
MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e r ich t 37/1984

Algebraic K-Theory of Spaces and Pseudoisotopy Theory

19. 8. bis 25. 8. 1984

Die Tagung fand unter der Leitung von Herrn Waldhausen (Bielefeld) und

Herrn Burghelea (Columbus) statt.

Es handelte sich um eine Spezial tagung, die sich mit der algebraischen

K-Theorie topologischer Räume und deren Anwendungen beschäftigte.
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vortragsauszüge

Amir H. ASSADI: Transfer in Whitehead Theory and G-actions

Let X ~ X be a G-covering, where G is finite and IGI ~ q, X is finitely

dominated and X is homotopy equivalent to ,a finite comp1ex Y (fixed).

Then the obstructions to choosing a finite comp1ex X' homotopy equivalent

to X such that X' is homotopy equiva1ent to Y via a~-simp1e homotopy

equivalence lie in an abe1ian group Whi(nlY~nlX). In general, for an ex­

tension I ~1T ~ r ~G ~), IGI = q < 00, one has a 10ng exact sequence
Tr ß T a

Wh. (f) --> Wh) (1T) --> Wh) (n ~r) --> Who (r) -> Who (TT) and a connnutative

diagram, when r = TT x G
ß " T

Wh.(TT) -> Wh)(TT~r)

~ ~
Wh] (1T;Z/q) •

This exact sequence ean be shown to be"the 10wer portion of ,the exact homo­

topy sequence associated to the fibration obtained by delooping a geometrie

transfer between ~(Br) __l_> ~(B1T), where ~ = n-·Wh, Wh = Hatcher's

Whitehead theory and T = n-1T, where T is the transfer eonstructed using

Burghelea-Lashof type arguments on their geometrie transfer between eoncord­

anee spaces. There are geometr~e app1ications for Whi to transformation

groups, whieh show that Whi is the analogue of the Ko-funeto~ ~n the case

of G-aetions on non-simp1y-eonnected spaees.

Marcel BÖKSTEDT: K-theory and stable K-theory

Using etale homotopy theory one construets a commutative diagram of 2-complete

spaces

(Z x BQ)"
~ 2

A
(Z x BU) (2)

->

->K(F3)

"This defines a map of K(Z)(2} to the pullback of the other spaces in the

diagram. After taking a conneeted cover JK(Z) of the pullback this maps the
A

subgroups of 1T*K(Z) (2) generated by eta1e K-theory and the Bore! classes

(i.e. all known homotopy in K(Z)~2» isomorphic~lly to the homotopy groups

Theorem ]: K(Z) -> Jk(Z) is not a 7-connected map.

The proof uses the Hochsehild homology HQSo(Z,Z) (see Waldha~sen's lecture).

Theorem 2: HQso(Z) = Z' x ~ Z/r [2r - 1],

                                   
                                                                                                       ©



where Z/r[i] denotes the

- J -

(., -dimensional Ei1enberg-MacLane space.

are

then

•

Assume Theorem 1 fa1se. Then the space JK(Z) gives a concrete model for K(Z)

(at least in a dimension ~ange). Direct computation using this model gives two

conf1icting results about the 'maps

{

H7 (K(Z) 1 ;7./4) -> H
7

(HQS0 (:&) I ;Z/4)

H
7

(K(Z) ;Z/4) -~ H
7

(H 0(%) ;'lJ./4).
o QS 0

D. BURGHELEA: Calculation of the rational K-Theory of spaces via cyclic

homology

In this lecture HH.(X) and HC.(X) denote the Hochschild resp. cyclic homo­

logy with rational coefficients of X.

Proposition: Given two spaces X and Y one has the following exact se­

quence

o + HC.(X)C1 r HC.(Y) + HC.(X xY) + E(Cotor HC.(X), HC.(Y» + 0
HC.(.> HC.(.)

and if HC.(Y) is a quasifree HC.(k)-comodule of the form HC.(Y) =HC.(p)

~ v. (with HC.(pt) SW. the free part and V. the trivial part), then

HC.(X xY) = HC.(X) SW. + HH.(X)S V•• If Y is a suspension or K(Z,n)

HC.(Y) is quasifree and explicit formu1as for both HH.(Y). and HC.(Y)

given.

If X haB (A[xa],d) as a Sullivan minimal model (deg xa ~ 2) and

A[xa,xa,u], V denotes the commutative differential graded algebra with"

deg i a = deg xa-1., deg u = 2 and Vxa = dXa + xau, 'Du = 0 and Via = ß(dxa )

(ß : A[xa ] ~> [xa'xa ] the unique'derivation with ß(xa ) = xaJ then:

Theorem (j9~nt work with M. Vigne-Poissier). HC·(X) = H·(A[xa,xa,u],V) with

HCn(X) = Hom(HC (X),~)
n

Coro11ary: If X in Cpn or QPn (quaternionie projective spaces) HC.(X)

is quasi free and exp1icit calcu1ations are provided for HC.(X) and HH.(X)

(similarly for comp1ex Grassmannia~s)Q

Combined with the known relationship between A(X) 8 Q and HC(X) these

results recover all known computations of A(X) 9 Q and permit a few other.
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Z. FIEDOROWICZ: Cyclic Homology, Monads and Group Aetions

Connes l notion of a cyclic set is analyzed. It is shown that for a cyclic set

x. : AOP --> Set~, the Connes-Gysin sequence relating cyelie homology to sim­

plicial homology can be obtained from a fibration of the form

Ix.1 ~ hocolim ~op x. --> hocolim öOp.X. --> B~oP ~ tpoo. It is then shown

that there is a natural SI-action on the geometrie rea1ization of a cyelic set

and that the usual adjunction between simplicial sets and topological spaces

extends to give a combinatorial description of SI-aetions. This combinatorial

description is then generalized to describe actions by a certain limited Clas~

of Lie groups. For these groups G. one can define a similar category A[G.]

and for combinatorial G. actions on simplieial sets described by functors

X. : A[G.]oP --> Sets one has a similar fibration sequence

hocolim.ßop X. --> hoc?lim A[G.]oP X. --> BA[G*]oP and that this fibration

sequence can be naturally identified up to homotopy with

Ix.' --> Ix.1 x IG*I E)G*I --> BIG*I. Ihis result can be used to give a con-

ceptual proof of the isomorphism 1
S I

HC*(k[0.x]) "H
1

(X x JES ).
S

Thomas GOODWILLIE: K-Theory and cyclic homology

Theorem: For any one-connected map f:A -> B of simplicial rings there is

an isomorphism

Explanation: Simplicial rings are simplicial objects in the category of asso­

ciative rings with J. "One-conneeted" means that f induces an isomorphism

~oA -> noB and a surject~on nJA -> nJB •

Kn(f) is a relative algebraic K-group: The K-groups of a simplicial ring

are defined (a 1a Waldhausen) by Kn(A) = nnB6i(A)+, and relative K-group5

defined as relative homotopy groups, so that there is- a long exact sequence

HCn_l(f) is a relative cyclic homology group:

The cyclic homology groups HCn(A) of a simplicial ring Aare defined by a

straightforward generalization of the definition of cyclic homology of a dis­

crete ring. (For example, if you like to define cyclic homology as the total

homology of a certain double chain complex, then a simplicial ring gives you

a triple complex instead •• e). Relative HCn for a map of simplicial rings
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~, there is ~ homo~orphism

If 'f: Sn --> Sn(G) re-
. d n " .t.,
S AS A (G+) be .defined

-~

•

•

- "5 -

is defined by an algebraic mapping cone so as to yield a long exact sequence

formally analogous to (*).

Thomas GUNNARSSON: Some generalities on continuous functors, monads and

rings up to homotopy

Functors F : TOP* --> TOP. (which commute with directed colimits, are con­

tinuous and have F(pt) ~ pt) are models for abelian groups up to homotopy.

F(-) codifies structures on F(So). If F is such a functor then .FS (_) =

colim nn(F(Sn A-» is a reduced homology theory. Composition of .functors

gives a monoidal structure. This leads to the notion ,of Aoo-mon~ds and a theory

for homotopy invariance of such structures. Multiplicative structures are'pre­

served under stabilization. In the stab1e case Aoo-monads can be changed to

monads. K-theory is. defined for monads as in c1assical theory. (ring: = monad) ,

in particülar constructions used in the analysis of the algebraic K-theory of

spaces can be performed us~ng monads (as demonstrate~ bY,F. ,Waldhausen).

Björn JAHREN: Comparison of Involutions on A(X) (joint with W.-C. Hsiang)

W. Vogell construets involutions T~ on A(X), corresponding (up to 'sign) to

the involution on pseudoisotopy theory for mani'folds X wi th t'angerit' s"phere

fibration Ql!~.

On the other hand, R.' Steiner has proved that the operation '-A ->Ä t " on'

matrices over Q(G+) also gives rise to an involution on A(X), defined as
1\. + ~I,

Z x BGL(Q(G+» (Here G =OX, and conjugation induced by g --> g on G).

Theorem I: This involution corresponds to Vogel~'s TE' where E is the

trivial spherical fibration.
A

The proof of this uses a geometrie (" -manifo1dU
) version of GL(Q(G+».

For computations one would also like to define the more general Lr on
A . ~

BGL(Q(G+»+. In viewof Vogell's work, it suffices to identify th~ ~ps~

~. :A(X) --> A(X) using the GL-definition. Given

a : G -> nd Sd - the 10~ps on the 'c1assifying map.
a d npresents an element of Q(G+), let f : S AS ->

by fQ(u,x) = (a(g)u,y,g), where f(x) = ,(y,g).

Theorem 2: f ~> fa : QG -!l> QG induces a map Bel (Q (G+) ) + --> B~ (Q (G+) ) +,

which corresponds to.Vogeli~s ~. ':A(X) --> A(X).
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Christian KASSEL: Hochschild homology outside algebraic K-Theory

The fact that the Hochschild homology of the algebra
a a .

V = d: <xl' ••• ' X , -a-' ... ' -a- > of differential operators in the affinen n xI xn
space of dimension n is given by

if i = 2n

otherwise

is explained in connection with Feigin-Tsigan's work on the cohomo1ogy of

certain Lie algebras of matrices and with the notion of semi-tensor product

invented in the ear1y sixties by Massey-Peterson for topological purposes.

This semi-tensor product allows to construct numerous non-commutative algebras

used in v~rious fields (algebra, analysis, topo1ogy, Kac-Moody Lie algebras)

and to compute their Hochschild homology by means of a spectral sequence.

Wolfgang LUCK: An algebraic description of the transfer induced by a

fibration"on Ko and KI

For certain fibrations F --> E ~> B there is a geometrically defined homo­

morphism p! :Ki(Z[WI(B»)) ~ Ki(Z[rrl(E)]) using the pult-back construction.

Using chain-complexes with a twist one can define pairings
. 8t

Ki (Z[1T I (B)]) 8 Ko(Z[ll] - ·1T
I

(E» --> Ki (Z[1T I (E)] where Ko(Z[A] - lTI(E»

is the Grothendieck group of 'Z[6]-chain comp1exes with a 1TI(E)~twist.

A 1T I (E)-twist is a homotopy extension of the A-action to an 1T I (E)-actiono

6 denotes the kerne1 of p*:1T I (E) --> 1T I (B). This gives an element

L(p) E Ko(Z[A] -.1T
1

(E» and p! is just ?8t L(p). If 1T
1

(E) acts trivia11y

(up to homotopy) on the pointed fibre p. 0 p! and p! 0 p* vanish. If 6

is contained in center (1T I (E» and is free as abelian group and G
1

(F)

ff\(F), then p! i8 trivial. ~

Ib MADSEN: The equivariant Top/PL (joint work with M. Rothenberg)

Let G be a finite group of odd order. If V is an RG-modu1e, write ToPG(V)

resp. PLG(V) for the groups of equivariant homeomorphisms (resp. PL-isomorph­

isms) of V. Let

TOPG = 1im ToPG(V) , PLG = 1im PLG(V).
V V

t e <-m> S [
Theorem: lTk(ToPG/PLG) = l Lk+

1
CZ[NH/H])/Lk+I(Z NH/H]), k * 3,

~ Le L~~>CZ[NH/H])/~+I(Z[NH/H]) • A(G) e Z/2, k 3.
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sHere A(G) is the Burnside ring, Lk+
1

are the simple surgery groups of

Wall and L<-co>(Zr) =1...s .(z[rxzj])lNV large. The groups
~+1 ~+I+J '

~-m>(ZG)!~(ZG) are easy to tabulate. lf k is odd then ~~~>(ZG)!~CZG)

"1 - - " -H (7l!2;K_ 1 (ZG», where Ko(~) i Ko(Z'(GI C) -> Ko(~IGIG) -> K_ I (ZG) -> 0

<-co> s Al '
is exact. lf K ~s odd, ~ (ZG)!lk(ZG).C H (Z!~;KI(RG». (lts rank is

rkR~G - rkR~G). The fibration sequence FG!PLG --> FG!ToPC --> B(ToPC!PLC)
gives on homotopy groups

• 0 -> ~ (ZG) (2) -> ~_oo> (ZG) (2) -> ~-..> (ZG) I~ (ZG) -> 0, when k * 3

(and G is abelian).

H.J. MUNKHOLM: Lower K-theory and parametrized spaces with bounded control

(joint work with D.R. Anderson)

Let (Z,p) be ametrie sp'ace. The category ~c/Z has' as objects all maps

p:X --> Z; a morph~sm f: (X,p), --> (Y,q) is a map f:X --> Y with

p(px,qfx) bounded. We deve10p "an aigeb~aic topology" for ~c/Z inc1uding

chain-, homology-, and homotopy "groups" that take values in an abelian cate­

gory ~(X,p) (a~alogous to the.category of Z[nlX]~modules in the .classical

case (Z=pt.». We prove a Hurevicz- and a Whitehead theorem,i~ this context.

The resu1ts are applied to study simp1y homotopy theory with bounded control

over Z. There result obstructions in a group Wh(~(X,p» constructed from the

category of "bounded1y finitely generated" projectives in ~(X,p) in the

standard way•. lf Z ="Rk and (X,p) has "uniformly bou~dedly defined". 1T I (X)

then Wh(~(X,p» ~Kl_k(Z1TIX).

Nguyen H.V. RUNG: Dickson-HuYnh MUi'sinvariants and the'homology coa1gebras

of loop'spaces'gqSqx

This talk announces some current researchs of our seminar i~ Hanoi, par~icu­

lar1y of HUYnh Mui and the author, on applica~ions of modular invariants to

A1gebraic Topo~ogy.

We introduce the mod p Dickson characteristic classes for finit~..cove~ings

over paracompact spaces derived from the Dickson-Huynh ~i's ~nvariants of

~L(~,Z/p). These pi~kson c~asses are.~losely r~lated to t~e classic~l Stiefel­

Whi~ney or.Chern c1asses.

Cohomology a1gebras of the (universal).~oop.space$ "gqsq are determined using
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the isomorphisms H*(n~sq ;Z/p) ~ H*(F(Rq,~)IE~ ;Z/p) and the Dickson classes

for the E~-principal covering over FORq,~)/r~. The action of Steenrod opera­

tions on H*(OqSq ;Z/p) are computed by reducing them to those on the
o

GL(n,Z/p)-invariants.

Generalizing these results, Hujnh Mui describes the coalgebra structures of

H*(OqSqX) by introducing the homology'operations derived from the modular in­

variants, which are certain linear combinations of iterated Dyer-Lashof

operations, on the loop spaces nqsqx. The invariants led us to overcome the

Adem phenomenon occurring in the Dyer-Lashof approach.

Crickton OGLE: Two Questions in Integral Algebraic K-Theory •
We discuss two conjectures in K-Theory which are integral analogues of rational

constructions. The first involves a configuratioD space model for K-theory.

The space

CGL(R) = II C(n;R
ClO

) xE BGLn (R) I-
n,::O n

is analyzed in analogy to C{X) = 11 C(D;R~) xL XD/_ ~ Q{X).
n ~O n

We show. that there iso a map BGL(R)+ --> CGL(R) which is a rational homotopy

equivalence. The motivation for the construction of CGL(R) is that there

is a map

CGL(R) -> NGL(R)

which is a rational homotopy equivalence, e.g., together with a map

Sp~{r~ ...... B(R» -> NGL(R) which induces a map HC*{D~(R) -> 1T.{E~ ...... BGL(R»

~*(NGL(R» --> K.(t) rationally; D~(R) a certain cyclic subcomplex of

C*(R) = Connes complex. It is conjectured that the m-loop space CGL(R) is

either algebraic K-theory, or algebraic,K-theory "away" .from Q(So). In par- •
A

ticular, one can construct CGL(R) for the'ring up to homotopy R = Q(nx+),

and it is conjectured that CGL(Q(So) is either A(.) or WhDiff <*> inte­

grally (this is true" rationally).

The second question involves the integral K-theory of a square-zero ideal I.

We construct maps I8n/_~> K.(I) D> I en/_ (where - is the cyclic re­

lation in cyclic homology) whose composition is multiplied by n. By Staffeldt,
n

the map 19 1---> K.(I) is a rational isomorphism, but it is shown not to

be an integral one. However, we conjecture that im(L) generates K.(I) as

an ideal in the graded r'ing K*(Z e I) integrally.
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Richard STEINER: A non-connective delooping of the algebraic K-theo~y

of spaces

Let Y be an Am ring space which is ringlike (noY is a ring). Its K-theory

KY is Ko(noY) x (Bgl y)+, where (Bgl Y)+ i~ th~ plus-construction on the

classifying space of the telescope ·of the invertible .c~mponents gldY in

m
d

Y "" yd2 o ' In particular. if X is a based space l!-nd Y = f1""E"" «fIX) +) « )+

denotes the addition of a.. base-po~nt)t then KY is a possible def~nition

for the algebraic K-theory of x.
Imitating Wagoner, one can deloop KY .non-connectively a~ foliows, perhaps

more informatively than the usual way. There is a sequence Y, sY, s2y ,
••• n 2 H Yof r1ng11ke Am rLng spaces such that KY ~ ..KsY, KsY ~~QKs Y,.... ere s

is such that . n sY ~ Sn Y (locally finite matrices over n Y module finite
q q q

ones), etc. It is got 'trom a bar construction, using the general principle

that a construction on semirings extends to Am ring spaces provided one

never· adds two equal terms.

Pierre VOGEL: A commutativity formula for Nil-groups

Let A and B be two rings and ASB and BTA be two bimodules. Consider

the category of objects (P,Q,p,q) where P €PA and .Q EPB are finitely

generated projective right modules and p:P -> Q 8 T, q:Q -> P 8 T are
. B A

maps. The category Nil(A,BjS,T) of such objects which are nilpotent in an

obvious sense is an exact category and we have a K-theoretical spectrum

K Nil(A,BjS,T) which splits: K Nil(A,BjS,T) ~ K(A) x K(B) x K Nil(A,BjS,T).

Theorem: If Sand T are free on each side, the rule (P,Q,p,q) ~> (P,q .p)

gives a homotopy equivalence of spectra:

. - K Ni'l(A,BjS,T) .~> K Nil(A,S 9 T).. B

Corollary: Under the same conditions we'have a homotopy equivalence:

K Nil(A,S 8 T) ~ K Nil(B,T 8 S).
B . A

As a consequence of this, resultwe see that the Nil functor$ defined ..hy Wald-

hausen in the computation of Mayer-Vietoris exact sequen~_es. in a~gebraic

K-theory associated topush-out ofgroups, are of the form K N~l(A,S) and

are contractible in many cases. For.example we have the following:

Theorem: Let ! <--> ~ be a push-out of "groups. Suppose that H naHa-1 n ßHß-]

G' -> n
ia regular coherent for every a EG-H and ß EG' - H. Then we have a cartesian

square of spectra: Wh(H) ---> Wh(G)
~ ...

Wh(G') -> Wh(n) •
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Wolrad VOGELL: Involutions on A(X)

•

Various models of the algebraic K-theory of spaces funetor A(X) were described

and it was shoWn how to put natural involutions on these. There is a notion of

equivariant Spanier-Whitehead duality underlying the construetion of these

involutions. It turns out that the eorrect notion of equivalent duality to use

is a generalization of Ranicki duality where the group acting on the spaces

under consideration is no longer diserete but is allowed to be any simplicial

group. The involutions constructed depend on a chosen spherical fibration ~

over X. If X is a manifold these involutions on A(X) are shown to cor-

respond to. the natural involution on the stable concordance space C(X),

where ~ is the (fibrewise one-point-compactification of the) tangent bundle

of X.

Friedhelm WALDHAUSEN: Hochschild homology and stahle K-theory

Let R be a ring and

over a ground ring k

simplicial objeet

M abimodule over it. Supposing that R is an algebra

one defines the Hoehschild homology ~(R,M) as the

[n] -->
~k

R

(8k

M

(n factors R -"the circular display is to indicate that the j-th face map is

given by the collapsing of the j-th tensor product sign). It turns out that

the construction can be extended to a framework of "rings up to homotopy"

(one uses monads, and algebras over monads, to carry this out technically). •

The interest 'of the extended construction is in its use to compute the stahle

K-theory KS(R,M). The assertion (whose proof is fairly difficult) is t~
the natural map KS(R,M) --> ~(R,M) is a homotopy equivalence provided that

for the ground ring k aue takes the "universal" ring up to homotopy, QSo,

whose homotopy groups are the stahle homotopy groups of sphereso

(Note, if M=R=k then ~(R,M) ~ k, and if M=R=QSo then KS(R,M) =AS(*)·,

so this generalizes the assertion that AS<*) --> QSo is a homotopy equi­

valence.)
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Chuck WEIBEL: Delooping K-theory by parametrized module~

(joint with E.K. Pederson)

Given an add~tive category A and a metric space X, one can construct a

category CX(A) of A-objects parametrized by X (in a locally finite way),

the morphisms being given by "bounded matrices". The point of the lecture

was that the K-theory spaces of A = Co' ~(A) , ~2 (A) , • • • fonn a noo­

connective infinite 100p·spectrum, at least when.all short exact sequences

split in A. This allows us to define the negative K-theory of A. In fact,

we recover the definition given by Karoubi in LNM vol. 36 (1968), natural1y

in a different form. The hope is that this machinery works in case short exact

sequen~es in A do ~ split, but the problem at present ·is defining an exact

structure on the category CX(A). Assuming all s.e.s. split in A, we can de­

fine the K-theory of CX(A) by allowing only split monomorphisms. For con­

venience, assume A idempotent complete. Then we prove:

K (Cx x [0,(0» ~ *
K(Cy ) --> K(CX) --> K(CX/Cy~ is a fibration

1\

K(CX) -> K(Cx x [0 co» ~ *
I ! '+ is homotopy cartesian

* ~ K(CX x (-00,0]) -> K(CX XIR)·

From this it follows that r2~(CR n) ~ K(A), and that K(~ n) is a covering

space of OK(C
R

n:+ 1 ).

Bruce WILLIAMS: Surgery th~orl' automorphisms of manifolds, and higher

a1gebtaic·K~theory (joint work with Bill Dwyer)

For a spectrum A with Z/2 action we construct a "Tate cohomology" fibration,

H.(Z/2,A) !> H·(Z/2,A) -> ~(A), e.g. A = Waldhausen's A(X) with Vogell's in­

volution. Tf A~n) =A twisted by n copies of the flip representation, then

n~(A) = ~(A~n».

For Mn a topological manifo1d, let

of M and TOP(M) = homeomorphisms of

R(M) = (simple) homotopy autpmorphisms

M.

Conjecture: There exists a commutative diagram of natural transformations
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H(M)
such that TOP(M) is the homotopy fiber of the map

n+)
"n+)S(X) ~> gn+) H(Wh(X» ...::::.> nH(Wh(X) (n) 2> H. (7J./2, Wh (X) (n».

Thus (*) would be the tlglueing data" between surgery theory and the algebraic

K-theory of spaces.

Evidence for the conjecture comes from the work of Hatcher, Hsiang-Sharpe,

and Burghe1ea-Lashof.

Berichterstatter: Wolrad Vogel1

•
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