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This year's conference on Finite, Geometries was held under the direction
Qf F. Buekenhout (Bruxelles), D. R. Hughes (London)' and H. Lüneburg
(Kaiserslautern). The main topies of the conferenee were designs, finite
projeetive and affine planes (especially translation planes), combinatorial
properties of finite geometries, geometrie aspects of graphs and of finite.
permutation groups, finite buildings, and interactions between these sub
jects. The most spectacular new result~ which was reported on by Prof.
Doyen, is L. Teirlinck's theorem establishing that there are plenty of
t-designs for all t; all previously known examples had. t:S; 6 .'
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Vortragsauszüge

Eo. Bannai, T. Ito: Distance-regu1ar graphs with fixed va1ency 1,11.
We proved the fo11owing res~lts. The proofs are obtained by a1gebraic
methods, studying the eigenvalues and the mu1tip1icities of the adja
cency matrix of the graph. We also use Ivanov·s diameter bound. Let
r be a distance-regular _graph, and let

{~
1 ---1 • --- *' k-a-l k-a-l Cd}
a ---a .. "--- . a a ad
Lk-a-1 -y-k-a~l)~ 1 --- 1 *"~

r t s

the intersection- array of r.

Theorem 1 If the graph r i s bi part; te (k ~ .J) . Then t < f 1(k)' •

Theorem 2 For any distance-regu1ar grapho, r < f 2(k, t) ·

Main Theorem (Thm 1 + Thm 2) Far each fixed valency k ~ 3 , there are
only finite1y many bipartite distance-regular graphs of valency .k !

The following result has been almost proved (modulo minor details).

flTheorem 3ft (Generalization of Thm 1 for arbitrary distance-regular
graphs) For any distance-regular graph, t < f4(k) . (Consequently
d < f(k) for any distance-regular graph.)

For small valencies, the p~oof of Thm 3 is completely finished. Con
sequently, DRG of k = 3 are ·classified - also by 8iOggs, Boshier,
Shawe-Taylor by combinatorical methods just before ·our.algebraic methods
are completed, and for k =4 , d:< f(4)'- at present,' f(4): is rather
.big for practical use but we expect it is easy to deal with the remaining
finite cases to detenmine all DRG of valency 4 ·
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A. Beutelspacher: Embedding of finite linear spaces in projective planes.
Theorem 1. Let S be a finite linear space of order n and denote by
n + 1 - a the minimal line size of S . If 4n > 6a4 + 9a3 + 19a2

+ 9a + 3 ,
then S is embeddable in a projective plane of order n. A linear space
i5 said to be H-semiaffine, if for any point p outside a line L, the
number of lines through p which do not intersect L, is an element of
H.

Theorem 2. Let S be a ~inite proper {O, 1, s}-semiaffine linear space
of order n. If s ;, 3 , then S is the compl ement of a set of type e
{O, 1, s} in a projective plane of order n.

J. Bierbrauer (with A. Brandis): Ramsey numbers tor trees.
Let ~n' be the set of trees with n edges (and n + 1 vertices). We
modify the concept of a diagonal Ramsey number by introduclng:

r( ~ , k) = mi n {lJ I whenever the edges of the compl ete graph K
n " lJ

on vertices are partitioned into k components, then one of the k sub-
graphs contains a connected component on more than n vertices }.

Then r(T, k) ~ r( ~n' k) for all T E Pn .

Counting arguments and various constructions u~in~ latin squares, nets,
resolvable block designs of index one, and resolvable linear spaces yield
upper and lower bounds:

r( f n' k) > 2 [~] [ k + 1 ]
2 2

r( fnt k) s k(n - 1) + 1 for k = O(n)

r( f n, n) s n(n 1) for n > 2 •r( ";tnt k) ~ k(n - 1) + 2 for k = 1 (n)

Lemma If r( '~n' k) > lJ and· if there is a set of n -" 1 MOLS of order
lJ , then r( f n' k + lJ) > n • lJ •

In suitable cases the numbers can be determined:

Ju
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r( 1:5, 3) = 10 , r( 16, 3) = 13 , r( f8' 3) = 17

16{4 i +1 - 1) . 3
. r( ":14' 6 + - 3 - ) = 41+ + 1

28(4 i +1 --1) . 1
r ( 1 4 , 10 + - 3 - = 28 • 41+ + 1

12{6
i
+

1 ~ 1) ) =12 • 6i +1 + 1r( 16 , 3 + 5 (i ~ 0) .

Lenma If F is a forest with ,'n edges, without isolated vertices,

, . k+l
then r(F ~ k) > [v'il] [-2-] (k, n 2: 2)

Acertain Steiner triple system on 19 points is used to determine the
Ramsey numbers for the path with 3 edges for 3k > 3 colours.

r{P3, k)
{

2k + 2
, 2 k + 1

, 2 k = 6

k = 1 (mod 3)
k :: 0, 2 '(mod 3), k =t 3
k = 3

A. Blokhuis (with H. A. Wilbrink): Note on a Theorem of Bruen' &Thas,
Segre & Korchmaros.
The following theorem generalizes the characterization of exterior
lines of a conic by Segre &,' Korchmaros (and by Bruen and Thas for even
characteristic) .
Let A , with cardinality q ,and B with card q +1 be disjoint
sets of points in PG(2, q) , such that,each line containing a point
of A, also contains a point of B. Then B is a line.
Proof. If B is not a )ine.then ~here is a line l disjoint fram
B .,Identify', PG{2, q) \l ~ AG(2', q) with GF(q2) • Then all points
of Aare zeroei of" f(x) ~ E (x - b)q-1 , contradiction.

bEB

A. E. Brouwer: Characterizations of Grassmann graphs.
We generalize Numatals 'results to arbitrary diameter and discuss the
problem of'finding" all gra~hs that are locally GQ(s, t) and have

lJ-graphs Kt+1 , t+l ·
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A. A. Bruen (with A. Blokhuis and R. Silverman): M.D.S. codes, arcs
and the problem of B. Segre.
Let C be a code of length n over an alphabet A of size Q. SO
C is just a collection of code words x of length n over A, a
code ward be i ng any n-tu p1e over A. Let 2::; k ::; n . We impose the
following conditian. Conditian 1: No 2 wards in C agree in as many
as k positions. It follows that ICI::; qk. If ICI = qk, C is
called an M.D.S. code and has minimum distance d = n - k + 1 . For.
given q, k we wa~t to·maximize d and, so, n. Th1s leads to the
main problem.
Problem: For given k, q what is the maximum value of n? And what
is the-structure of C in the optimal ease? Dne can show the following
resul t.
Theorem n s q + k - 1

We examine the ease of equality. For k = 2 , n = q'+ 1 , the code C
yields an affine plane of order q , and vice versa. For k = 3 ,

n = q + 2, C is eq~ivalent to an affine ·plane 1T of order q with
an elaborate system of hyperovals: the only known example oeeurs when
1T is desarguesian. The case k = 4 , n = q + 3 probably eannot occur:
it is only known that 36 J q • The linear version of the main probl~

goes as fol1ows. Let X be a k-dimensional subspaee of V(n, q) . Choose
any k basis veetors for x. arranged in the form of a kxn matrix B
over GF(q). Since B has rank k, some k columns of Bare linearly
independent. The analogue of Condition 1 is Condition 2: Every set of k
columns of S· is lin~arly independent. The main problem ~an n·ow be re
phrased in several different ways. For example, columns of B yield an
are in E = ~G(k - 1, q) an~ the problem of the title asks for the size
of the largest are Y in E and the structure in the opt;m~l case. It
;s conjectured th~t lvi s q + 1 when n + 2 s q + 1 . We discuss rece~t

results on this and obtain an anal~gue for q even of a result of J. A.
Thas and the late S. Segre for q odd.

P. J. Cameron: Stirling numbers and affine equivalence.
If Fn(G) is the number of orbits of the permutation ~roup. G on n-tuples
of d)stinet points, and F*(G) the number of orbits on all n-tuples, then
* n n _'.

Fn(G) = E S(n, k) Fk(G) ,where S(n, k) is the Stirling number of the
k=l

•

•

t)
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second kind. This result has a linear analogue: if $n(G) is the
number of orbits of the linear group G on linearly independent

* n n nn-tuples, then Fn(G) ~ E [k1q $k(G) , where [t1q is the.
k=O '

Gaussian or q-binomial coefficient. Combining these results leads
to a formula for the number of n-~ples of distinct points of
affine space over GF(q) , up to affine equivalence; the number is

n
E sen, k) F{k-l, q), where sen, k) is the Stirling number of

k=l
the first kind, and F{n, q) the number of vector subspaces of
GF(q)n .

P. J. 'Cameron: Groups generated by transvection subgroups.
McLaughlinls detennination of groups generated by fu11 transvection
subgroups has been extended, by J. I. Hall and me, to infinite-dimen
sional ,vector spaces. Dur result is fonnally very s'imilar to
McLaugh1in I s, but· in the i nfi n"tte-d i!TIens i ona1 case there are many
strange examples. The proof'requires an extension 'to infinite'

, dimensional spaces of a result of L~fevre-Percsy which'determines
all point sets in a projective space which meet any line L. in none,
one, all but one, or all points of L.

F. de Clerck: Translation partial geometries~

Let' 5 = (P, B, I) be a proper partial geometry with pa~ameters

t, s, a (1< a < min(s, t». If L is a line of S , then Li 'is
the set of 1ines concurrent to L. More generally if A is a subset
of the 1ineset then Ai is the intersection of all Li(L E A).
The span of a pair of 1ines {L, M} 1S defined'to be
{L, M}.l.l ~ {UEBII U E Ni vN E {L, M}i}. If L 'and Mare two non
concurrent lines then one can prove thät {L, M}ii . i~ a partial
spread (i.e. a set of pairwise nonconcurrent lines) and
I {L, M}ii I:s s + 1. If equality holds then {L, "Ml lsc.al.led,. .
a-regu1ar. If V ·is a spread (i.e. a maximal 'set of {st+ a )!a'pa'ir":'
wise nonconcurrent linesf then V is called nonnal iff every 'p~'fr"
{L, M} c V is a-regular and {L, M}ii c V •
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If G is an automorphism group of S , then S is called a trans
lation partial gecmetry with translation group G, provided

(1) G acts regular on the points of S
(2) t = a(s+2)
(3) every line orbit of G is a" normal spread.

Generalizing results on ge~eralized quadraDgles we 'prove that G is
a translation group"of a' translation partial geometry iff G is a
gr~up of order (s+I)3 with a set .T of t+l subgroups Ai '
i E J = {O, 1, .... , t} of order s+1 satisfying the following
conditions

(1) A. n A. = {I} for all i,j i F j .
1 J

(2) for any pair {i, j} c J , there exists a subset Y(i, j).

of- J, IV"Ci, j)j = a +"1 , 1 <~ <s, i., j E·V(i, j) such
that A.A. = AkAl Vk, 1 E V(i, j) (k F 1).

1 J ".
(3) AiAj.n Am = {I} ~ E J-V(i, j).

Moreover we prove that the existence of a translati~n partial geom~try

is equivalent to the existence of a class .of an ~-uni.form (n-l)-spreads
in PG{3n-l, q).

P. van den Cruyce: Action of a subgroup AS of PSL(2, 9) on PG(2, q).
W~ study the action of a subgroup AS cf PSL(2, q) on the projective
plane PG(2, q), with q odd. In particular., we detennine'~he linear
structure induced by the lines of PG(2, q) on the orbits of length
6, 10 and 15 cf' A5 .

u. Dempwolff: Large. cyclic groups "in linear groups and translation planes.
Let V be a finite dimensional GF(q)-space, q: pf and R ~ GL(V) such
that V = VI ~ V2 is a decomposition into R-spaces such that VI is irre
ducible and R is ~rivial on Y2 . We call such ~ group l-irreducible.
Irreducible subgroups G of GL(V) are discussed which are generated by
l-irreducible groups R of ,Prime order .. A general structure result· is
given and in particular G is determined if dirn y. ~ 2n , where dirn VI
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This detenmines also the groups X = < R~, R2 > ,where. Ri(i.= 1,2) is
1-irreducible of prime order. These results are further appli'ed to trans
lation planes p = (V(n, q), u) such that there is a partition
u = ~ ur, I~I =q + 1 and a subgroup G ~ Aut (p) which is transitive
on rand fixes 6.

J. ~oy~n: Is there a non-trivial t-design without repeated blocks for
t > 6 ?

The following recent remarkable result of Luc Teirlinck was discussed:
for every v = t (mod (t + 1)!2t+l , there exists a t - (v, t+1, A)

design with A = (t +1)~2t+l .w;t~out repeated blocks. M~reover, f~r

every such v , the set of all (t +l)-subsets of a v-set can be
partitioned into pairwise disjoint designs having the above parameters.
The proof is by induction on t.

D. M. Evans: Homogeneous geometries.
For our purpos~s, a geometry wi 11 cons ist of a non-emp.ty· set t~gethen

with a closure operation on that set such that the ernpty set and
singletons are c10sed, and the exchange condition is satisfied. The
geometry is degenerate if every subset is closed, and is locally finite
if the closure of a finite subset if finite .. The geometry' is homogeneous
if in the automorphism group of the geometry the pofntwise stabi.liser
of any finite dimensional closed subset is transitive on the complement
of that s~bset. I shall sketch a proof (using techniques from .finite
geometry and coher~nt configurations) that an infinite, non-degenerate,
10cal1y fin'ite, homogeneous geometry is a projectiv~ er affine geometry
over a finite fi.eld. Ou~ methods in fact show that a f~ni~e hcmogeneous
geometry (with at least 4 'points on a plane) of sufficient)y l~rge dimen
sion is a (possibly truncated) projective er affine geometry. Previous
proofs of this result have relied on the classification of finite simple
groups.
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Th. Grundhöfer: Finite and compact disconnected planes.
The projective plane over the p-adic numbers can be written as an inverse
limit of finite Hjelms1ev planes. More generally, we have Theorem 1: A
projective plane P is a compact disconnected plane iff P = 11m Pn
with finite incidence structures Pn ~ Theorem 2 (8. Artmann): Every'
finite projective plane is a continuous epimorphic image of same compact
disconnected plane. Theorem 3 (R. Rink): There are compact disconnected
translation planes admitting continuous epimorphisms onto all finite
translation planes of fixed order. Theorem 4: There are c~mpact dis-
connected planes over distributive quasifields not admitting any con- ~
tinuous epimorphism onto'a finite projective plane. The pl~nes of Theorem
4 cann9t be written"as inverse limits of finite Hjel~slev planes or
Klingehberg planes.

eh. Heri'ng: Aremark on a theorem of T. G. Ostrom.
let E be a Klein 4-group contained in th~ l~near translation complement
G of.a translation plane ~ of finite odd order. Assurne that all in
volutions in E~ are Baer ·involu.tions~ By a theorem of Ostrom (Arch. Math.
36 (1981), p. 21), the dimension of ~ over its kernel is divisible by
4 and also, if a and bare two different involutions in E, then b. .

induces a Baer involution on the fixed" point sUbp;ane of a .
If G. 'does not conta.in any .Klein 4-groups of the type descri,bed above,
then G has cyclic or quaternion Sylow 2~subgroups or G cantains in
volutory homologies, in which case the' subgroup generated by perspectivities
in G will provide much information about ~ and G". Therefore it
seems important to know if such groups can exist at all. In joint ~ork

with·H. J. Schaeffer an example was constructed to decide this question. ~
This is .a translation pla'ne of order 81 with a translation complement cf
order 128.

A. Herzer: A synthetic construction of affine chain-geometries.
For r a pri'me consider ßo = PG(r, q) as subgeometry of II = PG(r, qr),
namely as fix-structure of the collineation cr given by
(xc': · ., xr )~ (x~., ... , x~). A hyperpl ane H of ßo gives II, IIo
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affine structures A, Ao . Let PI' ... , Pr be a ~panning set of pOi.nts
of H with p~ = PO+1 ' indices mod r. We denote the·nonmal rational, , ,

curves of n by vr. Through r + 3 poi nts of rri n gen:era T' pos"~ ti on

goes exactly one v~ . Lemma I: For any 3 non collinear po'ints '.,

Ql' Q2' Q3 of Ao the points QI"Q2' Q3' Pl,·~···,Pr "are'i'n'gen~ral

pos; tion. (Here' r prime i s crucia1). Lemma 2: The trace of the" .vr' ,
through QI' Q2' Q3' PI'···' Pr in no" isa v~ wholly ~o"nta ;~ed'
in Ao · Theorem: Given the points Ql' Q2' Q3 . of Ao"w~ deffne as
cha; n through these po; nts 1) L u {co} ; f QI' Q2' Q3 are conta'; neef
in the line L of Ao ' 2) the trace of vr through

Ql' Q2' Q3' PI'···' Pr in Ao ' if
r

Q1, Q2~Q3, are.notcol,~,in,e~r. ~hen

we have constructed A(GF(q) , GF(q» in the sense of Benz in a'
IIsyntheticll way.

- ~ .. :

y~ Hiramine: Some classes of translation planes.

We present three classes of translation planes.
(1) A c1ass of tran~lation planes of order q2 with k~~~~l _S~(qi ~~dmit
ting linearautotopism groups of order q; This c1a'55 includes' ·the" Ha'll
pl a'~es, the pl anes constructed by Naraya'na" Rao;"S~tya'~'afaya:na: 'a"1d

l

:ttie',

planes constructed by Cohen-Ganley. . . . ..

(2) A class of tr~nslation planes of order" :q3 w{th k~rne{ GF(qf~'

q =1 (mod 2), admitting linear autotopism groups with~"o'rbits' of"l-~ngth

2, q3 -Ion lco; This class inc1udes the planes constructed by Suetake

and therefore inc1udes the Hering plane of order 27.

D. R. Hughes(with N. 5inghi): partitions and sch"emes ·'i'"n "g'raphs~-'}" .::;

An A-partition ;s a generai'isation 'of the" conce:pt ·.Joi an asso-'ciatih'ri<
scheme , where Ais an arbi trary' square matrix. ·.ff :Ä;: -is ari":~aja"ce;ri·cy

matrix of a graph r ~ this leads to a (unique minimal) decomposition ~f

r into 1I10ca1 schemes" and to the detennination of the eigenvalues of

r . (An in~eresti"ng corollar~ is a simple 'proo~ of Block's leImna f~r

, incidence structures.)
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z. Janko: A new biplane of order 9.
The following result will be presented. Let B be abiplane of order 9
(k = 11) whieh possesses an automorphism group of order 6. Then B is
either known or is isomorphie to a new biplane "Ba. The biplane Ba ;s
self-dual and its full automorphism group H is isomorphie to Z2 x A4 •

The group H has exaetiy five line (point) orbits on BO . In addition,
Ba has exactly 44 ovals and the rank of its incidence matrix over
GF(3) is 26 .

•D. Jungnickel: On a theorem of Ganley.
Theorem 1: Let ~ be an abelian group of order n2 , n even. Then"there
exists an n~subset 0 of G satisfying (i) N = 2D is a subgroup of order
n of G; (ii) N contains all involutions of G; (iii) D is a system
of coset representations of N if and only if G ~ ~~ . Example: Take
D = {o, l}k in l~. "Theorem 2: Let D be a relative difference set
with parameters (n, n, n, 1) in an abelian group G , where n is even.
Then, assuming 0 E D, D satisfies the conditions 'of Thm. 1 . Corollary
(Ganley's theorem): A relative differenee set with parameters (n, n, n, 1),
n even, in an ab~l;an group G exists iff n is apower of 2 and
G~ ~~ . Remark: note that the examples g;ven above are not relative
differenee sets, so Thm. 1 is stronger.than the corollary.

E. Köhler: The non-existence of some t-designs.
Observation: Simple t-designs SA (t, k, v) with the following parameters

. do not exist: 57(5, 9, 19); 5l12, 14, 29); 53(13, 16, 32); 5 5(25, 28, 56); e
58(28, 30,60). Proof:" compute the intersection numbers ~elonging to these
parameters ~sing the Mendelsohn-equations: '

w. Lempken: The maximal subgroups of J~

The following result on the subgroup-structure of the finite simple group
21 3 3 .J4 of order 2 • 3 • 5 • 7 • 11 • 23 • 29 • 31 • 37 • 43 , WhlCh was

discovered by Z. Janko in 1975, has been proved. Theorem: Let M be a
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maximal subgroup of J4 . Then one of the following holds: (I) M is a
2-local of J4 and isomorphie to one of EX(21+12 ) *6 Aut (M22 ) ,

3+12 11 10Spec (2 )"(ES x L3(2» , E (2 ). M24 , er E (2 ) •. LS(2) ·
(lI) M is a p-Sylow-nonmalizer with p E {lI, 29, 37, 43}. (111) M is
isomorphie to PGL2(23), pr~2(32), PEU3(11) . (IV) M is isomorphie
to one of a) A;, A~, A7, AS' L3(2), L3(4)* ; b) L2(11)*, MI1 , M;2'

"" * .L2(23); c) ~3(3) ,where M= X iff X ~ M~ Aut (X.) • Conversely, any
subgroup of type (I), (11) or (111) is a maximal subgroup of J4 ·
Remarks. 1) It is still not knawn if there exist subgraups isomorphic to

~ U3(3) within. J4 ; nevertheless there is strong evidence for the existence
~f such subgroups. 2) It ~eems ve~y likely that case (IV, b) ca~ be amitted
in the list of .the theorem.

R. A. Liebler:. A representation theoret.ic approach to finite geometries
of spherical type.
Generic rings and the;r geometrically significant subrings are used to
study finite geometries of spherical. type involvi.ng generalized quadrangles
with parameters. s, t .. Aside fram buildings .and thin eases, the only possible
types are F4 and 83 = C3 · If .s 2:, 2 , t 2: 2 ar~ the parameters of a
generalized quadrangle now k~own t~ exist then- s = t = 2 for type F4
a'nd s, t are powers of the same prime for type fl at 83 = C3 ·

•
S. S. Magl iv~ras: An infinite family of t-designs'.
Procedures for eonstructing t-designs with preseribed automorphism groups

, . .

are presented. These methods have resulted in the eo~struction of many new,
simple t-designs'with t ~ 6 . General questions, conjectures, and current
problems are also discussed.

F. Mazzocca: Same remar~s on blocking-sets.
A bloe.king-set preserving bije'ction between the points of two finite affine

• - • 4-. 4

.or projective pl~nes is pro~ed. ~o be a ccl1ineation. Consequently, the
bloeking-set preserving pennutation group on the points of .an affine or

. .
. projeetive plane is precisely the collineation grcup of th~·plane. In

general, this.. property is not true in ~~ arbitrary linear space. Finally, the
sam~ problem is investigated for h-blocking-sets in a projective space over
aGaleis field.
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A. Neumaier: K-geometries and Buildings.
Call a geometry r projectively closed if r is a connected partial
linear space such that every triangle is contained in same (possibly
degenerate) projective subplane of r. If K is a graph we say that a
subgeometry L. of r is a K-set if there ;s a bijection n : L ~K

whi~h preserves distances (measured in the incidence graphs). A path
ao' al, ... ,a i in the ;ncidence graph of r ;s called short if
d(ao' ai_I) = deal' ·a i ) = i-I. A K-geometry is a projectively closed
geometry such that every short path ;s in same K-set. Theorem. (i) Points .
and lines of the shadow geometry of a building w;th respect to a~y

variety form a K-geometry, where K is the corresponding Coxeter graph.
(ii) If r is a K-geometry all cf whose lines are thick, and if K is

the Coxeter' graph of type An,l' Bn,1 ' Bn,n or G2~~) then r is a
projective ~pace, apolar space, a dual polar space, or a generalized
polygon. Conjecture: If K is a Coxeter graph and' r is a K-geometry
all .of whose 1i nes .are th ick then r i s the poi nt-l i ne geometry of a
bu i 1ding.

s. Norton: The Mons~rous Monogram"and the Projective Plane.
If one considers the incidence"graph of the projßctive plane of order 3 ,
then the group by considering the 26 nodes as involutarygenerators which
commute unless the nodes are joined (when th~ir product has order 3) has a
subgroup of in~ex 2 (consisting of the even words) which has the Monster
as a quotient group. Using this one can obtain subgraphs and quo~ient

graphs for many subgroups of the Monster, which in many cases can be
proved to yield presentations (using certain extra relations) by means
of coset enumeration. These presentations are all cf the Ilfabulous" type,
and one can ask whether the Monster is fabulous.

•

•
D. Olanda: On "{I, 3}-semiaffine"planes.
A {I, 3}- semiaffine plane is a linear space with the property that through
any point outside a line t there are exactly 1 or 3 liries which do not
intersect t. All finite {I, 3}-semiaffine planes are characterized. In
par~icular it turns "out apart from a finite,"number of possible exceptions,
any such structure is embeddable in a finite projective plane.
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T. Oyama: Finite quasifields.
I will give new representations of finite quasifields and construct
some quasifields using these representations. Furthermore I will
give the way to have new quasifields of order q4 induced by any
quasifield of ord~r q2. .

A. Pasini: Tits' geometries of type Cn.
let r be a residually connected Titls geometry of'rank n ~ 4'

~ belonging to the following diagram:

o (0. - - ---() (1 < q < 00 ) •

q q q

Then r is a buildi~g.

T. Penttila: Taetital Decompositions.
A taetieal decomposition of a finite ineidenee structure is symmetrie
if (i~ the incidence strueture has an incidence mat~ix. of rank
the number of points, and (ii) the decomposition has, the same number'of
point classes, and block classes. Abrief deseription of· results eon-.:
cerning symm.etric taetical deeompositions will be given., with emphasis
on decompositions of PG(d, q).

C. Praeger: The Maximal Subgroups cf the Finite Symmetrie and Alternating
Groups.
It follows fram the IIfolklore" and frorn,the Reduetian Theorem for primitive
permutation groups that a maximal subgroup G of the symmetr~c group
Sn of degree n belongs to one cf the following six classes. . _:

1) (stabilizer cf a k-set) Sk x Sn-k ' for.some 1 s k s· n ,
2) (stabilizer of a partition) Sa wr Sb ' wheren = ab., a < 1 , b < 1 ,

3) (affine) AGl(d, p) , where n = pd, p a prime, ·d ~ 1 "
) (product) Sa,wr Sb ' where n = ab , a ~5 ·~,.b > l' "
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5) (simple diagonal) Tk . (Out T x Sk) , where' n = IT[k-l ,
T is a nonabelian simple group, k > 1 ,

6) (almost simple) ~ ~ G ~ Aut T ,where T is a nonabelian
simple gr6up, 'and G is primitive 9f degree n.

Note that·a classification of the groups in class 6 is precisely
a classification of all maximal subgroups of all almost simple groups
(that is of all groups G such that T ~ G ~ Aut T for a nonabelian
simple greup T). We classify which of the groups G in classes 1-5
are maximal in Sn' and also which G n An ,for G in classes 1-5,
are maximal in A . Further, for groups G = NS (T) in .class 6 , wen n
classify precisely the ones which are not maximal in Sn ' and those
NA (T) which are not maximal in An·

n
This is joint werk with Martin Liebeck and Jan Saxl. A section of ·;·t
has been obtained independently by Michael Aschbacher. The proof relies
heavily on.factorization theorems for almost simplegroups due severally

to Christoph Hering, Martin Liebeck, Jan Saxl and myself.

s. Rees: Embeddings for the 2-local geometry for Ml~

A 2-local ubuilding-likelt geometry can be defined from M12 whose
points and lines are the groups in the two conjugacy classes of proper

.subgroups containing a Sylow.2-group. An incident point and line inter
sect in a Sylow 2-group. Geometrically the points and'lines can be
recognised as 4-sets and certain 4, 4, 4 partitions of the set of
12 points of the 5(5, 6, 12) Steiner system. We get a geometry of
,495 points and 495 lines with 3 points on each line and 3 lines on
each point.
It is natural (since we look for building-like properties of this
geometry) to try to find the geometry as a systen of subspaces of a
vector space over GF(2) (which will automatically be a.module for
the group). It is elementary to embed the geometry in 10 and 44 dimen
sional space. We find'the points of the geometry as certain I-spaces
(corresponding. to 4, 8 partitions) and lines as 2-spaces in the IO-dimen
sional. module consisting of the set of all even partitions of

. {1, ... ,12}.We find points of the geometry as 2-spaces and lines. as
I-spaces in the 44-dimensional module consisting of the set of all
switching classes of even valency graphs on 12 points which also have
an even number of edges {Each line corresponds to the switching class

•
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of a K4 4 4 graph). In both these embeddings a point and.~ line are
incident precisely when the corresponding 1- and 2-spaces are related
by inclusion. Using the methods of Ronan and Smith we can find all
IIgood" embeddings of the geometry in vector spaces over GF(2) in
which both points and lines appear as 1- or 2-spaces, a point and a
line being incident if the corresponding spaces intersect in a l-space.
It se~s that every irreducible module for M12 over GF(2) s~pports

at least one such embedding.

M. Ronan: Presheaves and Bmbeddings.
In this talk we considered the special case of an embedding for which
points are I-spaces and lines are 2-spaces of some vector space V.
More generally any embedding of achamber system 6 can be regarded as
a presheaf 3=' on 6 ; in the case above for poi nts p ·and 1i nes L

we have presheaf tenns 1= p , 'FL and "'F L for each fl ag p, L ,. p,

and we have maps f{"L ~ fi and ~,L ~ ~

~LF '!)
p

<t>Lp - <t>pL
Defining a boundary operator a ~~p,L------------~>

Cl

we ~btain a .ehain complex C1--> Co where

Cl = (9 ~ L ' C = (9 1= $ hL • Theorem: The vector spaces Vp, 0 P

which. admit an embedding r; (which generates V) are preeisely the
quotients of Ho(}:') whieh admit ~'. Thus Ho('F) is the universal
embedding. Theorem: Suppose we have a set P of points such that eve~y

li~e L ·meets P in no points or in all but one point p~. Given
vp E J:p for all pEP sucn that if L determines Po~'P ,then

v - v E ~ V p,q on L, then this determines a vector of HO
p q Po· .

(equivalently the dual of H) , and ~ll such arise this way. Thiso
9ives a eri teri on for detenni ni ng when H (F) +0 , and hence when su eh

o
an· F -embedding exists.
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P. Rowlinson: Cycles in tournaments.
We say that a tournament has property Pm(m ~ 3) if 3 c = c{~) > 0
such that each are lies in precisely c m-cycles. We discuss the
relations between properties P3' P4 and Ps .

J. Saxl: Factori zations of fi ni te s impl e groups'.
A group G is factorizable if G = AB with A, B proper subgroups
of '6 • Such a factorization iS,maximal if both A, S" are maximal in
G . In joint work with M. W. Liebeck, eh. Hering and C. E. Praeg~r,

we determine all maximal factorizations of the finite almost simple
groups ,that give rise to facto~;zations of the corresponding simple
groups. (Here .an almost simple group G is a group satisfying
L 4 G ~ Aut ~ for some non-abelian simple group L .)

J. J. Seidel: Conference matrices fram projsctive planes of order nine.
From the 7 known affine planes of order 9 we construct 26 nonequivalent
conference matrices of order 82 ..

M. de Soete (with J. A. Thas): Recent resu1ts on characterizations of
generalized quadrangles.
We introduce the concept of (0, 2)-set in finite generalizedquadrangles
S = {P, B, Ir of order (s, t) i . e. a non-empty subset K c P of
pairwise non-co11 inear points such that Ixl. n "KI E {O, 2}, vx E P \K .
There immediately. follows "that IKI =.5 + 1 and s is odd. Examples .-
are given in the known models of order (q, q) and (q - 1, q + 1) . ~

Using these (0, 2)-sets we obtain characterizations for the generalized
quadrangles T~(O) and Q(4, q), q odd. Analogously we consider for .
generalized quadr~ngles of order (~, s) , s eve~,·(O, 1, 2, S + l)-sets
which gives rise to a characterization of T2(0), q even.
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J. A. Thas: Generalized quadrangles and flocks of cones.
The following construction of generalized' quadrangles (GQ) is due to

. 2
W. M. Kantor. Let G be a group of order s t, let J = {A,B , ... } be

. . * * *a set of l+t subgroups of order s of G, and let J = {A ~ B , .. :}
be'a set of I~t subgroups of order' st of G with A c A*, B c S*, ...
Define points as (i) the elements of G, (ii) the cosets A*g , ... ,
(iii) a symbol co ;. define lines as (a) the cosets A~, ••. ,(b) the elements
[A] , [8],... . Incidence is defined as follows: a point 9 of type (i)
is incident with the cosets Ag, Bg, ... , ; a point A*g. of·type (ii) f~

incident with [A] and with all the cosets Ah con~ained in it; the point
co is incident with all lines [A], [B], ... This incidence .structure S(G~J)

is shown to be a GQ(of order (s, t» iff
(1) AB n C = {I} for all distinct A, B, C in.J and (2) A* n B = {I}
for all distinct A, B . Now Kantor considers the group
G = {( a , c, a) 11 e E F , a, ß E F x F} , F = GF(q) ,. wi th .
(a,e,a)- (al,e', a') = (a+a l

, c+c'+ß.af
, 8+a') and ß.a' the usual dQt

product. Let At = ('Xot ° Yt). t E F • with AO = 0 let Kt 0= At+Ai • 0
Zt

Tlet A(t) = {(a,aAt.a , aKt) 11 a E F x F} and let
A(IXI) = {CO, ~, ~) 11 B E F x F}; let A*(t) = A(t).C wi~h

C = {( 0,c ,0) 11 cE. F }. Now pu t J = {A(t) 11 t E F u {IXI}} and
J* = {A*(t). 11 t E F u {co}} • Then W. M. Kantor showed that for q o~d

'conditions. (1) and (2) are satisfied iff -det(Kt ~ Ku) is a no~squar~

whenever t; u ; S. E. Payne showed that for q even (1) and (2) :.

are .satisfieq iff (Xt+Xu)(Zt+zu)(Yt+Yu)-2 E C2 " with ,C 2 ~' {? E~. 11 x2~~'+ö}
is irredueible, whenever t; u . Using these'results they were able to
construct new infinite classes of GQ of order (s, t) with s = t 2 .

Next, consider the quadrie eone K: XOX I = X~ of PG{3,.q) .. Let wi"
be the plane xtXo + ZtXl + YtX2 + X3 = 0 , t·E GF{q) ; and let
IK n wtl = Ct . Then {Ct " tE GF(q)} is a flock of K(i.e. ~Ct =.K-{ver.t.e~})

iff the condi.tion of Kantor or Payne is satisfied aecording as to q is
odd or even. In this way new flocks of. cones (and possibly new trans'lation
planes) arise fram the new GQ , and new GQ arise from the known flocks.
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F. Timrnesfeld: Classifieations of loeally.finite elassieal Tits' ehamber
systems.
A ehambersystem C 'of type M (in the sense of Tits) is elassieal, if
all the rank 2 residues are either generalized digons or elassieal
generalized mij-gons fo~ some . mij ~ 3 . Sueh a ehambersystem is ealled
a elassieal Tits' ehambersystem. The diagram ß of C ;s defined in the
obvious way. The' following two theorems were diseussed. Theorem 1. Suppose
C' is a elassical loeally finite Tits ehambersystem with transitive
automorphism group G and finite ehamber-stabilizer. If 16i(e) I~ 6

for all i EI, then one obtains a eomplete (loeal) list for C and G
(including the spherical buildings). Theorem 2: Suppose one has the same
hypthesis as above and rank (C) = 3, ehar(C) 2. Then one obtains a
eomplete (relatively long) list for G and C.

v. D. Tonehev: Sel~-orthogonal eode~ and designs. Embedding of designs by
automorphi sms.
1. Generalizing a eoneept for self-orthogonal Steiner system due to Assmus,
a method for lnvestigating designs by means of self-orthogonal ~inary eodes
is introdueed. Using this method and the elassifieation of self-orthogonal
eodes, the uniqueness of the ~uasi-syrrme~rie and other designs 'arising from
the Witt systems, as well as the elassifieation and the non-existenee of
certain quasi-symmetrie designs is established, ineluding some counter
examples to the "only if"-part of Hamada's conjeeture. 2. A syrmnetric
2-(78, 22, 6) design possessing the Witt sy~tem .S{3, 6, 22). as a derived
design and invariant under a group of order 168 is eonstructed. As a by-pro
duct, the existenee of a quasi-syrrmetri.c 2-(56, 16,6) design ;s established.

T. van Trung: 'Two infinite families of 2-designs.
By studying the maximal n-ares in some classes of symmetrie designs we
prove the existenee cf the fol1owing infinite families of 2-designs:.

2- {v =' t" (22m- s + 2m-s _ 1) , b = 2s(2m+ 1) ( 22m-s + tt-5 - 1), r = 2m(tTI + 1) ,

k = 22m-5 , A = t" ) , 1 ~ s 2. m

...,
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and

2-(v = {trn + l)h2m-s - zm , b = (trn + l)h+l - tm+s _ 2s ,

r = (2"1+ l)h , k =(tD +1 )h-lzn-s,

A = (2m'+ l)h-l) ,

where (~+ 1) is a prime power, h ~ 2 and 1 ~ s ~ m .

Berichter~tatter: Th. Grundhöfer
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