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1 ’ Tagunegsbericht 37/1984

Algebraic K-Theory of Spaces and Pseudoisotopy Theory

19, 8. bis 25, 8. 1984

Die Tagung fand unter der Leitung von Herrn Waldhausen (Bielefeld) und
Herrn‘Burghelea (Columbus) statt.
Es handelte sich um eine Spezialtagung, die sich mit der algebraischen

K-Theorie topologischer Riume und deren Anwendungen beschiftigte.
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Theorem 2: H

Amir H. ASSADI: Transfer in Whitehead Theory and G-actions

Let X+ X bea G-covering, where G is finite and |G| = q, X is finitely
dominated and X is homotopy equivalent to ,a finite complex Y (fixed).

Then the obstructions to choosing a finite complex X' homotopy equivalent

to X such that X' is homotopy equivalent to Y via a Tr-simple homotopy
equivalence lie in an abelian group th(nlY-+an). In general, for an ex-
tension 1 -+w->T>G-~>1, IGI = q <», one has a long exact sequence

Wh (1) 5> W (r) &> Wl (x +1) 2> Wb (I) —> Wh (1) and a commutative .
diagram, when T = 7 xG

Wh, (1) £l (n 1)

v
Wh‘(n;Z/q) '
This exact sequence can be shown to be the lower portion of the exact homo-
topy sequence associated to the fibration obtained by delooping a geometric
transfer between Wh(Bl) ——> Wh(Bm), where Wh = Q-IWh, Wh = Hatcher's
Whitehead theory and T = Q_IT, where T 1is the transfer constructed using
Burghelea-Lashof type arguments on their geometric transfer between concord-
ance spaces. There are geometric applications for Wh? to transformation
groups, which show that WhT is the analogue of the i;—functop in the case

of G-actions on non-simply-connected spaces.

Marcel BOKSTEDT: K-theory and stable K-theory

Using étale homotopy theory one constructs a commutative diagram of 2-complete

kK@), — (2 x BO)" , Y
® 2 B0), o

KOF)  —> @ x BU)’(‘Z) .

spaces

This defines a map of K(Z)?Z) to the pullback of the other spaces in the
diagram. After taking a connected cover JK(Z) of the pullback this maps the
subgroups of n*K(z)(z) generated by &tale K-theory and the Borel classes
(i.e. all known homotopy in K(Z)(z)) isomorphically to the homotopy groups
T (JK(Z)).

Theorem 1: K(Z) —> JK(Z) 1is not a 7-connected map.

The proof uses the Hochschild homology HQSO(Z,Z) (see Waldhausen's lecture).

gso @ =2 xTz/r [2x-1],
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where Z/r[i] denotes the { -dimensional Eilenberg-MacLane space.

Assume Theorem | false. Then the space JK(Z) gives a concrete model for K(Z)

(at least in a dimension range). Direct computation using this model gives two

conflicting results about the maps
{ u’ (K(2) ;2/4) —> W (HQso(l)l;z/!o)

7 7 .
H (x(z)o;z/4) —> H (HQS°<Z)°,Z/4).

D. BURGHELEA: Calculation of the rational K-Theory of spaces via cyclic

homolo

In this lecture HH,(X) and HC,(X) denote the Hochschild resp. cyclic homo-

logy with rational coefficients of X.

Proposition: Given two spaces X and Y one has the following exact se-
quence

0 « HC, (X) O . HC,(Y) « HC (X xY) + EI(Cotor HC,(X), HC,(Y)) « O

HC, (%) HC, (%)

and if HC,(Y) is a quasifree HC, (k)-comodule of the form HC,(Y) =HC_(p) ® W,
+ Vv, (with HC*(pt) 8w*
HC (X xY) = HC\W(X) 8@ Wy + HH (X) 8 V,, If Y is a suspension or K(Z,n) then
HC,(Y) is quasifree and explicit formulas for both HH,(Y) and HC,(Y) are

the free part and V, the trivial part), then

given.

If X has (Alx },d) as a Sullivan minimal model (deg x, > 2) and
A[xu,iu,u], D denotes the commutative differential graded algebra with

deg iu = deg x -1, deg u = 2 and Dxa =dx + iau, Du =0 and Dia = B(dx )

(8 :A[xa]-—> [xa,xu] the unique derivation with B(xa) = xa,)then:

Theorem (joint work with M. Vigné-Poissier). HC*(X) = H*(A[xu,iu,u],v) with
HC(X) = Hom(HC_ (), @)

Corollary: If X in cP® or QPn (quaternionic projective spaces) HC, (X)
is quasi free and explicit calculations are provided for HC,(X) and HHL(X)
(similarly for complex Grassmannians). 4

Combined with the known relationship between A(X) ® Q and HC(X) these

results recover all known computations of A(X) 8 Q and permit a few other.




Z. FIEDOROWICZ: Cyclic Homology, Monads and Group Actions

Connes' notion of a cyclic set is analyzed. It is shown that for a cyclic set
X, : AP Sets, the Connes-Gysin sequence relating cyclic homology to sim—
plicial homolog); can be obtained from a fibration of the form

IX*I = hocolim A9P X, —> hocolim A°P X, —> BAOP ~ ¢p"., It is then shown

that there is a natural S -action on the geometric realization of a cyclic set
and that the usual adjunction between simplicial sets and topological spaces
extends to give a combinatorial description of Sl—actions. This combinatorial

description is then generalized to describe actions by a certain limited clas‘

of Lie groups. For these groups G,

and for combinatorial G, actions on simplicial sets described by functors

one can define a similar category A[G*]

Xy :l\[G“]op —> Sets one has a similar fibration sequence

. . . . op . . .
hocohm.Aop X, — hocolim A[G,]OP X, — BA[G*] and that this fibration
sequence can be naturally identified up to homotopy with

IX*I —_ IX*| x IG*l E|G‘| -_—> BlG*I. This result can be used to give a con-—
ceptual proof of the isomorphism 1

HC, (k[2,X]) = H (x° xS,zs‘).

Thomas GOODWILLIE: K-Theory and cyclic homology

Theorem: For any one-connected map f :A —> B of simplicial rings there is
an isomorphism
Kn(f) 8 ¢ = HCn_](f) e Q Vn .

Explanation: Simplicial rings are simplicial objects in the category of asso-—
ciative rings with 1., "One-connected" means that f induces an isomorphism

qu - ‘IIOB and a surjection 1|’1A - n]B . .

Kn(f) is a relative algebraic K-group: The K-groups of a simplicial ring
A !
are defined (2 la Waldhausen) by Kn(A) = nnBGL(A)+, and relative K-groups are

defined as relative homotopy groups, so that there is a long exact sequence

(%) cee —> Kn»A —_ I(nB _ an —_ Kn-lA —_> ...

ch—l(f) is a relative cyc1i¢ homology group: -

The cyclic homology groups l-lCn(A) of a simplicial ring A are defined by a
straightforward generalization of the definition of cyclic homology of a dis-
crete ring. (For example, if you like to define cyclic homology as the total
homology of a certaiﬁ double chain complex, then a simplicial ring gives you

a triple complex instead...). Relative HCn for a map of simplicial rings

DF Deutsche -
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is defined by an algebraic mapping cone so as to yield a long exact sequence

formally analogous to (*).

Thomas GUNNARSSON: Some generalities on continuous functors, monads and

rings up to homotopy

Functors F :TOP, —> TOP, (which commute with directed colimits, are con-
tinuous and have F(pt) = pt) are models for abelian groups up to homotopy.
F(-) codifies structures on F(S°). If F is such a functor then ;Fs(-) =
colim nn(F(Sn A= )) 1is a reduced homology theory. Composition of.functoEs
gives a monoidal structure. This leads to the notion of A _-monads and a theory
for homotopy invariance of such structures., Multiplicative structures are pre-
served under stabilization, In the stable case A_-monads can be changed to
monads. K-theory is defined for monads as in classical theory. (ring :=monad),
in particular constructions used in the analysis of the algebraic K-theory of

spaces can be performed using monads (as demonstrated by F. Waldhausen).

Bjorn JAHREN: Comparison of Involutions on A(X) (joint with W.-C. Hsiang)

W. Vogell constructs involutions 1, on A(X), corresponding (up to sign) to

the involution on pseudoisotopy thegry for manifolds X with thngent'sbhere
fibration = £, ' o

On the other hand, R. Steiner has proved that the operation A —> A t o’
matrices over Q(G+) also gives rise to an involution on A(X), defined as

Z x BGL(Q(G+))+ (Here G = QX, and conjﬁgation induced by g —> g_]‘ on G).

Theorem 1: This involution corresponds to Vogell's Tes where € 1is the

trivial spherical fibration.
A
The proof of this uses a geometric (" ~manifold") version of GL(Q(G+)).

For computations one would also like to define the more gemeral t, on

Béi(Q(G+))*. In view of Vogellis work, it suffices to identify thggméps_

£+ :A(X) —> A(X) using the GL-definition. Given £, there is a homoqorphism
a:G —> Qd Sd - the loéps on the-cléssifying map. If'Af : s ——>‘Sn(G+) re-
das" —5 sdag? A(G+) be'dééined
by £%(u,x) = (a(g)u,y,g), where £(x) =‘(y,g)i ‘ o

presents an element of Q(G,), let £ :5s

A A
Theorem 2: f > £% :QG —> QG induces a map BGL(Q(G+))+ o BGL(Q(G+))+,
which corresponds to Vogell's £+ :A(X) —> A(X). . o . v
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Christian KASSEL: Hochschild homology outside algebraic K-Theory

The fact that the Hochschild homology of the algebra

D =¢ <xl,...,x N 53—,...,——-> of differential operators in the affine
n n’ 9x, X,

space of dimension n is given by
- ¢ if i=2n
H.(D ,D) = {
ronon 0 otherwise
is explained in connection with Feigin-Tsigan's work on the cohomology of
certain Lie algebras of matrices and with the notion of semi-tensor product .
invented in the early sixties by Massey-Peterson for topological purposes.
This semi-tensor product allows to construct numerous non-commutative algebras
used in various fields (algebra, analysis, topology, Kac-Moody Lie algebras)
and to compute their Hochschild homology by means of a spectral sequence.

Wolfgang LUCK: An algebraic description of the transfer induced by a

fibration on K, and K,

For certain fibrations F —> E —B> B there is a geometrically defined homo-

morphism p! :Ki(z[wl(B)]) —> Ki(z[nl(E)]) using the pull-back construction.
Using chain-complexes with a twist one can define pairings )

K;@lr, 8] e &k &[a] - .n](zj) 8t K, (Z[m (E)] where K @[A] - w (E))
is the Grothendieck group of "Z[A]-chain complexes with a -rrl(E)—twist.

A ﬂ](E)-twist is a homotopy extension of the A-action to an nl(E)-act:ion.

A denotes the kernel of p*:ﬂ](E) _ TrI(B). This gives an element

L(p) € K (Z[A] - m (E)) and p' is just ?0.L(p). If = (E) acts trivially
(up to homotopy)-on the pointed fibre p, o p! and plo P, Vanish. If A
is contained in center (wl(E)) and is free as abelian group and G](F) =

ﬂ’l(F), then p! is trivial. : .

Ib MADSEN: The equivariant Top/PL (joint work with M. Rothenberg)

Let G be a finite group of odd order. If V is an RG-module, write TopG(V)

resp. PLG(V) for the groups of equivariant homeomorphisms (resp. PL-isomorph-

isms) of V. Let

Tor)G = lém TopG(V) . PLG = I%m PLG(V).

Theorem: T, (Topy/PLy) = J° L;:T>(Z[NH/H])/L§”(Z[NH/H]), k+3,

1° 1,y @lw/mh /Ly, @INH/ED) @ A(G) @ Z/2, K = 3.

Deutsche
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- Here A(G) 1is the Burmside ring, L:+l are the simple surgery groups of

<> s T INV ‘
Wall and L, ~(@D) = Lk*l+j(2[r xZJ1)™", j large. The groups
L:"”(zc)/L:(zc) are easy to tabulate. If k is odd then LS (26)/L;@G) =

f'@/2;x_ ,@6)), where ¥ (@) @ X & 6 —> io(mlclc) —> K_, @6) —> 0

IG1
is exact. If K is odd, Ly = (26)/L5@e) < f'@/2:k, (RE)). (Its rank is
rkR¢G - thQG)' The fibration sequence FG/PLG — FG/Topc —> B(TopG/PLd)
glves on homotopy groups

. 0 —> Lk(ZG)(z) — Lk ("G)(z) —_ Lk (xc)/x.k(zc) —> 0, when k # 3

(and G is abelian).

H.J. MUNKHOLM: Lower K-theory and parametrized spaces with bounded control
(joint work with D.R. Anderson) o

Let (Z,p) be a metric space, The category lggf/l has as objects all maps

p :X —> Z; a morphism f : (X,p) —> (Y,q) is amap f:X—> Y with
p(px,qfx) bounded. We develop "an algebralc topology" for zggflz iﬁcluding
chain-, homology—-, and homotopy "groups" that take values in an abelian cate-~
gory A(X,p) (analogous to the category of z[an]jmodules in the .classical
case (Z=pt.)). We prove a Hurevicz- and a Whitehead theorem in this context.
The results are applied to study simply homotopy theory with bounded control
over Z. There result obstructions in a group Wh(A(X,é))l constructed from the
category of "boundedly finitely generated" projectives in A(X,p) in the
standard way., If Z = Rk

and (X,p) has "uniformly boundedly defined" . nl(x)-
then Wh(A(X,p)) =K @m X).

. Nguyen H.V. HUNG: Dickson-Huynh Mii's invariants and the homology coalgbtas
of loop’ spaces a3s9x

This talk announces some current researchs of our seminar in Hanoi, particu-
larly of Huynh Mii and the author, on app11cat1ons of modular invariants to
Algebraic Topology.

We introduce the mod p Dicksop characteristic classes for fin{tg.covepinés
over paracompact spaces derived from the Dickson-Huynh Mﬁi's invériants of
GL(n,Z/p) These DLckson classes are closely related to the classxcal Stiefel-

Whitney or . Chern classes.

Cohomology algebras of the (unzversal) loop .spaces 2959 are determined using

DF Deutsche . )
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the isomorphisms H*(ﬂgsq 3Z/p) = H*(F(Rq,m)/zm sZ/p) and the Dickson classes
for the I _-principal covering over F(Rq,w)/zm. The action of Steenrod opera-
tions on H*(Qgsq sZ/p) are computed by reducing them to those on the
GL(n,Z/p)-invariants.

Generalizing these results, Huynh Mii describes the coalgebra structures of
u*(aqsqx) by introducing the homology'operati‘ons derived from the modular in-
variants, which are certain linear combinations of iterated Dyer-Lashof
operations, on the loop spaces 2959, The invariants led us to overcome the
Adem phenomenon occurring in the Dyer-Lashof approach.

Crickton OGLE: Two Questions in Integral Algebraic K-Theory

We discuss two conjectures in K-Theory which are integral analogues of rational

constructions, The first involves a configuration space model for K-theory.

The space
CeL(R) = 4 C@ER™) x; BGL, (R)/~
n>0 . m n
is analyzed in analogy'to cxy = 1 C(n;R“) x5 X o Q(X).
. n>0 n

We show. that there is a map BGL(R)* —> CGL(R) which is a rational homotopy
equivalence. The motivation for the construction of CGL(R) is that there
is a map ) ‘

CGL(R) —> NGL(R) = llwx, BOL (R)/~& T K(my,n)

n>0 M n>1

which is a rational homotopy equivalence, e.g., together with a map
Sp,(X_~B(R)) -——> NGL(R) which induces a map HC,(D3(R) —> m,(I_~BGL(R)) =
T (NGL(R)) —> K,(¢) rationally; D:(R) a certain cyclic subcomplex of
C,(R) = Connes complex. It is conjectured that the =-loop space CGL(R) is
either algebraic K-theory, or algebraic K-theory "away" from Q(S°). In par- .
ticular, one can construct CGL(R) for the ring up to homotopy R = Q(ﬂX+),
and it is conjectured that CGL(Q(S®) is either A(*) or WhDiff(*) inte-
grally (this is true rationmally).
The second question involves the intfgra.l K-theory of a square-zero ideal I.
We construct maps Ien/~ i> K, (1) l> Ien/~ (where ~ 1is the cyclic re-
lation in cyclic homofogy) whose composition is multiplied by n. By Staffeldt,
the map Ion/~ —> K, (I) is a rational isomorphism, but it is shown not to
be an integral one. However, we conjecture that im(L) generates K,(I) as

an ideal in the graded ring K, (Z®8I) integrally.

Deutsche
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Richard STEINER: A non-connective delooping of the algebraic K-theory
of spaces

Let Y be an A_ ring space which is ringlike (1r°Y is a ring). Its K-theory

KY is Ko(noY) x (Bgl Y)*, where (Bgl Y)+ is the plus-construction on the
classifying space of the telescope of the invertible .components gldY in
de o def In particular, if X 1is a based space and Y =9¢Zm((ﬂg)+) « ),
denotes the addition of a. -base-point); then KY is a possible definition
for the algebraic K-theory of X.
Imitating Wagoner, one can deloop KY .non-connectively as follows, perhaps
‘ more informatively than the usual v)ay. There is a sequence Y, sY, szY, ees
of ringlike A, ring spaces such that KY = QKsY, KsY ;zﬂKszY,... . Here sY
is such that* ﬂqu o anY (locallivfinite matrices over an module finite
ones), etc., It is got from a bar construction, using the general principle
that a construction on semirings extends to A ' ring spaces provided ome
never adds two equal terms.

’

Pierre VOGEL: A commutativity formula for Nil-groups

Let A and B be two rings and 1Sp and BTA be two bimodules. Consider
the category of objects (P,Q,p,q) where P GPA and .Q €PB are finitely
generated projective right modules and p :g - Q g T, q:Q—>P g T are
maps. The category Nil(a,B;S,T) of such objects which are nilpotent in an
obvious sense is an exact category and we have a K-theoretical spectrum

K Nil(A,B;S,T) which splits: K Nil(A,B;S,T) = K(A) x K(B) x K Nil(A,B;S,T).

Theorem: If S and T are free on each side, the rule (P,Q,p,q) > (P,q *p)

gives a homotopy equivalence of spectra:

.- K Nil(A,B;S,T) > K Nil(A,S 8.

Corollary: Under the same conditions we have a homotopy equivalence:
K Nil(A,S @ T) = K Nil(B,T 4 s).

As a consequence of this result we see that the Nil functorsdefined by Wald-
hausen in the computation of Mayer-Vietoris exact sequences in algebraic
K-theory associated to push-out of groups, are of the form K Nil(A,S) and

are contractible in many cases. For example we have the following:

Theorem: Let g &> G be a push-out of ‘groups. Suppose that H ﬂaHu_l HBHB—I
+

G'=> 7 .
is regular coherent for every o €G-H and B €G' ~H, Then we have a cartesian

square of spectra: Wh(H) ——> Wh(G)
Wh(G') —> Wh(m) .

Deutsche
Forschungsgemeinschaft ©




oF

Deutsche
Forschungsgemeinschaft

Wolrad VOGELL: Involutions on A(X)

Various models of the algebraic K-theory of spaces functor A(X) were described
and it was shown how to put natural involutions on these, There is a notion of
equivariant Spanier-Whitehead duality underlying the construction of these
involutions. It turns out that the correct notion of equivalent duality to use
is a generalization of Ranicki duality where the group acting on the spaces
under consideration is no longer discrete but is allowed to be any simplicial
group. The involutions constructed depend on a chosen spherical fibration &

over X. If X is a manifold these involutions on A(X) are shown to cor- .

respond to. the natural involution on the stable concordance space C(X),
where £ 1is the (fibrewise one-point-compactification of the) tangent bundle

of X.

Friedhelm WALDHAUSEN: Hochschild homology and stable K-theory

Let R be a ring and M a bimodule over it, Supposing that R 1is an algebra

over a ground ring k one defines the Hochschild homology Hk(R,M) as the

simplicial object

[n]

(n factors R - 'the circular display is to indicate that the j-th face map is
given by the collapsing of the j—th tensor product sign). It turns out that
the construction can be extended to a framework of "rings up to homotopy" .

(one uses monads, and algebras over monads, to carry this out technically).

The interest of the extended construction is in its use to compute the stable
K-theory KS(R,M). The assertion (whose proof is fairly difficult) is that

the natural map KS(R,M) —_— Hk(R,M) is a homotopy equivalence provided that
for the ground ring k one takes the "universal" ring up to homotopy, QS°,
whose homotopy groups are the stable homotopy groups of spheres.

(Note, if M=R=k then H (R,M) ~k, and if M=R=Qs° then K°(&,M)=a%(x),
so this generalizes the assertion that As(*) —> QS°® 1is a homotopy equi-

valence.)
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Chuck WEIBEL: Delooping K-theory by parametrized modules

(joint with E.K. Pederson)

Given an additive category A and a metric space X, one can construct a
categoiy CX(A) of A-objects parametrized by X (in a locally finite way),
the morphisms being given by "bounded matrices". The point of the lecture
was that the K-theory spaces of A = Co . CR(A), CRz(A),... form a non-

connective infinite loop spectrum, at least when all short exact sequences

' sﬁlit in A. This allows us to define the negative K-theory of A. In fact,

we recover the definition given by Karoubi in LNM vol. 36 (1968), naturally
in a different form. The hope is that this machinery works in case short exact
sequences in A do not split, but the problem at present -is defining an exact
structure on the category CX(A)‘ Assuming all s.e.s. split in A, we can de-
fine the K-theory of CX(A) by allowing only split monomorphisms. For con-—
venience, assume A idempotent complete. Then we prove:.

I((CX x [o,w)) =

K(CY) — K(CX) —_— K(Cx/CY)_ is a fibration

A
K(Cx) —> K(C.

X x [o,“)) o~ %
l is homotopy cartesian

$ 2 K(Cy (oo > K, )

From this it follows that ﬂnK(CRn) = K(A), and that K(Cq ) is a covering
space of QK(CR a+l). .

N

Bruce WILLIAMS: Surgery theory, automorphisms of manifolds, and higher

algebraic¢ K-theory (joint work with Bill Dwyer)

For a spectrum A with Z/2 action we construct a 'Tate cohomology" fibration,
H.(2/2,8) % 1°@/2,4) = fi(A), e.g. A = Waldhausen's A(X) with Vogell's in-
volution, £ A(.n) =A twisted by n copies of the flip representation, then
) = Aa®),

For M? a topological manifold, let H(M) =(simple) homotopy automorphisms

of M and TOP(M) = homeomorphisms of M. v

Conjecture: There exists a commutative diagram of natural transformations

M, AL@Z) —> L@Zm) —=> S
+ + ‘g (%)

A A A
HM, AA(%)) —> H(A(M)) —> H(Wh(M))

o®



oF

Deutsche

HM)

TOP (M)
n+i

s L8 o pam) > enm ™ 2> wo@/2, me ™).

such that is the homotopy fiber of the map

Thus (*) would be the "glueing data" between surgery theory and the algebraic

K-theory of spaces.

Evidence for the conjecture comes from the work of Hatcher, Hsiang-Sharpe,

and Burghelea-Lashof.

Berichterstatter: Wolrad Vogell

Forschungsgemeinschaft
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