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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e ~ ich t

Singularitäten

1~.8. bis 24.8.1985

36/1985

Die Tagung fand unter der Leitung der Herren E. Brieskorn

(Bann), H. Knörrer (Bann) und E. Looijenga (Nijmegen) statt.

In insgesamt~25 Vorträgen wurden neuere Ergebnisse bei der

Untersuchung von Singularitäten holomorpher Abbildungen und

komplexer (bzw. algebraischer) Varietäten dargestellt. -Einen

besonderen Schwerpunkt bildete das Studium der Deformationen

von Singularitäten mit topalogischen und algeb~aisch - geome­

trischen Methoden. Eine Reihe von Beiträgen beschäftigte sich

auch mit der Untersuchung der Auflösung und der Klassifikation

von Singularitäten. Darüber hinaus wurden Vorträge über Str~ti­

fikationen, Automorphismen von Singularitäten und über die

Darstellungstheorie ihrer lokalen Ringe gehalten. An mehreren

Abenden wurden Diskussionen über speziellere Fragen organisiert.

Vortragsauszüge

K. BEHNKE:

Infinitesimal deformations of rational surface singularities.

Let X be a rational surface singularity with minimal goo~

resolution n:(X,E) ~(X,x).· It has been conjectured by

o. Riemenschneider , that dirn T~ ~ dirn HI(X, s) + embedding~

dimension(X) - 4 with equality for nonhypersurface quotient
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singularities. The inequality has been proved by J. Wahl, the

formula for a quotient singularity is contained in papers of

Behnke - Riemenschneider, Pinkham and C.Kahn, based on work of

Behnke - Kahn - Riemenschneider. The problem we consider here

is to find a larger class of rational singularities for which

the formula above holds.

Theorem (Behnke-Knörrer):

Let E::; ~lEi be the decomposi tion of the exceptional set into

irreducible components, let b i = -Ei ·E i , let ti.!";be the number

of curves adjacent to Ei' and let si be the number of (-2)·curves 4It,
E j with t j = 2, which meet the curve Ei. Assurne that

(a)b.~t.+l ifb.>2, b.~t. ifb.=2
1. 1. 1. 1." 1. 1.

(b) si ~ bi-t i - 2 if b i - t i ~ 2

(c) si=O ifbi=ti+l

and assume moreover one of the inequalities (b) is strict~ Then

dimT~= dimHl(X,Sx) +embdim(X) - 4.

This result applies to almost all twodimensional quotient

singularities.

R.O. BUCHWEITZ:

Maximal Cohen-Macaulay Modules

Let R be a "local ,Cohen-Macaillay ring. A finite generated R-module

M is maximal Cohen-Macaulay (MCM) iff depth M = dirn R. R is of

finite (MCM-) representation type (f.r.t.) iff there are only

finitely many isornorphism classes of MCM's over R. We repo~t'on

recent work on the classification of rings which are of f.r.t ••

Among the results are:

(M. Auslander,'84):

R f.r.t. ==>R has an isolated singularity

(Artin-Verdier,'83: J.Herzog '78; M.Auslander; H.Esnault):

R = kl~~ /1 , dimR = 2, R normal. Then R of 'f.r.t. iff

R is a quotient singularity.

(Greuel-Knörrer '84,; Kiyek - Steinke 84/85):

R = kl~l] / I, dimR = 1, R reduced. Then R is of f.r.t.

iff R domin?tes a simple plane curve singularity iff for

·a generic map k~~,yO ~ R the image defines a simple

plane curve singularity.
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(J. Herzog 178):

R Gorenstein and f.r.t. ==> R is an abstract hyperp1ane

singularity.

(H. Knörrer 184): )"

R = k~~I] / (f)., ehar k f 2, f t:..-wv,{O}. Then

(i) R is of f.r.t. iff R'= k~~,y~ / (f+y2) is of f.r.t •.

(ii) there exists a natural bijection between isomorphism

elasses of MCM's over R and-isomorphism elasses of

MCM1s over R 1 1= k~~,y,zU / (f+yz).

Cor.: The simple hypersurface.~singularities(in the sense

of V.I.Arnold) are of f.r.t •.

(R.O. Buchweitzi G.M. Greueli F.O. Sehreyeri '85):

Under the same assumptions

(i) R of f.r.t. <==> R is a simple hypersurface singul.

(ii) R has countably infinitely many isomorphism elasses

of MCM's (indecomposab1e) <=> R is an At:» or D(D

singularity.

(M. Auslander - I. Reiten 84/85):

In dimension 3, the cone over'the Veronese embedding

1P 2 ~!p5 is of f.r.t ••

The cone over the seroll (pp (&( l) EB{9( 2 » is of f. r. t ..
'1

Except the above mentioned ones there are so far no other

rings of f.r.t~ known.

J.' DAMON:

Deforrnations of Cornplete Intersections and the Versality _

Diseriminant

If f: -(a:s+q,O j ---;. (Q:t+qO) is an unfolding of f ,: «Cs, 0) ---?'
, o.

«Ct,O) whieh defines an isolated complete intersection singu-

lari ty, then i t is not true that 11 ~ const ~ t<?pological

triviality of the family of germs". Additional information about

the unfolding is needed to ensure that topological triviali~y.

holds. This is provided.by the local structure of the family

near the versality discriminant. The versality discriminant is

where the germs f u : (ecs,e)~ «Ct,O) (for f(x,u) = (fu(x),u) )
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fail to be infinitesimally stahle. The theorem we describe

states·that if the restrietion of f to a "conical neighbourhood"

of the versality discriminant is topologically trivial in a

certain stratified sense then fitself is topologically trivial.

We also describe the use of this theorem in joint'work with

Andre Galligo in determining the universal topological

stratification for the Pharo example.

w. EBELING

Dynkin diagrams and monodromy of complete intersections

We discuss invariants related to 'the Milnor lattice L =
Hn(Xs'~) of an iso~ate4 complete intersection sirigularity

(ICIS). We can prove that the following characterizations are

true for all ICIS's'of even dimension n with the exceptions

listed below:

(i) The monodromy group is the subgroup O:*(L) of all 9 EO(L)

with spino~ norm 1, inducing the ideptity~on~*/L.

(ii) The set of vanishing cycles is the set of all v E. L with

.<v,v> (_1)n/2 2 and <v,L> = Tl •

The exceptions are all among the class of hyperbolic~singula­

rities' (11+ = l): These are classified.

We also have results on the computation of monodromy groups

and monodromy operators for lCIS's. We generalize the notion

of distinguished bases to lCIS's, and generalize a method of

Gabrielov for computing Dynkin diagrams for these bases. We

indicate such diagrams for. some classes of lCIS' s. Among them

we find examples of different ICIS~.'s with cQnjugate (over CC)

generic monodromy',. operators,. but with different Milnor .. lattices.

F. ELZEIN

Variations of mixed Hodge structures (MHS)

Let f: X-;.. D be a morphism over a disk and suppose f quasi­

projektive. Then Rnf*CCx ID* is a Ioeal system and the weight­

filtration W. on Hn(X~,~), the cohomology of a generic fibre
1. ,_

at tE.. 0*, is a fil tration by sub-Iocal systems. The Hodge
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filtration F Js a fil tration by sub-bundles, .and we have
p 1 p-l ...-,.J .-...J •

VF c nD* 181 F Let X* :::: D* XD X, where D* is the universal
,..../

cover of D*. Then the filtration Wlifted on D* is trivial and

defines a filtration wf on Hn(X*,~). Then we prove, if the

monodromy T is unipotent , the following theorem.:

There exists a MHS on Hn(X*,~) with filtrations Wand F

sl.lch that

(i) wf is a filtration by sub - MHS.

(ii) The MHS induced on Gr~f Hn(X*,~) is the limit of
1

variations of HS induced on Gr~ Hn(Xt,CC) for t€. D*.

(i.ii) V i,b, let N :::: Log-T, then NWi c. wi - 2. and

b W wf n -v . W. wf ffl rV ..

N' : Gri+b Gr i H (X*, C) Gr i-b Gri' (X*.j<C)

H. ESNAULT:

Deformation of 2 - dimensional quotient singulari ties

Theorem (H. Esnault, E. Viehweg ) :

2 - dimensional quotient singularities are. stabl~ under defor­

mations.

This answers positively a question known as the Riemenschneider

conjecture (l974). The method'relies on techniques of cy~lic

coverings and vanishing theorems.

M. GlUSTI:

Effective computations in algebraic geornetry

Le-t K be a field of characteristic o. Consider a homogeneous

ideal I in R = K[~o' .•. , x n ] generatE;td by polynomials of degree

not greater than d, and the set ~(n,d) of such ideals.

1.) Hilbert function of R/I:

Define the regularity H{I) as the smallest integer where

the Hilbert function and the Hilbert polynomial coincide.

What is H(n,d) = sup {H{l): l~ ~(n,d)}?

2.) Free resolution of R/I:
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Let L· be a R'" free resolution of R/I; if e
i

is a basis of

Li, define S.(I,L·,e·) = sup'{degree(h)-i+l I hEei }, then
J.

Si (I) = inf {Si (I,L· ,e·) I L· ,e· as above} and Sei) == s':lP ~(I).

What is S(n,d) = sup {S(I) t IE"'J(n,d) }.? l.

3.) Standard basis of I:

Let 0(1) be the maximal degree of the elements of a standard

basis of I, relative to generic coordinates and lexicographic

ordering. What is O(n,d) = sup {O(I) I€ J(n,d) }?
Theorem (Angeniol, Giusti, Lazard):

S(n,d) = O(n~d) = H(n,d).

Then an asymptO'tic behaviour of this common bound is given,

and proved to be of doubly exponential nature. But in several

particular cases this function 1S much more pleasant.

G.M. GREUEL:

The dimensions of smoothing components

Let (X,o) be an isolated singularity of a complex space and

f: (x,o)~ (6,0) be a smoothing of (~,o), i.e. al-parameter

deformation of (X,o) such that the generic fibre is ~m~oth.

Let S(f) denote an irreducible"component of the semiuniversal

base over which the smoothing pccurs. S(f) is "then a smoothing

component. After reviewing previous work on the dimension of

S(f), mostly Que to J. Wahl (Topology 1981). using a reeent

result of E. Looijenga about the globalizabiiity of smoothings,

we indicated the proof of the following theorem which was"

eonjectured by J. Wahl and constitutes joint work with

E. Looijenga (Duke Math. J. 185):

dirn S (f) = dim<r eoker ( e-X/fj,O~ ax , 0)

where a*/ fj respeetively ax denotes veetorfields relative to

f respeetively on x.

H. HAUSER

Characterizing singularities

(X,o) compiex analytic· hypersurface defined by f = 0, Sing (X,o)
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the singular subspace of the local ring (!)n / (f) +j (f) , where

j{f)={a1f, ..• ,anf) denotes the Jacobian ideal, Sing*{X,o)

strict singular subspace of the local ring C? / (f)+~j{f) .
n

(X,o) is called of isolated 'singularity type if Sing{X,o) I
Sing(X,a) for a close to o.

Theorem (T. Gaffney, H. Hauser):

(A) (X,o), (Y,o) arbitrary hypersurfaces. Then (X,o) is stably

equivalent to (Y,o) iff Sing*{X,o) ~ Sing*{Y,o).

(B) Let (X,o), (Y,o) be hypersurfaces of isolated singularity

type. Then (X,o) is stably 'equivalent to (Y,o) iff

Sing{X,o) ~ Sing(Y,o).

The statement (B) is false in.general.

u. KARRAS:

On the ~ - const. stratum of 2 - dimensional hypersurface

singularities

Let 6~ ?enote -the J..l - constant stratum of the semiuniversal

deformation ö of an isolated hypersurface singularity. Then one

knows by work of Zariski, Le and Wahl that .for plane curve

singularities 6~ is smooth and ö is equirnultiple along 6~.

This arises the question whether or not this also holds in

higher dime~sions. I~ 1982 Varchenko gave an affirmative

answer if the singularities are quasihomogeneous. In this talk

I introduce quite different techniques which turn out to be

helpful to handle the question for rather general 2-dimensional

hypersurface singularities. The first key point is t~at by

work of Wahl, Laufer, Perron, Bingmer and Kosarew I can show

~hat there exists adeformation functor which describes the

J..l - constant deformations.

Theorem:

. dirn (V,o) = 2, Tl: M~ V minimal good resolution. Then there

exists a semiuniversal deformation space (L,o) for the equi­

singular functor'ES(M,-)' such that I red = 6~.

As a corollary one gets that L is srnooth if the functor ES(M,-)

is non-obstructed. Exceptsbme easy cases computations of

obstructions are very difficult. So the idea is to look for
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a smooth functor F together with a smooth transformation

F~ ES. In his recent thesis K. Altmann introduces a smooth

functor ESE which works weIl in the cases where the defining

equation f is given by a polynomial which is "non - degenerated"

on the Newtonbour'ldaz:y of the Newtonpolyhedron r + ( f ) •

Theorem:

r is smooth if there exists a "nice" subdivision of the
~

complex of rational cones one gets from r +"( f) •

P. K~UITMANN:

Braidgroup and singularities

Let L be a ~ -lattiee generated by the set A of its veetors

of length 2. Then the Artin braid group Br with n strings
. n

operates on An. Restriet this operation to the set 2 L of

ordered hases of L consistin9 of vectors of length 2. Then one

has:

1. ) Let L be the Lattice of an A, D, Erbot - system. Then the

Br orbits in:B
L

are exact1y those sets of bases, for which

the produet of the corresponding refleetions"is a fixed

quasi - "Coxeter - element. (Deligne - Voigt) .

2.) . For L of type ~". Ek$ 0 $ 0, k = 6, 7 , 8:

The sets of bases with reflection produet a flxed

Coxeter - element in the sense of K. Saito, form Brk+2
orbits.

Case 1.) seems to yield interesting epimorphisms from braid

groups onto permutation groups, e. g. Br4 ----;. t; S

arS ~~16

J. LIPMANN:

Topology of quasi - ordinary singularities

Quasi - ordinary (q.o.) surface singularities PE. FC.G:
3

are those

admitting a finite (germ-) map n:(F,P) ~(C2,o) with normal

crossing diseriminant in C2 • n is called q.o. projection.

There exists then a Ioeal parametrization z = H(X 1
/ n ,y1/n) , H

convergent series, such that for any n-th roots of unity v , w
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..'
we have

H( 1/0 1/0) A( 1/0 1/0) _ - A ~ ( 1/0 1/0)x , y - vx , wy - X Y EX,Y

where A , ~ € .! Tl , E (0,0) #- 0 (uoless E :: 0 ). Such pairs (A, \J )n .
(for E 1 0) are ca1led "distinguished pairs" of 1T. (Motivation:

compare with the Puiseux parametrizations for plane curves).

They determine the saturation hence by Zariski the loeal topo­

logy of (F/P). [Reference: Proc. Symp. Pure Math. 40, part 2

(Arcata)]. Converse1y:

Theorem (Y.-N. Gau):

If P,P' are q.o., with respective q.o. projections n,u' , then

the distinguished pairs of 1T and 1T' coincide (mod. switching

of A and l.l).

The statement must be technical1y elaborated if some Ai ~r l.li =0.

Coro11ary:

Then P and P' have the same mu1tiplicity, and even isomorphic

Zariski tangent cones (non-reduced). Also the Galois groups of

the abelian covers 1T and ll' are isomorp.hic.

The proof uses the invariance of topological type of pl~ne

slices 1 components of Sing(F).

Theorem:

Galois group of. 1T =: 8 1 (link of (F,P».

Problems: 1.) Find a topo1ogical interpretation of {(A. ,p.')}.
1. _ 1.

2.) Generalize theorem to higher dimensions.

J. Y. MERINDOL:

~ Deformation verselle du cone sur l'intersection lisse de deux

quadriques .

. Notons X cp 2n+1 eette intersection et Cx le cone affine sur'·X.

Soit S la base de la deformation verselle negative- et S~S

le revetement associe a la representation monodromique du

groupe n 1 (S - 0) (D est le discriminant). Le groupe de ce

revetemeot est W( 02n+3). Les fibres F 6 de la deformation 'sont

des varietes affines dont la structure de Hodge mixte est tres

simple: c'est un I-motif. L'etude detailee du morphisme des

periodes permet de prouver que 5 / C* est une sous - variete

(que l'on peut expliciter) de va:= [Jac x]2n+3. La polarisation
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de la structure de Hodge mixte permet de construire une

polarisation ample sur A et- de reconstruire le cone S--~ S';CC*.
On retrouve donc e-n particulier les resul tat.s dus a H. Knörrer.

La demonstration utilise une analyse assez fine des projections

des intersections projectives de deux quadriques par rapport

aux sous - espaces projectifs de dimension maximum.

M. MERLE:

Regular Stratifications and Lipschitz Conditions

Let X'C (~n,o) be a germ of an analytic space of pure dimension

d and Y a smooth subspace of X -(of dimension t). We (J.P. Henry

and the author) look för the following property of the couple

(X, Y):
n-l

Given n: X~~ a generic linear project~on and 6 the closure

of the image by TI of the critical locus of n restricted to'the
n-l

smooth part of X. Given a vector field on ~ tangent to 6

which' is Lipschitz nearby TI(Y), non zero at the origin if Y~O,

then it can be lifted to X_in such a way it remains Lipschiuz

nearby Y.

We can give a con~ition on X and Y which implies this previous

one and is c.onstructed on the, model of what happens for

Whitney conditions (Tessier) or Thom conditions (Henry, Merle,

Sabbah) .

The point in the proof is the following: If n.: ByX ---7 X is a

projective morphism which is smooth above the smooth points of

X'-Y, and such that n-1(y) is a divisor on ByX, then the ~

constancy of the fibres-dimension of the morphism In-l(Y)1 ~ Y

can be expressed by the fact that some section of a fibre bundle

on ByX is bounded.

G. MÜLLER:

Reductive automorphism groups of analytic ce - algebras

Let R be an analytic or formal <C - algeb~a, and let ce be the

image of the automorp~isrn group ~ = Aut R in t~e general linear

group of the cotangent space. It was shown that -two reductive
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subgroups of OJ are conjugate in C?J if and only if their images

in ~ are conjugate in cl .
Since Je is an algebraic group it has a reductive subgroup

which contains any reductive subgroup of ~ up to 'conjugacy.'

Now it is reasonable to ask'whether also 0/- (which is not algebraic

in general) has a reductive subgroup with the corresponding

property.

The answer was shown to be yes for any formal R, and for any

analytic R which are homogeneous. Thisgeneralizes results'of

Jänich, Wall and Wahl for isolated singularities.

K. SAlTO:

Regular systems' of w~hts and associated singularities

We discussed about 18 families of algebraic, surfaces. 6 of

them are elliptic K3 - surfaces, 7 of them are of Kodaira- dimen­

sion 1 with an elliptic fibration ober PI' and the remaining

are families of surfaces of general type with (p ,C 1
2 ) ='(4,5),

g.
(3,3), (3,2), (3,2) and (2,1). .

The families ar~ obtained as compactific'ations of smoothings.

of 18 singularities with <t* - actions, whose generality is due

to Pinkham. The singularities are hypersurface singularities·

whose weigh~s (a,b,cih) are listed with the help of regular

systems of welghts as follows:

Let r be a discrete su.bgroup of SL2 ( lR) with (-0
1 .?l}t r and ~r

compact~ Then the one point partial compactificat1on {O} uE/r
for m: = {(u,v) e <r 2

: l~ (u/v) > 0 } is ~n affine surface with an

isolated singular point at O.Then there are exactly 18 'families

of such r such that {O} LI E/r are hypersurfaces whose weights

are characterized by the following two conditions:

( i ) (Th - Ta) (Th - ~) (Th - TC) / (Ta - 1) (Tb - 1) (Tc - 1)

is a polynoIDial in T

(ii) a + b + C - h = -2
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J .' .SCHERK:

Locally homogeneous links of surface singularities

Result (with F. Ehlers):

The surface singularities with locally homogeneou,s links (as

CR manifolds) are

(i) simple singularities

(ii) simple elliptic singularities

(iii) cusps

(iv) quasihomogeneous Dolgachev singularities

(v) non-quasihomogeneous Oolgachev singularities

D. SIERSMA:

Non - isolated singularites

We consider holomorphic functions f: (<<:n+l ,0)~ <I: with al-dirn.

critical locus I. On every irreducible branch of the singular

locus there is a.well defined class of iSQlated singularities,

which we call the transversal type of the branch.

Let E be defined by an ideal I. We define the primitive ideal

JI =; {fE {:J: (f)+J(f)c I} where J(f) is generated by the partial

derivates of f. In general 1 2 c SI cI and 1
2

= SI if I is a

reduced complete intersection.

The groupIDI = {he:D: h*(I) =1} acts on Si. We get orbits in

SI. The tangent space to the orbit ~s denoted by T(f), and

T(f) =111,.J(f)nf~ in case I is radical.

Theorem (Pellikaan): ~

Let I be a radical ideal. Then cf: = dirn SI / T( f) < 00 ~ > •
j f: = dim·1 / J (f) < 00 < >transversal type Al' on E - {O}

There exists a theory of finite deter~inacy. As an app~ication:

f transversal Al on I-{O} > f ~ polynomial.

The above subject is treated in more generality in the thesis

of Pellikaan.

We now restrict to dirn I = I and transversal type Al; on E - {o},

and consider I - parameter deformations f t , satisfying

(1) f t has only 0
00

and A
oo

singularities on I-{O}

(2) f t has only Al singularities outside I

(3) TheMilnor fibrations over S = a6 are equivalent.
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Theorem (Pellikaan):

Oeformations satisfying (1), (2), (3) have the property

j f = :rtAl + 1*D~ + j f ' .

where f' is the germ at 0 of f t , t#O.

For the proof Pellikaan shows: 1/ J(f t ) is a free <r{t} - module

with a finite free resolution.'

Next assume also r is a plane curve singularity, and given by

g(x,y) =0, z = 0, where z = z3' ••• ,zn+l. We call f = (g(x,y»2 +

rz~ central singularity.
1

Lemma: Let f have a "r-locus-singularity, with transversal Ai-

type then there is adeformation with (1) - (3) and moreover

(4) f t has the central singularity.type at o.

Theorem:

Let r be a plane curve singularity with isolated singularity with

transversal Al - type and a positive number of 0
00

- points in the

above deformation, then the Milner fibre of f is homotopy

equivalent te a wedge of n-spheres with

~t = dirn H (F) = 2~.L(g) + 2#0 + ~Al - 1op n 00

~ 2 . #If D
oo

=0: b n - 1 (F) = 1 and b n = l-1(g) + Al

Theorem (van Straten):

Let ni = n·/dfAn·- l the relative De Rham comple~. Hn(n f ) and

Rn-l(n
f
·) are free (C{f) -modules of finite rank b (F)=lltn op

and b n - 1 (F) = 0 er 1. Assumption on r: r isolated complete

1 - dimensional intersection wi th transversal A l - type.

P. SLOOOWY:

Lie groups and singularities; how far can we get?

The purpose of this talk is to give a survey of the construc­

tions of semiuniversal deformations for some specific classes

of singularities in a Lie group theoretic context. So we review

Brieskorn's theorem relating the simple surface singularities

of type A, D, E to the correspending simple Lie groups and Dur

'(partial) extension of this result to simply elliptic and cusp

singularities (of degree ~5) which relies on previous work by

Looijenga and Pinkham. Here, groups attached to Kac Moody Lie

algebrascome into play. Guided by work of Sekiguchi and
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Shimizu'on the deformations of simple plane eurve singularities

and infinitesimally symmetrie spaees , we finally present sorne

eonjeetures relating the results of Wirthmüller on semiuniversal

deformations of certain space curves (as presented by hirn .,:

during this eonference) to adjoint quotients of eones over

eompaetbfied symmetrie varieties (in the sense of De Coneini ­

Procesi I Luna - Vust) .

J.H.M. STEENBRINK:

Invariants of isolated singularities

Some invariants of isolated singularities have a stragge

jumping behaviour under ~-constant deformations. Yau introduced

h ·· l· d" o( n-l)/Ho( n-l) h't e 1rregu ar1ty q = 1~ H 0u ' nx I w ere

(X,D)~ (X,x) is a good r~solution of the n-dimensional

isolated singular i ty I n ~ 2 ,and U = x'fx}. As the different4.ation

map d
l

: HO(n~-l) /Ho(n~-l) ~ HO(O~) /Ho(ni(D» is injeetive ,

Pg = h n - 1 (60 ) + q + a 1 , where Pg is the geometrie genus and

a
1

- = dirn eoker(d l )

Related invariants are a
2

= dirn HO (n~) / dHo (n~-l) and

a
3

= dimHo(n&-l) / image of closed (n-l) forms on U • Wahl (for

smoothable Gorenstein surfaeesr and Looij~nga and the speaker

,showed that f<;>r isolated eomplete interseetions with Milnor

number lJ. and Tjurina number T:

~ - T = hn-1(e?o.) - hO(nn~l) + a
l

+ a
2

+ a
3

n-l r..., 0 n-l >.moreover h (uD) ~ h (GD ) by Hodge theory I so li - "( ;

equality holds iff (X,X) is weighted quasihomogeneous, if n=2

(Wahl). Also lJ. = T and Pg = hn-l(go) = 1 imply quasi-homogeneity

f.or n > 2. Work of van Strat.en enables one to eompute q for

hypersurfaces. It appears that q does not behave semicontinous­

ly Ol') the ~ - constant stratum and need not to be zero at its

general point.

•

•
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J. STEVENS:

A class of surface singularities with their hyperplane sections

By blowing up regular points in the special fibre of a farnily

f: W---;. S of (degenerating) curves of genus 9 over "a disc,

the strict transform of the special fibre becomes the excep­

tional set of a surface singularity V (calied a Kulikov

singularity) and f induces a general hyperplane section X on

it. For g.:s 2 there is a classification of curves that mighte occur in this way; these are the curves wi th ' 6 - r + 1 = g. This

classification of curves is used in determining the analytic

type of X from the points which are blown up. All curve singu­

lari ties of the list occur. For 9 = 2 the hyperelliptic invo­

lution on W plays an important r9le. As a corollary we obtain

a new proof of the fact that all curve singularities with

6 - r + 1 ~ 2 are smoothable.

D. VAN STRATEN:

Non isolated surface singularities

A basic question about non isolated surface singularities is:

"What is a good class to study" (in analogy wi th -normal sur­

faces)?" It turns out that the weakly normal Cohen - Macaulay

(WNCM) surfaces behave similar as the normal anes. For example:

Theorem: ' X'-----;lo)E smoothing of a weakly-normal X. Then

~~ ~ b 1 (Xt ) ~ # irr. comp. (X) - 1 • Equality "

holds if * is smooth.

This is generalizing b l (Xt ) = 0 for normal surfaces.

Because the Gorenstein WNCM's have generic transversal Al-type,

it seems wise to study the transversal Al CM'S first. For those

one can define an invarinat p as
1 9

P = dirn (R 7f* 0.y )
9 P

with y~ X an improvement replacing the resolution in the

normal case. The nation of improvement is due to Shepard - Barron.

One can prove several theorems us~ng this notion of improve­

ment and Pg·

Theorem: Let (X,p) a Gorenstein Du Bois singularity. Then

either
(i) (X,p) isolated > X is a rational double point or
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simple elliptic or a cusp singularity (weIl known) or

(ii). (X,p) non-isolated ;> X is Aoo ' Deo or adegenerate

cusp.

The invariant P
g

has really the properties one expect:

independent of the improvement
o . 0 "

p 9 = dirn H ( w Y _E) / H (w y)

Pg is semicontinous under deformation

It is an invariant tha~ is'~.ea!?y" to compute.

Theorem: Let X be transversal Al' CM, and 1: its singular
~ n ~ -1

locus. Let X~ X be the normalization of X and 1: = n (1:) •

Then p (X) = p (X) + 6", - es
9 9 1: 1:

One can mak~'a beginning of a classification: (non-isolated)

Pg 0 and Gorenstein > Aoo or Doo

Pg 1 and Gorenstein > minimal ~lliptic

Consider the following two singularities:
2 62 2 . 6 2

z .= y(y-x) with Pg= 3 and z = y(y -x ) with Pg =2.

Their improvements look'in both cases like:

~I
J. WAHL:

•

Smoothing surface singularities.

One would like information on the set GLof smoothing cornponents

in the semiuniversal deformation of an isolated surface singu­

larity X~ especially if X is "basic" - e.g. simple elliptic,

D or cusp. (For example, is Q.., t- ~?). For quasihomogen-eous ."p,q,r
X, Pinkharn's method of deformation of negatiye weight gives

many examples of smoothings. One should stu~y invariants of

the Milnor fibre M of a smoothing. In the Gorenstein case, the

invariants of the real homology have been computed via work of

Laufer, Durfee,.Wahl,Greuel, Steenbrink. The integral structure

of the (even) lattice H2 (M) is described in arecent paper of

Looijenga-Wahl (to appear, Topology). 'The key point is the

construction of a natural quadratic form on Hl (L) tor (L = Ifnk)

inducing the linking form. One can associate to each smoothing

component of X an element of a set ~(X) of algebraic data (an

even lattice of a certain discriminant quadratic form and
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signature, plus an isotropie subgro~p of Hl(L)tor' plus some

more, satisfying some eonditions). "':S(X) is eomputable explieitly

in basie eases from aresolution of X.

Theorem: The rnap CL~ ~(X) is a bijeetion for simple elliptics

and D '5, and all eusps of embedding-dimension ~5 (perhapsp,q,r
for all eusps).

C.T.C. WALL:

Classification of invariant functions

It is sufficient to consider germs' (at 0) of funetions on V

invariant by a linear action of G (G compact - or in the complex

ease - reduetive). These are just the funetions on the geometrie

quotient V / G = Spec (V~) (also, by a th~orem of Schwarz, in

·the C~-case). In rnany eases, right equivalenee of invariant

functions on V also translates directly.' to equivalenee of

functions on V/G under selfequivalences respecting the orbit

type stratifieation , by another theorem of Schwatz (Pubi. Math.

IHES ~5l): this holds if G acts orthogonally (e.g. in the real

case) or is finite, but not in general.

There are fewer quotients V/G than pairs (V~G), but still

rather rnany. If dirn V/G = 2, then if G is finite', we have a

quotient singularity (Prill); if G is a torus, a eyclic quotient

(easy); if G is semisimple, V/G is smooth (Kempf). I conjeeture.

that G reductive, dirn V/G = 2 implies V/G is'a quotient singu­

larity.

Now suppose that ~ is finite, and the action on V~ cr 2
is free

outside o. Then for any invariant f on V with isolated singu­

larity at 0, V(V)/Jf is the sum of a free <I:G - module and a
2 .

copy of A V*. The proof uses the d~formation theory of f. The

dimension of @(V)/Jf is the Milnor number ~(f); the dimension

of the invariant part is d~noted by ~G(f).

Theorem: For a generic invariant f we have

J.1G(f) = [maX(e,4) - 3 if G is cyclic or b~ 3

max( e, 4) - 2 if G is non-cyclic and b = 2

where e is the embedding dimension of V/G and (-b) the self~

intersection of the central curve in the resolution.
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The modality of such a function is· J.lG(f) - 1, so o-modal

functions exist only if e ~ 4 and G cyclic or b z.. 3. The proof

is by explicit calculationi the meaning of f1generic" is made

precise in each case.

A corresponding ca1culation can also be made (more easily) for

a cyclic quritient T(u,v) = (tu,tqv), where the images of one

or both of the lines u = 0, v == 0 are assigned to the stratifi­

cation of V/G.

K.WIRTHMÜLLER:

Deforrnations of space curve singularities

Let Xo be an isolated complete intersection singularity, artd

let (SjD) be the pair (base, discriminant) of its semiuniversal

deformation. We,look for good descriptions of (S,D~ mode1led

on that given by E.'Brieskorn for the case where Xa ~s a simple

hypersurface singularity. Thus we try to co~struct a space~

wi th a di screte group' r acting plus an i somarphi sm S ~ 1E/ r

that sends 0 to. the branch locu~ consisting of irregular r ­

orbits. Such a description is achiewed fQr.Xo certain (S~.~ TJ.l)

of the simple space curve singu1arites classified and.

lapelled by M. Giusti. The w~ole set-up is described in terms

of certain extensions of classica1 Dyn~in diagrams - a typical

one being

for the T7 - singularity. This allows to determine all configu­

rations of. ~ingularities in fibres adjacent ta. Xo as weIl as

some geometrie data on the corresponding stratification of D.

The methad also yields a presentati~n for nl(S'D). For the SJ.l­

singularities, the higher homotopy groups vanish, while this

is an open question in the remainiI).g cases.

Berichterstatter: F. - J. Bilitewski
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