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Ergodentheorie und dynamische.System~

17.8. bis 23.8.1986

Die Tagung fand unter der Leitung von Herrn Prof.Dr .. M. Denke~

( Göttingen ) und Herrn Prof.Dr.· :S.J. Patterson ( Göttingen )

statt. Im Mittelpunkt des Interesses standen Fragen der Ergoden­

theorie, verschiedener pyperbolischer geometrischer dynamischer

Systeme und deren Zusammenhänge.

Ziel der Tagung war es, Kollegen verschiedener Arbeitsrichtungen

zusammenzubrinqen und Diskussionen zwischen ihnen zu fördern.

Tatsächli~h war die Woche durch intensive Diskussionen und

Ge~präche gekennz~ichnet, die zwischen yerschiedenen Fachkreisen

stattfanden. ·Während der Tagung wurden 24 sechzigminutige Vor­

träge gehalten. Es. nahmen 35 Mathematiker aus 9 Nationen teil-.
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Vortragsauszüge

J. AARONSON

Ways in which transformations preserving infinite measures are

normalized inside each other

An infinite measure space has no canonical normalization and so

arbitrary normalizations should be allowed for in the definition ~

of "factor map" between m.p.ts .of R. For T=(XT,RT,mT,T) arid

S=(XS,Rs,mS'S) m.p.ts of IR and CE (0,00), a c-map of T onto S

should be a map TI:X
T

-+X
S

3 TI-lBSS' BT , nT=Sn, mTon-l=c.ms ( written

n:T~S ). The collection ~(T)={C·E (0,00):3c.e.m.p.t U and ~:UlT,~:U~T},

defined·for a c.e.m.p.t T, reflects the ways T is normalized in

its extensions. ß(T) is an analytic subgroup of (0,00). If Sand T

are similar ( have a common extension) then ~(S)=~(T). Fer

rationally ergodic m.p.ts ß(T)={l}. ß(T) can be : any countable

subgroup of (0,00), (0,00) and also can have arbitrary Haussdorff

dimension . This is because the group of invariant translations

of an ergodie invariant me~sure on Rappears as ~(T).

w. BALLMANN

Surfaces without conjugate points

A Riemannian manifold M does ~ot have conjugate points if, for any4lt

two points p,qEM and any curve connecting p and q, there is a

unique geodesic connecting p and q which is homotopic to c. On

such manifolds one can construct horospheres. By example it was

shown that the horospheres do not necessarily depend continously

on their center in the C2~topology. The example was constructed by

the speaker in· joint work with M.Brin and K.Burns.
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R. BROOKS

Limit sets and circle packings

In this t~lk, we prove the following

Theorem: Let r be a geometrically finite Kleini~n g~oup without

cusps. Then there exist arbitrarily small quasi-conformal defor-

• mations f
E

of r , such that r
E

is contained in a co-c~mpact group.

The idea af the proof is to parameterize the deformation spac~

of f according ta' how one may ~ack cl.rcles on' the "ends" of fIl /r .
Given four circles forming a ~urvilinear rectangle, one may place

ei ther a "horizontal" or a n.vertical" circle which touches three

sides of the rectangle. Continuing this.process indefinitely, one

forms the continued fraction nl+l/(nz+l/(n3+ ... corresponding to

this rectan~le. One proves., that this parameter varie~ con~inous~y

as ·one'·va+ies the circles, and that deformation of r are p~rame­

trized by these ~ontinued fracti~n coordinates. To prove the

theorem, one varies r by E until these coordinates- are a11 'rational.

R. BURTON

The Central Limit Theorem' for bynamical Systems

( jo~nt work with M.Denker ) Let (X,T,~) be an aperiodic dynamical

system, that iS,a Lebegue measure space with probability measure ~

and T:X~X is a measurable, measure-preserving transformation with

~{x~ X13n, Tnx=x}=~. It is shown that there ~lwqys exist fu~ctions

f t: L 2 (~) with Ifd~=O satisfying the Central Limit Theorem, i.e.

if S f=f+Tf+. ~ •+T
m

-
1
fand 0 = "5 f I'. then 0 ~oo andm m m 12 m

~{X6 xis f(x)/a <tJ~(I2TI)-lIt exp(-u 2 /:2)du as m~oo.
. m m '=00
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S.G. DAN!

pynamies on homogenous spaees

Let G be a connected Lie group and C be a closed subgroup of G,

such that G/C admits a finite measure invariant under the G-action

on the left. Let U be a horospherical subgroup of G ( that is,

there exist 96G such that U={UEG\gjug-j.... e (the identity), as j ....oo}).

We describe results on densitiy of orbits and the closures of

non-dense orbits- of the U-action on G/C. In·particular, if G is ~

the orbit of a suitable closed subgroup H of G and the orbit

closure admits a finite H-invariant measure. On the other hand,

for a general Lie-group G as above, and a horospherical subgroup U

acting ergodically on G/e, an orbit is dense if and only if its

image in the maximal semis~mple factor is dense.

We give some applications of the result to diophantine appro­

ximation in matrix set up.

P. ·EBERLEIN

Syrnmetry Diffeomorphism Group of a Manifold of Nonpositive Curvature

Let M denote a eomplete, simply connected manifold of seebional

curvature K~O. Eaeh point of Mdetermines a geodesic symmetry

that 'fixes p and reverses all geodesics through p. Let G* denote

the group of.homeomorphisms of M(oo), the points at infinity con-

sisting of asymptote classes of geodesics. Theorem: Let M be -~ .

irreducible: and suppose that G* has an orbit in M(OO) that i5 not

dense in M(oo). Then M is a symmetric space of noncompaet type and

rank ~ 2. This result can be used to give a simplified proof of

the Gromov Rigidity Theorem as weIl as eharacterizations of

symmetrie spaees of noncompact type and rank at least 2 in terms

of properties of the Tits geometry in M(oo). The main idea .of the

proof is to show that G*.(x)2{Yw(oo):we4>(v)}, where v is an·

arbitrary unit vector of M, x=y (00) and ~ is the holonomy group
v

at the footpoint of v. The result then follows from a theorem of

Berger.

. i
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u. FIEBIG

Gyration numbers of automorphisms

We give a partial answer to the problem of construct~ng an element

in nnl~/~7 that is not in the image of the automorphismgroup Gf

any subshift of f~nite type u~der the Boyle-Krieger gyration­

homomorphism. We ~olve the related problem for the subgroup that

is generated by involutions.

Furthermore we give a formula how to compute the gyration numbers

for an involution of a mixing.subshift of finite type with irredu­

cible inverse of the zeta-function. This formula is determined by

the coefficients of the characteristic polynomial of the subshift

and one belanging to the subshift restricted to the fixpoint set

of the involution.

M. GERBER

Geodesic Flows on 52

We describe same Riemannian metricson 52 with ergodic"geodesic

flow. A C1-example was constructed by R.Osserman. Also, V.Donnay

gave ~ Coo-example.with almost everywh~re non-zer~ Lyapunov

exponants which he ,conjectured was ergodic ( preprint,' 19'6 ).

We"give an example similar to Donnay's, but avoiding the

attachment of lang flat cylinders in his construction. We prove

that our example is ergodic. Moreover if we perturb our metric

( in Cr-topology, with agreement up to some' finite :order on three

closed geodesics ) then the resulting flow is still ergodic. Our

collection of perturbed metrics includes areal analytic one.

Th~s is a joint work with Keith Burns.
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S. GLASNER

Distal and Semisimple Affine Flows

Let T be a topological group and Q a convex compac~ set. An affine

flow (T,Q) is minimally generated if (T,X) where X=~, is

minimal. We prove that a minimally generated, metric, distal flow

is equicontinous. A flow is called semisimple if it ~s the union

of its minimal sets. Dur main result is that for ametrie semi­

simple minimally generated affine flow (T,Q) the minimal subflow

(T,X) is strongly proximally equivalent to an isometr~c extension

of a strongly proximal flow. When T is amenable it follows that

(T,X) is a strongly ·proximal extension of an equicontinous flow.

We also show how the Poulsen simplex provides an example of an

affine flow which is both minimal and strongly proximal.

A. "KATOK

Invariant families of cones and ergodicity of symplectic maps

and Hamiltonian systems

•

Let M be a cornpact contact manifold, ft:M~M, tE R be a Cl + E (E>O)

contact flow on M, e.g. the geodesie flow on the unit tangent

bundle to a compact Riemannian rnanifold. Fix a Riemannian metric

on M. Let us assurne that for each XE M\Eo ( Eo a closed invariant

set s.t. M\Eo is connected ) the space Kerx~ ( ~ the contact flow
+ - +-

allows a decomposition KerxQ ~ Dx .+ Dx such that Dx and Dx depend •

on x continously ( not necessarily uniforrnly continously )', the

cone K+={U+V;~D:, V~D~I"U~2~v8} is invariant ( dftK:<K;tX ) and
for every xeM\Eo there exit t such tha~ the cones

K+ t = df t Kf x and K- t = df_ t (Tftx\K; x) are disjoint.x, -t x, t
Theorem: The flow f t is ergodie.

There is a similar result for symplectic maps. Among the applications

are the construction of a COO-rnetric on any compact 3-manifold with

ergodic geodesic flow and uniformly treatment of same previously

known results.
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s. KATOK

Reduction theory for Fuchsian groups

Let r be a Fuchsian group, i.e. a discrete subgroup 'of the group

of isometries of the hyperbolic plane H2
, with r\H 2 compact. Let

Yl' Y2 be two hyperbolic elements. In order to decide whether

they are conjugate in r or, in geornetrically language, whether

they define the same closed geodesie in r\H 2
, we develope a so­

called reduction theory. It se,rves the same purpose as Gauss

reduction theory of indefinite binary quadratic fo~ms for'SL(2,a)

based on continued fractions. An. important ingredient in the

argum~nt' is a construction of two expanding map~ on the boundary

f±:Sl+S~ associated to r. This construction is a generalization

of that u$ed by Bowen and Series.

M. KEANE

Uniqueness of infinite" ~lusters in two-dimensional percolatiQn

Consider a probalistic situation in which each of the sites of the

two-dimensional square lattice ( i.e~ each point in Z2 ) iso
Z2

occupied or vacant, specified by a probability measure ~ on {O,l} ,
1 meaning "occupied". The occup~ed sites of any configuration

fall apart into maximal connected subsets ( z and z'are connected

if Iz-z'.I=l ) called occupi~d clusters. Denote by N the number of

infinite occupied clusters . Suppose that ~ is invariant and

ergodie under horiz~ntal and vertical translations'separately,'

invariant under horizontal and vertical axis symmetries, and that

~(AnB)~~(A)~(B) for al~ A,B increasing ( FKG or ferromagnetic

condition ). Then N is ~-a.e. constant, and we prove that either

N=O or N=l with probability one, in joint work,with'A.Gandolfi

( Delft ) and,'L.Russo ( Rome ). The proof is 'by an application of

aversion of the multiple ergodie theorem cornbined with topological

properties of paths in ~2.
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G. KELLER

Zeta-functions for piecewise monotonie transformations

The follo~ng result on pieeewise monotonie interval maps T with a

finite number of monotonie branepes is reported: Suppose that eaeh

monotone braneh of T extend5 analytically to a complex neighbour­

hood of· its monotonieity interval. Let S:=lim(infITn'(x)1 )-l/n<l
R+co x

(i.e. some Tn is piecewise expanding ). Then there is a Markov~

extension (i,i) of ([O,l];T) and a Banach-space H of piecewis~

analytic functions defined on X such that the Perron-Frobenius
A A A

operator P associated with (X,T) aets quasicompaetly on H with

essential speetral radius&. The 'zeta-funetion

. ~(z) = exp( ~lzn/n>[O 1] Tn _:l/ITn'(x) I)
n- xe" x-x

ex.tends analytically to {lzl<&-1.}, and if Izl<&-1,' then z is a.

zero of l/~ with multiplicity m iff Z-1 i5 an eigenvalue of P

with multiplicity m. For the Perron-Frobenius operator P of

([O,l],T) we obtain as a coro11ary: If Iz!<&-V2 and Z-1 is an

eigenva1ue of P ( aeting on funetions of bounded variation ) of

multiplicity m, then z is a zero of l/~ of multiplicity m.

H. KRIETE

Si~p:ly connected imtnediate ba.sins of attraction

Let R be a rational function of degree R > 1. Then zo=O i5 an

attractive fixpoint of R with a simply connected immediate basin

of· attraction iff the fo11o~ing holds: There exists a holomorphic

mapping ~ : D~{zEcJlzl<l}+c with ~(O)=O and a finite Blaschke­

product.B with B("O)=O and ~B=RcI> on D. It turns out, that in this

situation ~(a) is the immediate basin of attraction of Zo and

simply connected. It is conjectured, that ~ is proper. This was

shown in the f0110wing cases: 1.) B(z)=azb with lal=1, b>1·

2.) deg(B) ~ deg(RI~(D»

3.) deg(B) is a prime-number.

                                   
                                                                                                       ©



- ,9 -

F. LEDRAPPIER

Ergodie properties of the harmonie measure

Let Mbe the universal eover of a eompaet manifold M with

negative curvature, V··the harmonie .elass of measures on the

absolute M(~) and we identify in the natural way eaeh unit­

tangent sphere SM, xeM with M(oo). In this set-up we make~the
. x..

following remark: There exists a unique probability measure m

on SM, invariant under the geodesie flow,.where eonditional.

measures on the fibration in spheres {S M, xEM} belang to the. . x
harmonie class. The measure m is a Gibbs state for some Hölder-

function defined using the Green ·funetion on R.

N. MANDOUVALOS

The nMaass-Selberg n formalism for Klein-ian groups

L r b 1 ·· . n+1 f het e a K e1n1an group aet1ng on H • Then one 0 t e

fundamental problems i5 the speetral theory of the hyperbo1ie

manifolds r\Hn+1.. There is 'a direct sum decomposition
2 ( \ n+l . 2 \ n+l 2 \ n+1 '" 2 'rL r H )=Lo(r.H )~Lc(f H' ), where La 1S th~ space attached

to ·the discret~ part of the ~pectrum and L~ is the s~ace attaehed

to the continous part of the spectrum and this is described by

certain Eisenstein series. These Eisenstein series exist.primari1y

in ~ certain region of the comp1ex plane and the main problem is

to continue them analytically in .the whole complex plane and to

find their funetional equation. 'This problem is quite comp1icated

and the main part cf it consists of what we have called the uMaass­

Selberg n formalism. This consists of the inner product formula an~

the "Maass-Selberg l1 r~l~tions. These relations allow one to modify

the original Eis~nstein ~eries and produ~e L2_~ersions of them in

such an intrinsic way that one can evaluate their inner .product in

the space L 2 (f\Hn +1 ) in terms of objects which live on the boundary

r\n(f) of the manifold.
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M. MISIUREWICZ

Pe~iodic orbits of maps of Y

The theorem ob.Sarkovskic gives a full characterization of sets of

natural numbers.which can appear as the set of periods of all

periodic points for continous maps of an interval into itself. We

prove the analogous theorem joint work with Ll.Alseda and

J.Llibre ) for the class.of continous maps of Y={Z€C:z 3 is real

and O~z3~l} whieh keep 0 fixed ( we denote this classJt) .

. The main tool used in the proof is the notion of a primary 4It
orbit. A periodic orbit P of f from some classJr of maps iso

called primary if there exists gEJrsuch that ~Ip = f~ and 9 has

no other perio?ic orbit of the ~ame period as P. We prove that if

a map fEj has aperiod orbit of period m then it also has a

primary 'orbit of the same period. Then we find and classify all

primary orbi ts of maps fE~. This method may be used 'for further

generalizations of the. Sarkovskic theorem.

Z. NITECKI

Combinatorial Patterns for Maps of the Interval

Maps of the interval have a certain rigidity, indicated by the

Sarkovskic theorem, which says that the existance of an orbit of

period n for f forees orbits of period k which are determined 'by

n independent of f. We investigate a similar relation for the

combinatorial patterns represented by orbits. There are three 4It
areas in whieh we present results: 1:) Primary cycles: a cycle

permutation of period 2Nq ( q odd ) which forces no other

permutation of the same period is the top of a tower of N+l

extensions of specifiable type. 2:) Maximal cycles: a cycle

permutation which is not forced by another of the same period is

eharacterized by maximodality and a condition we call Ifsemi­

polarization". 3.) Interrnediate forcing: If e forces n, then

assuming e doesn" textend n and n is not a 2-extension, there is

a rieh structure of extensions of n forced by 8. Of the results

above, 1.) were known previously; 2.) and 3.) represent very

recent joint work of the speaker with M.Misiurewicz ( some

carried out at this conference ).
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S.J. PATTERSON

A Lattice-point problem in hyperbolic space

Let T be a geometrically finite discrete group acting on (N+l)­

dimensional hyperbolic space. Let ö(r) be the "exponent of

converg~ncen of F. The leading term of the asymptotic ~evelopm~nt

of the orbital counting ~un~tion for r was determined if r is

additionally convex-compact, extending earlier work of Lax­

Phillips and other~ valid when ö(r»N/2~ Essential to ihis

'determination is the use of Hopf's ergodie theorem to show that

the analytic continuation of ,the resolvent kernel has 'no

"resonances"

·M. REES

on the line Re(s)~ö·(r).

\.

Rational maps of degree two

I want to talk about an incomplete attempt to generalize the

description - originally due to Douady and Hubbard'- of the

structure of the set of polynomials - especially' of degree two

from the point of.view of varying dynamies. ~he Julia set J(p)

of a polynomial p ( the set where the d'ynamic~ are non-trivial' )

is the boundary of the superattractive basin of 00, and (J(p),p)

is a quotient.of ({z:'zl=l}, Z*Z2) if p'has degree'2 and J(p) is·

locally cont;lected., which iso true, for instance, if p is in t'he

Mandelbrot set and p is expanding on J(p), conjecturally.a dense

property. Variation of dynamics then translates into va~ia~ion of

identifications on ,{ z: \ z 1=1} , and, for a polynomial ~f degree 2,

it is known exact1y which identifications occur if p is expanding

on J(p). A rational map f of degree 2 can also be a quotient of

({z:lz\=1}, Z~Z2) on J(f), and, again, if f"is expanding, there is

a complete decomposition'of the set of quotients occuring. But,'

in general, f is a quotient only on a Denjoy 'extension of

({z:lzl=l}, zt+ Z 2).
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M. SMORODINSKY
-.

Normal subsequences for Markov Shifts and subshifts of

maximal entropy

Champernowne ( 1933 ) gave a constructive example of anormal

nurnber to the base 10. Namely .0 1 234 5 6 7 8 901 0 2 ... 09 11 12 ...

We shall generalize Champernowne's construction to obtain

explicit norrn~l sequences for finite state Markov processes and

for intrinsically ergodie subshifts (i.e. subshifts whose measure

of maximal entropy is unique ). As examples of. the latter we have _

shifts of finite type and ß-transformations [5]. For each n>O, ~

nn~sn, where S is the state space of the process, will be given.

Then w
n

will be formed by concat~nating all elements of an ( in

any order ), and the sequence is 'torm/ed by concatenating the wn;"s,

w1 w
2

Wj ... In champernowne's construction an = sn. For Markov

processes we will have to do little work to get the appropriate

nn' while for intrinsically ergodie subshifts the Qn will simp1y

be all of the adrnissible n-blocks.

N.TH. VAROPOULOS

Re~ent results on Fuchsian group~

I examined the following two problems:

Problem 1: Let M;M be a.Riemannian covering of M some compact

Riemannian manifold. Find necessary and sufficient conditions for

the existence of non trivial bounded harmonie f~nctors on M.
Problem 2: Let r be a finitely generated Fuehsian group, let rier

be asubgroup, let o(r)=ö be the convergence exponent of r . Find

conditions for the series L:::
r

(l-IYI)o to eonverge.
y€: 1

Problem 2 can be solved completely for rl~r and 1/2~ö~1.

D. WRIGHT

Circle packings arising in the boundary of Teiehrnüller space

This is ci preliminary report on a sti 11 .ongoing investigatian inta

the space af Teichmlil~er space in an embedding due to B.Maskit.
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Here we limit ourselves to TI,1 ' the space o~ once-punctured tori.

For a given complex number ~, we consider the group G generated
. ~

by S(z)=z+2 and T~(Z)=~+I/z. Maskit realized TI,1 as the set D of

~ with im(~»O for which there are curves Cl' C2 as shown

T (C 2 ) Cl """'--- ~.,
~,

S{Cll Cl ~~~
er

It is known that D is a simply-connected domain containing

{im(~»2}., To any abstract generator X of the free group <S;T~>

there is one value of ~ on aD such, that Trace(X)=2. We pres~nt

a combinatorial pattern in the limit sets ( the' "circle-packings"

mentioned in the title ) corresponding to these IIcu~pidal" groups.

Thi·s leads to a combinatorial pattern in the choice of Cl' G2 .

We hope this will show' that 'aD is a 'simple continous curve.

A'. ZDUNIK

Hausdorff and Gibbs measure on same invariant sets for holomorphic

~

Let n be a simply-connected domain in ~ such that card(~-n»2,.

Let R:D 2-+-f2 be a Riemannian mapping. R has nontange-tial- limits a.e.,

thus the image w=R*l ( 1 is the Lebesgue measu~e ) can be defined.

The Hausdorff dimension of w (being defined as infimum of'

Hausdorff dimensions of Y over all sets Y with w(Y)=l)-is always

equal to I if an is a Jordan curve (Makarow,1985). Moreover, ,there

exists a constant c such that w is always absolutely continous

with respect to the Hausdorff measure A~c' where

~ (t) = t-exp(c/log(l/t)logloglog(l/tf). Assume now, there is ac . ,
OJ -n

holomorphic function f:U-+-C, where u~an and ~lf (QnU)=an.' Then,

it foliows, that w is "as singular as possible": there exists a

Co> 0 such that for c~co w is singular with respect to A~c' for

c>co it is absolutely con~nous with respect to A~c. Unless, an

must be an analytic curve. As an example, consider a family Z2+C •

Then for any ctO,-2 the measure w on an ( where Q is a basin'of OJ

has this singularity pr~perty.

Berichterstatter: Hart je Kriete
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