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Function Theoretic Methods in Partial
Differential and Integral Equations

24.11. bis 30.11.1985

' The conference was organized by R.P. Gilbert (Newark, Del. U.S.A.),

E. Meister and W.L. Wendland (TH Darmstadt).

In proposing the subject of the meeting the organizers wanted

to bring together persons whose common interests cover applications

of complé& methods to parfial differential equations as well as

to singular integral equations.

The meeting was attended by 40 persons, of whom 32 presented talks.

A strong programme of lectures was offered and they have been

grouped according to subject areas. Most significant topics were

for partial differential equations:

Applications of complex methods to problems in elasticity and
acoustics, representations of solutions and transmutations, expansions
and constructive'solufion methods, boundary value problems, higher
dimensional problems in particular in connection with Clifford
algebras and

for integral equations: Canonical problems and Wiener-Hopf broblems,
constructive and numerical methods, special types of equations,
Fredholm theory. ’

The open discussion on Thursday evening revealed several open

problems in connection with matrix factorization, the appréximation

of singular integrals and integral equations, the asymptotic behaviour
of solutions,comparison theorems for solutions of different elliptic

equations, spectral problems, representations of functionals by
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analytic and generalized analytic functions, inverse scattering

and conformal mapping. It became obvious that function theoretic
methods are as powerful and essential as they have always been

in partial differential and integral equations. This meetihg was

in some sense successor of. a conference on similar topics 1976

in Darmstadt; the organizers are particularly grateful to G. Fichera
and W. Haack fér their sincere. support. Thelparticipants expressed
their conviction to have organized a corresponding subsequent

meeting after a much shorter period.

The participants and organizers express their gratitude to the
Oberwolfach Research Institute and all the staff for the 6u‘tstanding.

facilities, accomodation and support and for the kind and friendly
hospitality. )

DF Deutsche
Forschungsgemeinschaft . ©



oF

Vortragsausziige

H. BART:

Spectral analysis of Wiener-Hopf factorization using concepts

from systems ‘theory

Deutsche
Forschungsgemeinschaft

An expression of the form
(*) WA) = I + Cc(a-a)"'B

is called a realization. This notion has its origin in’ systems

theory, where the right hand side of (*) appears as the transfer

function of the linear dynamical system x(t) = Ax(t) + Bu(t),

y(t) = cx(t) + u(t) . In recent years it has become clear that
realizations are an important tool in dealing with a variety of
problems in operator and matrix theory. Results have been - ob-

tained exhibiting a striking degree of explicitness.

In the present talk (*) is used to obtain explicftAformulas for
Wiener-Hopf factors and Wiener-Hopf factorization indices in case

W(A) 1is a rational (square) matrix function. In additidn, neces-
sary and sufficient conditions are given in order that the Wiener-
Hopf factorization 1is canonical (i.e.,all its factorization
indices vanish). The results are formulated in terms of the
matrices A,B,C and certain spectral subspaces of A and

A - BC

Generalizations to infinite dimensional situations (even invol-
ving unbounded linear operators) are briefly discussed, too. In
this context complicated problems of splittihg of possibly connected

spectra arise. These can be ‘overcome for exponentially dichotomous

eratrs , i.e., operators that are the direct sum of two infini-
tesimal generators of exponentially decaying Co-semigroups, one
acting on [0,®) , the other on- (-=,0] . Another infinite dimen-
sional case that can be handled (by Hilbert space methods) con-
cerns the energy (or neutron) transport equation. ’

The lecture is a report on joint work with I. Gohberg (Tel Aviv
University) and M.A. Kaashoek (Amsterdam, Free University).
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H. BEGEHR: N

a

Hele-Shaw Stromungen und Momentenproblem in R

Die Momente eines beschridnkten Gebietes D von € sind die

Koeffizienten der Taylorentwicklung von

dgdn _ .
J 7T (T =E +in , 2 € C)
D n
in = . Analog kann man im IR
Jiy?dy (iDcR™ , x e R™)
D lx'YI

betrachten und durch Heranziehung der harmonischen Polynome
Momente definieren.

Es wird gezeigt, wie das Momentenproblem - Bestimmung von D zu
vorgegebener Folge von Momenten - mit der LOsung von bewegten
Rand-Problemen vom Hele-Shaw Typ zusammenhdngt.

Dieses Ergebnis ist in einer gemeinsamen Arbeit mit R.P. Gilbert
enthalten. ’

P. BERGLEZ:

Zur Darstellung von Ldsungen partieller Differentialgleichungen ’

in der Nahe isolierter Singularitdten

Den Ausgangspunkt bilden Darstellungen fiir Losungen elliptischer
bzw. formal hyperbolischer Differentialgleichungen unter Ver-
wendung spezieller Differentialoperatoren , sogenannter BAUER-
Operatoren, die auf holomorpheiFunktionen wirken. Erst kiirzlich
konnte eine Charakterisierung der Gleichungen, zu denen es solche
Operatoren gibt, angegeben werden, wobei es auch méglich war,
diese Operatoren explizit anzugeben. Es werden verschiedené.
Zusammenhdnge zwischen diesen Ldsungen und ihren Erzeugenden
aufgezeigt. Die Darstellung von Losungen, die in mehrfach zusam-
menhdngenden Gebieten definiert sind, bilden den Mittelpunkt
dieses Berichtes. Dabei wird speziell auf die Darstellbarkeit
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~with an associated topological invariant n

der jenigen Losungen, die nur eine Erzeugende besitzen, und der
reellwertigen Losuxen. elliptischer Differentialgleichungen einge-
gangen. AbschlieBend werden multiplikative und algebraisch ver- '
zweigte LOsungen diskutiert.

B. BOJARSKI:

Complex and real variable methods for p-harmonic functions

p-harmonic functions in a domain @ ¢ R are weak solutions

u € wléz(n) , 1 <p <o, p# 2 of the non-linear equation
(%) aiv(|vu|P 2 vu) = 0 .

The set I of critical points of u , £ = {xe@ , Yu = 0} is

" crucial for the study of local and global properties of p-harmonic

functions. By classical Hopf—Schauder—Petrovsky results a p-harmonic
function is real analytic in @\Z . Uraltseva showed that u -
p-harmonic = u e Cléz(n) fo; some a > 0 . In the lecture variéus
properties of p-harmonic functions were discussed: interior
regularity, comparison principle, Harnack property, Fatou type
theorems, structure of gquasiradial solutions of the form

u = rBQ(G) , 9(8+2%) = ¢(8) '.The case n = 2 -is intimately
connected with the complex non-linear equation ’

(**) fE
In particular,any p-harmonic function u belongs to wz'f;Z(n) for some
€ > 0,and the set I consists of isolated points {zk} , each

K * the winding number

of £ at =z The following result generalizes H. Lewy's theorem

-
on the gradient of real analytic p-harmonic functions. If a solution

‘of (**) , for la] < I , vanishes at z_ then f cannot be

2
c smooth at L Since zeros of f have topologica; character,

the same holds for singularities of f . In particular the singulari-
ties of f are stable (solitons!). It is possible to construct
solutions of (**) 1in the classes cfoc(n) for arbitrary big

but finite k . These results suggest, that, although in view

°®




of T. Wolff's recent counterexamples the Fatou theorem doesn't
hold for p-harmonic functions, p # 2 , the boundary behaviour of -
real analytic or c”® p-harmonic functions is much more regular
than the boundary behaviour of p-harmonic functions admitting

interior singularties.

G. BRUHN:

Z for

elliptic systems o ‘

N =

Boundary value problems with characteristics in

As is well known, the operator F of a general regular ellipiic
BVP for a bounded region G < € has the Fredholm index

v(F) = n-2y , where n := system dimension.and vy := characteristic

1+a

of the boundary condition. For boundary data in C we have

Y e Z and thus v = n-2y has values only odd or only even. For

filling these gaps we slightly weaken the C1+°-condition of the’

boundary data: They are said to be essentially in C1+é , if for

every 1z, e 3G there is a neighborhood. U(zo) and a nonsingular
real matrix R (not continuous in general) such that the bound-

c'** (86 n utz)) . Thus we

get ¥ e % Z . As in the case v e Z we can construct a homotopy

ary data multiplied by R are in

F ~ FO and compute V(F) = v(Fo) , using the stability theorems

of KATO and ATKINSON, because we need only local arguments which

are still available when the boundary data are only essentiallz

in C1+°l . Fo consists of n well known.simple BVPs of systems of
dimension 1 and we get Vv(F) = y(Fo) = n-2y by simple enumeration.
Because of ¥ € 17 Z now all gaps of v ‘are closed.*\Last not .
least as for ¥ € Z there isvan adjoint operator F to F

with 1* = nQV “and v(F") = -v(F) and the problems for F and

F* are normally solvable.

DF Deutsche -
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J. CHABROWSKI:

The Dirichlet problem with Lz-boundary data in a half-space for

an elliptic linear operator

<

+
n

u(x“,O) = g(x') in R, _, . where L is an elliptic linear

operator and ¢ € L (R _1) . The main result is the existence

We discuss the Dirichlet problem Lu = f in R and

' theorem under the assumption of Dini's continuity with respect

- ..functions vi

Deutsche

to two varlables_on some leading coefficients of L .

C. CONSTANDA:

Cbmpiéx variable treatment of bending of thin elastic plates

Kirchhoff's kinematic hypothesis concernind the displacements,

that is
u = x3vk(x1,x2),

V (k ,x') .-

Y3
leads to a two-dimensional system of equations for the unknown

i =1,2,3 . This system has been integrated previous-

‘ly in terms of real (Somigliana) potentials, and the existence

of' the solution has been established in certain classes of finite
ehergy fuhctions.’

. To solve the displacement boundary-value problem by means of

" complex variables, the v, are represented in terms of three

i
complex potentials, which are then determined from the boundary

conditions.

The traction boundary -value problem is solved by first f1nd1ng

A1ry -type potentlals for the stresses and by deriving suitable
expressions for the complex resultants of the forces and moments

on the boundary, After mapping the domain conformally onto the

unit disk the problem reduces to the solution of a Fredholm
1ntegral equatlon ‘of the second kind. It is shown that this equation
is solvable in the case of both the interior and exterior region

if and only if the total force and moment across the boundary

are zero.

Forschungsgemeinschaft © @




M. COSTABEL: . “

Spline collocation for boundary integral equations on corner

domains

Collocation with piecewise linear trial functions is studied

for the first kind integral equation with logarithmic kernel

and for Cauchy singular integral equations. On curves with corners,
one uses local ‘Mellin transformation to derive stability results.
For the first kind equation one finds stability in some weighted

H‘| /2 Sobolev spaces for weighted splines. For singular integral ’
equations with smooth coefficients stability holds in H1 provided

a certain condition on the coefficients is satisfied that depends

on the corner angles and reduces for smoqth curves to a strong
ellipticity condition well known to be necessary and sufficient

for convergence in this case.
J.W. DETTMAN:

Construction of function theories for the Yukawa and Helmholtz

equations using transmutations

Transmutation operators are used to transform the heat polynomials
and associated functions of Widder and Rosenbloom into solutions
of the Yukawa and Helmholtz equations. Generating functions are
obtained leading to recurrence relations and generalized Cauchy-
Riemann equations. Expansion theorems are proved including Fourier

transform criteria for expansions in terms of associated functions.

R. DUDUCHAVA:

Singular integral equations on curves with corners with complex
conjugation

Criteria for the Fredholm properties of the above mentioned
equations and the index formulae are obtained; applications to
the I,II and mixed boundary value problems of the elasticity
theory are given.

DF Deutsche
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G. FICHERA:

A physical interpretation of the brothers Riesz theorem

Analytic problems connected with plane strain in the classical
elasticity have been extensively studied by complex<methods,by
the theory of the- biharmonic eduation or by a direct approach

to the two-dimensional system of elasticity. Strangely enough
very little is known on the analytic problems arising from plane
stresses. These problems are of a quite different nature with
respect to the ones concerning plane strain. A review of reeults
obtained quite recently in this field is outlined and some new
result added: in particular a physical interpretation of the
classical "Brothers Riesz Theorem" is provided in the framework

- ‘of the theory of plane stresses.

Deutsche
Forschungsgemeinschaft

R.P.. GILBERT and D.H. WOOD: i L

Function theoretic methods in underwater acoustics

We investigate solutions of the depth dependent, time harmonic,
acoustic equation

. du +'k?n2(z)u =0 , 0<z<z

which models the propagation of sound underwater.»Solution of .
this equation may be obtained using the transmutation -
u= (I +%k)h where h is a Helmholtz function. The kernel,ﬁ

K(z,s) of the transmutatlon may be seen to satlsfy the hyperbollc
equation

3 d"K 2 oL R,

Z 9z

=

+ k [nz(z) - 1] K=20

(=}
N
N
o

and certain Goursat conditions. U51ng this transmutatlon we are.
able to obtain many of the usual representatlons for, the propagatlon
of sound, namely the model, ray, and Hankel representatlons., P

It is also possible to investigate the case of .a range, dependent
index of refraction n(r,z) using a second transmutatlon.

o0&
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W.K. HAYMAN:

On a class of integral inequalities of Hardy-Littlewood type

We shall give an analysis of the integral inequality

(I {|f'(x)|2+(x2-t)|f(x)|2}dx)?
0 @

< K(t‘)(jlf(x)|2dx I]f"(x)—(xz-t)f(x)|2dx) )
0 0

Subject to suitable conditions on £ this is valid with a finite
‘value of K(t) if and only if. t = 2n+1 , n =0,1,2,... .

If n is even K(t) = 4 , while K(t) decreases strictly with
t and tends to 4 as n - @ through odd values.

The work is joint with D.E. Evans, W.N. Everitt and S. Ruscheweyh.
A general theory of Evans and Everitt shows that the existence
and value of K(t) depends on the behaviour of the argument

of T(- % + z)/T(- 551 + z) on rays through the origin.

A.E. HEINS:

Function theoretic aspects of the Sommerfeld half-plane problem

This talk will be devoted to a discussion of two function theoretic:

methods which have been developed to solve various problems associ-
ated with the "Sommerfeld Half-Plane Problem" of diffraction
theory. One, which has been in development since 1943, is the
‘Wiener-Hopf method and has provided solutions to numerous scalar
and some vector problems. [ The vector problems arise from fairly
general boundary conditions.] In the scalar cases, the original
ideas of Wiener and Hopf are applicable. In the vector cases, a
method proposed by thF speaker in 1948 is of some assistance. An
overlapping method has been proposed by Hurd in 1978 which will
solve the same scalar problems as the method of Wiener-Hopf but
can also solve a pioblem which offers some difficulties by the
method of Wiener and Hopf. The Hurd method depends on the fact
that these problems may be reduced to a scalar or vector Hilbert
problem. With both methods there is a strong'dependence on func-
tion theoretic concepts which will be discussed in some detail.

Deutsche
Forschungsgemeinschaft
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S. KNECHT:

On the existence of a solution to the Riemann-Hilbert problem

for a partial differential equation

A joint paper of A.S. Mshimba (Dar es Salaam) and myself having
the same title was presented. We worked on nonlinear differential

equations of the kind wo = F(z,w) , extending some recent results
of von Wolfersdorf on nonlinear Riemann-Hilbert problems for holo-
morphic functions. '

Using Schauder}s continuity method, one part of the existence

proof is based on the .Kantorovié - Cacciopoli principle, the second
on an a-priori estimate which was derived from an integral repre-
sentation formula for solutions of the boundary valﬁé problem.

This integral representation formula follows from Vekua's .theory

and an explicit solution to the linear problem of directional ‘

derivative for harmonic functions.

O. LIESS:

Propagation of singularities of solutions of linear partial

differenfialvequations

- Let p(D) be some linear p.d.o. with constant coefficienté;of

order m , denote by. Pn its principal part and consider,“xo e R ,
|x°| = 1 . We shall say that we have propagation of singularities
for . (p(D),x°)  if for all convex w c R™ and all solutioﬁs

ue D'(w) of p(D)u =0 it follows from x e sing supp_u

that x +,1x°.esing supp_u for all x > 0 for which Ix,x+xx°] c w.
Propagation of analyticity (and its microlocal variants) is well-
understood when pi is of principal type. When p 1is not of
principal type, and m = 2 , it follows that P does not act

in all variables from R: . Assume then (no restriction on m)
a a L .
that Pn = Z ag D ! ...p" for some n' <. n . Assume moreover
: 1 n' ,
that Pn is of principal type when restricted to R:, . The

main result of the talk (not stated here) then gives: propagation of
analytic singularities holds for (p(D},x?) precisely when

x° ¢ span {Re ¥ pm(no), Im © pm(no)) , Vn? e R™ with pm(no) =0 ,
v pm(no) # 0 . Among the other results stated:

if propagation of analytic singularities holds for (p(D),x°) ,

then it so does for (pm(D),xo) .

Forschungsgemeinschaft © @
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W. LIN :

Some second-order systems of PDEs of composite .type

In the first part of this paper we consider the following composite

system

2 2 2
A3—2+2B3, +vc°—2- %) =0
ax axX3y ay

4

where A,B,C are 2x2 constant matrices. First we reduce this system
into two kinds of canonical form: The composite system of second
kind ‘

2(1 + %2
a9y 22 ° ) 2 I L
(c,) o) =+ — + 2= ) =0
2 o -2 axz La1-n) o IXoy 0 2%; ayZ A
and the composite system of first kind
. 2 o 1] .2
(cy) o 5.2, 3.4
X e 0| 3xX3v

We solve the following problems:

1. Problems,posed'on the unit disc:
(1) Dirichlet-Darboux Problem for (C,)

Theorem 1: Assumeu x{(z) to be a con-

tinuous fﬁnctionrgiyen on |z| =1,
and ¢(y),¢(y) to be the functions dif-
ferentiable up to second order and

y 1
lv(y) |sMylyl, |¢(y)lsM3Iy| ’ MS/WZ .

then there exist solutions to. systems (CZ) in |z| < 1 such that

su , 2k? a3v _
ax‘l'—A 3y |zl=1 = x(c) ,
u|x=ky = y(y) ,

lyl s -1
= 2
le=-ky o(y) . YT +k

They are determined uniquely up to u,v with an arbitrary term of
first degree. ‘

Deutsche :
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(ii) Dirichlet - Darboux problem for (C1) .
Find out the solutions u,v to (C;) in |z| <1 such that

uxllz|=1 = X(C) ’ -

U] x=0 WY) s Vo = 0y, vl s

2. Problems posed on the upper half plane
(i) Dirichlet-Cauchy problem for (Cz) . Find out solutions
u,v to (C2) in Im(z) 2 O such that

= x(x) , —® < X < +o

3 2k IV
(§+ > )l

y=0
Yy=0 T RICRE V|y=o =T 9(x) , -® < X < ¥w

(11) Cauchy problems for (C,) . Find out soiutions u,v to  (C,)

in Im(z) > O such that

3“ = H =
Ul = vix) , ayly=0-" gq(x) , 3y ly=0 g,(x) ,

- < X < +o -,

3. In the second part of this paper we generallze the Dlrlchlet-
Cauchy problem to the composite system with 2m unknown functlons.

Theorem 3: . Assume Xz(x) (2 =1,2,...,m) be Holder continuous on
the real axis with x,(x) = 0(|x|“+1)(a>o) as |x| » =, and

¢J(x) (7 =1 2,...,2m) be differentlable up to second order on
the real axis. Then there exist the solutions

2Zm m 1 +o m -

uk(x,y) = lb(x+uky) -2 Re{BZ1 321 g g5 [ 2wT J Z 2 x (t)
z-t m -

1n -—xﬂjy_t at + i Z t, €y ((x+uyy)-2)1},

to the system

[E-~-B-21E>~-p-2Ju=0, u-= (u1,u2,...,u y 7

such that

Yy Ix Ay 3xX 2m

2 [ -4a, ,2)u.] =x; ), 2=12..m, -mcx<ie,

T4=1 0 13 ay 13 3 30 )
j|y=0 = ‘l’j x) , J

1,2,0.0,2n, —o<X<4= .
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A. MAMOURIAN

On a non-uniformly elliptic equation with linear boundary condition

The Riemann-Hilbert boundary value problem for the first order
nonlinear non-uniformly elliptic system'of equations

0

<
]

Y, (x, vy, u, v, u,,

0

Wz(x, Y, u, v, u. uy, Ve vy)
in multiply-connected domains and with linear boundary conditions
of non-zero index is solved by the use of a successive approxi-
mation method. This procedure is based on an a-priori éstimate
which arises from an integral representatipn formula developed by
Haack and Wendland.

P.A. McCOY

Singularities of Jacobi series on cz and the Poisson process

equation

Poisson processes are modelled as analytic solutions of a hyper-
bolic partial differential equation. These solutions expand as
Jacobi series on CZ and are associated with unique analytic -
functions of one complex variable through reciprocal inteéral
equations. By applying the envelope method to this pair, the .
singularities of a Poisson process are identified with those of
its associates. Thus, the singularities are determined from the
Jacobi series coefficients by a link with analytic function
theory. As a corollary, classical theorems of Szegd and Nehari
relatingto the singularities of zonal harmonic and Legendre series
with analytic functions appear in a functiontheoretic setting on
characteristic subspaces of ¢2

Deutsche
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E. MEISTER

Some solved and unsolved canonical transmission problems of

diffraction theory

Assume that the n23-space is divided into four wedges with the
x3—axis as common edge and filled by different dielectric materials.
A line- or point-source is situated within the first quadrant
9 v 1
ordinates. Two of the semi-infinite boundary faces of the four

the cross section of the wedge with positive x,- and xé—co—
wedges may consist of metallic plates forming a right-angled
wedge, or a Sommerfeld half-plane.

The mathematical problem is to find four wave functions oj(i)
solving Helmholtz' equations in the quadrants Qj with some »
Dirichlet, Neumann or mixed boundary conditions on the metallic
half-planes and transmission conditions across the remainiﬁg‘parts
of the coordinate planes. Near the common edge and the origin the
gradients of the wave-functions should be locally squaré-inteérable

and at large distances fulfill Sommerfeld's radiation conditions.

A foﬁr—part Wiener-Hopf equation for the unkn@wn double Fourier
tranforms 33(5) of the four wave-functions is esfablished and
uniquely solved in case of "absorptive materials. In an alternate
formulation, the probléms are-reduced to a A‘by'4-system of inte-
gral equations for the Fourier-Cosine-transforms of the normal

derivatives 9, of the wave-functions on the coordinate semi-axes.

R.F. MILLAR

Application of the Schwarz function fo boundary problems for

Laplace's equation

.

A method is described for studying analytic boundary value problems
for the Laplace equation in a simply-connected domain D bounded
by an analytic curve C with Schwarz function G . The basis for

o
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the procedure is that (i) a functional F of the boundary Cauchy
data is analytic in D and (ii) there exists a further integral
relation between the Cauchy data on C , involving the analytic
function G . Elimination of the unknown data from this relation
by means of (i) and the boundary condition leads to an integral
relation on C between F and prescribed data. The relationship
of (ii) is first obtained. Its application to the Dirichlet and
other linear boundary value problems is outlined, and a nonlinear
Riemann-Hilbert problem is solved. Some possible generalizations
are briefly mentioned. ‘

F. PENZEL:

Systeme von verallgemeinerten Abelschen Integralgleichungen auf
der Halbachse

Betrachtet werden Integralgleichungen vom Typ

x -]
(1) A(x) x7¢ I ———Ei%l— dt + B(x) x'uf ——ELE%—— dt = g(x) ,
(x-t) ~¢ (t-x)' "¢
— . J '._.fx 4 Xxe (0,"’)
T =: I f =: 3 f
a a

mit HSlder-stetigen differenzierbaren nxn-Matrizen A und B

0 < L 1 £ e i
« <5 <p<e=, f,g ev(Lu'p(n! )7, mit

fel (RN :e [t*')f(t)|Pat <
; ®

Die Operatoren Ia und Ja sind stetig von Lu,p in sich
(Roomey, 1972). Es zeigt sich, daB notwendig fir die LOsbarkeit
von (1) die Losbarkeit eines singulidren Integralgleichungssystems
mit gesuchter Funktion Ife (Lu'p(ﬂ§+))n ist.

Es wird gezeigt, daB fiir g e Ia(Lu p(]R+))n und ‘unter
’
gewissen Voraussetzungen an A und B die L6sung des singulédren

Integralgleichungssystems Element von Iu(Lu p(nz*))" ist.

.

Deutsche
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V.A. POPOV

Estimation of the error of numerical methods for solving .

differential and integral equations

1) The average modulus of smoothness is given as follows: -
The local modulus of f of k-th order - .at the point x e [a,bl]
is defined by

wk(f,x;ﬁ) = sup {IAhkf(t)l : t + khe [x - k6/z, x + ké&/z1} .
Then we define the k-th average modulus of smootﬁnéss.of f by

w(Ei8), = Lo (£, 000

By means of the Atk it is possible to obtain estimates:of the
error in numerical methods for differential and integral equations
ffor example, for collocation methods) without any "additional
assumptions for the solution.

2) Some inequalities for the best spline approximation in L

(with free knots) are given. The Besov spaces .B:o wffﬁ"d‘gfa <1
play an essential role here. ’ h o D

3.) The analogousproblem for rational best‘Lp-épbrdximatidh is also
considered . ' . . o o

S. PROSSDORF

Strongly elliptic singular integral equations with piecewise
continuous coefficients ’

Consider the 51ngu1ar integral operator of the form A = aI+bS
with the Cauchy operator S u(t) (nl)“f (t-s) 'u(s)ds and L

piecewise continuous m x m matrix functions a and b on a

Ljapunov curve I'. The operator A e L(LZ(P)) is.called strongly

o &
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elliptic, if there exist a compact operator T ¢ L(Lz(r)) and

an invertible piecewise continuous matrix function © on T

such that the operator 6A-T has a positive definite real part.
Necessary and sufficient conditions in terms of the coefficients

a,b for the strong ellipticity of A areAgiVen. It is proved

that the Galerkin method with piecewise smooth polynomial splinés

on arbitrary partitions for the approximate solution of the system
Au=f converges if and only if A is strongly elliptic. An optimal
order of convergence of Galerkin's method can be achieved for .

special nonuniform partitions using the complete asymptotiés

_of the solution in the neighborhood of the end points of T and

of the points of discontinuity of the coefficients. Generalizations
to the case of weighted L2 spaces and connections with collocation
methods are discussed.

N. RADZABOV:

Integral representations for certain elliptic and hyperbolic

equations with requilar and singular coefficients

For general linear elliptic and hyperbolic equations of the second
order with regular and singular coefficients and corresponding
systemé,a series of integral representations depending on the
coefficients of the equations has been obtained. These infegrél
representations are used for the solutionzof a number of boundary

value problems. .

L. REICHEL:

Numerical aspects of the boundary collocation method for solving

some=eélliptic boundary value problems

One of the oldest methods for solving boundary value problems
forilinear partial differential equations is to approximate the

DF Deutsche |
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solution by a linear combination of finitely many particular
solutions to the differential equation. In the boundary collocation
method this linear combination is determined by requiring the
boundary condition be satisfied in a least squares sense in a
finite number of boundary points, so-called collocation pdints.
Using function theoretic methods, we develop guidelines for the
selection of subspaces and collocation points. .

J. RYAN:

Boundary value problems in complex Clifford analysis

Let f be a domain in R"™ < ¢ and Harm (8,C) be the set of

complex valued harmonic functions defined on @ .. Then in 1954
P. Lelong showed that each element of Harm (Q,C) may be holo-
morphicaily extended to.a covering of the domain in c"\x(n) .
containing @ , where 4 o -
X(8) = U _ N(x) and N(o) ='((z1,...,z ) e ™ 22 + ... 22 = o} .
x ol = - “n 1 n
In our 1eéture we use a cdmplexification of the complex number§
(i.e. € QRC 2 C ® C) to use Cauchy's integral fdrﬁula for
regular functions to obtain a similar result for regular functions.
We then proceed to use complex Clifford algebras and a generali-
zation of the Cauchy integral formula to obtain similar results in
higher even dimensions (we then describe the case where n is
odd). The arguments given here differ from those given by Lelong,
they are shorter than those given before. and rely on theintrinsic
geometry of c"” .

A Runge approximation theorem is briefly introduced to construct
holomorphic harmonic functions which may not be extended beyond
any point of its boundary. Classes of real n-dimensional manifolds
lying in c” , and such that they and their tangent spaces contain no

non-zero null vectors . with respect to the inner product

2 2
LI R

are introduced, and Lelong's results are extended to domains
constructed from these manifolds.
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In the last part of the talk results of Riesz on integral re-

presentations of solutions to the wave equation in even dimensions

" are used to show that the Cauchy integral formula used here

differs from the ones used in the Euclidean setting, where the
integral gives the value of the function inside the domain, and
zero outside. In the ¢2m , (m > 2) , setting the integral formula
gives a continuous interphase between these two extremes. The one
variable residue calculus is used to describe this boundary

related problem.

H. H. SNYDER:

Effective analytic methods for the Dirichlet-Neumann problem for

Laplace's and Poisson's equations

Let G be a bounded simply-connected domain in 312(323) with
polygonal (polyhedral) boundary 8G. For such domains, Snyder and
Wilkerson have developed a computer-assisted analytic method for the
solution of the Dirichlet and Neumann problems for Laplace's
equation. In this paper, it will be shown how that method may be
adapted to mixed boundary conditions and also how they may be used
to solve the same problems for Poisson's equation.

F. SOMMEN:

Plane waves and singular integral operators in Clifford analysis .

Let D be the Dirac operator in r" ; ¢m the complex Clifford

m ~ . . ~ .
and @ c B2m+r open. Then f ¢ c1(n;¢m) is
left monogenic in @ if (5%— +D)f =0 in f . For o ¢R"
. To
- 1 -

open we choose 0 ¢ r™ such that 0 < Q is relatively closed.
Then the space 8(01,Cm) of hyperfunctions in 0 admits the
monogenic representation

algebra over R

Bla;c ) = My (aNaze )/ mMp) (B0

M(P)(ﬁ;cm) being the right module of left monogenic functions
in 2 .

Deutsche
Forschungsgemeinschaft ©
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Let C(ﬂ;cm) = B(O;Cm) / A(n;cm) be the space of microfunctions,
then
- - m
C(Q ;Cm) = C+(ﬂ,¢m) e C_(n;C) ,
where :
Ci(ﬂ;tm) = ”(rﬂ“::¢m)/M(r),¢(“'“’ )

B, = {x + x, € @ : x 20} and M (f,8) is the space of

o (T),+
monogenic functions in ﬂ+ , which are extendable about each

point of Q .
‘ ) This leads to boundary value operators

BV, : C(a;c) -~ C,(a;c) ,

BV, = ! (1 £ H) , H being the Hilbert-Riesz transform.

+ =7
For o¢,¢ ¢ C(ﬂ;cm) , we define ¢*¢ in the case
supp ¢ = supp ¢ = {0} .

Furthermore, if supp 9 = K, K compact and ¢ = f(x+0) ,
f left monogenic, we define the Fourier transform of ¢ by
Fe(t) = I E+(t,x)donf(x) ) don = ends ,
z
where I 1is an m-surface in mm+1, covering the singularity
support K and
LIPOR Ttl ) i<t x>4x0 |t

It is proved that f is injective and asymptotically defined

E+('t',x) =

(a2 ]

modulo terms of exponential decay.

‘ Furthermore, consider the Cauchy transform
+ R '{ > x°+t—;
A T (f)(x+x ) = I —~ f(t)dt ;
k ‘o T 5 |x6+t_x|m+2k+1

then xk+(f)(;) = Ak+(f)(;+0) and if Pk(;) is inner spherical
monogenic of degree k , Ak+(f)Pk € C+(n,¢m) . Furthermore the
Fourier transform is given by ’

m+1,
rM——

Fou te)p () = -iT_t.—)Pk(i-t’)L(f)(lfl) \
. t

2Tk & —"‘;’)

! . +o _st
where L(f)(t) = I e f(s)ds .
0
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L.H. SON:

Extension problem in mathematical physics

By considering a physical phenomenon there is the following
situation: We want to know the physical appearance in a domain of
space (123), but we can only measure and observe this appearance’
in a subset of this domain. Hence, for understanding this pheno-
menon in the whole of this domain we must use the physical laws
which have to be fulfilled for the phenomenon. From that we can
derive the necessary informations about the phenomenon in the
whole of the observed domain. In most cases the physical laws are
described by partial differential equations. For this reason the
above problem leads to the extehsion problem for partial diffe-
rential equations. In this report we prove extension theoremé‘for
the electro-magnetic vector field. which satisfies the Maxwell
equations and for the zero- divergence- and irrotatidnal vector

field, which is a solution of the Riesz system.

H. WALLNER:

IntegraloperatorenAbei zugeordneten Differentialgleichungen

Jeder formalhyperbolischen Differentialgleichung 148t sich mittels
eines Differentialoperators erster Ordnung eine weitere derartige
Differentialgleichung zuordnen. Es werden notwendige und hin-

' reichende Bedingungen fiir einen solchen Operator angeéeben. In

Spezialfédllen ist auch eine explizite Charakterisierung mdglich.

Im Zusammenhang mit formalhyperbolischen Differentialgleichungen

sind die Integraloperatoren von Bergman and Vekua von gewissem

Interesse. Es zeigt sich, daBR die Kerne dieser Operatoren fiir die
zugeordneten Differentialgleichungen sich in relativ einfacher

Weise aus jenen der urspriinglichen Gleichungen konstruieren

lassen.
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W.L. WENDLAND:

Exterior boundary value problems and boundary integral equations

The lecture is é report on a joint paper with G.C. Hsiao:

on a boundary integral method for some exterior problems in
elasticity (1983), to appear in the special issue of Dokl. Akad.
Nauk, dedicated to the late Academician Prof. Dr. V.D. Kupradze on
the occasion of his 80th birthday.

We consider the exterior two- and three-dimensional first and
second boundary value problems for the Navier equatioﬂs.governing
an ideal elastic medium. The problems are formulated via the
"direct method" in terms of boundary integral equations of the
first kind with weakly singhlar or with hypersingular Kkernels,
respectively, as well as ih_terms of the claésical Cauchy singular
integral equations of elasticity. In order to formulate uniquely
solvable equations we incorporate rigid motions at infinity
finding a unified treatment of the generalized exterior problems.
All the boundary integral operators are analyzed as strongly
elliptic pseudodifferential operators. The correspondihg Fourier
analysis is indicated as well as its constructive aspecté for
corresponding spectral methods. Finally we giQe' existence and

regularity results as well as a constructive solution procedure in

.the scale of Sobolev spaces on the boundary.

Berichterstatter:
S. Knecht, F. Penzel, E. Meister, W. Wendland (Darmstadt)
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