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Eiementare und analytische Zahlef'ltheone

25.9. - 1.10.1988

Die TagunQ}and unter der Leitung von Herrn Prof. Dr. H.-E. Richer.t ( Ulm ), Herrn

Prof. Dr. W. Schwarz ( Frankfurt) und Herrn Prof. Dr. E. Wirsing ( Ulm ) statt.

Im Mittelpunkt des Interesses standen aktuelle Fragen aus der Zahlentheorie~ die über

_wiegend mit analytischen Methoden behandelt wurden.

In 36 anspruchsvollen, auf hohem Niveau stehenden Vorträgen wurde über Fortschritte

in der Primzahltheorie, in der additiven und multiplikativen Zahlentheorie t auf- dem Gebiet

der Siebmethoden und über die neuere Entw!cklung bei der Behandlung der Riemann

schen Zeta - F~,"!ktion berichtet.

Während der Vorträge und insbesondere bei der von Herrn Prof. Dr. P. Erdös geleiteten

Problem - Session wurden viele ungelöste Fragen angesprochen. Möglicherweise ist die

lösung des einen oder ander~n dieser Probleme Gegenstand eines Vortrages schon bei

der nächsten Tagung über elementare und analytische Zahlentheorie.

Das Vortragsprogramm wurde ergänzt durch persönliche. Gespräche und fruchtbare

Diskussionen der aus 16 Ländern angereisten 46 Teilnehmer.

Wieder ermöglichte es die vorbildliche Organisation des Instituts t daß dieser Gedanken

austausch in so harmonischer Atmosphäre stattfinden konnte. Unser besonderer Dank

gilt dem Institutsleiter , Herrn Prof. Dr. M. Barner t und dem Personal, das wesentlich

zum guten Gelingen der Tagung beigetragen hat.
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K. ALLADI

Multiplicative Functions and Brun's Sieve

Let 9 be a strongly multiplicative function and gy ( n) = . n 9 ( P ). For A :: 7L. +
pln.p<y .

let JJ ( x) =JJ n [1 • x ]. We think of the sum S (A ( x ) , y ) = L 9 (n)
9 "E:AC.) Y

as a "generalized sieve problem" because it satisfies the Buchstab identity

S (A(x),y) =S (A(x)'Y1) + L g*(p) S (A (x). p),
9 9 y~p<y, 9 P

whl!rl! g·(n)=p~n(l-g(p)) isthl!dualofg. Whl!n O<:g<:l, thl!sumSgcanbe e
given an interpretation in the classical sense. Here 0 s: g" s: 1, and g" keeps track of

the amount of sieving done. This ease has interesting applications to Probabilistic Number

Theory, and the combinatorial sieve can be used to estimate 59' Even when 0 So 9 :s; 1

daes not hold, sieve methods cCl:n be used to estimate 59' In p~rticular when g.(p) = 2,
note tha~ 9 (n) = (- 1) v (n ). So by means of the 'pure sieve' it',c;an be shown that

\I (n) c / logl09 xL ( - 1) y = 0 ( IA ( x) I ). x. y -+ co. y s: IA ( x) 1
n EA(x)

for a large class of sets A . . In other words \}y ( n) is uniformly distributed mo~ulo·2

for n E A ( x ). (Here v (n) = L 1 )
y pln,p<y

G.E. ANDREWS

The Rogers - Ramanujan Identities

This talk was devoted to a discussion of a number of topics arising from Ramanujans

work. especially his 'Lost Notebook·. First the series

oe

L R(n)q"
neO

was discussed. Arecent theorem of D.Hickerson. F.J.Dyson and me asserts that R( n) is ~

almost always = 0 and that for any integer m t the equation R ( n ) .= r:n has infi~itety many ..

solutions in n. Next we presented a motivated proof of the Rogers - Ramanujan identities

(joint with R.J.Baxter) which will soon appear in the American Mathematical Monthly.

Finally we discussed the polynomials

o Cn) = . f (- 1)A qA(SA+1)/2 [[n~kA]]
k AC-oe 2

[ AB] --where
(1- qA)( 1- qA-1 ) ..... (1- qA-B+1)

(1- q B)( 1- q B -1 ) ..... (1- q)
and [x ] is the largest integer s: x.

Schur's 2nd proof of the Rogers - Ramanujan identities relies on Os (n l. Bressoud (1980)
usas 0 4 (n ) and Watson's proof (929) can be modified to be an assertion about O

2
( n ).

Are there any nice results about 0 k (n) for other k which imply the Rogers - Ramanujan

identities? In particular what about 0 3 ( n) ?
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P.T. BATEMAN

Same Bizarre Questions and Theorems about .Squares and Triangular Numbers

The triangular numbers are the numbers j (j + 1 ) / 2, j = 1,2, ... and the squares are the

numbers k 2, k =1,2,.... Recently I have been asked several questions about these two

sequences which seemed somewhat unusual to me. ( Perhaps "bizarre" is too strang a termJ

Some of these questions were easy to answer • ethers were more difficult and others

seemed impossible to me. The following is one of the impossibly difficult ones. let 5 be the

set of positive integers n for which. there is a square equal to the sum of the squares of

exactly n consecutive positive integers. For example, 11 E 5 since 77
2 =18 2 + 19 2 +...+ 28 2

.

If N (x) is the counting function of the set 5. it is easy to show that ii « N (x) « _x_.
log x

What is the exact order of the function N ( x). Several other questions were also discussed .

H. DELANGE

The integers n for which Cl ( n j is large

If p is a prime we denote by \) p ( n) the exponent of p in the factorization of the positive

integer n. 50 () ( n) = r \) (n). We study the distribution of the values of v (n).
p p p

p fixed, among the integers n s: x for which () ( n) = k. We restriet ourselves to the

case k ~ ( 2 + b ) logl09 x. where b is a fixed positive number. let N ( x •k) be the

number of n's ~ x for which O(n) =k. let y =x/2 k .

Then among others the following theorems were show';:'

Theorem 1.. Given A > 0, we have L:Jniformly for _.x; ( t s; A

1 ~

N ( x ,k) a { n ~ x. () ( n ) k and \i 2 ( n) s;: k - ~2 loglog y + t ..; 2 logl09 y

t

=G(t) + O(-;:::=1=~), where G(t)= ~fe-"u2/2dU'
-1109109 y ',.. 2 TI _ 00

Theorem 2. Let p 1 ' .•• ,p 8 be distinct odd primes. We have uniformly for

IX 1 + ... + Cl s :' S I 109109 y, where 0 < 0 I <. Ö,

1
N ( x ,k) U { n !: X. 0 ( n) = k and \) Pj (n):: 0: j for 1 s; j s: s '}

s . ::x

( 1 -I- 0 (_1__ )) TI (~) j (1 _.L) .
109109 Y . j C 1 Pj Pj .

If k .... i ~ . 1we suppose that ~ r. log 2 with A ( • in the above theorems y may be replaced by x.

E. FOUVRY

Exponential sums for monomials

We present results obtained in collaboration with H. Iwaniec in the problem of bounding

multidimensional sums of the type
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The main tool is a lemma of Bombieri and Iwaniec ( Double large sieve inequaJity ) which

reduces the bounding of such a sum to a spacing problem of points. When combined with

other classical techniques of exponential sum theory ( Weyl" s shift, Poisson summation

formula, ... ) we prove several theorems according to the size and the number of variables.

The most important one is the following:

Theorem. let Ci -t 0, 1 and H, M , N ,x ~ 1. let X. ( h) be an additive character X ( h) = e ( ~ h )

( ~ E IR) a~d cP m' 4J n be complex numbers with I tp m I s: 1 ,I !.tJ n i ~ 1.

Then for the sum
. h n- 1 m cx

. Sv tn .1, (H, M, N) = L L L X ( h ) cp m 4J n e (x -1 IX

.....,...'+' h""'Hm""M n""'N HN M

we have the bound
1 1 1 1 1 1

Sx.",.tIJ 1H •M ,Nl « IHMNl
2

[IH+Nl
2 (x8

H-
li

M
12

N
6 •

1 1 3 1 1 1 1 1 1 1

+ x'8 H -"8 N '8 + N2' + N 4 M '8 ) xe + M '2 + x "4 M '2 N ] log 4
( 2 x H MN).

This theorem leads to an improvement in the problem of finding P 2 - numbers in short

intervals.

J. FRIEDLANDER

Umitations to the equi - distribution of primas ( jointly with A. Granville )

We have studied the analogue for arithmetic progressions of the method of H. Maier for

disproving the asymptotic formula for primes in short intervals . We are able to get results

for progressions with extremely large moduli. The simplest special case is

Theorem ,. Let N ) 1. There exist arbitrary large reals x, primes q s: x log - N x and

integers a with (a, q) =1 such that

»
N

x
cp (q) .

This contradicts the conjecture of Montgomery that for q < x, (a ,q )

cjJ I x ;q ,a l = :p~ q l + 0 E ( ({-)i + E log x ) .

We are able. to show that even on the average over q the asymptotic formula may fail.

Typical examples of Dur results here are

Theorem 2. Let N ) 1. There exist arbitrarily large values of x and corresponding values

for a for which, if Q = x log - N x, we have

L I ~ (x; q ,a) ~ tf'j (Xq ) I »
Q<q~2Q T N
(q.a)=1

x
109109 x

and

~ max I 4J ( x ; q ,a) - in (x
q

) I » N Xt
Q < q s: 2Q (a. q ) ;;: 1 T

the latter being optimal. Thus the Bombieri - Vinogradov estimate daes not in: general hold in

this range, contradicting the strong form ( Q = X 1- E may still be possible ) of the conjecture

of Elliott and Halberstam. The range of Q may be further reduced and this will form the

subject of a future work by the author jointly with Hildebrand and Maier, who independently

have discovered the same circle of ideas.
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A. HILDEBRAND

Irregularities in the distribution of primes ( joint work with H. Mai~r

let ~(x) = L A (n). where 1\ is the von Mangoldt function. and define ~ (x.y) by

4J (x + y) - 4J (:; = ( 1 + 6 (x ,y ) ) y. Probabilistic c~nsiderations suggest that 6. (x.y) is
-1/2 . I o(1h

roughly of order y . We show. however. that for intervals of length y = exp \ (Iogx) )
6 ( x •y) can assume much larger values.

log log.
log y

where

let E) 0 be fixed. Then for all sufficiently large x

there exist values x ~ E [x,. 2 x] such that

± 6(x;1:'Y) :l!: c(e) y -(1+E)'Tj •

~log
loglog •

Theorem.

A is an absolute positive constant and c ( e) is a positive constant depending

only on E.

The above bound is » 1 if Y = (log x) 0 (1) and » E y - E if Y = exp ( (log x) 0 ( 1) ).

1\ is inconsistent with the bou'nd predicted by the probabilistic model used by Cri(lmer to

formulate his weil - known conjecture.

E. HLAWKA-

Elementare Zahlentheorie und ßleiclmlrteilung

Es seien p 1. ... •p. verschiedene Primzahlen = 1 (mod 4 ). Es gilt Pj = 1! j 1tj. 1t j Primzahl

in Z (i). ~ = e 2
CPj :: -e 4n i tll j (j =1, ... ,s). Es wird betrachtet die Folge

1t j.
1

k ( 2 4' l' ... ,2 4' •• 2N) für k = 1. ... , N. Für ihre Diskrepanz gilt

D N ,;; c 11~~:gNN)· . Dies wird angewendet auf Gleichverteilung auf dem Einheitskreis und

·auf der Sphäre S 2 und S 3. Eine Methode von Siegel wird auf die simultane Approximation

yon Irrationalzahlen angewendet.

M.HUXI..EY

ExponentiaI sums andlattice points

(Watt) •

The speaker and N. Watt have succeeded in generalising Sombieri and Iwaniec·s bound for

C( ,+ it) to show

2M
1: e ( T F ( m

M
)) = 0 ( M 1/ 2 T 89 / 560 (log T)B )

mzM

L
~
~

1=1

2M

L
m=M

( m ) I ( ,/2 89 / 560 B )e TF(M'YI) =O\ELM T (logT) (HuxleYtWatt).
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where Y1' ... 'YL are wel'- spaced in [0,1] and E·= L -13/560+ other terms < 1,

when certain combinations of derivatives of F ( x ) or F ( x, Y ) da not vanish.

A corresponding generalization of Iwaniec and MOZ2ochi's bound for the circle and divisor

problems gives: Let C be a simple c10sed convex curve, three times differentiable, with

area A and nonzero curvature. The number of lattice points inside the enlarged curve Me is

A M 2 + 0 ( A7
/22 ( log A )9 ) . ( Huxley )

This corr~sponds to T = M above; work progresses on rounding error sums, and lattice

points close to ( or on ) the curve y =T F (xl M) when T > M.

A.IVIC

The error term in the mean - square farmula for the zeta - func:tian

Several results on the function

T

E( T ~ := f I ~ ( ~ + it ) I 2 dt
o

T ( log :7t + 2 y - 1 ( y is Euler's cons~ant )

are presented. These include omega results which are analogous to the sharpest known

omega results in the divisor problem. They were proved by J.L~. Hafner and myself.

In a joint forthcoming work with H. te Riele we discuss t ,the n-th zero of E(T) - 7'(.

; . 1 n -3/4 .. '.
One has t n ... 1 - t n <( t n ,wh.le t n • 1 - t n » t n (log t n ) for mfmltely many n .

Numerical calculations ( for t n s: 10 6
earried out so far support the conjectures that

lim sup
n ~ CD

log ( t n + 1 - t n )

log t n

t
4

" t )2 = T 5 / 4. ... 0 ( 1) (T ~
L.. (t n+1 - n

t s: Tn

).

-1/4
Also max (t n - t n _ 1 ) t n - 1

is 0.0002 for n = 27021.

M. JUTILA

12.3436... for n =59464, while the minimum

. Mean value estimates far L - functions

The following mean value theorem for Dirichlet L - functions is discussed:

let T 1/2 + E « T 0 « T 2/3 and let T s: t 1 < ••. < t R ~ 2 T. where t r.1 - t r ~ T o'

Then for any integer D ~ 1t

«

( .)

The ease D =

L
xmod 0

1.:
X. ""od 0

t + T .
rS 0 I 14 ( 2/3· E

. I L ( ,+ i t , x.) i d t «0 R T o + (RT) ) (D T) .

t r

i. e. ~(s» is due to H. Iwaniec. Two corollaries:

T+ T 2
/

3
4f Il(~+it, X) I dt

T

T 12

f Il(~+itJ X) I dt

o
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The first of these seems to be new, while the second was first proved by T. Meurman in

1984, and an analogous result for a single l - function has been obtained by Y. Motohashi.

The estimate ( .. ) is an application of a general mean value theorem for exponential sums

involving the divisor function d ( n ).

A. KARACUBA
Waring·. problem in 8everBl dimensions

The following theorem is a two - dimensional generalization of Waring's problem:

Consider the system of equations

n-i i n-i i
x 1 Y1 + ... + x k Yk = Ni ,i = 0,1, ... ,n ,

where Ni are the given positive integers of the säme order of growth, No""" + 00. .

X tI ,yBare the unknowns, also positive integers. This system is solvable if k > c n 2 log n,

and if k ( c 1 n 2 then there are such Ni' s that the system has no solutions. Note that

k ~ 2 n is a necessary condition for solvability of the similar Hilbert - Kamke system.

E. KRATZEL

Twa theorems on four - dimensional divisor problems and three applii:atkms

let a l' a 2' a 3' a 4 be positive integers with 1 s: a 1 s: a 2 s: a 3 s: a 4 .and

a =( a 1 ' a 2 ,a 3 Ja 4 ). The divisör function d ( a, n) counts the. number of ways of
a a a a

expressing n as the proäuct n = n 1 1 n 2 2 n 3 3 n 4 4-

We consider t'he behaviour of the function

L d(a,n)DCa;x)

o(a; x) ca" be represented by

with the ma~n term

n s: x'

O(a; x) =

for large i .

H(a;x} + ~(a;x)

The following two theorems are proved by means of the method of three - dimensional

exponential sums:•
H(ai x)

4-

L
v=1

ct v

4-

TI ~ (:t1 )
\.1;;1 v
~~v

( a 1 < a 2 < a.3 < a 4- ).

Theorem ,. The estimation 6. (a; x) « x 5 /2 A4 log
4

x holds under' the conditions

15 A 1 ~ 2 A 4. 3 A 2 ~ A 4' 5 A 3 ~ 3 A 4 ( A v =a 1 + ..• + ci v) .

Theorem 2. The estimation 6. (a; x) « x 42/17 A 4 log 4 x holds under the conditions

6 A 1:2: A 4;' 14 A 2 :2: 5 A··4.. 4~ A 3 :2: 25 A 4 •

These theorems ar:-e applied to· three "umber theoretical I~lroblems: TtfE! distribution of Ctirect

factors of finite Abelian groups, the distribution of powerfull integers of type .4 and the

distribution of cobe - full integers in short intervals .
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M.G.W

On sums of mixed powers

( I ) On the improvement of the pruning teehniques on major ares.

1. let Rb. c ( n) denote the number of representations of n as the sum of one square. four

cubes. one b - th power and one c - th power of natural numbers. Now we ean establish

formulas for R 4."k (n) ( 4 :s: k :S: 6 ) and give tower estimates of the correet order of

magnitude for R 4 • k ( n) ( 7 :s: k :S: 14 ). R 5 • j ( n) ( 5 :S: j :S: 8 ) and R 6 .6 ( n >.

2. let E( N) denote the number of positive integers not exceeding N and not being the sum
131/147

of four cubes. then we can prove that E(N) « N

11 ) New application of Davenport's method. •

Let '" ( n) denote the number of representations .of n as the sum of six cubes and two

biquadrates of natural numbers. Theo for all sufficiently large n

1 16)4 r(43 )4 r(45 )
2

( ) ( I tel ( n ) 0
3 / 2

v n ~ (48)2 09 15 ~

r( ~ )

where e (n) ) > 1 is the singular series.

J.L. MAUClAIRE

Meuurn associated to arithmetical functions

A class of problems in probabilistic number theory can be solved by measure theoretic

methods. The following case is typical:

let f: IN ~ a: be a multiplicative arithmetical function. The hypotheses

Ci) tim
X~C:O x

L f( n) exists and is not 0
nS:x

and (ii) limsup ....!...
X~C:O x

< + co

for same A ) 1 , are equivalent to the existence of a sequence of integrable funetions Fy

on a suitable measured space (E , dtl) such that Fy ~ F d tl - a.e. and in LA (E • d ll)

with I F dtl t 0 • A sketch of the proof has been presented with some comments. . •

H.L. MONTGOMERY

Cyclotamlc partition. ( joint work with D. Boyd )

Let c (n) denote the number of cyclotomic polynomials of degree n. Since the q -th irreducible

cyclotomic polynomial has degree <p ( q )I it follows that c ( n) is the number of ways of writing

n =L k q Cf' (q) where the k q are non - negative integers. 8y convention. c (0) = 1.

For Re z ) 0 I P ( z) = f c ( 0) e - n z TI (. 1 _ e - cP ( q ) z ) - 1 .

n=O q=1

In order to derive an asymptotic estimate for c ( n ). it is first necessary to determine the

asymptotic behaviour of P ( z) as z ~ 0 in a suitable domain. To this end we note that
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C(s+1) F(s) r(s)z-s dslog P( z) =

where F( 5)

f
q=1

f
k=1

TI
p

1
2ni

1+_1__ + 1 + ...
( P _ 1)8 (p2 _ p)5

~(s) Q(s),

•

•

where Q ( 5) = TI (1 + _1__ - _1- ) . .We find that Q( 5) behaves like s - S near
p (p_1)8 pS I

5 =0, and that if 15 I' ) +.' 0) 1~9C 't . then Q (s) is regular and

: Q (5) « exp .O( c IO~ 't)'
This yields an accurate estimate of log. P(z) which in turn gives the asymptotic estimate

-; . l'
C (n) ~ A ( log n ) n -.' exp ( B rn ).

Similarly we let cd ( n -' denote t~'eo number of ~quarefree cycl~tomic polynomials of degree n.

This is the number of partitio~s. into dis~inct parts, k q =0 or 1. We find that

') A -3/4 (B ~,Cd' n ~... do n exp d)' n ,.

Y. MOTOHASHI

Zeros of the Aiemann zeta function in .hort intervaJs of the critical Ii~

Our i~terest lies in' finding lower bounds for the number of zeros of C(5) actually on the

critical line. But, our interest lies '~Iso in the intermediate results needed in proving such

results on zeros of C( s ). This is mainly concerned with finding "good" asymptotic forrnula

T
. '2

for I ( T , A) = f Ic(;+ i t ) A ( ~ + i t) I d t , where A is an arbitrary Dirichlet polynomial.
o

There are sev.eral ways to atti!lck this problem. One is to 'appeal to "good" approximate

functional equation for C( s L This includes the approaches used by Selberg, Karacuba 'and

Levinson. The other way is the one found by Atkinson. The original method due to Atkinson

concerns the mean square of C(s) on the critical line. And to get a similar asymptotic

expansio.n for I (T ,A) as Atkinson's one for C( s ) we need some modifications of his idea.

We describe our modification below in a somewhat generalized way:

Let f( m, n) an arbitrary' function. Then Atkinson's dissection argument is:

!: f ( m ,n) = -!: ( f ( m t m + n) + f (m +n , m) ) + !: f ( m ,m) •
m.n>o m.n>o m>o

We modify. this ~s folIows: Leta t b" be positive, coprime integers. Then we have

I f(m,n) = ( L' + 1: + L )f(m,n),
m,n>o am>bn am<bn amc::bn

where ( e.g. the first sum )

~ f{m,n)
am > bn

L f ( m +ab n , n )
m.n>o

",+bn ao(rnoda).

This simple ( almost trivial ) identity gives several important results on I ( T ,A) as weil as

its extension to L - functions and ( possibly ) on the four·thpowermoment of ~ ( s ).
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L. MURATA

On the "umber of prime. p .atisfying the condition a P - t E 1 (mod p 2 )

We put for fixed natural number a ~ 2

La ( x) = {p; p is a prime '!O: x, a P - 1 == 1 (mod p 2 ) },

and present three results about I La (x ) I. Two of them are concerned with the tendency of

1 La (x ) t. More precisely, the first theorem says that the normal order of I La ( X ) I is

loglog x, and the second one that the natural density of the pairing (a, b) satisfying

I La ( x) n L b ( x) 1 = 0 is equal to 8/7t 2. It seems very difficult to obtain a non - trivial

upper bound for I La ( x) I for fixed a. Our third theorem says that under the assumption

of the Generalized Riemann Hypothesis, we can get a nontrivial upper bound for

I { pE La I X I ; the index of I a mod p 2 I in (1l. /p2 Z r is "rathe~ large" } I . •
The result can be deduced fram a generalization of C. Hooley's work on Artin's conjecture

for primitive roots. In addition we talked about another application of this .generalization on

the magnitude of the ieast prime primitive roat mod p, of course under assumptiün of G.R.H.

J.L. NICOLAS

On the subs.ts of a partition

•
and

+ 0 (_1_ )\-r;;- .

I a' \
- 0.8 r.tJ{ a) + ,0,~ )

n

~(a) log (~
\~

tlJ(a) log (~ )
6n

10 ( R ( n • a) \ s:
9 , p( n) J

We shall say that a partition of n, say n = n 1 + ... + n s' represents a, if there is a subsum

n i 1 + ... + n i r of the partition whose sum is a. We shall denote by R( n ,a) the numbe.r of

partitions of n which do not represent a. In a paper recently accepted in the Memoires of

the French Math. Soc. J. Dixmier has proved that for a fixed a, and n ....,. +:D, one has
7t . \ tlJ (a)

R(n,al"" p(n) (r- ) u(a)
. T6n

where 4J ( a) =L; J + 1 and u ( a) is a constant depending on a. In a paper which will

appear in Cambridge in a volume dedicated to P. Erdös for his 75 th birthday. P. Erdös.

A. Sarközy and myself prove .

Theorem. There exists A > 0 such that when n ~ 00, uniformly for 1 ~ a s; A In, we have

oS:: 10 ( R ( n • a') )
g p( n)

In a forthcoming paper we hope to deid with the case ).. In· < a '!O: .~ , and to show the

dependency of R ( n , a) upon the smallest integer which does not divide a.

A.M.ODLYZKO

lattice points in higherdimenslonal spheres

let N n ( Cl, t) denote the number of lattice points in a sphere in iR n of radius CI In with

center at r =(x l' .•• ,x n ). The asymptotic behaviour of N n ( Cl • {) for Cl > 0 fixed and

n ~ 00 displays some surprising features. The average number ( averaged on { running over

the unitcube ) of lattice points is equal to the volume of the sphere. It is shown that the

maximal number is larger than the average by an exponential factor { in n land the

minimal number is smaller than the average by another exponential factor.
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J. PINTZ

Fast generation of primes and Unnik·s .theorem

Adleman, Pomerance and Rumely found in 1980 an algorithm which decides the primality of n

in (log n)c log109
10

9" steps ( with a running time analysis of Odlyzko ). The most important

problem in this topic asks for an algorithm which works in polynomial time ( log n )c in the

input size log n. (Assuming the Generalized Riemann Hypothesis Miller constructed a
primality test with clog 5 n steps.) Our first theorem answers a problem raised by

Adleman , Pomerance and Rumely.

Theorem 1. ( J. Pintz, W.L. Steiger and E. Szemeredi ) There exists an infinite set rp of

primes such that n E rp can be tested in clog 9 n. steps.

The second result refers to "very fäsf' generation of primes with a random algorithm.

Theorem 2 . ( J: Pintz, W.L. Steiger and E. Szemeredi ) A k digit prime might be generated

in expected time c k 4.

This follows from the existence of a set i' containing infinitely many primes whose primality

m:ght be proved in expected time needed for 3 / 2' exponentiations. ( 3 I 2- can be replaced

even by any c ) 1 ). These problems are closely connected with linnik's theorem for which

the following statistical version can be proved.

Theorem 3. Let x and E) 0 be given then

• {p ~ x~ - E, P prime, 3 I '* 0 ( p) s.t. In ( x ,p ,I) - Ii ~1 I ) E ~ ~1 } ( ce EI
with an effective constant depending onty on e. P

J. POMYKALA

Remainder tenn in the Ras.er - lwaniec siev8 of dimension x E ( i. 1 )

We consider the x - dimensional Rosser - Iwaniec sieve. The following theorem is an

extension of Iwaniec's wellknown result for the linear sieve ( 1977 ): .

Theorem . Let 0 ( e < 1. M ) 1. N ) 1.' ß. = MN ß- 1 • where ß is the sieving Hmit. T"en we

have the following estimates for the sifting function S ( A • P , z ):

!F(~)± S ( A , P , z ) ~ ±. log z + E ( e , 6) + R ± (A , M , N )
f (log 6. ) (z :s;: 6 1 / ß )

log z

where E (e, 6. )« E + E -14 ( log 6: )-:l and the remainder term

R± (A , M , N ) has the following shape:

R±CA,M"N) = L 9 ~ a±. L b±. r(A,mn)
j~ exp(13 E- ) m,:s::M m.J ~:s::N ".J

with a± . = a m± .(M,N,E), b±. = bn.....J·IM,N,E) 5.t.\ a± .J:S;:l, Jb± .l~ 1.
m.J.J",J rn.J ".J

K. RAMACHANDRA .

Aremark on t( 1 + it )

A class of. results of the following type were proved: let T :e T 0 ( e ), where E ) 0 is a con

stant. let x =exp ( f~~::f:9TT). Consider the interval T ~ t :s;: T + e X
• Here with the

exception of k = k ( E )intervals for t each of length -;- we have
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! log ~ ( 1+ i t) I ~ 2 E 109109 T. We obtain k ( E) =e ( [...L ] + 1) if we assume the
\, E 2 )

c
Hadamard - de la Vallee - Poussin zero free region 0:) 1 - log ( It I+ 2 )

We can reduce k ( E) if we assume the Vinogradov zero free region
c

o ) 1 -

)
2/3· - d /3

( log ( I t 1+2 ) ( loglog ( I t !+ 100) )

Asymptotic fonnulae for summatory functions in algebraic number flelds •
:s;: 1 t

r+1

L
pa:1

u. RAUSCH

Let K be an algebraic number field. 8y means of an improved version of Siegers summation

formula severalasymptotic relations are obtained which are either new or sharper than the

previously known ones, e.g. for the Piltz divisor problem for numbers in K or tne number of

units II E K satisfying

where IX) 0 is fixed and x l' ... t X r + 1 ) 0 are variables.

F. ROESLER
The Riemann Hypothesis es an Eigenvalue Problem

The determinant of the matrix AN =( a m • n ) 2 s: m • n s: N t a m • n = m - 1 if m I n and

a
m

• n = - 1 if m I n t is N'· L II ~m ) and hence directly connected with the Riemann
m:s::N

Hypothesis. Thus the eigenvalues A of AN may be of interest. Some estimates are given:

( 1 ) I A I :s;: N - 1r for all eigenvalues A of AN' (2) A m E [m, m + 1 [ t 1 :s;: m :s;: N - 1t if

the eigenvalues A1 t •••• A N _ 1 of AN are indexed appropriately, with at most 2 IN exceptions.

( 3 ) If Am E [m t m + 1 [ , m near to Nt then

'{ ( m + 1) (1 + 0 ( 109'09'09 N ) ) •
Am = m + 1 - r I N

\-, co log N . oglog

if A. m E [m t m + 1 [ , m naar to N / 2 t m ) N / 2. then

A m = m + 't ( m) ( 1 + 0 (109109109 N ) )
Cco log N loglog N •

with 't multiplicative, t ( p rn) = ft (1 _P - k ) - 1 •

k=1

Cco = TI C(m)
m=2

T (m
2

) = 2.294"
m

Assumptions (unfortunately unproved and certainly difficult to show ) on the small eigen

values of AN or on the values of the characteristic polynomial of AN near to 0 lead to

proofs for the existence of a small zero - free strip inside the ci"itical strip of the

Riemann zeta function.
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A. SCHINZEL

1118 greatBSt prime factor of the value of a polynomial

Following is the result of joint work with P. Erd.ös: For every polynomial f E 'Z [ x ]

which is not the product of linear factars with integ~al coefficients I. the greatest prime factor

of TI f ( k ) exceeds x expexp ( c ( f) ( loglog x )*) for X) x 0 ( f) •
k=1

where c ( f) is a positive constant. This improves Erdös' result of 1951.

H.P. SCHUCKEWEI

• An ~xplicit upper bound for the ·num.r of solutions of the 5 - unit equatian

Using my p - adie generalization of the quantitative version of W.M. Schmidfs Subspace

Theorem the foliowingresult can be pro~ed: let 5 = {p, I ••• I ps} be a finite set of

primes. An element .x E Q" is called an 5 - unit. if it i~ only composed of primes in S.
let n:;; 1 and suppose that a 1 I ••• ~ a'n +' are given nonzero rational numbers.

Consider the equation

( .) a, x, + ... + a n + 1 x n + 1 = O.

Theorem. The number of integral solutions f =(x 1 I ••• • X n + 1 ) of ( ... ) such that

( i) each x i is an 5 - unit and

( ii) no proper subsum a i , X i 1 + ... + a i m X im vanishes

is bounded by.

2 26 n + 4 (s + 1 ) 6
(8(5+1») .'

Notice that our bound does not depend upan the a i nor on the particular primes Pi involved.

Previausly by independent work of Van der Paarten & Schlickewei and of Evertse it had

only been knawn that the number of solutions is finite.

P.G. SCHMIDT

• . Exponentenpaare und ein Gitterpunktsatz

Sei ß (x) das Restglied ,beim. Teilerproblem L 1. In Acta Arithmetica 50 (1988)
1 2 k

2
m

3
n

6
s; x

habe ich ß (x) « x T - 7"57"5 veröffentlicht. Der Beweis b~siert auf der Exponenten

paarmethode von B.R. Srinivasan zur Abschätzung mehrdimensionaler Exponentialsummen.

Da inzwischen starke Zweifel an der Korrektheit der' Srinivasan" sehen Methode laut geworden

sind, skizziere ich einen davon unabhängigen Beweis eines Hilfssatzes, aus dem die (aller

dings etwas schwächere ) Abschätzung

1 2 +~
~ (x) « x""7 log x ) 7

folgt. Der Hilfssatz lautet: Ist ( IX I ß , y ) eine Permutation von ( 2 I 3 1 6 ). t.lJ ( t) = t - [t] - !
für t E IR, X) 2 1• 0 ( ~ ~ XI N) 0 und M durch M ot

+
ß NY = ~ definiert, so gilt

mit absoluter « - Konstanten

                                   
                                                                                                       ©



- 14 -

I

,- 4J l. ce r--x---.:.-.. y m ß n'Y
~/2<mcx+anY.s:x

N < n s: 2N, m) n

und das

s: {x log 2 x } 7

Zeichen steht genau dann, wenn (Q(, ß, Y) = (2,3,6 L

S. SRINIVASAN

Same order function. of groups

In this talk I report on joint works with ( I ) M. Ram Murty and ( 11 ) Mrs. M.J. Narlikar:

( I) Let a ( n) be the number of non isomorphic groups of order n. Then

2(n)'a(n) = 0 ( n )
tL \ (log n ) A 1°9109 1°9 n

with same constant A) O. Also, up to the vatue of A, this is best possible.

( 1I ) Let c I ( x) be the number of n s: x s.t. every group of order n is abelian but

there exists a non - cyclic group of order n. Then

J. SZMIDT

Cl ( x) '" e - Y x -

109109 x ( 109109109 x )2
as x ~ 00.

The summation 'armula 'or Dirichlet .eries with cubic Gaus. sums

We shall consider the cubic Gauss sums

.&lI..l
where w = e 3 • ( . I . ) 3 is the eubie residue symbol in Q ( w ) and e ( Z ) = e

2
1t ( Z + z) .

We consider Diriehlet series

4i (5, n )

g (c)

L
c e Z [wJ

c e 1 mod 3

L (d I c ) 3 e C-%- )
deZ[w]

d Si 1 mod 3

I S
3

C, Re s ) 2' n E 7L. •
The theory developed by T. Kubata and S.J. Patterson gives the meromorphic continuation

and functional equation of these series. Using the residue theorem .and the Mellintransforrn

we cafl derive the summation formula

ceZ[w]
c E 1 mod 3

g(c) f(Ne) L
c E Z [w]

c E 1 mod 3

co

g(c) f
o

~ (1 + it , n)

where f is a test funetion and I f (N c, x) is an integral transform of involving the

generalized Bessel function. There is an open problem to get the estimation

2 .
!t /3'" E
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G. TENENBAUM

Integers free of large prime factors in arithmetic. progressions

In this joint work with E. Fouvry we investigate the distribution in residue classes of the set

S ( x •y) = {n:s: x; P ( n) :s: y} where P ( n) denotes the largest prime factor of n.

with the convention that P ( 1 ) = 1. The study is motivated by the growing importance of

S (x ,y) in all branches of analytic number theory as weil as by the recent drastic improve

ments upon classical estimates concerning this set. We give analogues to the Siegel 

Walfisz and to the Bombieri - Vinogradov theorems. A crucial feature of the results is that

the main terms are expressed as smooth functions. This enables us to abtain an application

related to arecent work of 8alog. Friedlander and Pintz ~nd which essentially .~tat~s that,

on the average, the inlegers with a large prime factor are as weil distributed i~ a~ithmetic

progressions as if the Generalized Riemann Hyp.othesis were true.

R.F. TICHY

Weak uniform distribution of linear recurring sequences (joint ·work with G. Turnwald

Let (u ~ ) n ~ 0 be a linear recurring sequence ( I. r . 5 • ) of order t with integral coefficients

and integral initial values. Let m be a positive integer ~ 2. (u n) is called weakly

uniformly distributed mod m ( W U 0 mod m ), if

card { 0 :S: n :s: N; u n =r mod m }
lim

N ~ a:> card { 0 :S: n :S: N; unis invertible mod m

for all invertible residue classes r mod m. ~ denoting Euler's function. In the case of

inhomogeneous first order I. r . s. u " + 1 ;= a u n -t: b necessary and sufficient conditions

for (u n) to be WU 0 mod mare proved. It turns out that if (u n) is WUD mod p2

( P prime ) then it is W U0 mod p k ( V k = 1.2,... L Part.jal results. are also established

for higher order I. r. s. Most of the results can be extended to algebraic number fields.

v. ruRAN - SOS

On additive "umber - theoretic problems

e Let A ( n) be the counting function of the sequence (a;). a i E 7L. + • and lei

R1(n) = L ·1.
a.+ a j = n

The Erdös - Fuchs theorem and generalizations of it state in. a quantitati~e form, th~t the

representation function R1 globally can not behave too regularly. With Erdös and SarkÖzy

we investigated some loeal properties of the representation functions ( like monotonieity or

boundedness of I R 1 (n + 1) - R 1 (n) I ). I.

We prave e.g.: R 1 is monotone for ">"0 iff A( n) .= n + 0 (1), However,

R2 (n)= ~ 1
a i + a j - n • i < j

can be monotone also in some non trivial cases (when A( n) ( n - c n i ), but cannat be

monotone- if A( n) 0 ( n / log n ).

For
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we have some partial results. but we conjecture that also R 3 is bounded for n ) n o iff

A ( n) =n + 0 ( 1 ). The boundedness of IR. ( n + 1) - R. ( n) I depends on the number of

blocks in A = { a.} defined bY B(n) = 11 I{ a s:: n t a ~ A • a - 1 ~ JIl }. E.g. we can

prove that lim' B ( n) n -! = 0 implies sup ! R ( n + 1) - R ( n) I = co and that
n~ co n

there exist sequences with lim SUD BC n) n"- ~ ) 0 and sup I R (n + 1) - R (n) I ( CD
n~w n

R.C. VAUGHAN

A new iterative method in Waring'. problem

An account was given of recent work on Waring's problem. Let G ( k) denote the least s

such that every sufficiently large natural "umber is the sum of at most s k. th powers.

For small values of k we now know G ( k) :s: H ( k) where H ( k) is given by

k
H(k)

5 6 7 8 9 10 11 12 13 14 1S 16 17 18 19 20

19 29 41 57 75 93 109 125 141 156 171 187 202 217 232 248

For large k we now know that

G ( k) ( 2 k (log k + 109109 k + 1 + log 2 + 0 (~ ) )\ log k ...

An associated problem is the estimation of

and we can now show that

R () n ~ - 1
k, sn»

where e (n) is the usual singular series. We can also show that

4

R 3 • 7 ( n») "3".

R. WARLIMONT

On • problem pos. bJ I.Z. Ruzaa

We prOV8 this: let x be a natural number. Let A ( x ) denote the collection of all subsets

A c { 1 •...• x} with the property

L ([~ ] + 1) ~ X.
aEA \ a

Then

•

min
A E AC.)

L -L
aE A a

I 25 3
6

+ 0 (
og \

23 3
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D. WOLKE

On prime twins

let ~ 2 ( x • 2 k ) 1: A(n)-A(n - 2k)
2k<ns.

( kEIN. x ) 2 k ) •

Tl
_p-1

M( x t 2k) = 2 ( x - 2k ) P _ 2
plk.p>2

and E( x • 2 k ) = 4J 2 ( X , 2 k) - M ( X , 2 k ).

The following "almost all" results are discussed:

with at most1. E (y t 2 k) = 0 ( y ( log Y ) - A) for all k ~ T
e 0 ( x ( log x ) - B) exceptions and for all y E [x , X

8
/5 - E] (A ,B • E>0, arbitrary).

2. Assume .the Generalized Riemann Hypothesis '. Then for k ~ k 0 =( log x ) 178

with at most 0 (-lok0 ") exceptions, we have
og x " ".

4J 2(x •2 k) = M ( X , 2 k ) + 0 ( 10; x ) .

Roughly speaking this means that for "alniost all" k' s there are "almost infinitely many"

prime pairs with difference 2 k.

Berichterstatter: Th. Maxsein
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