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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsberichtt 36/1985

Singularitidten

18.8, bis 24.8.1985

Die Tagung fand unter der Leitung der Herren E. Brieskorn
(Bonn}), H. Knérrer (Bonn) und E. Looijenga (Nijmegen) statt.

In insgesamt 25 Vortrédgen wurden neuere Ergebnisse bei der
Untersuchung von Singularité&ten holomorpher Abbildungen und
komplexer (bzw. algebraischer) Variet&dten dargestellt. Einen
besonderen Schwerpunkt bildete das Studium der Deformationen
von Singularitdten mit topologischen und algebraisch - geome-
trischen Methoden. Eine Reihe von Beitrdgen beschdftigte sich
auch mit der Untersuchung der Aufldsung und der Klassifikation
von Singularitdten. Dariiber hinaué wurden Vortrdge lber Strati-
fikationen, Automorphismen von Singularit&dten und iiber die
Darstellungstheorie ihrer lokalen Ringe gehalten. An mehrefen
Abenden wurden Diskussionen iber speziellere Fragen organisiert.

Vortragsausziige

K. BEHNKE:

Infinitesimal deformations of rational surface singulafiﬁies_

Let X be a rational surface singularity with minimai good
resolution =:(X,E) —> (X,x). It has been conjectured by

x 2 dim #1(X, ©) + embedding=
dimension(X) - 4 with equality for nonhypersurface quotient

O. Riemenschneider, that dim T

Forschungsgemeinschaft

o




singularities. The inequality has been proved. by J. Wahl, the
formula for a quotient singularity is contained in papers of

Behnke -~ Kahn - Riemenschneider. The problem we consider here
is to find a larger class of rational singularities for which
the formula above holds.

Behnke - Riemenschneider, Pinkham and C.Kahn, based on work of |
Theorem (Behnke-Kndrrer):

r
| Let E= iL}=lEi be the decomposition of the exceptional set into
irreducible components, let bi = -Ei°Ei, let tij',-be the number

‘< of curves adjacent to Ei' and let s; be the number of (-2) curves ‘
Ej with tj = 2, which meet the curve Ei. Assume that

> . > . -

(a) bi:ti+1 if bi>2' bi"ti if bi 2
-t .- i - >

Y bi ty 2 if bi g2 2
0O if b, = t.+1
; i i
‘ and assume moreover one of the inequalities (b) is stricti Then
1_ '
X

This result applies to almost all twodimensional quotient

—_
a
~
4]
]

dim TX = dim HY (X, og) + embdim(X) - 4.

singularities.

R.O. BUCHWEITZ:

Maximal Cohen—Macaulay Modules

Let R be a local Cohen-Macauday ring. A finite generated R-module
M is maximal Cohen-Macaulay (MCM) iff depth M = dim R. R is of
finite (MCM-) representation typé (f.r.t.) iff there are only
finitely many isomorphism classes of MCM's over R. We report on

recent work on the classification of rings which are of f.r.t.. .
Among the results are:
(M. Auslander,'84):
R f.r.t. ==>R has an isolated singularity
(Artin-Verdier, '83; J.Herzog '78; M.Auslander; H.Esnault):
R = k[_:gll /I, dimR = 2, R normal. 'i‘hen R of f.r.t. iff
‘R is a quotient singularity.
(Greuel-Kndrrer '84; Kiyek - Steinke 84/85):
R = k[x] /I, @imR = 1, R reduced. Then R is of f.r.t.
v iff R dominates a simple plane curve singularvity iff for
-a generic map k[x,yl ——> R the image defines a simple
plane curve singularity.

DF Deutsche ! .
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(J. Herzog '78): .
R Gorenstein and f.r.t. => R is an abstract hyperplane
singularity.
(H. Kndrrer '84): !
R = kfx] / (f), char k # 2, £e€m\{(0}. Then
(i) R is of f.r.t. iff R'= klx,yl /(f+y ) is of f.r.t..
(ii) there exists a natural bijection between isomorphism
classes of MCM's over R and  isomorphism classes of
MCM's over R''= k[x,y,z]/ (£+yz). .
Cor.: The simple hypersurface.singularities (in the sense
of V.I.Arnold) are of f.r.t..
(R.O. Buchweitz; G.M. Greuel; F.O. Schreyer; '85):
Under the same assumptlons A
(i) R of f.r.t. <=> R is a simple hypersurface 51ngu1.
(ii) R has countably infinitely many isomorphism classes
of MCM's (inaecompoSable) <=> R is an A_ or D_
singularity.
(M. Auslander - I. Reiten 84/85):
In dimension 3, the cone over the Veronese embeddiﬁg-
p? —> P> is of f.r.t.. ' '

The cone over the scroll P (@(l)eé%Z)) is of'f;r.t..

P
-1
Ekcept the above mentioned ones there are so far no other

rings of f.r.t. known.

J. DAMON:

Deformations of Complete Intersections and the Versality

Discriminant

It £ (€59,0) —> (¢**%) is an unfolding of £ : (€%,0) —>

(C ,0) which defines an isolated complete 1ntersect10n singu-
larity, then it is not true that "up const => topological
triviality of the family of germs". Additional information about
the unfolding is needed to ensure that topological triviality
holds. This is provided by the local structure of the family
near the versality discriminant. The versality discriminant is
where the germs fu: (CS,B)——9 (Ct,O) (for f(x,u) = (fu(x),U) )
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fail to be infinifesimally stable. The theorem we describe
states that if the restriction of £ to a "conical neighbourhood"
of the versality discriminant is topologically trivialvin a
certain stratified sense then f itself is topologically trivial.
We also describe the use of this theorem in joint work with
Andre Galligo in detérminingvtheiuniversal topological
stratification for the Pham example.

W. EBELING

Dynkin diagrams and monodromy of complete intersections

We discuss invariants related to the Milnor lattice L =

H (X ,Z) of an 1solated complete intersection singularity

(ICIS). We can prove that the following characterizations are

true for all ICIS's of even dimension n with the exceptions

llsted below: A

(i) The monodromy group is the subgroup O0*(L) of all g &0O(L)

with spinor norm 1, inducing the identityton:L#ZL.

(ii) The set of vanishing cycles is the set of all vé€L with
Lv,v> = (= l)n/2 and <v,L> = Z .

The exceptlons are all among the class of hyperbollc 51ngula-

rities’ (u = 1): These are classified.

We also have results on the computation of monodromy groups

and monodromy operatorsbfor ICIS's. We generalize the notion

of distinguished bases to ICIS's, and generalize a method of

Gabrielov for computing Dynkin diagrams for these bases. We

indicate such diagrams for some classes of ICIS's. Among them

we find exémples of different ICISYs with conjugate (over C) .

generic monodromy: operators, but with different Milnor .lattices.

F. ELZEIN

variations of mixed Hodge structures (MHS)

Let f: X—> D be a morphism over a disk and suppose f quasi-
projektive. Then R"f CXID* is a local system and the weight-

filtration W, on a" (Xr,Q), the cohomology of a generic fibre
at te€D¥*, lS a filtration by sub-local systems. The Hodge
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Forschungsgemeinschaft ©




P

oF

Deutsche

filtration F is a filtration by sub-bundles, .and we have

vac nl]i* ] Fp'l . Let X* = 5* XDX , where T)’* is the universal
cover of D*. Then the filtration W lifted on B* is trivial and
defines a filtration Wf on Hn(i*,Q). Then we prove, if the
monodromy T is unipotent, the following theorem: .

There exists a MHS on Hn(f*,c) with filtrations W and F

such that
(i) Wf is a filtration by sub - MHS.
(ii)  The MHS induced on erfa (X*,€) is the limit of .
variations of HS 1nduced on er a" (Xt,C) for té& D*.
(iii) ¥ i,b, let N = Log-T, then NW. C-Wl 3. and
N°: Gr"i’+b Gr?fﬂn(i'*‘,c) = Gr?'b W - HR (K*y0)

H. ESNAULT:

Deformation of 2 - dimensional gquotient singularities

Theorem (H. Esnault, E. Vlehweg)

2 - dimensional quotient 51ngu1ar1t1es are stable under defor-
mations.

This answers positively a question known as the Riemenschneider
conjecture (1974). The method relies on techniques of cyclic

coverings and vanishing theorems.

M. GIUSTI:

Effective computations in algebraic geometry

Let K be a field of characteristic O. Consider a homogeneous
ideal I in R==K[k°,...,xn] generated by polynomials of degree’
not greater than d, and the set J(n,d) of such ideals.

1.) Hilbert function of R/I: .
Define the regularity H(I) as the smallest integer where
the Hilbert function and the Hilbert polynomial coincide.
What is H(n,d) = sup { H(I): 1I& J(n, d)}"

2.) Free resolution of R/I:
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Let L° be a R=- free resolution of R/I; if ei is a basis of
LY, define Si(I,L’,e‘) = sup { degree(h) ~i+1 | heel }, then
$;(I) = inf {s;(1,L7,e") | L",e” as above } and S(I) = supS(I).
what is S(n,d) = sup {S(I) } I&J(n,q) }? 1
3.) Standard basis of I:
Let D(I) be the maximal degree of the elements of a standard
basis of I, relative to generic coordinates and lexicographic
ordering. What is D(n,d) = sup {D(I) | 1€ J(n,d) }?
Theorem (Angéniol, Giusti, Lazard):

S(n,d) = D(n,d) = H(n,d). o ‘
Then an asymptotic behaviour of this common bound is given,
and proved to be of doubly exponential nature. But in several
particular cases this function is much more pleasant.

G.M. GREUEL:

The dimensions of smoothing components

Let (X,0) be an isolated singularity of a complex space and

f: (¥,0) —> (4,0) be a smoothing of (X,0), i.e. a 1-parameter
deformation of (X,o0) such that the generic fibre is smooth.

Let S(f) denote an irreducible component of the semiuniversal
base over which the smoothing occurs. S(f) is then a smoothing
component. After reviewing previous work on the dimension of
S(f), mostly due to J. Wahl (Topology 1981) using a recent
result of E. Looijenga about the globalizability of smoothings,
we indicated the proof of the following theorem which was-:

conjectured by J. Wahl and constitutes joint work with ‘
E. Looijenga ( Duke Math. J. '85):
dimS(f) = dlmmcoker (ex/ﬁ'o-——é eX,o)

where GX/A respectively o, denotes vectorfields relative to

X
f respectively on X.

H. HAUSER

Characterizing singularities

(X,0) complex analytic hypersurface defined by f =0, Sing (X,0)

Forschungsgemeinschaft : © @
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the singular subspace of the local ring C9 / (£)+3j(f) , where
J(f)_(a f,...,a f) denotes the Jacobian 1dea1, Sing*(X,0)
strict 51ngular subspace of the local ring C7 / (£)+m3j(f) .
(X,0) is called of isolated singularity type 1f Sing(X,0) #

Sing(X,a) for a close to o.

Theorem (T. Gaffney, H. Hauser): K

(A) (X,0), (Y,o0) arbitrary hypersurfaces. Then (X,0) is stably
equivalent to (Y,o) iff Sing*(X,0) = Sing*(Y,o0).

(B) Let (X,0), (Y,o) be hypersurfaces of isolated singqlarity
type. Then (X,0) is stably equivalent to (Y,0) iff
Sing(X,0) = Sing(Y,o0).

The statement (B) is false in.general.

U. KARRAS:

On the p - const. stratum of 2 - dimensional hypersurface

singularities

Let Ap @enote'the p-—constanf stratum of the semiuniveréal
deformation s of an isolated hypersurface singularity. Then one
knows by work of.Zariski, Lé and Wahl that for plahe‘curve
singularities L\l_1 is smooth and § is equimultiple along Ap'

This arises the question whether or not this also holds in
higher dimensions. In 1982 varchenko gave an affirmative

answer if the singularities are quasihomogeneous. In this talk

I introduce quite different techniques which turn out to be
helpful to handle the question for rather general 2—diménsiona1
hypersurface singularities. The first key point is that by
work of Wahl, Laufer, Perron, Bingmer and Kosarew I can show
that there exists a deformation functor which describes the

u - constant deformations. '
Theorem:

dim (V,0) =2, a: M—> V minimal good resolution. Then there

exists a semiuniversal deformation space (IZ,o0) for the equi-
singular functor 'ES(M,-) such that ed = Ap.
As a corollary one gets that : is smooth if the functor ES(M,-)
is non-obstructed. Except Some easy cases computations of

obstructions are very difficult. So the idea is to look for

o
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a smooth functor F together with a smooth transformation

F—> ES. In his recent thesis K. Altmann introduces a smooth
functor ESE which works well in the cases where the defining
equation f is given by a polynomial which is "non - degenerated"”
on the Newtonboundary of the Newtonpolyhedron F+(f).

Theorem:

Pp is smooth if there exists a "nice" subdivision of the
complex of rational cones one gets from r;(f).

P. KLUITMANN:

Braidgroup and singularities

Let L be a Z - lattice generated by the set A of its vectors
of length 2. Then the Artin braid group Brn with n strings
operates on A", Restrict this operation to the set:BL of
ordered bases of L consisting of vectors of length 2. Then one
has:

1.) Let L be the lattice of an A, D, E root - system. Then the
Br orbits in:Zi are exactly those sets of bases, for which
the product of the corresponding reflections is a fixed

- quasi - Coxeter - element. (Deligne - Voigt)

2.) For L of type: Ekeoeo, k=6,7,8:

The sets of bases with reflection product a fixed
Coxeter - element in the sense of K. Saito, form Brk+2
orbits. )

Case 1.) seems to yield interesting epimorphisms from braid

groups onto permutation groups, e.g. Br4-——>X;5

Brg—> ¢

J. LIPMANN:

Topology of quasi - ordinary singularities

Quasi - ordinary (g.o.) surface singularities P& Fc:C3 are those
admitting a finite (germ-) map n:(F,P)-——>(C2,o) with normal

. : - . 2 . . .
crossing discriminant in €°. = is called q.o. projection.

1 1
/n'y /n

There exists then a local parametrization =z = H(x ) ,H

convergent series, such that for any n-th roots of unity v, o
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we have

H(xl/n,yl/n) -H(vxl/n,myl/n) /n'yl/n)

- xxy"e(xl
where x,ue%zz. o+ €lo,0) #0 (unless € zo). Such pairs (A,u)
(for € #0) are called "distinguished pairs" of =. (Motivation:
compare with the Puiseux parametrizations for plane curves).
They determine the saturation hence by Zariski the local topo-
logy of (F,P). [Reference: Proc. Symp. Pure Math. 40, part 2
(Arcata)]. Conversely:
‘ Theorem (Y.-N. Gau):
If P,P' are g.o., with respective q.o. projections n,7', then
the distinguished pairs of 7 and n' coincide (mod. switchiﬁg .
of A and u). ) |
The statement must be technically elaborated if some Xi or u, =0.
Corollary:
Then P and P' have the same multiplicity, and even isomorphic
Zariski tangent cones (non-reduced). Also the Galéis groups of
the abelian covers © and 7' are isomorphic. »
The proof uses the invariance of topological type of plane
slices | components of Sing(F).
Theorem: .
Galois group of © = Hl(link of (F,P)).
Problems: 1.) Find a topological interpretation of {(Ai,pi)}.
2.) Genetalize theorem to higher dimensions.

J.Y. MERINDOL:

. Déformation verselle du cdne sur l'intersection lisse de deux
quadriques
. 2n+1 X . - . ..
Notons X CP cette intersection et CX le cone affine sur'X.

Soit S la base de la déformation verselle négative et §—>s
le revétement associe @ la représentation monodromique du
groupe ﬂl(s-D) (D est le discriminant). Le groupe de ce
revétement est W(D2n+3). Les fibres F, de la déformation ‘sont
des variétés affines dont la structure de Hodge mixte est trés
simple: c'est un 1 -motif. L'@tude détailée du morphisme des
périodes permet de prouver que S /C* est une sous - variété

]2n+3

(gue 1'on peut expliciter) de v4:= [Jac x . La polarisation

-
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de la structure de Hodge mixte permet de construire une
polarisation ample sur 4 et de reconstruire le céne §-——>3/c*.
On retrouve donc en particulier les résultats dus 4 H. Kndrrer.
La démonstration utilise une analyse assez fine des projections
des intersections projectives de deux quadriques par rapport

aux sous - espaces projectifs de dimension maximum.

M. MERLE:

Regular Stratifications and Lipschitz Conditions

Let X'C:(¢n,o) be a germ of an analytic space of pure dimension
d and Y a smooth subspace of X (of dimension t). We (J.P. Henry
and the author) look for the following property of the couple
(X,Y): .

Given w: X-——>Cn_l a generic linear projection and 4 the closure
of the image by 7 of the critical locus of n restricted to the
smooth part of X. Given a vector field on Cn-l tangent to &
which is Lipschitz nearby @ (Y), non zero at the origin if Y#O,
then it can be lifted to X in such a way it remains Lipschitz
nearby Y.

We can give a condition on X and Y which implies this previous
one and is constructed on the model of what happens for

Whitney conditions (Tessier) of Thom conditions (Henry, Merle,
Sabbah). »

The point in the proof is the following: If =: BYX-——a X is a
projective morphism which is smooth above the smooth points of
XY, and such that n-l(Y) is a divisor on BYX’ then the
constancy of the fibres-dimension of the morphism In_l(Y)l-—é Y
can be expressed by the fact that some section of a fibre bundle

on BYX is bounded.

G. MULLER:

Reductive automorphism groups of analytic € - algebras

Let R be an analytic or formal C - algebra, and letog be the
image of the automorphism group qg = Aut R in the general linear
group of the cotangent space. It was shown that -two reductive

Forschungsgemeinschaft

o




LDF

Deutsche

- 11 -

subgroups of(zyare conjugate in gy if and only if their images

in & are conjugate ino .

Since Aﬁ is an algebraic group it has a reductive subgroup

which contains any reductive subgroup of J;up to'conjugacy;

Now it is reasonable to ask'whether also q (which is not algebraic
in general) has a reductive subgroup with the corresponding
property.

The answer was shown to be yes for any formal R, and for any
analytic R which are homogeneous. This generalizes results of
Janich, Wall and Wahl for isolated singularities. o

K. SAITO:

Regular systéms'of weights and associated singularities

We discussed about 18 fémilies of algebraic surfaces. 6 of .
them are elliptic‘K3-surfaces, 7 of them are of Kodaira- dimen-
sion 1 with an elliptic fibration ober P, and the femaining
are families of surfaces of general type with (pg,ci) = (4,5),
(3,3), (3,2), (3,2) and (2,1).

The families are obtained as compactifications of émoothings.

of 18 singularities with ¢* - actions, whose generality is due
to Pinkham. The singularities are hypersurface singularities-
whose weights (a,b,c;h) are listed with the help of regular
systems of weights as follows:

Let T be adiscrete subgroup of SL,(R) with (-01 _01 ¢ r and /]E{J/r
compact. Then the one point partial compactification {0} U H/T
for H:= {(u,v)é¢2
jisolated singular point at O. Then there are exactly 18 ‘families

: Im (u/v) >0 } is an affine surface with an

of such T such that {0} uH/r are hypersurfaces whose weights
are characterized by the following two conditions: A
(i) (-1 (- (P -1 /(P - P -1 (-1
is a polynomial in T
(ii) a+b+c-h = -2

Forschungsgemeinschaft © @
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J. .SCHERK:

Locally homogeneous links of surface singularities

Result (with F. Ehlers):
The surface singularities with locally homogeneous links (as
CR manifolds) are
(i) simple singularities
(ii) simple elliptic singularities
(iii) cusps .
(iv) guasihomogeneous Ddlgachev singularities
(v) non-quasihomogeneous Dolgachev singularities ‘

D. SIERSMA:

Non - isolated singularites

We consider holomorphic functions f: (Cn+l,o)-——> C with a 1-dim.

critical locus I. On every irreducible branch of the singular

locus there is a well defined class of isqQlated singularities,

which we call the transversal type of the branch.

Let £ be defined by an ideal I. We define the primitive ideal

J1 = {f€ @: (£)+3(f)c 1} where J(f) is generated by the partial
derivates of f. In general IZC 51 <I and 12= fI if I is a

reduced complete intersection.

The group @I= {héfD: h*(I) =I} acts on 51‘. We get orbits in

51. The tangent space to the orbit is denoted by t(f), and

T(£f) =4wJ(f)/lfI in case I is radical.

Theorem (Pellikaan):

Let I be a radical ideal. Then cg:= dim I/ 1(f) < = < .
jf:= dim I/ J(f) < » <> transversal type Al'on r -{0} )
There exists a theory of finite determinacy. As an application:
f transversal Al on I-{0} => f ~ polynomial. '

The above subject is treated in more generality in the thesis
of Pellikaan. ‘

We now restrict to dim: =1 and transversal type A, oni -{o},

I
and consider 1 - parameter deformations ft' satisfying
(1) ft has only D_ and A_ singularities on £-{0}

(2) f, has only A, singularities outside z

(3) TheMilnor fibrations over S = 3a are equivalent.

Deutsche
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Theorem (Pellikaan):
Deformations satisfying (1), (2), (3) have the property

g = 1F'Al + *D; + jf,
where f' is the germ at o of ft’ t#0.
For the proof Pellikaan shows: I/.J(ft) is a free C€{t} - module
with a finite free resolution.
Next assume also I is a plane curve singularity, and given by
g(x,y) =0, z=0, where z=23,...,2 . We call f£= (g(x,y))2+
. ):zi central singularity.

Lemma: Let f have a I-locus-singularity, with transversal Ai—

n+l

type then there is a deformation with (1) - (3) and moreover
(4) ft has the central singularity.type at o.
Theorem:
Let I be aplane curve singularity with isqlated singularity with
transversal Al-type and a positive number of D_-points in £he
above deformation, then the Milnor fibre of f is homotopy
equivalent to a wedge of n-spheres wﬁfh
= di = + +

1t %o, =0s 2 ey <1 and 1, - 20t51 +

® ° “n-1 n 1

#
Al 1

Theorem (van Straten):
Let a; = a*/ataa "t

the relative De Rham complex. Hn(né) and
n-1,_. s _
H (nf) are free C{f)} -modules of finite rank bn(F)-ptop

and b _,(F) =0 or 1. Assumption on Z: I isolated complete
1 - dimensional intersection with transversal Al-type.

. P. SLODOWY:

Lie groups and singularities; how far can we get?

The purpose of this talk is to give a survey of the construc-
tions of semiuniversal deformations for some specific classes
of singularities in a Lie group theoretic context. So we review
Brieskorn's theorem relating the simple surface singularities ‘
of type A, D, E to the corresponding simple Lie groups and our
(partial) extension of this result to simply elliptic and cusp
singularities (of degree £5) which relies on previous work by
Looijenga and Pinkham. Here, groups attached to Kac Moody Lie
algebras come into play. Guided by work of Sekiguchi and
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Shimizu on the deformations of simple plane curve singularities
and infinitesimally symmetric spaces, we finally present some
conjectures relating the results of Wirthmiller on semiuniversal
deformations of certain space curves (as presented by him N
during this conference) to adjoint quotients of cones over
compactified symmetric varieties (in the sense of De Concini -
?rocesi, Luna - Vust) .

J.H.M. STEENBRINK:

Invariants of isolated singularities

Some invariants of isolated singularities have a strange
jumping behaviour under p-constant deformations. Yau introduced
the irregularity gq = dim Ho(ng-l)/’ﬂoln%_l), where

(X,D) —> (X,x) is a good resolution of the n-dimensional
isolated singularity, n22, and U=X\{x} As the differentiation

map d: a°(ng'1) /a°(n§‘('1) —s 1°(a)) / #°(a§(D)) is injective,
- hn-l(@b)i-q4-a1 + where p_ is the geometric genus and

a;-= dim coker(dl) )
Related invariants are a,= dim Ho(n—%) /'dHo(n%-l) and

ay = dim H°(n%'1) / image of closed (n-1) forms on U . Wahl (for
smoothable Gorenstein surfaces) and Looijénga and the speaker
showed that for isolated complete intersections with Milnor

number u and Tjurina number t:
_ on-1 _n0(on3gl
p-1 =h (@D') ho(a'g™) +a) +a,+a,

moreover hn-l(@B) 2 ho(n%-l) by Hodge theory, so 2 t;

equality holds iff (X,x) is weighted quasihomogeneous, if n=2
(Wahl). Also u =7t and pg = hn—l(GB) = 1 imply gquasi-homogeneity
for n > 2. Work of van Straten enables one to compute g for
hypersurfaces. It appears that g does not behave semicontinous-
ly on the u-constant stratum and need not to be zero at its
general point. _ R
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J. STEVENS:

A class of surface singularities with their hyperplane sections

By blowing up iegular points in the special fibre of a family
f: W—> S of (degenerating) curves of genus g over a disc,
the strict transform of the special fibre becomes the excep-
tional set of a surface singularity V (called a Kulikov
singularity) and f induces a general hyperplane section X on
it. For g<2 there is a classification of curves that might

‘ occur in this way; these are the curves with §-r+1l=g. '{'his
classification of curves is used in determining the analytic
type of X from the points which are blown up. All curve singu-
larities of the list occur. For g =2 the hyperelliptic invo-
lution on W plays an important‘rple. As a corollary we obtain
a new proof of the fact that all curve singularities with -
§-r+1%2 are smoothable.

D. VAN STRATEN:

Non isolated surface singularities

A basic question about non isolated surface singulérities is:
"What is a good class to study (in analogy with normal sur-
faces)?" It turns out that the weakly normél Cohen - Macaulay
(WNCM) surfaces behave similar as the normal ones. For example:

Theorem: " X «—> X smoothing of a weakly-normal X. Then
< . _ . .
b 4 bl(xt) < # irr. comp.(X) -1 . Equality
’ holds if * is smooth.

This is generalizing bl(Xt)==0 for normal surfaces.
Because the Gorenstein WNCM's have generic transversal Al-type,
it seems wise to study the transversal Al CM's first. For those
one can define an invarinat pg as

Py = dim (R T*@ )
with Y25 X an improvement replac1ng the resolutlon 1n the
normal case. The notion of improvement is due to Shepard Barron.
One can prove several theorems using this notion of improve-
ment and p
Theorem: Let (X,p) a Gorenstein Du Bois singularity. Then

either
(i) (X,p) isolated ==> X is a rational double point or

DF Deutsche
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simple elliptic or a cusp singularity (well known) or
(ii). (X,p) non-isolated == X is A_, D_ or a degenerate
cusp.
The invariant pg has really the properties one expect:
- independent of the improvement
Pg = aim HO( wY;E) /B%(w ¢
- pg is semicontinous under deformation
It is an invariant that is "easy" to compute.
Theorem: Let X be transversal Al, CM, and I its singular
locus. Let X —> X be the normalization of X and Y= n-l(Z).
Then  pg(X) = pg(?(') + 6y -6,
One can make a beginning of a classification: (non -isolated)

p_ = O and Gorenstein =—> A_ or D_
- pg = 1 and Gorenstein ==> minimal elliptic
Consider the following two singularities:
22’= y(y—xs)2 with pg= 3 and z2 = y(ys-xz) with pgf=2.

Their improvements look in both cases like:

J. WAHL:

Smoothing surface singularities

One would like information on the set (L of smoothing components
in the semiuniversal deformation of an isolated surface singu-
larity X, especially if X is "basic" - e.g. simple elliptic,
Dp,q,r or cusp. (For example,'is(ﬂlf @?). For quasihomogeneous
X, Pinkham's method of deformation of negative weight gives
many examples of smoothings. One should study invariants of

the Milnor fibre M of a smoothing. In the Gorenstein case, the
invariants of the real homology have beeﬁ computed via work of
Laufer, Durfee,_Wahl,Greuel, Steenbrink. The integral structure
of the (even) lattice HZ(M) is described in a recent paper of
Looijenga-Wahl (to appear, Topology). The key point is the
construction of a natural quadratic form on Hy (L), . (L =1ink)
inducing the linking form. One can associate to each smoothing
component of X an element of a setzﬂx) of algebraic data (an
even lattice of a certain discriminant quadratic form and

Deutsche
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signature, plus an isotropic subgroup of H (L) , pPlus some

more, satisfying some conditions). f(x) is com;giable explicitly
in basic cases from a resolution of X.

Theorem: The map A.—s 3(X) is a bijection for simple elliptics
and D 's, and all cusps of embedding-dimension <5 (perhaps

P/49,X
for all cusps).

C.T.C. WALL:

Classification of invariant functions

It is sufficient to consider germs (at o) of functions on V
invariant by a linear action of G (G compact - or in the complex
case - reductive). These are just the functions on the geometric
quotient V /G = Spec dpg) (also, by a theorem of Schwarz, in

‘the C®case). In many cases, right equivalence of invariant

functions on V also translates directly to equivalence of
functions on V/G under selfequivalences respecting the orbit
type stratification , by another theorem of Schwarz (Publ. Math.
IHES x51): this holds if G acts orthogonally (e.g. in the real
case) or is finite, but not in general. ’
There are fewer quotients V/G thanhﬁairs (V,G), but still
rather many. If dim V/G = 2, then if G is finite, we have a
quotient singularity (Prill); if G is a torus, a cyclic quotient
(easy); if G is semisimple, V/G is smooth (Kempf). I conjecture.
that G reductive, dim V/G = 2 implies V/G is a quotient singu-
larity.
Now suppose that G is finite, and the action on Véfcz is free
outside o. Then for any invariant f on V with isolated singu—
larity at o, @Rv)/Jf is the sum of a free CG - module and a
copy of AZV* The proof uses the deformation theory of f£. The
dimension of @’(V)/Jf is the Milnor number u(f); the dimension
of the invariant part is denoted by p (f).
Theorem: For a generic invariant f we have

pG(f) _ {max(e,tﬂ) -3 if G is cyclic or b2>3

max(e,4) -2 if G is non-cyclic and b=2

where e is the embedding dimension of V/G and (-b) the self-
intersection of the central curve in the resolution.
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The modality of such a function is-pG(f) -1, so o-modal
functions exist only if e <4 and G cyclic or b2 3. The proof
is by explicit calculation; the meaning of "generic" is made
precise in each case.

A corresponding calé¢ulation can also be made (more easily) for
a cyclic quotient T(u,v) = (Eu,tqv), where the images of one
or both of the lines u=0, v=0 are assigned to the stratifi-
cation of V/G.

K.WIRTHMULLER:

Deformations of space curve singularities

Let X° be an isolated complete intersection sinéularity, and
let (S3D) be the pair (base, discriminant) of its semiuniversal
deformation. We(look for good descriptioﬁs of (5,D) modelled
on that given by E. Brieskorn for the case where Xo is a simple
hypersurface singularity. Thus we try to construct a space X
with a discrete group T acting plus an isomorphism S = X/T
that sends D to.the branch locus consisting of irregular ' -
orbits. Such a description is achiewed er»Xo certain (SuJ Tu)
of the simple space curve singularites classified and
labelled by M. Giusti. The whole set-up is described in terms
of certain extensions of classical Dynkin diagrams - a typical

Egl+] *—’—I“*

¢

for the T7- singularity. This allows to determine all configu-

rations of. singularities in fibres adjacent to»Xo as well as

one being

some geometric data on the corresponding stratification of D.
The method also yields a presentatiqn for nl(S\D). For the Sp—
singularities, the higher homotopy groups vanish, while this

is an open question in the remaining cases.

Berichterstatter: F. -J. Bilitewski
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