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Participants from 10 countries used the opportunity to meet
other people interested in p-adic theory. There have been:

25 lectures at the conference. A wide range of different topics
was discussed. The following list gives an idea of the subﬁects
that were mainly treated: o

p-adic differential equations and the Boyarski principles,

. p-adic L-series, SLZ(QP)-representations, Mumford. curves, rigid
and crystalline cohomology of varieties, uniformization and stable
reduction of abelian varieties, theory of Drinfeld modulaf‘forms
and Zeta-functions, modular theory of Mumford curves, transcen-
dence theory, locally convex spaces, analytic extension and
T-filter. :
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B. DWORK: Boyarsky Principle II

We indicate how the Laplacetransformmay be used to study how the
Frobenius matrix of generalized hypergeometric functions vary
with exponents.

Let for example f(A,x) € Z{ 2, Xq5.--X 0, a € U=0q an\E.

. . - 1
Consider A as variable element of (L‘p, R)\ Gp[x, m)] ,
R
R =R, . —, W ,= A

k]
Zx.———R)‘

1'c)xi ,a

Put 5f)‘ = Cp[x,t] , (t = new variable), £A,a = taig\, by the formal

o a
Laplacetransform T, : E(x,t) ~ EI)'E(x,t) exp(—twf(x,x))d—tt- . Ig';
we map Va,A = xx’a/Z‘Di,}\'iA’a onto wa’,\ where

. 3 -1
Di,n = exp(ntf) e x;zm e exp (-nth), nPTl = -p.

Replacing Ry by a corresponding Reich space (completion) and it)\
by the space of powerseries in x,t c'onverging in a poly disk of
radius 1+e, we deduce (subject to some hyperthesis on f) the

commutative diagram

F = exp(-mtf () +ntP£(xP, AP))
T}\ ) { = summation over preimage .
v — - of x,t + xP,tP
a,\ a,A
Y. (a,b) = factor of gauss sum
a=yoF onp (a,b) P

e.g. if pp-a=t€[0,p-11, then
vp(@:b) = (M T ()
"b,xP - wb,)\P
T)\p
where pb - a € Z.

This remains valid for a,b € Z provided we take a = b = 1.
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A. ROBERT: p-adic Representations of open subgroup of SLZLQpl

I: Iwahori subgroup (c = 0) in K= SLZQZP) C G = SLZ(QP)
_ k . ax+b, . -1 _ ,ab
m(s)o(x) = (¢, + DX o@p ifsT = @ P e
defines a unitary (continuous) representation of I in the Tate

algebra of the unit disc [x| < 1, ¢(x) = I a.x', a. € Q_,
- i>o * D

lajl - 0 H= {¢ anal. on {x] < 1}

. keX =2/ 1<%, Gfp#2).

Theorem: my ist top; irreducible when k, & N

uncountable family of inquivalent irreducible such

restric. of ™, to any open subgroup of I remains top. irred.
T, cannot be extended to K.

These m, are analytic: “i : SLZ(QP) + End (H)

1 d - 01 a4 00 24
h= (0% > X-x £, c = O R A I S L L

Projection operator on maximal weight space (const. functions)

1 r1-°

. . ‘
i>0 0 v(j))/( ))1 strongly converges

v(j

For subgroup b = ¢ = 0 of I can define

(000 = (x+ ¥ @D @Y ke X,

- - P
Connection with Morita-Murase: IndKﬂ = 7, acts in H = & H.
Ik k j=o 1

. contains a dense subspace (Fréchet) in which repr. of K extends

UFG

To G = SLZ(Qp). This Fréchet space consists of analytic functions

cC - Q..
over P Qp
Ref.: C.R. Acad. Sc. Paris t. 298 (1984) pp. 237-340.

M. van der PUT: Vectorbundle on a Mumfordkurve

|
1
Main Result: E vectorbundle on a Mumfordkurve X, defined over a ‘ )
field K. If E is semi-stable and deg E = O, then exists a ¢-bounded

representation (unique up to isomorphism p such that E is iso-

morphic to the vectorbundle E(p) derived from the representation p
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of the fundamental group T of X.

This result has been proved by G. Faltings for the case of a
field K with a discrete valuation. The proof that we gave (or in-
dicated) works for a general field K. A paper on the subject is
in presentation and will be wriften by M. Reversat (Bordeaux) and
M. van der Put (Groningen). In the lecture, the relatively simple

case of a Tate-curve X = K*/qgs presented. Let w: K*'>K*Q(v =X

denote the uniformisation of the Tate-curve. The vectorbundle 7*E on K*.
is trivial, and T-equivariant. The vectorspace V c #¥E(K¥*) con-

sisting of the sections s € w*E(K¥) with the following conditions:

(i) sup (|q||n|ﬂsﬂ

‘< o,
n<o on |q|™<|z|<lq|®
(ii) 1im (Isl =0

Iﬂ"‘-]

nete |a|™<]z]<|q|®

turns out to be T-invariant, r-dimensionalandV generates u*E.

So the representation p corresponding to E is the T-action on the
r-dimensional vectorspace V (N.B. r = rank E).

In the proof one needs to consider certain completion

K(() and K«T) & K of the group-algebra K[T].

D. GOSS: Zeta-Functions for Function Fields

In this talk we described various developments in the theory of
such functions. These developments-concern: The converse to the
Herbrand criterion; the interpretation due to S. Okada and the
author of the Bernoulli-Carlitz numbers; and two criteria for
cyclicity of components. In particular, we are able to show that
these criteria work for some components but for all primes. The
components that arise seem to be related to numerial evidence for

a functional equation of such functions. We also presented a




possible analogue of the above structure in the theory of classical

p-adic L-series.

P.ROBBA: Symmetric powers of the p-adic Bessel equation

Let wp be a nontrivial additive character on IFp(p # 2) and

.= . . _.s .
wg IS wpe Tr]FqJFP its éxtension to ]Fq(q p’). For x € qu, one
A .
defines the Kloosterman sum K (1) := [ w_(x+z). For A€E =F alg
‘ q xeF* 4TX P

define deg A := []Fp().) :l'Fp] . It is well kﬂoﬁ that th'e.L-'fu'hct-ion

associated to the Kloosterman sums is a polynomial of degree 2.

L(,T) = exp (I K _ (M) = (1 -n{(x)'r)m —ﬂé()\)T)
n>1 p>" . : :

(where s = deg ).
In this talk we give a p-adic theory for the infinite product ..
k

-1 .
M (t) = I e _ﬂ](_)\v)k-vnz(_}‘v)vtdeg A) /deg A
XEER  v=0 S
(k positive integer).

We show that Mk is aspolynomial of degree

k - 2[2—1;-] , kK even
deg Mk={

K41 - z[L k odd.

+ 3,
. This is done by interpreting Mk using Dwork’s cohomology and u51ng
own results on index of differential operatlors. The operators to
consider are the sy'mmetrlc powers of order k of the Bessel diffe-
rential equation.
Using Dwork's dual fﬁeory, one shows also that one has
Mk(t) = Pk(t)ﬁk(t) where ﬁk satisfies the functional eqhation
lcik(t) = const.t5]ﬁk(1/pt) (8§ = deg ;/Ik) and the degree of Pi( is 'g:iven by

2+ 21 ZL] if k .even
deg Py ={ p

1 if k odd.
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C. SCHMIDT: p-adic L-functions attached to Rankin

convolutions of modular forms

For an arbitrary newform f € Sk(N,v) with rational Fourier coefficients

we consider the associated "symmetric square function"

2
D (f,s) = LN(ZS+2—2k’v ) I azn'S where f(z) = ; a q®
o I"NES‘H"IE’\’j 1 B n=1 nd -

and its twists D_(f,x,s) by Dirichlet characters x. For the: primi-
tive symmetric square D_(f,x,s) which is a certain modification of
D_(f,x,s) at finitely many Euler factors, we prove
1. holomorphic continuation and a functional equation for s - Zk-1-s
2. algebraicity of the special values D_(f,x,m)-n- power /(f,£)
form=1,..., 2k -1 '
3. p-adic interpolation of the special values by a p-adic L-function
Dp(m,s) for any prime pl’ZNap
4. functional equation of the p-adic L-functions:
Dp(m,s) = Dp(Zk- 1-m, 2-5s).
Using and generalising work of Shimma, W.Li., Sturm and Arnaud.
The results above were initiated by joint work with Coates, where
we have been working in the special case k= 2,v=trivial character.

These, for the corresponding modular elliptic curve E/Q one looks

at the "symmetric square function' .
-1 - I -1
L(Symz,s) H n det (1-Frob 1q % (SymZHI(E)) 4 .
primes q a

and shows holomorphic continuation and functional equation for

s * 3-s by showing

5. L(Sym%,x,s) = D, (£,X,s)-

These is a conjecture which rélates the p-adic L-function DP(E,s),

that one gets in this way, with an arithmetically defined p-adic

DFG :
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L-function from Iwasawa theory on E or rather on ExE. For CM-curves

this conjecture follows from the "2-variable Main-Conjecture"

over non-local-fields

Let R denote any commutative ring with 1. For any real multiplicative
valuation ¢ on R define
§(¢) := inf {¢(a) : O # a € R}.

It is easily seen that §(¢) € {0,1}. Let

D := {R :3 ¢ non-trivial: &§(¢)
and let D be the class of all fields being quotient field of fings
in D. . B
Let (k,¢) € D be fixed and let K denbte a complete, algéb}éiéally
closed extension of k. Assuming char (k) = O we éresent.genérai
criteria from which one can deduce transcendence and algebraic
independence results for values of the exponential function asso-
ciated to K (analogons results hold for chaty (k) > 0) .
An 1nterest1ng application is the following: Let exp be the ex-
ponent1a1 funct1on defined over a complete, algebraically closed
extension of k = Q(E)' Then exp (e ) ¢ @ for any positive integer

. N. Here e” denotes the "real" expohential.

E.U.GEKELER: Geometry of Drinfeld modular curves

] Let K be a function,f@g}d in one variable over the finite field Fq’
‘ ao''a fixedplace_ ‘of degree § and A the ring of functions integer outside

=, Let further C be the completion of the algebraic closure of K,

and Q = CN\K_ .

DFG Deutsche
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“The discrete group I' = GL(2,A) acts by fractional linear transforma-
tion on the ,upper half plane" @, and I\Q is, by a theorem of Drin-
feld, the set of C-points of an affine algebraic curve MF’ defined
over a certain finite abelian extension of K. It follows by results
of Deligne, that the genus g(MF) is the dimension h(Tl') of Hl(F,Q);

a similar result holds for congruence subgroupsT' of T.

Now, by the analytic theory of modular forms for T on @, it is

possible to compute g(MF), if one is able to describe the sets .
of cusps resp. elliptic points for T', and if one knows the divisor

of just one modular form, which is, unlike the classical case,

the most difficult part. .

In the talk, I formulated answers to this questions. As a torollary,
one obtains the following formula for h(T) = g(MP), improving a

result of Serre foi sufficiently small subgroups T'' of T:

5
| GhP@ - V8@ P+ (o 21)pe1) 5 pad!
2
q? -1

h(r) =1

where P(X) is the polynomial of degree 2xgenus (K) in the nominator

of the ¢-function of K.

By the complete description of possible points and types of rami-
fications, it is easy to compute h(T') for any given congruence
subgroups T'' of T. .
Further, some connections with Stark's conjectures and questions

of diophantine geometry over K were indicated.

W.RADTKE: Diskontinuous arithmetic groups in the function field case

Let FﬂFq, q = pn a function field in one variable and =~ a fixed
place of F. The ring A := {f € F/f regular outside =} is a Dedekind

domain of finite class number h. Let k be the completition of F

DFG Deutsche '
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with respect to = and K the smallest complete alg. closed field
containing k. The group‘PGLz(A) acts on the tree of the local
field k and also acts on F, k, ® = Kik. Serre proved a'structure
theorem for this group

PGL,(A) = ((ro*G1r,)*Gzr2~ Lo)e Ghr-h,
where T, is finitely generated, the r; are stabilizers of cusps
and the G; are the intersections r, N Fi. Each T, is a torsion-
group and each Gy is finite.
The quotient Q/T can be compactified by adding h points Syseses Sy
The compactified quotient turns out to be the set X(K) of K-points

of a projective algebraic curve X. This is known by work of Drinfeld.

By considering products of the form
O(w,n;2) = M 222, w,n,z €@, T := PCLy(A),
YET yn
one can construct a nonconstant meromorphic function on the curve X.
Such a function f can be obtained by a quotientof two such products

e], ez, which have the same factor of automorphy. It is a theorem

of Deligne, that the genus g(X) of X equals the rank of

ab

r = T/[T,I 1. (This is finite because of Serre's theorem). The

construction of this function g shows that g(X) < rk Fab. For

a € T define u, = O(w,aw; . ), which is independent of the choice
du

of w. —= are regular 1-forms on X. For aproof of Deligne's theorem
a

in terms of nonarchimedean function-theory it remains to show,
dug. '

that the forms fﬁgl, i=1,..., 1k Fab, a; a basis for the free
as
i .
part of rab’ are linearly independent.

Forschungsgemeinschaft © @
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F.BALDASSARI: p-adic GAGA

Let Xo be non-singular algebraic variety defined over Ko =®alg;
we assume to be given a locally freed& -module of finite type U:,

o
endowed with an integrable connection Vo To the triple (Xo’lzﬁ Vo)
) cl’ UZJ’ Vcl)
made of a smooth C-analytic space xcl with a connection (L%l, v

one classically associates a C-analytic object (X

cl)
on it. Analogously, in p-adic rigid analytic geometry, one has a .

natural function:

Koo Uy 7o) > Kpygr Viggs 7py)

ig’ 'rig

where X,.ip 1is the regular rigid variety over K=alg. closed, com-

g
plete, p-adic field, associated to Xy The Grothehdieck-Deligne

compafison theorem asserts that if “ZV Vo) has regular singularities

at infinity there are natural isomorphisms:

q . 5 g4 -
¢ aougy s A, 700 3y x5 QYL v
where H%R stands for the de Rham cohomology (i.e. hypercohomology

of the de Rham complex) of a connection. In the rigid analytic

case we conjecture that

A

q . T .
K8 o Kos W, v > uy Krigs Wrjgr Yrig))
holds in full generality, and in particular when (vo’ v,) is .
irregular at infinity. We can prove the conjecture in the follo-
wing to particular cases:
a) when Xo is a curve

b) when (Xo, Vo) is regular.

Deutsche
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M. MATIGNON: Topological genus of valued fields

All absolute values are non archimedean.

Def.:lét Kbe a field. A topological function field L of one variable

over K is the completion of a valued function field of one variable

over K. Its topological genus is: gt(L)’=: min g(M) for M function

field of one variable over K dense in L (g(M) is the genus of M).

' We prdVe'the“félloWing.

‘ Th.: Let K be a complete valued field; (Kalg)“ be the completion
of the algebraic closure of K. Let LK, L ¢ (k*!8)~ be a topologi-
cal function field of one_variab}g over K, then JK'> K finite
séch that for a}l K"; K' © K" C'(Kalg)“, the field (LK")" is a
topological function field of one.yariable over K" and

1) if L | K8 = g, ((LK")") = g(TKM)
M is the residual field, M™ the completion)
ii) if L ¢ X®18 = Beop ((LXM™) = 0

_.for i): The inequality Ztop (LK"™) > g(f?“) comes.frém a generali-
sation of a prev1ous result of H. Math1eu, Arch Math. 1969.

~ Our proof uses reductlon of algebraic curves, the other 1nequa11ty
comes from the lifting porperty of algebralc plane curves with,

_only nods as singularities (Popp, Arch. Math. 1965)}. ’

. for 11) It was ol;t‘aine'd’ by M.v.d. Put (Stable reduction of algebraic curves

.,Indagationes 1984) for maximally complete algebraically closed fieldK.

over a p -adic number field

Let L be a finite extension of Q , and let k be a max1mally complete
field conta1n1ng L Let x : L* » k‘_be a 1oca11y analytlc character.

Put
G=SLy(L) 2 P =1 g) € G}.

Deutsche
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We define a representation of the parabolic subgroup P of G by
Pap=C9 ~ x@ ek

Let Ind (P, G, x) be the space consisting of all fﬁnctions F:G~» k

such that F is locally analytic, and

F(pg) = x(p)F(g)

holds for any p € P. Then this space I(P, G, x) has a natural:
topology, and G acts on this space by .

T (8)F(g) = F(ggy) (g, g, € G, F € Ind (P, G, X)).

We can determine all closed G-invariant subspaces of Ind (P, G, x),
and can determine the equivalences between all ineducibily re-

presentations obtained from the Tis.

E. ROBINSON: p-adic Spectra

Valued fields first-order equivalenf to the p-adic numbers are
éalled "p-adically closed'". This theory has been extensively in-
vestigated by logicions (c.f. - Roquette, SLN 1050) interesﬁed in
such properties as quantifier elimination. ngical techniques lead to.
the following result:
Any subset of Kn, K a p-adically closed field, whiéh is first-order
definaBle (with parameters from K) and closed in the valuation
topology is expressible as a finite union of finite intersections
of sets of the form

"{x € K"|p(X) has an n'th root}
where p(X) is a polynomial over K.
For example (p # 2), the ring of integers is {x | 1 + px2 is a
perfect square}. There is an analoguons characterisation of

definable open sets.

Deutsche
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We investigate the Grothendieck-topology given by finite &tale
coverings surjective on p-adically closed points of the correspon-
ding varieties, and show that this leads to the definifion of a
spectrum functorial on rings which has.a structural sheaf of
p-adically closed local rings (i.e. henselian local rings with
p-adically closed residue field). We show further_that this spec-
trum can be represented as a topological space, and use the above
characterisation to prove that? for finitely-generated Qp-élgebras,
the subspace of the closed points of the spectrum is isomorphic

to the points over Qp of the corresponding variety equipped with

the valuation topology.

F. HERRLICH: Non-archimedean Teichmiiller spaces

Let T be a finitely generated group, K a complete non-archimedean
field. We call TK(F) := {1 € Hom (F,VPGLZ(K)): T injective, t(T)
discontinuous and without parabolic elements} the Teichmiiller
space of T over K, and we put TK(F) = PGLZ(KT\{K(F) and

M (T) := TK(F)/Aut T.

We define a T'-family over an analytic space S to be a group homo-
morphism ¢ : T » Auts (SXIP1(K)) such that the induced homomorphisms
ws: r » PGLZ(K), ¢5(Y)(Z) r= pz(w(y)(s,z)) are elemen;s of TK(F)
for all s € S (p2 is the projection onto the second component).

A {T}-family (resp. [T}-family) is then .an equivalence class for
the identification of ¢ and Boy (resp. Be ¢ oa) for inner auto-
morphisms B of AutS (S XP](K)) and a € Aut T.

If S=’IK(r), then by wo(y)(T,z) := (1,7(y)(z)) a r-family is de-
fined. As there exists a sectiop o TK(P) + Tg (T}, we can define

a {r}-family over Ty (I') by wI(Y)(?,z) = (1,0(0) (V) (2)).

o®




We can show that U] (V) is a universal T'-family ({T'}-family),

o
whereas Mg(T) is only a coarse moduli space for [T]-families.

If Ty(T) is non empty, then T contains'a free normal subgroup TI' of
finite index. Every Ir-family then induces a family of Mumford curves
of genus g =rank (1"0), each of which has an automorphism group con-

taining a subgroup isomorphic with T‘/I‘o. Then .

M(I‘,I‘o) 1= ’TK(I‘)/{u € AutT :d(I‘o) = 'I‘o} is the closure of a stratum ‘

of the moduli space of Mumford curves of genus g.

We mention the following properties of the Teichmiiller spaces.

a) The definitionsare functorial in K and T (for injective group
homomorphisms)

b) TK(I‘) is contained in the affine . algebraic K-variety .
SK(F) := Hom (T, PGLZ(K))

c) If r =r *"FZ’ then S(I") = S(I‘l)x S(T

1¢

s(c)S(T2)
d) SK(I') and therefore TK(P‘) are nonsingular

e) dim TK(I‘) = 3g+3(D-d)+2(C-c) if TK(I‘) is nonempfy. "Here g
is the cyclomatic . number of a graph of groups with fundamental
group I'. D(d) is number of noncyclic vertex (edge) groups. C (c)
its numbef of nontrivial cyclic vertex (edge) groups.
f) The analytic structure on 'T‘K(I") can be defined by a covering
consisting of analytic> polyedra. This makes it possible to .

define the analytic structure on MK(I").

S. BOSCH: Néron models from the rigid analytic viewpoint

Let K be a field with a discrete non-Archimedean valuation and
consider a scheme ){ flat and locally of finite type over the
valuation ring K. Then *‘is uniquely characterized by its geometric
" fibre *n and by the formal analytic variety)’(— associated to the

formal completionﬁ of)(. Using this fact and the uniformization

Deutsche )
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of abelian varieties (see the lecture of W. Liitkebohmert), the

following results were shown:

Theorem: (Néron, Raynaud). Let A be an abelian variety over K.

Then the Néron model of A exists and is of finite type over K.

Theorem: ( Grbthendieck). There exists a finite separable extension
L of X with a unique extension of thé valuation from K to L such

that the Néron model of A & L has semi-abelian reduction.

Theorem: (Raynaud). Let n > 3 be an integer prime to char R, where
K is the residue field of K. Assume that all n-torsion points of A
are rational over K. Then Grothendieck's result on the semi-abelian
reduction holds for L = K.

(joint work with W. Liitkebohmert).

W. LOTKEBOHMERT: Uniformization of abelian varieties

Let k be a field with a discrete non-Archimedean valuation assumed
to be complete and algebraically closed. Let A be an abelian varie-

ty over k. The following results were shown:

1. There exists a unique open analytic subgroup A of A which is a -
connected, quasi-compact, formal anaiytic group having..: semi-
abelian reduction'@.

2. A has the universal mapping property:

If X is a formal analytic variety; smooth over k and connected,

and if ¢ : X » A is a rigid morphism such that im ¢ N A # ¢, then
im ¢ c Aand ¢ : X - A is formal.

3. Let A' be the dial of A. Then fheré are canonical isomorphisms

nlaarz) 3 Hom, (€, A) 5 Hom NUSAVSP
a

o®
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4, Let T € A be the maximal affinoid torus (given by H1(A ZZ)).

Let B A/T be the quotient. Then B is an abelian variety with
good reduction. The exact sequence 1 + T + A + B » 1.

is a lifting of the:chevalley decomosition

1 +T>A>B~1.

S. The uniformization of A can be expressed in the diagramm:

I = ker p
{

T « A + B
_f _/ P "
T & A\\‘—bi* B

A

where

T 5> T is the affine torus containing T as torus of units

A= R><T/{cs'],s) s € T}

p is a surjective covering map

I = ker pcC A is a lattice of rank t = dim T

Moreover, H'(Az) = H'(AZ) = 0 and H'(AZ) = zt.

Now let k be discretely valued, k the completion of the algebraic
closure of k.

6. There exists a unique open analytic subgroup A of A such that

A®Kk = KE, where A_l—( is the group mentioned.in 1. which is asso- ‘

o
ciated to A ® k. And X is a formal group over k (not necessarily

]
smooth over k).

7. If A is smooth over k. there exists an open analytic subgroupRe
o

of A which is formal, quasi-compact and smooth over k with the
following mapping property:

o
If X is a formal analytic variety, smooth over k, and if ¢: X » A

Z\-e.t

is a rigid morphism, then im ¢ C and ¢ : X » A®Y is formal.

Deutsche
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8. Let n > 3, prime to char k. If A[n] consists of k-rational

- (-]
points, then A is smooth over k.

(joint work with S. Bosch).

P. ULLRICH: Analytic lifting of algebraic tori

Let G be a formal analytic group that is smooth over the valuaéion
ring of a completely non-archimedean valued field k. Suppose that
there is a closed immersion o of group schemes over the residue
field of k defining the split d-dimensional affine-algebraic torus
T as a‘normal subgroup of the reduction G of G.

Then by means of rigid analysis one can iift E, i.e. there exists
a closed immersion o of formal analytic groups defining the split
d-dimensional affinoid torus T over k as a subgroup of G in a way
that the closed immersions and the reduction maps commute. ' This

lifting is unique and T is a normal subgroup of G.

W. SCHIKHOFF: Duality thedfy‘fdr'Idcally'COnvex spaces Over

Let E be a locally convex space over a complete non archimedean
valued field K with a dense valuation. A continuous seminorm p

on E is a polar seminorm if p = sup {|f| : £ € E', [f| < p}..

E is a polar space if there exists a family polarseminorms defining
the topology.

E is strongly polar if each continuous seminorm is polar. If K

is spherically (= maximally ) complete each E is strongly polar.

If K is not, 1° is polar, but not strongly polar., 1°°/c° is not
polar as (1°°/co)1 =(0). .

The class of polar spaces has nice stability properties. Also we have
Theorem: On compactoids of a polar space, the initial topo-

logy coincides with the week topology.nBounded" = 'weekly bounded'.
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Theorem: E strongly polar < (1+e)-Hahn-Banach theorem holds
£ (= if |£| < p on a subspace then there

E is of countable type is an extension f with |§’|‘ < (1+e)p)

Further theorems can be proved, for example:

Thm.: Each Fréchet space ofcountable type over (]Zp< is reflexive.

N. DE GRANDE-De KIMPE: Projective locally K-convex 'spaces .

Let K be a field with a non-trivial, non-archimedean valuation.
Let E be a locally convex space over K, F any closed subspace of

E and 7 : E » E/p the quotient map. A locally convex space X over K
is said to have the "lifting property" with respeét to E if for
every linear continuous map £ : X » E/g there exists a linear con-
tinuous map g : X » E such that neg = f.

If (5) is a class of locally convex spaces over K then a locally"
convex space X is called '"projective with respect to " if X

has the lifting property with respect to every element of (€).

Let (N3) denote the class of all nuclear Frechet spaces over K.
Main result: If X is a locally convex space such that its strong
dual space is metrizable then X is projective with respect to the
class (N¥F).

Corollaries: (i) Every Banachspace is projective with respect to (N¥F).
- (ii) If the valuation on K is discrete then every Banach space is
projective with respect to (B) w (N¥) ((B)= the class of all Banach

spaces over K).
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E. KANI: "Real-analytic'" functions on non-archimedean curves

Let K be an algebraically closed field, complete with respect to

an absolute value |-

, and let C be a smooth projective curve de-
fined over K. Non-trivial examples of '"real-analytic'" functions

f : U~1R on open sets U C C are furnished by (i) Néron's pairing

on CxC-diagonal and (ii) Green's functions on subdomains of C.

In the archimedean case, both (i) and (ii) may be '"constructed"
by integration of suitable positive (1,1)-forms defined on C

(or on subsets thereof). The purpose of this talk was to show
that the same can be done also in the non-archimedean case and in
particular, that there exists a notion of "integration of (1,1)-
-forms'" on C.

This was done as follows. Let X be a rigid analytic variety with
a reduction map p : X ~» X (s. th. Xisoffinite Type /K). For each
irreducible component ii.of X (with dim ii = dim i) define a
(real-valued) additive set function ﬁi on the booieén algebra

€on (Xi) of (Zariski) constructive subsets of ii by

~ _ ¢ 1 if Ais(Zariski+) denge in X,
i (A) = {5 e1se 1

where A € Con (Xi)‘ Let Conrig(x) denote the algebra of rigid
constructible sets of X, i.e. the boolean algebra generated by the

allowable subsets of X, and define ﬁp : @onrig(X) + R by

p®) = Iu () 0 Xy, Ac Bony (0.

Then Hp is an additive set function on Gbnr g(X) which may be used

i
to "construct" (i) Néron pairings (4 la Arakelov) and (ii) Green's

functions (2 1 a Rumely) on affinod subdomains X of C.
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P. BERTELOT: On the duality theorem for rigid cohomology

Let K be a field of characteristic O, complete under a non-archi-
medean absolute value, @its ring of integers, k its residue field;
we assume k to be perfect, of cﬁaracteristic p > 0.

if XO is a smooth, quasi-projective variety over k, one can attach

to X, two types of p-adic cohomology groups which are K-vector spaces:

- it's rigid cochomology groups H (XO/K) they coincide with '

crystalline cohomology (tensored with K) if X, is projective, with
Monsky- Washnitzer cohomology if X, is affine, and allow to recover
Dwork's analytic cohomology.

- it's rigid cohomology groups with cempact supports Hé(XO/K):

they coincide with crystalline cohomology (tensored with X) if X,
projective, and allow to recover Dwork's dual analytic cohomology.
The purpose of the talk was to present results about the duality
between these groups, with a special emphasis on the affine case.
The main points are the following:

1 Hi(XO/K) =0 if i > 2 dim X,

2) There exists a trace map: H (XO/K) + K

3) There exist canonical pairings

rlg(xo/]() * H (xo/K) > H (Xo/KJ .

4) The spaces Hé(XO/K) have a canonical topology of quotient of

Fréchet spaces, and the above pairings define a map

rlg(x /x) > Hom conty (Hgn-i(X/K), K).

5) If the spaces Hi(o/K) are Hausdorff, the above map is an iso-
morphism. In the general case there exists a duality theorem at

the level of cochain complexes, from which this statement on

o®
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cohomology can be derived.

As an application, one can prove the following

Theorem: Suppose X, is smooth and affine, and is the complement .
of a divisor with normal crossings in a projective smooth variety.
Then the spaces Hi(xb/K) are finite-dimensional and Hausdorff;

hence the spaces H;i (XO/K) (equal to Monsky-Washnitzer cohomology)

g
. . . . 1
are finite dimensional dual to HC(XO/K).

M. Piwek: Families of Schottky groups

Let k be an algebraically closed field, maximally complete w.r.t.
a non-archimedean valuation, let S be'a reduced k-analytic space and
O- Gg its structure sheaf.

Then PGL,O(U) := Auty(U<P') for each admissible U C S.

Def.: A subgroup T < PGLZQ(S) is called Schottky-group on Pé iff

for each s € S, the group L = {z > y(s,z)|ye T} C ?GLZ(k)visla

Schottky-group and the canonical map I' » Fs is an isomorphism.

With the help of a result on coverings given by units, 6ne can \

find locally for the Grothendieck-topology Schottky-basés for'f

and good fundamental domains: -

Theorem: (i) The sef Z :={(s,2) €S PJI z is not avlimit poiﬁt for FS}‘
. is an admissible open subset of SXIP],

(ii) There exists an admissible covering of S wifh affinoid domains

U; and for each i an admissible F; C‘p'](Ui) N Z s. th.

(@ v vF =p l(U;) nz
YET

(B) YF; N F, = ¢ for almost all y € T

(v) Fi n ({s}ﬂP]) is a good fundamental domain for rg.

Deutsche
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0ty n2y/p - U

One can now easily construct the quotients C}
and glue them to a quotient €- Z/I" + S, which is a family of
Mumford-curves.

As an exampie consider the group [I',T], with T = () #( B, o,B
parabolic transformations with fixed points O,», 1,s, 0 < |s=-1| < 1

as a family over {s|0 < |s-1| < 1}. This leads to the family
,.y.z.. - A

T . :
{(A’ )’1, YZ)lo < I)"]l < 1, Y]] = T} over'{O < I)\-1| < 1}. .

yZ -1

L. GERRITZEN: Theta functions and horizontal elements

On a curve of genus g over a p-~adic field which admits a éfadic
Schottky uniformization there is a canonical Z-module of raﬁk g

of differentials of the first kind.

These differentials are obtained by non-vanishing analytic auto-
morphic forms with constant factors of automorphy which are some-
times called multiplicative periods and give the multiplication
period form or period matrix.

These period forms allow the construction of the Jacobién variety
of the curve. If you take the Riemann theta funcfion in these
automorphic forms whose coefficients are given by the multipli- .
cative period form you can obtain the Riemann vanishing theorem
which implies that the O-divisor‘is the (g-1)-fold product of the
curve canonically embedded into the Jacobian Variety of the curve.
Moreover you can take certain derivatives of © which give non-re-
gular rational differentials of the second kind which can be ihte-
grated and which ha&e additive periods in the classical sense of

the word. These differentials can be chosen in such a way that

Deutsche
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these additive periods are integers for any family of curves which
admits a split p-adic horizontal element . for the Gauss-Manin-con-
nection.

For a Legendre-type family of abelian coverings of the,;rojective
line the diffentials with multiplicative periods and the differen-
tials with integral additive periods are computed and expressed

in algebraic terms.

Let K be a complete ultrametric algebraically closed field. For
every closed bounded subset DC K, let H(D) be the Banach algebra:
" of the analytic elements on D provided with the norm of uniform

convergence on D, IlIID. We recall a family of holes (Tm,ihiiikm

with T .cC(a,d_) circle of center a, of diameter d_, el
m, i m m
with dm < dm+1’ lim dm = R, provided with a family of positive
’ m->eo
integers (qm i) is called a T-$equence when
d qm:i d . . qm’J m 4 91
0=lim [ max (;—-) T e HI1GH ]
mre  J<i<k Pm,i j#i m,i *m,j 1=1 %1

k
m
. with Oy i € Tm,i and Ay = E

7 qm,i'

Similarly we define decreasing T-sequences. 'l;-se'quences characterize
the T-filters on D: here the filter 3¢ of base the annuli r< |k-a| <R ’
is called the T-filter of center 0, of diameter R. We denote by B3¢) .
the set {k € D||k-a| > R}. F¥ also defines a continuous multipli-
cative semi-norm q;.?., on H(D) : wﬁ(f) = lim If(K).l for £ € H(D).

F is said to be well pierced if inf p_ . > O.

(m,i) ™*
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Theorem 1: Let D be a bounded closed infraconnected set with a

well pierced T-filter?with B(;) = ¢. Then H(D)/Ker \uF is a field T;

the quotient of the norm NBD and the absolute value @‘ quotient of

Vg

Theorem 2: Let f(x) be a taylor series that converges for |k| < R

on I' are equivalent.

decreasing T-filter J¢of center O, of diameter R that contains

d(0,R). There does exist a bounded element g € H(D) such that

g(x)
1(x)

f(x) whenever « €-d(0,R). A1l the 1 € H(D) such that

f(k) for |x| < R are the g+h with h € ker\p;,.

Theorem 3: Let D be a bounded closed infraconnected set with a well

pierced T-filter ?:and letf(;j ‘the ideal of the f € H(D) such that

f(x) = O whenever « € B(F). Then H(B(P) is algebrically and topo-

logically isomorphic to H(D)C,Q;a.

(Remark: if B@) has no T-filter complementary to‘;:khen

FF = ker by hence HBEA) = HDY/ ker y.

M. SARMANT: Construction pratique d'un prolongement d'une série

. - - +
entiére de rayon de convergence > 1

(Les notations et les hypotheses sont les mémes que dans 1l'article

précédent).

(k) = % anKn 1im a_=0
n=o n++o
On cherche:
€i
1) g(x) fém X
1 -
Ei

tel que: |bi| > |bjyql > 1 et g(k) = £(x)
¥ «x € C(0, 1).
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En posant B; < ﬁ%, on voit que
i

€. .
f(k) =g(x) » £ ax'= 35 -1 ¥ke C, 1)
ieN ™ iemn  1-85%

Ce systéme de +~ d'&quations.est &quivalent &:

A = BE ou
a € T coeen. 1
o o
ay €4 Bo""‘ Bi
A= : E = : , B = M e
. -n n
n . Bo B1

soient des matrices infinis.

On démontré alors:

1) la matrice B est invertible si la suite (D(Bi,¢), ])iEN est”A
une T-suite idempotente et aiors: B

2) A etant donné la suite (Bi) étant bien choisic, il existe une
matrice = B telle que: |
B(B'A) = (BB')A = A.

Ce qui entraine que E = B'A est solution.de A = BE (la véiifi—'
cation de B(B'A) = (BB')A = A &tant indispensable car le p}o-

duit de matrices infinis n'est ni toujours possible, ni aésociatif),

d'ou la solution du probléme.

- Berichterstatter: Meinolf Piwek
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