AL}} \xrightarrow{i} \mathbb{C}_n \xrightarrow{\mathrm{fixed \ set}} \Theta_k(0) \xrightarrow{\Delta} \mathbb{C}_{n-1}^{\mathrm{AL}} \longrightarrow \cdots$$

is exact.

<u>Corollary.</u> If two such actions on S^n have diffeomorphic fixed point sets, then they are G-homeomorphic.

Corollary. An action $\varphi: G \times S^n \to S^n$ is G-homeomorphic to a smooth G-action $\psi: G \times S^n \to S^n$ which bounds a smooth G-action on D^{n+1} if and only if $Fix(\varphi)$ bounds a mod q homology sphere with zero Swan invariant.

EVA BAYER- FLUCKIGER:

Doubly sliced knots

This is a report on joint work with Neal W. Stoltzfus.

A knot $K^n c S^{n+2}$ is said to be doubly sliced if there exists a trivial (n+1)-knot $L^{n+1}c S^{n+3}$ such that $L^{n+1}n S^{n+2} = K^n$.

This notion is due to Sumners. A basic problem concerning this notion is whether stably doubly sliced knots are doubly sliced. (A knot K^n is said to be stably doubly sliced if there exists a doubly sliced n- knot such that the connected sum of this knot with K^n is doubly sliced.) We prove the following.

Theorem. Let K be a simple (2q-1)- knot, $q \ge 2$, such that the knot module of K is annihilated by a square- free polynomial. If K is stably doubly sliced, then K is doubly sliced.

F. BONAHON:

Ends of hyperbolic 3- manifolds

We study the geometric behaviour of the ends of hyperbolic 3-manifolds with finitely generated fundamental group. The simplest of these manifolds are the so-called geometrically finite ones, which are quotients of the hyperbolic 3-space \mathbb{H}^3 by a discrete group of isometries admitting a finite polyhedron as - fundamental domain. To study limits of these geometrically finite manifolds, Thurston introduced the notion of a "geometrically tame hyperbolic 3- manifold", proved that such manifolds enjoy many interesting properties, and conjectured that any hyperbolic 3-manifold with finitely generated fundamental group is geometrically tame. We prove this conjecture under the hypothesis that the fundamental group is indecomposable as a free product. As a corollary, this proves the so- called "Ahlfors conjecture" on measures of limit sets for indecomposable Kleinian groups, and provides a different approach to the proof of Thurston's hyperbolisation theorem.

R. FENN:

Homotopy linking of two spheres in 4-space

In the homotopy theory of links components are allowed to pass through themselves in a homotopy but not through different components. In this talk it was shown that for various cases two 2-spheres in \mathbb{R}^4 are homotopy trivial if one of them is embedded, e.g. a spun knot, and the question was asked if this is always true. An example was given of two 2-spheres each with one transverse self intersection which is homotopically non trivial.

I. HAMBLETON:

Local surgery and space forms

Let $\pi = \mathbb{Z}/m$ do be a metacyclic group with m odd, $G = \mathbb{Z}/2^k$ and $\ker(t: G \longrightarrow (\mathbb{Z}/m)^*) \neq 1$. Then π has a free linear representation V with $\dim V = 2q = 2^{l+1}$ and k-invariant for $N = S(V)/\pi$, $g(N) \in H^{2q}(\pi; \mathbb{Z})$. If $(r, |\pi|) = 1$ then rg(N) is the first k-invariant (defining the homotopy type) of a free simplicial action of π on S^{2q-1} . We study when such actions can be smoothed.

Theorem 1. Let $2q = 2^{l+1} \ge 6$ and $r \equiv 1 \mod 4$. Assume $|\ker t| \ge 2$ and $-1 \in Imt$. Then π acts freely on S^{2q-1} with k-invariant rg(N) if and only if $r \in (\mathbb{Z}/m)^{\times 2^{l}}$.

Theorem 2. Let π = Q(4m) be a quaternionic group of the above type (k = 2, 1 = 1). Then if π acts freely on S^{4s-1} for any s = 1, the action is homotopically linear.

From the first result many non-linear homotopy types of smooth

actions occur. The second is an essential step in studying the existence of free actions of general periodic groups on spheres.

J. HOWIE:

Equations over groups and singular surfaces in 3-manifolds

The following is a well known conjecture in group theory.

Conjecture 1. Let Σ be a system of n equations in n unknowns over a group G whose exponent-sum matrix is nonsingular. Then Σ has a solution in some overgroup of G.

Let $a_0, \ldots, a_n \in G$ such that $a_0, \ldots, a_n \in [G,G]$. Then there exist $x_1, \ldots, x_n, y_1, \ldots, y_k, z_1, \ldots, z_k \in G$ such that $a_0(x_1^{-1}a_1x_1)\ldots(x_n^{-1}a_nx_n)[y_1,z_1]\ldots[y_k,z_k] = 1$. The least integer k for which such an expression holds is called genus $a_0(a_0, \ldots, a_n)$.

Conjecture 2. Let $S \subset F$ be free groups such that $S^{ab} \to F^{ab}$ is an isomorphism. Then $\operatorname{genus}_S(a_0, \ldots, a_n) \leq \operatorname{genus}_F(a_0, \ldots, a_n)$ for all $a_0, \ldots, a_n \in S$ with $a_0, \ldots, a_n \in [S,S]$.

Stallings proved that Conjecture 2 implies Conjecture 1, and is in turn implied by a geometric Conjecture. Let $M^3 \subset N^3$ be a tame embedding of 3-manifolds such that $H_2(N,M) = 0$. Let $f:S \to N$ be a smooth immersion of a compact orientable surface S into N, with $f(\partial S) \subset M$. Then there is a compact, orientable surface T, a homeomorphism $h:\partial T \to \partial S$, and a smooth immersion $g:T \to M$ such that $g|\partial T = (f|\partial S) \circ h$.

Conjecture 3. The surface T may be chosen with genus T \leq genus S. We show that Conjectures 2 and 3 are equivalent.

J. HUEBSCHMANN:

Perturbation theory and small models for the chains of certain spaces

Given a fibre square $\begin{picture}(1,0) \put(0,0){\line(1,0){\mathbb{F}_{f}} \put(0,0){\line(1,0)$

M. KERVAIRE:

Jones' invariant of oriented links

This was a purely algebraic exposition of the recent definition by V. Jones of an invariant of isotopy classes of oriented links. It was shown that the invariant is a Laurent polynomial $V_L(t) \in \mathbb{Z}\left[t,t^{-1}\right] \quad \text{if} \quad L \quad \text{has an odd number of components, and} \\ V_L(t) \in \mathbb{T} \, \mathbb{Z}\left[t,t^{-1}\right] \quad \text{if this number is even.}$

Some examples were discussed.

. N.H. KUIPER:

On the total curvature of a knotted torus

An embedded torus T in euclidean 3-space \mathbb{R}^3 divides the one point compactification $S^3 = \mathbb{R}^3 \cup \omega$ into two parts, one of which (Alexander) is a standard solid torus. Let χ ($\omega \notin \chi$) be a core-curve of that solid torus, with bridge number $B(\chi)$.

Theorem (joint work with W.H. Meeks III). If T is knotted, then the infimum of the total absolute curvature $\tau(T')$ for T' isotopic to T is $\frac{4B(\gamma)}{2\pi}$, and this infimum is never attained. Thus $\tau(T) = \frac{1 \text{Kd} \sigma I}{2\pi} > 4B(\gamma).$

This generalises a theorem of Fenchel-Fary-Fox-Milnor for knots.

P. LÖFFLER:

The simplicity of some Poincaré complexes

When one tries to construct non-trivial cyclic group actions on simply connected manifolds by using rational homotopy theory one has to deal with the following situation: Suppose $f: X \longrightarrow M^n$ is a map where

- a) X is an n-dimensional PD-space with a free \mathbb{Z}/k action;
- b) M^n is a 1-connected manifold with a free \mathbb{Z}/k action;
- c) f respects the $\mathbb{Z}/k-$ actions;
- d) the groups $H_{\star}f$ are finite of order prime to k
- e) \mathbb{Z}/k acts 1/k- trivially on X and M.

In this case we have the following:

<u>Proposition</u> (J. Davis, P. Löffler). The space X may be taken as a simple PD- space (whence X has the homotopy type of a manifold if $n \ge 5$).

S. MARDESIC:

Strong shape and Steenrod-Sitnikov homology

Let $\underline{X} = (X_A)$ and $\underline{Y} = (Y_{\mu})$ be inverse systems of spaces over directed sets Λ and M respectively. A coherent map $\underline{X} \to \underline{Y}$ consists of an increasing function $\varphi: M \longrightarrow \Lambda$ and of maps $\Delta^n \star X_{\sigma(\mu_n)} \to Y_{\mu_n}$, $\mu_0 \leq \ldots \leq \mu_n$, satisfying suitable compatibility relations. Inverse systems and classes of coherently homotopic coherent maps form the coherent prohomotopy category CPHTop. A morphism $p:X \longrightarrow \underline{X}$ of pro-Top of a space X into an ANR- system is called a resolution provided every map $f:X \to P$, $P \in ANR$, factors approximately through \underline{X} and any two sufficiently near factorisations are arbitrarily close. The strong shape category SSh has spaces as objects and the morphisms $X \rightarrow Y$ are given by ANR- resolutions $X \to \underline{X}$, $Y \to \underline{Y}$ and by a morphism $\underline{X} \rightarrow \underline{Y}$ of CPHTop. The Steenrod homology H^S is a functor on SSh and satisfies all the Eilenberg- Steenrod axioms. The groups $H_n(X)$ are defined as homology groups of a certain chain complex $C(\underline{X})$. This research is joint work with Ju.T. Lisica.

R.C. PENNER:

Teichmüller spaces of punctured surfaces

Let T_g^s be the Teichmüller space of the genus g surface with s punctures. The overall goal is to recognise the classical pictures of T_0^4 and T_1^1 (as tesselated Poincaré discs) as special cases of a general phenomenon in the Teichmüller theory of

punctured surfaces.

Theorem. There is a modular-group-invariant cell decomposition of T_0^s , $s \ge 4$.

In this result the restriction g=0 is not believed to be necessary. The proof involves a convex hull construction in Minkowskii space and relies on a new coordinatisation of T_g^s (on which the modular group acts real algebraically). Each cell in the decomposition has a natural complex structure which is hopefully compatible with the global complex structure on T_g^s .

This is joint work with D.B.A. Epstein.

V. PUPPE:

On the torus rank of certain spaces

Using a "cochain complex" version of the localisation theorem for singular equivariant cohomology it is shown that the torus rank(i.e. the maximal dimension of those tori that act almost freely) of a "resonable"space X with $\pi_{\text{even}}(X) \bullet \mathbb{Q} = 0$ is bounded by the dimension of the centre of the rational homotopy Lie algebra $\pi_*(X) \bullet \mathbb{Q}$. This generalises a result of S. Halperin's (the case where the centre is zero). Moreover, the (\mathbb{Z}/p) - version of the localisation theorem can be applied to give a simple and unified proof of results of G. Carlsson and W. Browder concerning free p- torus actions on products of spheres. This is joint work with C. Allday.

P.B. SHALEN:

Dehn surgery and 3- manifolds with cyclic fundamental group

Let M be a compact, irreducible, orientable 3-manifold whose boundary is a torus. A simple closed curve μ c ∂M is called a weak meridian if $|\pi_1(M): \mu|$ is finite cyclic. The following result is joint work with M. Culler and C. Gordon.

Theorem. Suppose that M is not Seifert- fibred. If μ and ν are weak meridians then the algebraic intersection number $\mu.\nu$ has absolute value ≤ 5 . If $|\pi_1(M):\mu|$ and $|\pi_1(M):\nu|$ are each of order $\neq 2$ then $|\mu.\nu| \leq 4$.

As a consequence one sees that there are at most five classical knots whose complements are of a given topological type. It is conjectured that the bound in this theorem can be reduced to 1. Examples due to Fintuchel- Stern and Pryzytycki show that this would be best possible.

W. SINGHOF:

Compact nilmanifolds and stable homotopy

Let G be a connected Lie group of dimension m and Γ a discrete subgroup such that G/Γ is compact. The tangent bundle of G/Γ admits a left- invariant trivialisation, and thus we get an element $[G/\Gamma] \in \pi_m^S$ by the Thom- Pontrjagin construction. We concentrate on the case where G is nilpotent and simply connected. Using the Atiyah- Singer index theorem, it is shown that if $m \equiv 1$ or 2 mod 8 and m > 2 then $d[G/\Gamma] = 0$. In other words,

compact nilmanifolds of dimension ≥ 3 bound as spin manifolds. Then the Adams e- invariant is computed in special cases, using the theorem of Atiyah-Patodi-Singer. For instance, the following is obtained: Let H(n) be the Heisenberg group (of dimension 2n+1) and $\Gamma(n)$ its standard arithmetic subgroup. Then $e[H(n)/\Gamma(n)]$ is essentially given by the value of the Riemann ζ - function at the place -n for n odd. This was proved in collaboration with Ch. Deninger.

A. SZÜCZ:

Multiple points and singular points

Using normal forms of singularities one can generalise the Pontrjagin- Thom construction to cobordisms of some singular maps. The classifying spaces for cobordisms of singular maps provide a model for the loop space of the Thom space. This model can be applied to the following question: Fix a set $\alpha = \{\alpha_1, \dots, \alpha_r\}$ of Boardman symbols of singularity types. Can a map of an n- manifold into \mathbb{R}^{n+k} have a single point $P \in f(\mathbb{M})$ such that $f^{-1}(P)$ consists of r points which are of types $\alpha_1, \dots, \alpha_r$?

Examples:

- 1) $\alpha_1 = \ldots = \alpha_r = \Sigma^0$ (non-singular points). This case was solved by Eccles in codimension k = 1 for immersions. We can extend part of his results to singular maps (of "almost any type").
- 2) $\alpha = \{ \Sigma^1, \Sigma^0 \}$. No such a map.
- 3) $K = \{\Sigma^1, \overline{\Sigma}^0, \overline{\Sigma}^0\}$. No such a map.

L. SIEBENMANN:

Exotic quasi-3-spheres in S⁴ arising from Gromov's horizon of certain Coxeter- Davis groups

Let w4 be a compact contractible 4- manifold with non- simply connected boundary M³. One can so triangulate M³ that it becomes a full simplicial 3- complex, in which every quadrilateral in the 1- skeleton (a cycle of 4- simplices) has at least one diagonal present as a 1- simplex of M^3 . The Coxeter group Γ with one generator of order 2 for each vertex v, say x(v), $x(v)^2 = 1$, and one relation for each edge e = [v, v'], namely $(x(y)x(y'))^2 = 1$, is combinatorially hyperbolic in the sense of Gromov (ICM Warsaw, 1983). Following M. Davis (Annals early '80's) we make the Poincaré dual 3-cells into mirrors of reflection for an action of Γ on an open contractible 4-manifold X^4 , with fundamental region $W^4 \subset X^4$. Davis observed that X^4 is not homeomorphic to \mathbb{R}^4 . We show that the space which is formed from two copies of (say) $\tilde{X} = X \cup Gr(\Gamma)$ by identifying the two copies of $Gr(\Gamma)$ is homeomorphic to S^4 ; here \hat{X} is Gromov's compactification of X by the horizon $Gr(\Gamma)$ of the combinatorially hyperbolic group Γ . Further, the resulting pair $(S^4,Gr(\Gamma))$ is topologically homogeneous, i.e. given x and y in $Gr(\Gamma)$ ther exists a homeomorphism h of S^4 respecting $Gr(\mathbf{r})$ and sending \times x to y. $Gr(\Gamma)$ can be identified as a homogeneous infinite connected sum of copies of M³ of a sort constructed (initially for $M^3 = S^3$) by W. Jacobsche about 1977 (see Fund. Math. 1981). The same holds in higher dimensions as soon as the special triangulation can be found. This is joint work with R. Ancel.

C.B. THOMAS:

Contact forms on (n-1)-connected (2n+1)-manifolds

The odd dimensional manifold M^{2n+1} is said to be contact if there exists a globally defined 1- form ω such that $\omega_A(d\omega)^n \neq 0$. Classically the energy levels in a Hamiltonian system are contact, and a necessary condition for the existence of a contact form ω is the reducibility of the structural group of the tangent bundle of M^{2n+1} (oriented) from SO(2n+1) to U(n)+(1). We study the sufficiency of this condition for closed manifolds.

Theorem 1 (R. Lutz, W. Thurston, E. Winkelnkempfer). If M^3 is closed and orientable then it is contact.

Remark. The different classes of contact forms on M^3 would seem to provide a new tool for the study of M^3 - see the lecture of S. Chern at the 1984 Bonner Arbeitstagung.

Theorem 2. Let M^{2n+1} be an (n-1)-connected (2n+1)-manifold.

- (a) If n = 2, $w_2M = 0$ and $H_2(M, \mathbb{Z})$ contains no elements of order 3 then M is contact.
- (b) If n \equiv 5 mod 8 and M is an odd torsion manifold with an even number of prime summands, then for some smooth structure on M there is a contact form ω .

The proof of Theorem 2 uses the classification of highly connected manifolds, the description of the prime summands in terms of Brieskorn varieties, and a theorem of C. Meckert on connected sums. It should not be regarded as the final word on the subject.

© ()

T. tom DIECK:

Geometric representation theory of finite groups

Geometric representation theory is part of the theory of transformation groups and emphasises the following view points:

- 1. Group actions on spheres, disks, Euclidean spaces (possibly up to homotopy).
- 2. Systematic results for large classes of groups.
- 3. Methods, results, view points from ordinary (algebraic) representation theory.
- 4. The study of unit spheres SV of orthogonal representations V.
- 5. Analysis of the role of SV for general actions on spheres.

This view point was explained in the homotopy category for homotopy representations X. These are G- complexes such that all fixed point sets X^H , H c G a subgroup, are (n(H)-1)-di- mensional spaces homotopy equivalent to the sphere $S^{n(H)-1}$. The main invariant of the homotopy type is the dimension function $\text{Dim } X: H \mapsto n(H)$. Necessary and sufficient conditions for a function on conjugacy classes to be a dimension function were explained.

C. WEBER:

Integral monodromy of some plane curve singularities

Let $f\colon \mathbb{C}^{n+1} \to \mathbb{C}$ be a polynomial map, f(0)=0, 0 being an isolated singularity. Let Σ be the Milnor fibre and let h be the monodromy. The induced map h_* is an automorphism of $H_n(\Sigma,\mathbb{Z})$, giving this last group the structure of a $\mathbb{Z}[t,t^{-1}]$ -

 \bigcirc

module. Call if M(f). P. Orlik conjectured that M(f) is a direct sum of cyclic modules, at least if h_{\star} is of finite order.

Theorem. This conjecture is false.

Counterexamples: Take $f(X,Y) = (X^a - Y^b)(X^c - Y^d)$ with gcd(a,b) = 1 = gcd(c,d), c/d < a/b. Suppose b and c are two distinct primes such that $a+c = b^k$, $b+d = b^{k'}$, k < k'. Then M(f) is not a direct sum of cyclic modules. The simplest example arises from $(X - Y^2)(X^3 - Y^{14})$.

Berichterstatter: Johannes Huebschmann (Heidelberg)

Tagungsteilnehmer

Prof. Dr. A. Assadi

University of Virginia Department of Mathematics Charlottesville, VA 22903

Dr. Michèle Austr

Dr. Michèle Audin Université de Paris-Sud G.R. 21 Topologie, Bât. 425

F - 91405 Orsay

Prof. Dr. M. Balavadze

Universität Frankfurt Fakultät für Mathematik Robert- Mayer- Str. 6-10

Robert- Mayer- Str. 6-10 6000 Frankfurt 1

Prof. Dr. H.J. Baues Universität Bonn Mathematisches Institut Wegelerstr. 10 5300 Bonn

Dr. Eva Bayer- Fluckiger Université de Genève Section de Mathématiques 2-4 rue du Lièvre, C.P. 240

Ch- 1211 Genève 24

Ch- 1211 Genève 24

Dr. M. Boileau Université de Genève Section de Mathématiques 2-4 rue du Lièvre,

Dr. F. Bonahon Université de Paris- Sud G.R. 21 Topologie, Bât. 425 Prof. Dr. Th. Bröcker Universität Regensburg Fachbereich Mathematik. Universitätsstr. 31 8400 Regensburg

Prof. Dr. T. tom Dieck Universität Göttingen Mathematisches Institut Bunsenstr. 3-5 3400 Göttingen

Prof. Dr. A. Dold Universität Heidelberg Mathematisches Institut Im Neuenheimer Feld 288 6900 Heidelberg

Prof. Dr. J. Ewing
Universität Göttingen
Mathematisches Institut
Bunsenstr. 3-5
3400 Göttingen
Dr. Y. Felix

Univ. Catholique de Louvain

Institut de Mathématiques

B- 1343 Louvain-La-Neuve

rue de Cyclotron 2

Dr. R. A. Fenn
University of Sussex
Mathematics Division
Brighton BN1 9QH

Prof. Dr. St. C. Ferry
University of Kentucky
Department of Mathematics
Lexington, KY 40356

Dr. B. Hajduk
Uniwersytet Wroclaw
Instytut Matematyczny
Pl. Grunwaldzki 2/4
PL 50-384 Wroclaw

Prof. Dr. I. Hambleton
Department of Mathematics
Mc Master University
Hamilton,Ontario,Canada

Prof. Dr. H. Hendriks
Mathematical Institute
Catholic University
Toernooiveld
Nijmegen/ The Netherlands

Dr. J. Howie
University of Glasgow
Department of Mathematics
Glasgow G 12 8QW

Dr. Johannes Huebschmann Mathematisches Institut Universität Heidelberg Im Neuenheimer Feld 288 6900 Heidelberg

Priv.-Doz. Dr. K. Johannson Universität Bielefeld Fakultät für Mathematik Universitätsstr. 4800 Bielefeld 1

Prof. Dr. K.H. Kamps
Fernuniversität Hagen
Fachb. Mathematik und Informatik
Postfach 940
5800 Hagen

Dr. C. Kearton
University of Durham
Department of Mathematics
Science Lab's, South Road
Durham DH1 3LE

Prof. Dr. M. Kervaire
Université de Genève
Section de Mathématiques
2-4 rue du Lièvre
Ch- 1211 Genève 24

Prof. Dr. U. Koschorke Universität Siegen Fachbereich 6 - Mathematik Hölderlinstr. 3 5900 Siegen 21

Prof. Dr. M. Kreck Universität Mainz Mathematisches Institut Saarstr. 21 6600 Mainz

Prof. Dr. N. Kuiper
I. H. E. S.
35, route de Chartres
F- 91440 Bures-sur-Yvette

Prof. Dr. K. Lamotke
Universität Köln
Mathematisches Institut
Weyertal 86 - 90
5000 Köln 41

Dr. J. Lannes École Polytechnique Département Mathématique F- 91128 Palaiseau Prof. Dr. P. Löffler
Universität Göttingen
Mathematisches Institut
Bunsenstr. 3-5
3400 Göttingen

Dr. D. Long
University of Liverpool
Department of Pure Mathematics
Liverpool L69 3BX

Prof. Dr. S. Mardesić University of Zagreb Department of Mathematics P.P. 187 YU - 41001 Zagreb

Prof. Dr. M. Morin Université de Strasbourg Institut de Mathématiques 7 rue Descartes F- 67084 Strasbourg

Dr. S. Ochanine
Université de Paris- Sud
G.R. 21 Topologie
Bâtiment 425
F- 91405 Orsay

Prof. Dr. R. Oliver
Aarhus Universitet
Matematisk Institut
Universitetsparken
DK- 8000 Aarhus C

Dr. E.K. Pedersen
Universität Göttingen
Mathematisches Institut
Bunsenstr. 3-5
3400 Göttingen

Dr. R. C. Penner
Princeton University
Department of Mathematics
Fine Hall
Princeton NJ 08540

Prof. Dr. D. Puppe Universität Heidelberg Mathematisches Institut Im Neuenheimer Feld 288 6900 Heidelberg

Prof. Dr. V. Puppe Universität Konstanz Fakultät für Mathematik Postfach 5560 7750 Konstanz

Dr. J. Przytycki Instytut Matematyczny Palac Kultury i Nauki IX pietro PL- 00-901 Warszawa

Prof. Dr. A. Ranicki
University of Edinburgh
Department of Mathematics
Mayfield Road
Edinburgh EH9 3JZ

Prof. Dr. D. Repovs University of Ljubljana College of Mechanical Engineering, P.P. 394 YU - 61001 Ljubljana

Prof. Dr. D. Rolfsen
University of British Columbia
Department of Mathematics
Vancouver, British Columbia
V6T 1W5

Dr. R. Rubinsztein
University of Uppsala
Department of Mathematics
Thunbergsvagen 3

Dr. L. Schwartz Université de Paris- Sud

S- 75328 Uppsala

G.R. 21 Topologie Båtiment 425 F- 91405 Orsay

Dr. P. Scott
University of Liverpool
Department of Mathematics
Liverpool L69 3BX

Prof. Dr. P. Shalen
Université de Nantes
Département Mathématique
B.P. 1044
F- 44037 Nantes cedex

Prof. Dr. L. Siebenmann Université de Paris- Sud G.R. 21 Topologie Bâtiment 425

F- 91405 Orsay

Priv.- Doz. Dr. W. Singhof Universität Köln Mathematisches Institut Weyertal 86 - 90 5000 Köln 41

Prof. Dr. E. H. Spanier
University of California
at Berkeley
Department of Mathematics
Berkeley CA 94720

Dr. S. Stolz Universität Mainz Mathematisches Institut Saarstr. 21 6600 Mainz

Dr. A. Szücz ELTE TTK Analisis I. Transzék Múzeum krt. 6-8 H- 1088 Budapest

Dr. C. B. Thomas
University of Cambridge
Department of Pure Mathematics
16 Mill Lane
Cambridge CB2 1SB

Instytut Matematyczny Polskiej Academia Nauk ul. Sniadeckich PL - 00 - 950 Warszawa

Freie Universität Berlin

Institut für Mathematik I

Prof. Dr. E. Vogt

Hüttenweg 9

Prof. Dr. H. Toruńczyk

Prof. Dr. C.A. Weber
Université de Genève
Section de Mathématiques
2-4 rue du Lièvre
Ch- 1211 Genève 24

Dr. A. Zarati Université de Paris- Sud G.R. 21 Topologie Bâtiment 425 F- 91405 Orsay

