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Auch die diesjährige Tagung über "Funktionalanalysis stand wieder

unter der Leitung der Herren Professoren K.-D. Bierstedt (Pader

born) , Heinz König (Saarbrücken) und H.H. Schaefer (Tübingen).

40 Mathematiker aus 13 Ländern nahmen an der Tagung teil und trugen

in vielen Diskussionen zum Erfolg (und zur harmonischen Atmosphäre)

der Konferenz bei.

Bei der Größe der Tagung konnten wieder mehrere Interessenten aus

In- und Ausland nicnt mehr eingeladen werden. Auch mußten leider

einige der Eingeladenen wegen Krankheit kurzfristig absagen.

In 31 Vorträgen wurde über die verschiedensten Teilgebiete der"

Funktionalanalysis berichtet, z.B. Approximationstheorie,.Frech~t

räume und lokalkonvexe Räume, Folgen- und Funktionenräume, Netz

werktheorie, Banachraumtheorie und Banachalgebren, schwache Kom

paktheit, topologische"TensOrprodukte, Distributionentheorie, par

tielle Differentialgleichungen, Operatorentheorie, Spektraltheorie

und nichtarchimedische Funktionalarialysis. Außerdem fanden sich

die Teilnehmer der Tagung zu vielen fruchtbaren Einz"elgesprächen zu

sammen.
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Vortragsauszüge

E. AL~RECHT:
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Maximal abelian quasinilpotent subalgebras of B(H)

If M is a maximal commutative subset of the set Q(H) of all quasi

nilpotent operators in B(H) (H a Hilbert space) then M is a closed

abelian subalgebra of B(H) contained in Q(H) and will be called a

MAQS (maximal abelian quasinilpotent subalgebra) of B(H). We inves

tigate the structure (up to sirnilarity) of the MAQS in B(H). If

McB(H) is a MAQS then we write kerM:= n kerA and MH:=LH{Ax: AEM, •
AEM

xEX}. If 1:;i;dirn H <CX) then it is weIl known that ker M~{O} and 'MH~H.

However for infinite dimensional H the cases MB=H and/or ker M·={O}

are possible. This causes.new phenornena. A typical result is

Theorem: Let dirn H ~2, M a MAQS in B (H) •

(a) If M is nilpotent then ker McMH (Kravchuk).

(b) If dirnH is infinite then either kerMcMH or

(*) ker MnMH={ O}, H=ker M(!)MH , and dirn kerM =1 .

Examples show that (*) is possible.

The results have been obtained in joint work with H. ZASSENHAUS

(Columbo, Ohio).

F. ALTOMARE:

Convergence of nets of linear ope+ators (Korovkirt type theorems)

in the context of Banach algebras

I shall present a short survey and some new results about the prob-

lem to determine the Korovkin closure and the universal Korovkin •

closure of a Banach algebra with respect.to nets of linear contrac

tions (or other classes of linear operators). The particular cases

concerning function aigebras and C*-algebras will be considered and

sorne open questions will be discussed.

E. BEHRENDS:

Approximation of bounded operators by compact operators

A closed subspace 1 of a Banach space X is called an M-ideal if the

polar In of 1 in Xl has an L-complement. A well-known example (due

to Dixmier) is the case I=K(H) (=the cornpact operators) in X=L(H)
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(=the bounded operators) for Hilbert space~ H which has a number of

int~~esting consequences for the problem to approximate bounded op

~rat~rs,by cornpact operators. In the talk one systematically inves

tigates the problem to find more general Banach spaces X and Y such

that K(X,Y) is an M-ideal in L(X,Y). For exarnple, it is shown that

thi~ is the case if X and Y are subs~aces of lP and lq, respective

ly, with the cornpact. bounded approximation property.

J. BONET:

,On weighted inductive limits of spaces of continuous functions

The problem of projective des.cription of weighted inductive limits'

of sp~~es of continuous functions was stated and considered by Bier

stedt, Meise and Summers in the following way:

If V is a decreasing sequ~nce of strictly positive weights on a 'com

~ pl~tely .regular Hausdorff space X and.E is a locally convex space,

'. determine .when (a) VoC (X,E) =CVo (X,E) and (b) VC (X,E) =CV(X-,E) , hold

.~lge:~;-ai.cal.ly. and ~opological~'y.

~h~ following ,results are presented:

1. If V is a regularly decreasing sequence of continuousweights on

a locally convex space X and E is a complete (gDF)-space, then (a)

and (b) hold algebraically and topologieally.

2 •. A 'reflexive Freehet space E is a quojection (in the sense of

B~llenot and Dubinsky) if and.only if VOC(X,E) is a topologieal·

subspace of CVO(X,E) for every sequence' V of eontinuous weights on

any locally eornpaet spaee X.

3. For every normal space X and every normed spaee E, CV (X, E') iso a

(DF)-spaee.
. ~

4. Let A(A) a Köthe echelon spaee of order 1. A(A)(S)nF is distinguish-

ed'for'every distinguished Frechet space F if and'only if A(A) is

Mantel (This is part of a joint article with A. DEFANT).

H.G. 'DALES:

Ernbeddingalgebras in Banach algebras'

Automatie eontinuity theory for Bana9h algebras considers the ques

tion whether or ~ot each hom~rnorphisrn e:A~B is necessary continuous.

Counter-examples exist in a nurnber of cases - in particular when

A=C!(~) for; K an. infinite space. All such examples requir,e the con

str?~tion:Qf .empeddin~s. from certain integral domains into Banach
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algebras.

I present a general theorem of this type. We construct a certain

algebra C, and we show that C is universal in the class of "alge

braically closed, 8 1-, n1-valuation algebras". It is claimed first

ly thatit is considerably easier to prove that there are embeddings

from C than to follow the original proofs, secondly, that it is suf

ficient to work with C, thirdly,. that the suptle role of the Con

tinuum Hypothesis in this area is clarified.

The construction of C was discussed in the lecture: it involves the

theory of ordered sets and of generalized formal power series alge

bras.

A. DEFANT:

Tensor narms and a product of operator ideals

Let a and 8 be two tensornorms in the sens~ of Grothendieck and let

(fhA) and (3,B) be the according maximal normed operator ideals in

the sense of Pietsche The aim of the talk is to give a reasonable

description (in terms of a certain product of t1\- and :B) of the op- .

erator ideal of all T:E~F such that

id ~ T: G Qt) a E ~ Ge 8 F

is continuous for all Banach spaces G (resp. for a fixed Banach

space G). Applications to absolute~y (r,p,q)-summing and (r,p,q)

integral operators are given.

B. GRAMSCH:

Lifting of idempotent elements

Let B be a Banach algebra with a unit over ~ and I a closed two

sided ideal, U:B~B/I, P(B)={p=p2 EB }. Under which conditions exist

pEP(B) for a given P'EP(B/I) .with u(p)=p'? When is UO:P(B)-+P(B/I)

onto? Interesting cases have been considered by Calkin 1941,'

Rickart 1960 (see the survey article of de la Harpe, Springer Lect.

Notes 925(1979), L. Brown 1982, Choi 1983 and other authors) .In

this talk results are discussed for the lifting of continuous (or

holomorphic) functions f:n-+p(B/I).

Let ~:={qIEP(B/I): 3 (e'- (q" __ p)2)-1} (T. Kato, 1955).

Theorem 1: Assume n to be a holomorphy region in <t:n , TI E P (B/I) ,

pEP(B), u(p)=p'and f:f2-+Mp1 continuous ("resp~ holomorphlc). Then
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there exists f: O-+P (B) cont1nuous (or holomorphic), such that u9f=f.

The indicated proof shows also that M~ is analytically co~tractible

over P(B/I) •

Theorem 2: Let M'be a connected component of P(B/I) and as~ume that

M:=u-1(M~)np(B)~0. Then UO:M-+M'iS onto and defines a fibre bundle

(M, UO,Fp'-' G' i/MI) •

Theorem 1 and Theorem 2 are refinements and generalizations of' ~ =

methods in the paper of B. Gramseh, Math.Ann.269,27-71(1984).
. n '

Theorem 3 : Let h:n-+p(B/~) be a holomorphic map, O~ a holornorph~

region, and assurne that there exists a continuous niap f:O-+P.(B) süch

that uof=h. Then there exists' a holomorphic map ll:n-+p(B) with uoh=h.

The proof depends on a Mittag~Leffl~r-weierstraB-product method' for

projective limits of Banach analytic homoge~~ous spaces.

R. HOLLSTEIN:

Extension and lifting of bounded linear mappings in locally convex

spaces

A locally convex space (l.c.s.) E 1s said to have'the left-exiension

property (L-EP) resp. the left-weak extension prQperty (L-~EP)_ ~.f

for each l.e.s. Fand each l.c.s. G contai~ing E.as a ~opological

subspace eaeh bounded linear mapping AELB(E,F).has an extension,'

AELB(G,F) resp. AELB(G,F~) where ,F'~ ,is the bidual of F .~qucipped:.:with

the naturaltqpology. We say that a l.c.s. F has the R-EP resp. ~he

R-~P if for each l.c.s. E and G~E ~ach AELB(E,F) ha~ an ext~nsi~n

AELB(G,F) resp. AELB(G,Fn).n
A locally convex ~ient space GIB ,is sa~d to have the BL:pro~erty'

if each bounded subset BCG/B can be lifted to a.bounded set i~~. We

say that E has the L-LP resp. L-WLP if for each quotient space.G/H
A' ' . .

having the BL-property each AELB (E; ,G/H) has a lifting AELB (E·,G),resp.

AELB(E,GfI). A l.c.s. F 1s said tO,have the R-LP resp. R-WLp· if,for'n ' -
each l.c.s. E and eachquotient space G/~ with, t:h~ BL-pr~pe.rty _each

AELB(E,G/H) has a lifting AELB(E,G~).

Let r p resp. Fp ' 1~p~oo, be the opera~or ideal of all p-f~cto~a~~e

resp. discretely p-factorable operators. For""-=r resp. F , the~-. . P \ ,p. ".-.'
and w~-spaces in the sense of A.' 'Pietsch and H~ Jurtek 'hav~ the- fol-

lowing extension and lifting properties, respectivelY.~:· , .
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Theorem: Let E be a l.c.s. The following asse~tions hold:

( 1 ) E is an Fco-space ~ E has the L-EP

( 1') E is an F 1-space ~ E has the L-LP

(2) "E is a co-Fco-space ~ E has the R-EP

(2') E is a CO-F 1-space c:> E has the R-LP

(3) E is a f co-space ~ E has the L-WEP

( 3') E is a f 1-space ~ E has the L-WLP

(4 ) E is a co-fco-space c:> E has the R-WEP

(4') E is a co-f 1-space c:> E has the R-WLP

The converse in (2' holds if E is ultrabornological and the converse

in (4) resp. (4' is true if E is normed or semi-reflexive. •Example~ of F 1-, Fco-' f 1- and f~-spaces were given. Furthermore, the

above extension" and lifting theorem was applied to compact linear

mappings, to holomorphic mappings between locally convex spaces, and

to vector~valued functions lying in function spaces F(Q,F) which are

isomorphie to the Schwartz e-product F(n)eF.

H. JARCHOW:

On Hahn-Banach Extension for Operators in Certain Ideals

Let A'be an operator ideal. Say that a Banach space X has the A-EP

("extension propertytl) if, given any Banach spaces Y,Z such that

YcZ, every SEA (Y ,X) admi·t.s an extension SEA (Z,X). Th~ "general pro

blem is to characterize all B-spaces having A-EP.

It is well-known that in case A=K'(compact operators), one obtains

exactly all Lco-spaces with Schur property.

It is shown that for a quite nurnber of closed: ideals, only the

finite-dimensional spaces appear as extension spaces. If one starts

with any closed ideal A which is injective and surjective,' then a·

whole class.of closed ideals is constructed" leading to the same ex

tension spaces as A. Thisclass is shown to be particularly big:'if

A=W, but it doesn't comprise e.g. the ideal of Banach-Saks operators.

The latter is seen by considering (the dual of) Tsirelson's space.

HERMANN "KÖNIG:

Spaces with large grojection constants

Banach spaces with large projection constants are rel~ted to the

existence of sets of equiangular lines in Enor ~n. We show that
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there are complex k-dimensional spaces wit~ projec~ion constant

equal to Ik (1-1/k) +1/k, for prime numbers k. This is (almost)

warst possible. In the real case, slightly weaker estimates hold;

the equiangular lines are constructed using finite projective geo

metry.

G. KöTHE:

Convergence-free spaces

0a' O~., 0aG)o~ are the usual forms of spaces of countable degree a,

1<a<n. The composition of two of these spaces is again aspace of

countable degree, e.g. 0a(oß)=Oß+a and so on. The problem to de~er~

mine ~~e completed tensor product of two spaces of countable degree

is much more involved. It is possible to prove that 0 ~Oß is again. a
aspace of countable degree O"'l(a,ß) ,but the function V~(~,ß) cannot

be explicitely determined. I gave a lot of examples. where "'1 (a,ß)

can be explicitely determined.

N. KUHN:

Countable convex combinations and applications

0) lN {Let X be a set, X :=X and Q:= (tl)l: t l 2:0 VIElN, :r t l =1}. A super-

conve~ structure on X is defined to be a map 1=1

I : Q x xO) -+ X, (t,x)"-+ I (t,x) = I (tl,x
l

)
. 1=1

with the properties
0)

i) I (Öl'XI ) = x VpElN (öl = Kronecker symbol),
1=1 p

•
ii) I (t , I (ti,x

l
)) = ~ (; t tl'XI ) Vt,tPEQ (p=1,2,.·.).

p=1 P 1=1 1=1 p=1 P

Examp1es: 1) On a o-convex subset X of a Hausd~TVS we have the super

convex structure I (t1 ;x1 ) = . 1: t~xl"
1=1 1=1 .'

2) Let S be a topological sp~ce and let.X:={f:S~[-~,O]: f is USC}.
0) 0)

Then I (tl,f l ) = 1: tlf1 is a superconvex structure.
1=1 1=1

Let P:={(t1 )lEQ: tl=O for almost all lEm}. AcX is called supercon

vex iff I(t,x)EA VtEQ, xEAO).
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Theorem 1 Let A be a subset of X such that for every countable set

BcA there exists some tEQ'P with I(t,x)EA VxEB
m

• Then A is supe~

convex.

Cor. Let A be a bounded subset of a Hausd.TVS and suppose that for

every convergent sequence (al) 1 in A with 1im alE A the series
m -1
I: 2 a

l
has a limit in A. Then.A is o-convex.

1=1

Afunction f:X... [-m,m[ .is called convex if f(I(t,x» ~ 1: t 1 f(x
l

) for
1=1

all tEP, xEX
m

• f is cal1ed superconvex if the same inequality holds

for all tEQ and xEX
m

with sup f(x1)<oo.

For a set ACX let sco Adenote the smal1est superconvex subset of

which contains A.

Theorem 2 Let f:X...m be convex and bounded be1ow. Let aEX
oo

, t>O and
m

tEQ with tl>O VIEm .• Then there exists a sequence xEX such that :for

all nEm we have XnEsco{a
1

: l~n} and

n
f ( I (tl /T , xl» ~ f (I (t, x» + t I: t 1 ,

1=1 n 1=n+1
n

where T : = 1: t
l

.
n 1=1

Cor. Given superconvex functions f1~f2~···~f:X... [-oo,m[ and a sequence

1::;;;t tm we have
n

inf(f (a) + sup t n (fn (a) -f (a) ) ) ~ lim inf f (x) •
aEX. nE:IN n-.oo xEX n

A another consequence of Theorem 2 is the following theorem which

imp1ies the famous James theorem about weakly compact suhsets of

Banach spaces.

Theorem 3 (R6de). Let E be a normed space and TcBall EI such that

for every xEE there exists same tpET with q>(x) =Il.x 11. Then for a can

vex set AcE the following are equivalent:

i) A is relatively weakly campact.

ii) For every sequence (a l }l in A there exists same aEE such that

limi~fq>(al) ~q>,(a) ~limsupq>(al) VtpET.
l~ . 1~

e
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M. LANGENBRUCH:

Sequenee space representations for weighted solution spaces'of

partial differential operators

Let ~(O) be a hypoelliptic system"of pdo with constant coefficients

and let M be a weight function satisfying eertain technical condi-

tions ~ For O<P<Q) let tJl : ={ fECQ) (mN) s: P (0) f=O, I f (a) I ~ceM:(rz;) Vr>p}
p

and..rP:={fEC~(IRN)S:P(D)f=O,lf(a) l~ceM~rZ;) ~r<p} with their natural

projective (resp •. inductive) topology. The eonditions (ON") and (rn
(by o. Vogt) are generalized to triples td,X,X), where x/x are (F)

spaces and dEL(X,X). This enables us to' determine the diametral d~

mension ß(~) to obtain the following theorem: There is a sequencep .
a=(on) such .that for any O<p,.r<Q): N"p=AO(O') andr=AO(a)b • Especially,

(~ )b=.r. The sequenee a may be calculated for special systems.
p .

Sequence space representations ~or solution spaces defined by more

general weight systems can be proved by .constructing suitable ?ro

jections and using a var~ant of Pelczynski's trick.

K.B. LAURSEN:

Automatie continuity in C*-algebras

We examine homomorphisms of a C*-algebra A into commutative Banach

algebras. Thus we ~eed.the. co~utator .ideal C
A

:= ideal generated by

all eommutators ab-ba of A.

Faet: CA = n{M: M primitiv:e ideal of .codi~. 1 }

S2!:.:.!.:.. CL (H) =L (H), if d+m H >1 •

Cor.2: If A is a separable AW*-alge~ra with type I, part A" t~~n

A=A, e~A.
'Question: 1f I is a elosed ideal and CA is closed, is CI closed? lf

A is AW*, then the answ~r is yes (E. Albrecht, K.B. Lauz:sen) •.lf

ZlI=l (Zr is the center of I), then the answer is'yes. This applies

to any C*-subalgebra of L(H), .the eompact operators on H~. .

w. LUSKY:

On Banach spaces with the bounded approximation property

~e study the interrelation between Banach spaces with the bounded

approximation property (BAP), Banaeh spaces with finite dimensional

decompositions (FOO) an~ ~hose wit~ bases.

                                   
                                                                                                       ©



- 10 -

Theorem A: If X is separable and has the BAP. then X(!)Ca;>' xeC1

have bases.

Here, C~=(La>En) (0)' C1=(~E)En) (1)' where the En satisfy the fol

lowing condition:

For each t>O and every finite dimensional Banach space F there is

En such that d(En,F)~1+t (Banach-Mazur-distance).

Theorem B: If X has a sequence of finite rank projections Rn' and
n

Rn-+id pointwise, then Xe!) (LCDlco)f1) has an FDD.

Theorem C: For any separable Banach space X there is a subspace Y

with basis such that X/Y~cO/Cco. Moreover cO/C
co

has a basis.

R. MEISE:

On a problem of P. Lelong.

The proof'of the following results (joint work with S. DINEEN,

R. MEISE and D. VOGT) were presented, which answe~ a question of

P. Lelong.

•
Theorem A: For a (D~N)-space E the following are equivalent:

(i) E contains a bounded set which is not pluripolar.

(ii) E contains a bounded set which is not uniformly pluripolar.

(iii) Eb has property (DN).

Theorem B: For an (FN)-space E the following are equivalent:

(i) E contains a bounded set which is not uniformly pluripolar.

(ii) E has property (m.
If every pseu4oconvex domain in E is a domain of existence then (i)

and (ii) are equivalent to

(iii) E contains a bounded set which is not pluripolar.

Recall: Let F be a Frechet space with a fundamental system (11- 11) •
nn

of semi-norms, and define II·II~ :F· .... [O,co) by lIyll; :=sup{ ly(x)l: 1Ix1l n S; 1}.

Then F has property (DN) (resp.tr) introduced by D. Vogt, if the

following holds:

(DN) 3cont. norm li-li on F: 'IkElN 3 mE lN ,d>O,c>O: 1I_1I1+d~cll·lld 11·11
n m

(m .'1p ElN 3 q EJN , d>0 'IkElN 3c >0: 11 • 11* 1+d s;eil- 11* 11· 11*Q
q n p

R. NAGEL:

Positive solutions. of abstract Cauchy problems with delay

By means of the theory of positive semigroups and in particular. by
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a result of W. Kerscher and the author (Ac~a.Appl.Math.~, 297-309

(1984» we show that the stability of the solutions of. the trans

port equation with delayed neutrons

d
dtf(x,~,t) =-v gr~dx f(x,v,t) - a(x,v) ~f(x,v,t)

o
+ f f k(x,V,V',.T) f(x,v',t-T) dv'd.T

-1 V

is independent of the delay.

M. NEUMÄNN:

~ Flows in infinite networks

The lect~re deals with generalizations of the theorems of Ford~

Fulkerson and Gale to the.case o~ arbitrary networks •. In our gene

ral context, flows ~re certain. biad~itive set functions v:. LX ~ ~ X ,

where ~ is some algebra of sets and X i5 a Dedekind complete arder~d

ve.c,~or spac~.,The pres~nt approach to flowsin infinite networks is

completely di~ferent fram the various .~lassieal proof.s in the finite

case. Here, the emphasis lies on sublinear gen.erators a!ld the inter

polationtheo~emdu~ to Mazur-Orliczi ~hese teehniques are elose 'in

spir~t to those of Fuchssteiner and König-N,eurnann in somewhat reiat

ed situations. In the last p~~t of this - ~alk·,. we -in~ic~te so~e ,'app-

. licatia~s concerning t~~ ~xi~tenc~ of measureswith:.giVe~mar~inals

and certain supply and"demand problems fram ~athernatical economi~s.

A.. PELCZYNSKI:

Classificacion af Banach spaces of smooth functions .and a Sobolev

embedding type theorem

1 2
Let L[k,n](T ) denote·the Sobolev space of fu~ctio~s which·are 2n-

periodic'in each variable together with their k pure partial deri

vations in the first variable and n pure partial derivations in the

second v~!i~ble, and t~ese p~r~ial de~ivations belong to L'{T2 ).

The following conjecture is discusse~:

If liEL~k,n] (T
2

). then

k-1' n-1" . 2 .
~ Ipl Iql lu(p,q) I <00

-eo<p ~q<3:0
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Theorem: (R. Senator and A.P.)

The conjecture is valid in the following cases: 1) k,n odd numbers,

2) k=n, 3) min(k,n) =1.

Remark: If the conjecture is valid then there is a bounded non ab

solutely summing operator from Llk,nl into a Hilbert space.

H.J. PETZSCHE:

On Spectral Synthesis

The first part of the talk dealt with the solutions of P(-D)f=O.

Hereby P is a polynomial in N variables and f ac"" or ultradifferEmti- e
ahle function or a distribution or an ultra-distribution on an open

convex set U. The aim was to find aspace of distributions~p(U)

which are defined on cen =lR2n and have support in Z.(P) ={zECn : P (z) =O}

such that the map 1p(U) ~~(U)={f: P(-~)f=~}, u-+<u(z) ,e iXz
> is de

fined and surjective.

To that end aspace of finitely' differentiable functions F,' a closed
/' A

subspace F 0 of F, .!'nd an embedding k: f'U) /p E,'(U) ~ F /F0 were con-

structed. Hereby t'(U) contains exactly the Fouriertransforms of dis

tributions with compact support in U and.P (U) denotes the closed
~ ~

ideal generated by P. E~U) is the space to be used in the C -case and

it must be replaced by suitable spaces in all other cases. Because k

has closed image its adjoint kt:(F/FO)'-+([;(U)/PE!(U»"iS surjective.

Using the isomorphisms
.~ ~ i

( ('(U) /P f,'(U) ) I ==-N"~ (U) =~ (U) and (F/F0) • == F 0 cF I

we get a surjective mapC3: F~ -+ tfi> (U). F~ can be identified with a

space of. distributions 1-; (U) as required above and 9=" is the map wan
p

ted. In the second part we discussed extensions of this approach.to~

convolution equations and asked some open problems. ~

F. RÄBIGER:

On some structure theoretical characterizations of Grothendieck

spaces

Let E be a Banach space. E is called a Grothendieck space if in the

dual EI weak* convergent sequences are weakly·convergent. And E'

has property (V) -resp. property lYQl- if every non-weakly compact

operator from E into a Banach space F -resp. into c O- fixes a copy

of cO. ~
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Theorem 1 Let E be a Banach space. TFAE:

(i) E is a Grothendieck space.

(ii) E' is weakly sequentially complete and no quotient. of E is

isomorphic to cO.

(iii) E has property (~O) and no complemented subspace of E is

isomorphic to cO.

Theorem 2 Let E be a complemented subspace of a Banach lattice. TFAE:

(i) E i5 a Grothendieck space.

(ii) No quotient of E is isomorphi~ to cO.

(iii) E has property (V) ,and no complemented subspace of E,is iso-

morphic to cO-

w. RUESS:

Asymptotic behaviour of motions of dynamicaI systems

The 5tudy of the asymptotic behavioui of solutions t~ the abstrac~

Cauchy problem x~t)=Ax(t), X(O)=XO~D(A), X, X Banach, leads t~. t.he

following general problems~

+ + +
Problem 1: Let fECb(m ,X),and H (f)={fw:wElR },where fw(t)=f(t+w).

Characterize those 'f, for which

a)·H+(f) i5 relatively compact in (Cb(lR~,X)., 11-11
(0

);

b) H+ (f)' is weakly relatively compact in (cb(m+ ,X), 11· 11 ).
t co

Problem 2: Given fECb(lR+,X), let F(t)=Jf(u)du. Under which condi~

tions on f,X and F' is H+ (F). "(weakly) r~latively compact in C
h

(1R+iX)?

The following are two of the"main iesults to be presented. Let
+fECb (m.. ,X) -

Definition: F is symptotically almost periodic: for ~very t>O,

there exist M=M(t»O and Pt relatively dense in [M,co) such that

Uf(t+:r)-f(t) 11<& for all t~M and.all '[EPe -

Theorem 1: The following are equivalerit:

a) f is asymptotically almost periodic.

b) H+(f)-is'relatively compact in (Cb(JR+,X), 1I-ll
co

)-

c) There exists a unique decomposition f=gIJR"'+\p with g:1R... x alm6st

periodic and q>EC
O

(lR+ ,X) _

Theorem 2: Let f=gl~+~ be asymptotically almost peri~dic and
. t
F(t)=ff(u)du_ If a) F(lR+) is bounded in X and cO~X' or

O· + -b) F (lR ) 1s weakly relatively compact in X,

then the following are equivalent:
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(1) H+(F) is relatively compact in (Cb(lR+,x~., 1I·lI
ex
).:

(2) H+ (F) is weakly relatively compact in (c.p (lR+ ,X), 11· 1IClC» •

(3) ~ i5 improperly Riemann-integrable on lR •

References: R. Ruess, W.H. Summers: 1) Compactness in spaces of

vector valued continous functions and asymptotic almost periodicity.

2) Integration of asymptotically almost periodic functions and weak

almost periodicity.

'J. SCHMETS :

•Spaces of .continuous functions vanishing on a fixedsub5et

Let F be a closed subset of a Hausdorff completely regular space

X and E·be a Hausdorff locally convex space. Then C(X,FiE) denotes

the space of the continuous functions on X with·values in E which

vanish identically on F. As soon. as P is a family of bounde4 subsets

of vX which union contains Fand is dense in VX, C(X,F;E) is a closed'

subspace of.Cp(XiE), i.e. the space of the continuous functions on X

with values in E, endowed with the topology of uniform convergence

on the elements of ·P. However in' general C (X,F; E) is not complemented

in Cp(XiE). We present a way to consider CpX,F;E) as a copy of a com

plemented subspace of Cp,(-YiE) where Y is a Hausdorff completely reg

lar space obtained by use of X and Fand where p' is a suitable fam

ily of bounding subsets.of vY. We use this construction to get the

characterization of the ultrabornological, barrelied, quasi-barrelled,

••• Cp(X,FiE) spaces as weIl as the associated spaces.

•
c. STEGALL:

Some results about weak compactness

The following was discussed:

Theorem: Let X be a Banach space •. Denote. by B,(X)cXMthe 5pace of

sequential pointwise limits of X. For EcX, E bounded, are equiva1ent:

(i) Every seqwmce in E has a pointwise (or X*) Cauchy subsequence.

(ii) For ~ach seque~ce (xn)n in E there existsxtiEB,(X) such that

lim inf x* (xn ) ;;; x** (x
n

):;;; 1im sup x* (xn ) Vx*Eext Ball X*.

If the x** may be chose~ in X, then E is re1atively weakly

compact.
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T. TERZIOGLU:

Unbounded operators between F-spaces

A linear operator is called bounded if it maps a neighbourhood

onto a bounded subset. Let E and F be Freehet spaees and suppose

F admits a continuous norm and has a basis. If a continuous linear

operator T:E -+ F is unbounded, then there is' a infinite-dimensional,

closed, nuclear subspace E
O

of E such that the restriction of T to

E
O

is an isomorphism onto T(EO) •

T.V. TONEV:

Embedding of big dises in the maximal ideal space

Let S={fP } be a multiplieative subsemigroup in 'a'commutative
p

Banach algebra A, algebraically isomorphie to an additive subsemi-

group of Q+ =Rat [0 ,co), and let G be" the dual ,group of the group

generated by the set SU(-S). A function on the big"disc

XG={[0,1)xG/{O}xG}- we call generalized~analytic if it can be

approximated on XG by linear combinations over t of functions

XP(l,g)=lPXP(g), Xp(g)=g(p), pES. The algebra AG of 'gen.- analytic

functions on XG is an interesting opject in ~ornmutative Banach

algebra theory. For instanee it is the minimal uniform algebra'

extension of disc algebra, in which all. fun~tio~~"z, -+ zn pave arbi

trary powers from Si AG does not .adrnit corona, just as in.t 1 •

Theorem: Let A and S~Q+ are as above., A a uniform algebra. If,

I fP I ÖA =eonst;tO and if for some q>Esp, A we have Ker q> ={ U ·fPA}-,

th~n the set sp A ....... oA is homeomorphic to a big disc pES -and the'

functions 'of A" are gen. -analytic there, i. e. AI sp A ....... ÖAcA (6G) •

e R. URBANSKI:

On modular and Orlics spaces over a field with valuation

Let X be a veetor space over a field K with valuation 1·1. Let s>O,

s~t~O, k,l>O. For i=0,1 an~ a~b~O we.~efine a<Db=(1-i)m~x(~,b)~i(a+b).

A functional p:X-+ [O,~] is called (s,it)i-modular if it satisfies:

(m1) 'p (0) =0, ana p (ax) =0 for all a;tO impli"es x=O.
, . i it n\ i it s s

(m2) p(ax+ßy)~l .lai p(x)~l IßI p(y) for klnl +klßI :i1.

(m3) p (x) =p'(-x)

Tne vector space X ={xEX: limp(ox) =0 asO a-+O} is called the modular
p, . ,

space generated by_ p. If p.' is (s,it) i-modular, then' the'- functional
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li x 11 t=inf{ I a I s>O: p (x/a):;;; Ial i (s-t)} is an F-quasinorm on X
p

withs, .
the eonstant e=inf{(al>l: aEK}.max(k,11) in the triangle inequality.

The (s,t)1-modular is ealled (s,t)-modular. If s=1 the (l,O)O-mod

ular is ealled k-quasieonvex. The spaees LP (O<p<oo) are examples of

modular spaees generated by k-quasieonvex modulars. If the valuation

is non-archimedean, ~ a finite non-atomie measure and ~ satisfies

the eondition ~2' then there exists a non-trivial eontinuous linear

funetional on the Orlies space L~.

M. VALDIVIA:

On (LF)-spaees

Let En be a Freehet-Montel spaee, dirn En = (n= 1 ,2, • • • ) •

The following eonditions are equ'ivalent:

1) Every separated quotient of E·[~(E·,E)] is eomplete.

2) Every separated quotient of E is eomplete.

3) E is Br-eomplete.

4) E'[~(E·,E)] is Br~eomplete.

5) En is isomorphie to w (n=1,2,···).

Let M ,M ,···,M be positive numbers such that:o 1 2n co

a) MO = 1 b) Mn Mn-1 Mn + 1 (n= 1 , 2 , • • • ) e) 1: Mn-1 /~ < co

Let Q be a non-empty open subset of JRm ~ n=1

Then we have:
(M )

1) ~ n (Q) is not Br -eomplete.
(M >-

2) ~ n (rl) 1s not Br-eomplete.
(M >-

3) :v n (rl) ~as. aseparated quotient whieh has aelosed subspace

isomorphie to a .dense proper subspace of w.
(M )

4) ~ n (n) has a quotient isomorphie to adense proper subspaee 4It
of w.

D. VOGT:

Solution operators for convolution equations

The existenee of right inverses for.convolution operators T~=~*.,

.~E ~t,lRn) , aeting on Coo(lRn ) was investigated. It was shown: If n;;;:2

and T is hypoelliptic and has nontrivial zero solutions, then it
~

does not have a' right ~nverse. This holds in partieular for hypo-

elliptic partial differential operators. It extends results of A.

Grothendieck~ D.K. eohoon. In the case of semielliptic PDE the ex-

J
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~stenee of right inverses in. Gevrey elasses was investigated (e.f.

results of D.K. eohoon), an ultradistributional elementary solution

for the one-dimensional heat equation (n=2) with support on a half-

. ray was presented.

In a seeond part, whieh is based on joint work with R. MEISE, the

ease n=1 was treated and completely solved. There exist right in

verses iff T 1s hyperbol1e in the sense of Ehrenpreis. It is the
II

case 1ff the expansions of t~e loeal zero solutions into series of

exponential polynomials always converge globally. This' corresponds

to the Ehrenpreis characterization of hyperbolicity by means of the

~ zeros of the Fouriertransform.

J. VOIGT:

Interpolation for (positive) Co-semigroups on Lp-spaces

For the generator T of a Co-semigroup (U(f);t~O) on a Banach spaee

we define the speetral bound s(T):=sup{Re z: zEo(T)} and the uni~
-1 .

form spectral bound s (T): =inf{a>s (T).: sup{ 11 (z-T) 11: Re z ~a}<co}.
u . . . ~

If the semigroup consists of positive operators on a Banach lattice

then Su(T)=S(T) holds.

It is shown that the uniform spectral haund, considered as a funetion

of p, has a convexity property if (U(t) ;t~b) acts as a.cO-semigroup

on different Lp-spaces. An application of this result to linear trans

port theory is sketched.

·P. WOJTASZCZYK:

On homogenous polynornials

Let Sd be a unit sphere in Cd - the d-dimensional complex space 

and let 0 be a normalized rotation invariant measure on Sd. ~N de~

notes the space of all N-homogenous polynomials on e d restricted

to Sd. The following theore~. was proved:

For every c>O there is a constant C=C (c, d) such that for every subspace

ECPN with dirn E ~dirn PN there exists <,pEE such that sup{ Iq>(z) I: zES
d

}=l

and ( f Il/l ( z) I 2da ( z) ) 1/2 ?; c.
Sd .

This improve.s slightly an earlier resul t of Kashin anp Ryll.

Berichterstatte~: N.Kuhn
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