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Finite Geometries

. 26.5 bis 1.6.1985

This year's conference on Finite Geometries was held under the direction
of F. Buekenhout (Bruxelles), D. R. Hughes (London) and H. Liineburg
(Kaiserstautern). The main topics of the conference were designs, finite
projective and affine planes (especially translation planes), combinatorial
properties of finite geometries, geometric aspects of graphs and of finite
permutation groups, finite buildings, and interactions between these sub-
jects. The most spectacular new result, which was reported on by Prof.
Doyen, is L. Teirlinck's theorem establishing that there are plenty of
t-designs for all t ; all previously known examples had t < 6 .
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Vortragsausziige

E. Bannai, 7. Ito: Distance-regular graphs with fixed valency 1, II.
We proved the following results. The proofs are obtained by algebraic
methods, studying the‘eigenvalues and the multiplicities of the adja-
cency matrix of the graph. We also use Ivanov's diameter bound. Let
r be a distance-regular graph, and let

+« 1 ---1 #-—-# k-a-1 --- k-a-1 4
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the intersection array of T .
Theorem 1 If the graph T is bipartite (k 23) . Then t< fl(k)'.
Theorem 2 For any distance-regular graph, r < fz(k, t) .

Main Theorem (Thm 1 + Thm é) For each fixed valency k >3 s there are .
only finitely many bipartite distance-regular graphs of valency k .

The following result has been almost proved (modulo minor details).

"Theorem 3" (Geﬁeralization of Thm 1 for arbitrary distance-regular
graphs) For any distance-regular graph, t < f4(k) . (Consequently
d < f(k) for any distance-regular graph.)

For small valencies, the proof of Thm 3 is completely finished. Con-
sequently, DRG of k =3 are classified - also by Biggs, Boshier,
Shawe-Taylor by combinatorical methods just before our .algebraic methods
are completed, and for k =4 , d < f(4) - at present, f(4) is rather
big for practical use but we expect it is easy to deal with the remaining
finite cases to determine all DRG of valency 4 .
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A. Beutelspacher: Embedding of finite linear spaces in projective planes.
Theorem 1. Let S be a finite linear space of order n and denote by
n+1-a theminimal Tine size of S . If 4n > 6a® + 925 + 19a% + 9a + 3 ,
then S is embeddable in a projective plane of order n . A linear space

is said to be H-semiaffine, if for any point p outside a line L , the
number of lines through p which do not intersect L , is an element of

H.

Theorem 2. Let S be a finite proper {0, 1, s}-semiaffine linear space
of order n. If s 23, then S is the complement of a set of type
{0, 1, s} in a projective plane of order n .

J. Bierbrauer (with A. Brandis): Ramsey numbers for trees.

Let ’;n‘ be the set of trees with n edges (and n + 1 vertices). We

modify the concept of a diagonal Ramsey number by introducing:

r( "¢n, k) = min { u | whenever the edges of the complete graph Ku
on vertices are partitioned into k components, then one of the k sub-
graphs contains a connected component on more than n vertices }.

Then r(T, k) 2 r( %, k) forall Te 7n .
Counting arguments and various constructions using latin squares, nets,

resolvable block designs of index one, and résolvable linear spaces yield
upper and lower bounds: ) ‘

k +1
r( ¥ k) >2 [5 [—5]
r( 7n’ k) < k(n-1) +1 for k = 0(n)
r( 7n’ n) < n(n - 1) for n>2
r(’}n, k) <sk(n-1) +2 for k =1 (n)

Lemma If r( -Vn, k) > u and-if there is a set of n -1 MOLS of order
v , then r(?;n,k+u)>n-u.
In suitable cases the numbers can be determined:
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r('¥5, 3) =10, r('¥6, 3) =13, r(’¥8, 3) =
i+l

'r( 74’ 6 + 16(4 -1 ) 41""3 1

. i+l .

r(9g0 10+ 28“3 =)y <28 . 4Ty

i+l ;
(P 3+ o "Dy -12.6% 40

(i 20) .

. Lemma If F s a forest with ‘n edges, without isolated vertices,

k+1 ]

then r(F k) > (Vi) [ (k, n22)

A certain Steiner triple system on 19 points is used to determine the
Ramsey numbers for the path with 3 edges for 3k >3 colours.

2k +2
r(Py, k) = " 2k +1
2k =6

1 (mod 3)

3

0, 2 (mod3), k 4 3

A. Blokhuis (with H. A. Wilbrink): Note on a Theorem of Bru'en‘ & Thas,

Segre & Korchmaros.

The following theorem generahzes the characterization of exterior

lines of a conic by Segre & Korchmaros (and by Bruen and Thas for even

characteristic).

Let A , with cardinality q , and B with card q+1 be disjoint
sets of points in PG(2, q) , such that each line containing a point

‘ of A, also contains a point of B . Then B is a line.

Proof. If B is not a line then there is a line £ disjoint from
8 . Identify. Pg(2, q)\& = AG(2, q) with GF(q?) . Then all points
of A are zeroes of f(x) = £ (x - b)37 , contradiction.

: beB :

A. E. Brouwer: Characterizations of Grassmann graphs.

We generalize Numata's results to arbitrary diameter and discuss the
problem of finding all graphs that are locally GQ(s, t) and have

u-graphs Kiyp 441 -
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A. A. Bruen (with A. Blokhuis and R. Silverman): M.D.S. codes, arcs

and the problem of B. Segre.

Llet C be a code of length n over an alphabet A of size Q . So

C is just a collection of code words x of length n over A, a
code word being any n-tuple over A . Let 2 < k < n . We impose the
following condition. Condition 1: No 2 words in C agree in as many
as k positions. It follows that |C] < qk . If | = qk , C is
called an M.D.S. code and has minimum distance d = n -k + 1 . For
given g, k we want to maximize d and, so, n . This leads to the .
main problem. ) .
Problem: For given k, q what is the maximum value of n ? And what
is the.structure of C in the optimal case? One can show the following
result.

Theorem n<q+k-1.

We examine the case of equality. For k=2, n=q+ 1, the code C

yields an affine plane of order q , and vice versa. For k =3 ,
=q+2, C isequivalent to an affine plane = of order q with

an elaborate system of hyperovals: the only known example occurs when

m is desarguesian. The case k =4 , n=q + 3 probably cannot occur:

it is only known that 36| q . The linear version of the main problem

goes as follows. Let X be a k-dimensional subspace of V(n, q) . Choose

any k basis vectors for x arranged in the form of a kxn matrix B

over GF(q). Since B has rank k , some k columns of B are linearly

independent. The analogue of Condition 1 is Condition 2: Every set of k

columns of B is linearly independent. The main problem can now be re-

phrased in several different ways. For example, columns of B yield an

arc in = = PG(k-1, q) and the problem of the title asks for the size .

of the largest arc Y in = and the structure in the optimal case. It

is conjectured that |Y| < q+ 1 when n+2=<q+1 . Wediscuss recent

results on this and obtain an analogue for q even of a result of J. A.

Thas and the late B. Segre for gq odd.

P. J. Cameron: Stirling numbers and affine equivaience.

If F (G) is the number of orbits of the permutation group G on n-tuples
of d1st1nct points, and F¥ (G) the number of orbits on all n- tup1es then
F* (G) kz S(n, k) Fk(G) , where S(n, k) 1is the Stirling number of the

Forschungsgemeinschaft © @




UFG

Deutsche

Forschungsgemeinschaft

-5-

second kind. This result has a linear analogue: if ¢n(G) is the
number of orbits of the linear group G on linearly independent

. _ N n .
n-tuples, then F (G) = k§0 [k]q ¢k(G) , where [k]q is the .

Gaussian or g-binomial coefficient. Combining these results leads
to a formula for the number of n-tuples of distinct points of

" affine space over GF(q) , up to affine equivalence; the number is

n - .
£ s(n, k) F(k-1, q), where s(n, k) is the Stirling number of
k=1

the first kind, and F(n, q) the number of vector subspaces of
GF(q)"

P. J. Cameron: Groups generated by transvection subgroups.
McLaughlin's determination of groups generated by full transvection
subgroups has been extended, by J. I. Hall and me, to infinite-dimen-
sional vector spaces. Our result is formally very similar to A
McLaughlin's, but in the infinite-dimensional case there are many

strange examples. The proof requires an extension to infinite

_dimensional spaces of a result of Lefévre-Percsy which-determines

all point sets in a projective space which meet any line L in none,
one, all but one, or all points of L .

" F. de Clerck: Tranélation partial geometries.

Let S = (P, B, I) be a proper partial geometry with paramétérs
t,s,a (1l <a<min(s, t)). If L is a lineof S, then L* is
the set of lines concurrent to L . More generally if A is a subset
of the lineset then A is the intersection of all L*(L € A).

The span of a pair of lines {L, M} is def1ned to be :

(L, m* = (UeB||U e N* wN e{L, M}'}. If L and M are two non-'
concurrent lines then one can prove that {L, M}*! "is a part1al
spread (i.e. a set of pairwise nonconcurrent lines) and )

| {L, M¥** | ss+1. If equality holds then {L, M} s called
a-regular. If V .is a spread (i.e. a maximal set of (st+-a)ﬁu pa1r-
wise nonconcurrent llnes) then V is called normal iff every pair -
{L, M} ¢ V is a-regular and (L, M}** c v .

o0&
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If G is an automorphism group of S , then S 1is called a trans-
lation partia]vgeometry with translation group G , provided
(1) G acts regular on the points of S

(2) t= a(st2)

(3) every Tine orbit of G is a normal spread.
Generalizing results on generalized quadrangles we prove that G is
a translation group of a' translation partial geometry iff G is a
group of order (s+1)3 with a set T of t+l subgroups Ai s
ied= {0,1, ..., t} of order s+l satisfying the following
conditions .

(1) Ai n Aj = {1} foralli,j i#3J.
(2) for any pair {i, j} <J » there exists a subset V(i, j)
of J, |V(i, §)| = a«+1,1l<a<s, i, j€V(i, j) such
that A, A = AkA] vk, 1€ V(i, J) (k #1).
(3) A A n A {1} vm € J- V(1, i). )
Moreover we prove that the ex1stence of a trans]at1on part1a] geometry
is equivalent to the existence of a class of an a-uniform (n-1)-spreads

in PG(3n-1, q).

P. van den Cruyce: Action of a subgroup A5 of PSL(2, g) on PG(2, q).
We study the action of a subgroup A5. of PSL(2, q) on the projective
plane PG(2, q), with q odd. In particular, we determine the linear
structure induced by the lines of PG(2, q) on the orbits of length

6, 10 and 15 of" A5 .

U. Dempwolff: Large cyclic groups ‘in linear groups and translation planes. .
Let V be a finite dimensional GF(q)-space, q = pf and R < GL(V) such

that V = Vi e V2 is a decomposition into R-spaces such that V1 is irre-
ducible and R is trivial on V2 We call such a group l-irreducible.
Irreducible subgroups G of GL(V) are discussed which are generated by
1-irreducible groups R of prime order. A general structure result is
given and in particular G is determined if dim V-< 2n , where dim V1 =

DFG o
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This determines also the groups X = < Ri, R2 > , where Ri(i,g 1, 2) is
1-irreducible of prime order. These results are further applied to trans-
lation planes o = (V(n, q), ) such that there is a partition
m=AUT, |a]| =q+ 1 and a subgroup G < Aut (p) which is transitive
on T and fixes 4 .

J. Doyen: Is there a non-trivial t-design without repeated blocks for
t>67?
. The following recent remarkable result of Luc Teirlinck was discussed:
for every v =t (mod (t + 1)!2t+1 , there exists a t - (v, t+l, 1)
design with A = (t +1)!2t+1 without repeated blocks. Moreover, for
every such v , the set of all (t +1)-subsets of a v-set can be A |

partitioned into pairwise disjoint designs having the above parameters.
The proof is by induction on t .

D. M. Evans: Homogeneous geometries.'
For our purposes, a geometry will consist of a non;empty-set togethers
with a closure operation on that set such that the empty set and
singletons are closed, and the exchange condition is satisfied. The
geometry is degenerate if every subset is closed, and is locally finite
if the closure of a finite subset if finite. The geometry is homogeneous
if in the automorphism group of the geometry the ﬁointwise stabiliser
of any finite dimensional closed subset is transitive on the comb]ement
of that subset. I shall sketch a proof (using techniques from finite
geometry and cohérgnt configurations) that an infinite, non-degenerate,
‘ locally finite, homogeneous geometry is a projective or affine geometry
over a finite field. Our methods in fact show that a finite homogeneous
geometry (with at least.4'points on a plane) of sufficiently large dimen-
sion is a (possibly truncated) projective or affine geometry. Previous
proofs of this result have relied on the classification of finite simple
groups.

Deutsche
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Th. Grundhéfer: Finite and compact disconnected planes.

The projective plane over the p-adic numbers can be written as an inverse
Timit of finite Hjelmslev planes. More generally, we have Theorem 1: A
projective plane P 1is a compact disconnected plane iff P = 1im Pn

with finite incidence structures Po - Theorem 2 (B. Artmann): Every:
finite projective plane is a continuous epimorphic image of some compact
disconnected plane. Theorem 3 (R. Rink): There are compact disconnected
translation planes admitting continuous epimorphisms onto all finite
translation planes of fixed order. Theorem 4: There are compact dis-
connected plane$ over distributive quasifields not admitting any con- .
tinuous epimorphism onto a finite projective plane. The planes of Theorem
4 canngt be written as inverse limits of finite Hjelmslev planes or
Klingenberg plahes. '

Ch. Hering: A remark on a theorem of T. G. Ostrom.

Let E be a Klein 4-group contained in the linear translation complement

G of.a translation plane Of of finite odd order. Assume that all in-
volutions in E are Baer involutions. By a theorem of Ostrom (Arch. Math.
36 (1981), p. 21), the dimension of OL over its kernel is divisible by

4 and also, if a and b are two different involutions in E , then b
induces 5 Baer involution on the fixed point subpiané of a.

If G ‘does not conta1n any Klein 4- -groups of the type described above,

then G has cyclic or quatern1on Sylow 2-subgroups or G contains in-
volutory homo1og1es, in which case the subgroup generated by perspectivities
in G will provide much information about Of and G . Therefore it

seems impoftant to know if such groups can exist at all. In joint work

with H. J. Schaeffér an exémp]e was constructed to decide this question. ‘
This is a translation plane of order 81 with a translation complement of
order 128. k '

A. Herzer: A synthetic construction of affine chain-geometries.

For r a prime consider n, = PG(r, q) as subgeometry of = = PG(r, qr),
namely as fix-structure of the collineation o given by

(xoi"" xr) _— (xg.,..., xg). A hyperplane H of Ty gives T, I,
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affine structures A, A . Let Pl’ Pr be a spanning set of points
of H with Pg = P1+1 , indices mod r. We denote the riormal rational
curves of T by V{ Through r + 3 points of 1 in general poslt1on
goes exactly one v{ . Lemma 1: For any 3 non collinear points

Ql’ 02, 03 of A the points Ql’ 02, 03, Pl’ are in’ general
position. (Here r prime is crucial). Lemma 2: The trace of the’ V; :
through Ql’ 02, 03, Pl’ . P in L “is a V1 wholly conta1ned _

in A . Theorem: Given the po1nts Ql’ 02, 03 of A we define as‘
chain through these points 1) L u {=} if Q s QZ’ Q3 are contained’

in the 1line L of A , 2) the trace of V1 through

Qs Qs Q35 Ppseens Pr in A, if Qg Q, Q; are not collinear. Then
we have constructed A(GF(q) , GF(q )) in the sense of Benz 1n a
wSynthetic" way.

Y. Hiramine: Some classes of translation planes.
We present three classes of translation'planes
(1) A class of translation planes of order q2 with kernel GF(q) adm1t-
t1ng linearautotopism groups of order q ; This class 1ncludes the Hall
planes, the planes constructed by Narayana Rao-Satyanarayana and the
planes constructed by Cohen-Ganley. )
(2) A class of translation planes of order q with kernel’ GF(hf {

=1 (mod 2), admitting linear autotopism groups with orbits of length
2, q3 -1 on &= ; This class includes the planes constructed by Suetake
and therefore includes the Hering plane of order 27.

D R. Hughes(with N. S1ngh1) Part1t1ons and schemes ‘in graphs

An A-partition is a general1sat1on of the concept of an assoc1at1on
scheme, where A 1is an arbitrary square matrix. If W is an adJacency

matrix of a graph I' , this leads to a (unique minimal) decomposition of
r into "local schemes" and to the determination of the eigenvalues of
r . (An 1nterest1ng corollary is a simple proof of Block s Lemma for

-1nc1dence structures. )
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“do not exist: S,(5, 9, 19); S,(12, 14, 29); S4(13, 16, 32); S4(25, 28, 56); .
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Z. Janko: A new biplane of order 9.

The following result will be presented. Let B be a biplane of order 9
(k = 11) which possesses an automorphism group of order 6. Then B is
either known or is isomorphit to a new biplane -B0 . The biplane Bo is
self-dual and its full automorphism group H is isomorphic to 22 x A4
The group H has exactly five line (point) orbits on B0 . In addition,
B0 has exactly 44 ovals and the rank of its incidence matrix over
GF(3) 1is 26 .

D. Jungnickel: On a'théorem of Ganley.
Theorem 1: Let 4 be an abelian group of order n2 , n even. Then there
exists an n-subset D of G satisfying (i) N = 2D is a subgroup of order
n of G (ii) N contains all involutions of G ; (iii) D is a system
of coset representat1ons of N if and only if G = Zz Example: Take

= {0, 1} in ZZ Theorem 2: Let D be a relative difference set
w1th parameters (n, n, n, 1) in an abelian group G , where n iseven.
Then, assumihg 0eD, D satisfies the conditions of Thm. 1 . Corollary
(Ganley's theorem): A relative difference set with parameters (n, n, n, 1),
n even, in an abelian group G exists iff n is a power of 2 and
G = lz . Remark: note that the examples given above are not relative
difference sets, so Thm. 1 is stronger than the corollary.

E. Kohler: The non-existence of some t-designs.
Observation: Simple t-designs SA (t, k, v) with the following parameters

58(28, 30, 60). Proof: compute the intersection numbers belonging to these
parameters using the Mendelsohn-equations. °

M. Lempken The maximal subgroups of J, .

The f0110w1ng result on the subgroup-structure of the finite simple group
g, of order 221 .33 .5 .7.115.23.29 .31 .37 - 43, which was
discovered by Z. Janko in 1975, has been proved. Theorem: Let M be a
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maximal subgroup of J4 Then one of the follow1ng ho]ds (I) M isa

2-local of J4 and isomorphic to one of Ex(Z ) *6 Aut (Mzz) ,

Spec (2 )\\(z x L3(2)) , E (2 ) * My » or E (2 ) . L (2)

(I1) M s a p-Sy]ow -normalizer with p € {11, 29, 37, 43}. (III) M is

isomorbh1c to PGL (23) s PrL2(32) P2U3(11) (IV) M s 1somorph1c

to one of a) A5 . A6 > Ass A Ag 3(2), 3(4) b) L2(11) > Migs M22’

2(23), c) U3(3) , where M = X* iff X 9 M < Aut (X) . Conversely, any

subgroup of type (I), (II) or (III) is a maximal subgroup of J4 .

Remarks. 1) It is still not known if there exist subgroups isomorphic to
' ’ U3(3) >within_ J4 ; nevertheless there is strong evidence for the existence

of such subgroups. 2) It seems very likely that case (IV, b) can be omitted

in the list of the theorem. ' '

R. A. Liebler: A representation theoretic approach to finite geometries
of spher1ca1 type.
Generic rings and their geometrically significant subr1ngs are used to

study finite geometries of spherical type involving generalized quadrangles

with parameters s, t . Aside from buildings and thin cases, the only possible
types are F4 and B3 = C3 .If s22,t=2 are the parameters of a

generalized quadrangle now known to exist then- s =t =2 for type Fq
and s, t are powers of the same prime for type flat B3 = C3 .

S. S. Mag11veras An infinite family of t-designs.

Procedures for constructing t-designs with prescribed automorph1sm groups

are presented. These methods have resulted in the construction of many new,
‘ simple t-designs with t < 6 . General questions, conjectures, and current

prob1ems are also discussed. B

F. Mazzocca: Some remarks on blocking-sets.

A blocking-set preserving bijection between the points of two finite affine
,orlprojective planes is proved to be a collineation. Consequently, the
blocking-set preserving permutation group on the points of:ah affine or
~projective plane is brecisely the collineation group of the.plane. In

general, this property is not true in an arb1trary linear space. Finally, the

same problem is investigated for h-blocking-sets in a projective space over
a Galois field.
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A. Neumaier: K-geometries and Buildings.

Call a geometry T projectively closed if T 1is a connected partial
linear space such that every triangle is contained in some (possibly
degenerate) projective subplane of T . If K is a graph we say that a
subgeometry £ of T 4s a K-set if there is a bijection = : £ —>K
which preserves distances (measured in the incidence graphs). A path

N RERERLY in the incidence graph of T is called short if

d(ao, ai-l) = d(al,'ai) =i -1. A K-geometry is a projectively closed
geometry such that every short path is in some K-set. Theorem. (i) Points. '
and lines of the shadow geometry of a building with respect to any
variety form a K-geometry, where K is the corresponding Coxeter graph.
(ii)y If r s a K-geometry all of whose lines are thick, and if K is
the Coxeter graph of type An,l’ Bn,l , Bn,n or GZE?) then T is a
projective space, a polar space, a dual polar space, or a generalized
polygon. Conjecture: If K is a Coxeter graph and’ I' is a K-geometry
all of whose lines are thick then T is the point-line geometry of a
building.

S. Norton: The Monstrous Monogram and the Projective Plane. _

If one considers the incidence graph of the projective plane of order 3 ,

then the group by considering the 26 nodes as involutary generators which
commute unless the nodes are joined (when their product has order 3) has a
subgroup of index 2 (consisting of the even words) which has the Monster

as a quotient group. Using this one can obtain subgraphs and quotient

graphs for many subgroups of the Monster, which in many cases can be

proved to yield presentations (using certain extra relations) by means .
of coset enumeration. These presentations are all of the ,fabulous" type,

and one can ask whether the Monster is fabulous.

D. Olanda: On {1, 3}-semiaffine planes.

A {1, 3}- semiaffine plane is a linear space with the property that through
any point outside a 1ine £ there are exactly 1 or 3 Tlines which do not
intersect £. All finite {1, 3}-semiaffine planes are characterized. In
part1cu]ar it turns out apart from a finite number of possible except10ns,
any such structure is embeddable in a f1n1te projective plane.

&
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T. Oyama: Finite quasifields.

I will give new representations of finite quasifields and construct
some quasifields using these reﬁresentations. Furthermore I will
give the way to have new quasifields of order q4 induced by any
quasifield of order q2

A. Pasini: Tits' geometries of typelcn.
let T be a residually connected Tit's geometry of rank n > 4
belonging to the following diagram:

06— O0—-- - —0——I =D (1<qgq<e=).
Q q 9 9 q

Then r is a building.

T. Penttila: Tactical Decompositions.

A tactical decomposition of a finite incidence structure is symmetric
if (i) the incidence structure has an incidence matrix of rank

the number of points, and (ii) the decomposition has. the same number of
point classes and block classes. A brief description of results con-:
cerning symmetric tactical decompositions will be given, with emphasis
on decompositions of PG(d, q).

C. Praeger: The Maximal Subgroups of the Finite Synmetr1c and A]ternat1ng
Groups. e
It follows from the "folklore" and from the Reduction Theorem for primitive
permutation groups that a maximal subgroup G of the symmetric group
Sn of degree n belongs to one of the following six classes.

1) (stabilizer of a k-set) Sk x sn-k , for.some 1 <ks=<n

2) (stabilizer of a partition) Savw~Sb »where n=ab.,a<l,b<1,

3) (affine) AGL(d, p) , where n = pd, p a prime, d21 ,-
) (product) Sa,wr Sb , where n = ab ,az25,b>1,"
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5) (simple diagonal) T* (Out T xS,) , where' n = |'l'|k'1 . ’
T is a nonabelian simple group, k > 1 ,
6) (almost simple) T < G < Aut T , where T is a nonabelian
simple group, and G is primitive of degree n .

Note that.a classification of the groups in class 6 is precisely

a classification of all maximal subgroups of all almost simple groups
(that is of all groups G such that T < G < Aut T for a nonabelian
simple group T ). We classify which of the groups G in classes 1-5
are maximal in Sn , and also which G n An , for G in classes 1-5,
are maximal in An . Further, for groups G = Nsn(T) in class 6 , we

classify precisely the ones which are not maximal in S, , and those
NA (T) which are not maximal in Ah .

This is joint work with Martin Liebeck and Jan Sax1. A section of it

has been obtained independently by Michael Aschbacher. The proof relies
heavily on factorization theorems for almost simple groups due severally
to Christoph Hering, Martin Liebeck, Jan Sax1 and myself. A

S. Rees: Embeddings for the 2-local geometry for M__ . .

12
A 2-local ,building-1ike" geometry can be defined from Mo “whose
points and lines are the groups in the two conjugacy classes of proper

.subgroups containing a Sylow 2-group. An incident point and 1ine inter-

sect in a Sylow 2-group. Geometrically the points and lines can be
recognised as 4-sets and certain 4, 4, 4 partitions of the set of
12 points of the S(5, 6, 12) Steiner system . We get a geometry of

495 points and 495 lines with 3 points on each line and 3 lines on

each point.

It is natural (since we look for building-like properties of this
geometry) to try to find the geometry as a system of subspaces of a
vector space over GF(2) (which will automatically be a module for

the group). It is elementary to embed the geometry in 10 and 44 dimen-
sional space. We find the points of the geometry as certain l-spaces
(corresponding}to 4, 8 partitions) and 1ines as 2-spaces in the 10-dimen-
sional module consisting of the set of all even partitions of

"{1,...,12}-We find points of the geometry as 2-spaces and lTines as

l1-spaces in the 44-dimensional module consisting of the set of all
switching classes of even valency graphs on 12 points which also have
an even number of edges (Each line corresponds to the switching class
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of a K4 4,4 graph). In both these embeddings a point and a line are
1nc1dent pr'ec1se1y when the corresponding 1- and 2-spaces are related
by inclusion. Us1ng the methods of Ronan and Smith we can find all
.good” embeddings of the geometry in vector spaces over GF(2) in
which both points and lines appear as 1- or 2-spaces, a point and a

line being incident if the corresponding spaces intersect in a l-space.

It seems that every irreducible module for M12 over GF(2) supports
at least one such embedding.

M. Ronan: Presheaves and Embeddings.
In this talk we considered the special case of an embedding for which
points are l-spaces and lines are 2-spaces of some vector space V .
More generally any embedding of a chamber system a can be regarded as
a presheaf & on & ; in the case above for points p and lines L
we have presheaf terms ’Fp » ,PL and T‘;’L for each flag p, L ,

. P o
and we have maps F") L hi-HEN Fi_ and F;) L Bl T‘/’p .
. E] N

: ®Lp ” “pL
Defining a boundary operator 3 :'Fp’l_-——> Fp ® ’E. ,

we obtain a chain complex Cl > Co where

Ci= @ 1 s G= e ’Fp ® ?L . Theorem: The vector spaces V

which admit an embedding T (which generates V) are precisély the
quotients of Ho('ﬁf) which admit T . Thus Ho('}:) is the universal
embedding. Theorem: Suppose we have a set P of points such that every
Tine L -meets P in no points or in all but one point Py - Given

v, € Tv for all p € P such that if L determines p ¢ P , then

vp - v € ,‘A: v p,q on L , then this determines a vector of HO

. (equwa]ently the dual of H ) , and all such arise this way This

gives a criterion for detenmmng when H (T—') $+ 0, and hence when such
an & -embedding exists.
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P. Rowlinson: Cycles in tournaments. .

We say that a tournament has property Pm(m >3)if 3 c=¢(m >0
such that each arc lies in precisely ¢ m-cycles. We discuss the
relations between properties P3, P4 and P5 -

J. Saxl: Factorizations of finite simple groups.

A group G is factorizable if G = AB with A, B proper subgroups

of ‘G . Such a factorization is maximal if both A, B~ are maximal in

G . In joint work with M. W. Liebeck, Ch. Hering and C. E. Praeger, .
we determine all maximal factorizations of the finite almost simple

groups .that give rise to factorizations of the corresponding simple
groups. (Here an almost simple group G is a group satisfying
L 4G < Aut L for some non-abelian simple group L .)

J. J. Seidel: Conference matrices from projective planes of order nine.

From the 7 known affine planes of order 9 we construct 26 nonequivalent
conference matrices of order 82..

M. de Soete (with J. A. Thas): Recent résu]ts on characterizations of
generalized quadrangles.

We introduce the concept of (0, 2)-set in finite generalized quadrangles
S = (P, B, I) of order (s, t) i.e. a non-empty subset K c P of
pairwise non-collinear points such that lxln K| €1{0, 2}, vx € P\K.
There immediately. follows that |K| = s +1 and s is odd. Examples
are given in the known models of order (q, q) and (q - 1, q + 1) .

Using these (0, 2)-sets we obtain characterizations for the generalized
quadrangies T;(O) and Q(4, q), q odd. Analogously we consider for
generalized quadrangles of order (s» s) ,s even, (0, 1,2, s+ 1)-sets
which gives rise to a characterization of T2(0), q even.
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J. A. Thas: Generalized quadrangles and flocks of cones. .

The following construction of generalized quadrangles (GQ) is due to

W. M. Kantor. Let G be a group of order szt, let J= {A,B,...} be

a set of 1+t subgroups of order s of G, and let J* = {A*,_B',..,}

be a set of 1+t subgroups of order st of G with Ac A*, B c B*,

Define points as (i) the elements of G , (ii) the cosets A’g seees

(iii) a symbol = ; define lines as (a) the cosets Ag,... ,(b) the elements
(Al , [B],... . Incidence is defined as follows: a point g of type (i)
is incident with the cosets Ag, Bg,..., ; a point A*g, of type (ii) is
incident with [A] and with all the cosets Ah contained in it; the point
« is incident with all lines [A], [B],... This incidence_structure $(G,J)
is shown to be a GQ(of order (s, t)) iff

(1) AB n C = {1} for all distinct A, B, C in J and (2) A*n B = {1}
for all distinct A, B . Now Kantor considers the group

G={(a,sc,B) |CEF ,a,8€F xF},F=GF(q) , with . ;
(@sc58)+ (a'sc', 8') = (a+a', c+c'+B.o', B+8') and B.a' the usual dot

' : Xg o Yy ' T
product. Let At = s, t€F , with A0 =03 let Kt = At+At 1
0 . ;
t
let A(t) = {(a,ah, al , oK Il o €FxF and let
A(m) {(0, 0, 8) || 8 €Fx F}' let A%(t) = A(t).C with
= {(0,c,0) [[c €F }. Nowput J={A(t) ||t € Fu {=}} and . .
= {A"(t) |t € F U {=}} . Then W. M. Kantor showed that for q odd

"Eonditions (1) and (2) are satisfied iff -det(K K ) is a nonsquare

whenever t # u ; S. E. Payne showed that for gq even (1) and (2) ..
are satisfied iff (xt+xu)(zt+zu)(yt+y ) €C, , withC, ="{<.5 eF_llxzfx+6}
is irreducible, whenever t # u . Using these results they were able to
construct new infinite classes of GQ of order (s, t) with s = t2

Next, consider the quadric cone K : X X1 Xg of PG(3,.q). Let Ty
be the plane xth + ti1 + ytx2 + X3 =0, t€GF(q) , and let - . .

K n ntl = Ct . Then {Ct | t € GF(q)} is a flock of K(i.e. %Ct =K-{yertgg})
iff the condition of Kantor or Payne is satisfied according as to q is

odd or even. In this way new flocks of cones (and possibly new translation
planes) arise from the new GQ , and new GQ arise from the known flocks.
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F. Timmesfeld: Classifications of locally finite classical Tits' chamber-
systems. ‘ o )

A chambersystem C of type M (in the sense of Tits) is classical, if
all the rank 2 residues are either generalized digons or classical
generalized m, ;-gons for some M2 3 . Such a chambersystem is called

a classical Tits' chambersystem. The diagram A of C is defined in the
obvious way. The following two theorems were discussed. Theorem 1. Suppose
C- is a classical locally finite Tits chambersystem with transitiye
automorphism group G and finite chamber-stabilizer. If IAi(c) |2 6
for all i € I , then one obtains a complete (local) list for C and G
(including the spherical buildings). Theorem 2: Suppose one has the same
hypthesis as above and rank (C) = 3, char(C) = 2 . Then one obtains a
complete (relatively long) 1ist for G and C . :

V. D. Tonchev: Self-orthogonal codes and designs. émbedding of designs by
automorphisms. ;

1. Generalizing a concept for self-orthogonal Steiner system due to Assmus,
a method for inveétigating designs by means of self-orthogonal binary codes
is introduced. Using this method and the classification of self-orthogonal
codes, the uniqueness of the quasi-symmetric and other designs arising from
the Witt systems, as well as the classification and the non-existence of
certain quasi-symmetric designs is established, including some counter-
examples to the "only if"-part of Hamada's conjecture. 2. A symmetric

2-(78, 22, 6) design possessing the Witt system S(3, 6, 22) as a derived
design and invariant under a group of order 168 is constructed. As a by-pro-
duct, the existence of a quasi-symmetfic 2-(56, 16, 6) design is established.

T. van Trung: Two infinite families of 2-designs.
By studying the maximal n-arcs in some classes of symmetric designs we
prove the existence of the following infinite families of 2-designs:.

2-(v = 2PMS ™S gy 8@ 122V S Ly, s M e
' k=2"S -2 ,1ss<m
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and

2-(v = (P4 )lamS |y

(2m + 1)h+1 . JMS oS ,
@+ )P, k=2 1)1,

-
n"

A

(zm'+ 1)h-l) ,

where (Zm +1) 1ds a prime power, h22 andl1ss sm.

Berichterstatter: Th. Grundhofer
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