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Analytical and topological theory of semigroups

29.1. bis 4.2,1989

The conference was organized by K. H. HOFMANN (Darmstadt), J. D.
LAWSON (Baton Rouge), and J. S. PYM (Sheffield). Participants came from the
USA (19), the FRG (12), Canada (4), Denmark (3), France (3), the UK (2), Austria
(1), India (1), the Netherlands (1), and the USSR (1). The diversity of the parti-
cipants’ origins was matched by the diversity of their mathematical interests. The
conference drew researchers whose primary field of mathematical activity ranged
through such varied mathematical disciplines as Lie theory, topological algebra,
harmonic and functional analysis, representation theory, probability theory, and
algebraic geometry.

In order to accomodate this variety of interests, the organizers built the con-
ference around a large number (16) of one hour survey lecturés which wete planned
well in advance. They served the purpose of making the broad audience aware
of major research trends, of pointing out the major developments and the current
state of the art, and of suggesting open problems and futire lities of research in
the area covered by the conference. The common thread was semigroups, but semi-
groups in analytic, topological, Lie theoretical and related contexts. Manuscripts
of the surveys were solicited prior to the conference, and plans were solidified at
the meeting for the publication of a collection of the complete set. This mono-
graph should become a useful source both for reference and for open problems in
the discipline—more so than a standard proceedings volume. Other contributors
presenting original research at the conférence were encouraged to submit articles to
the specialized journal in the subject.

Several recent developments and results were reported at the conference.
There were survey talks (3) and papers (8) in the recently emerged Lie theory of
semigroups, further the structure of topological semigroups with jointly, separately,
and one-sidedly continuous multiplication, and differentiable semigroups. Other ar-
eas receiving broad coverage were functional and harmonic analysis in their relations
to semigroup theory. An elegant semigroup-theoretical proof of van der Waerden’s
Theorem on arithmetic progressions was presented. The recently published solution
of Hilbert’s Fifth Problem in the semigroup context was reported on. A new ap-
proach to the classical theory of algebraic groups via their Zariski-closures, algebraic
semigroups, was presented. Of special interest were reports on the cross connections
of semigroup theory with such applied disciplines as control- and systems-theory,
stochastics, theoretical physics, and theoretical computer science, and with other
mathematical disciplines such as combinatorial number theory and representation
theory.

A book table was set up from the Institute’s well-furnished library display-
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ing some twenty-four books on the topological and analytical theory of semigroups
that have appeared over the last 25 years. Many of the authors were among the
participants. :

Contributions by several young participants bode well for the productivity
and creativity of the area in the future.

The excellent personal computer facilities coupled with laser printing capa-
bility were a great help for the organizers in their planning and TEX printing of the
daily programs.

Abstracts

The abstracts of the contributions to the conference are divided into the
following disciplines

[1] Applications to algebraic geometry, computer science, group theory, num-
ber theory, systems theory, topology,

[2] Functional analysis,

[3] Lie theory,

[4] Probability and measure theory,

{5] Semigroups with one-sided or separate continuity,

[6] Topological algebra, topological semigroup, order theory, ‘

[1] Applications to algebraic geometry, computer science,
number theory, systems theory, topology

[1.1] N. HINDMAN. The semigroup BN and its applications to number
theory

The operations + and - on N extend to its STONE-CECH-compactification
BN, making it a compact left topological semigroup. We discuss the history of the
application of these operations to results in RAMSEY theory (combinatorial number
theory) including some very recent proofs of VAN DER WAERDEN’S Theorem on
arithmetic progressions.
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[1.2] 1. KUPKA. Semigroups in control theory

The object is the presentation of some applications or potential applications
of semigroups to the theory of systems. We discuss the theory of accessibility where
such applications have been most prominent: We continue with realization theory
where we feel semigroup theory could help. Other domains of interest in the with
applications of semigroup theory are local controllability and optimal control.

(1.3] K. D. MAGILL, JR. Trends and directions in the snvestigation of
congruences on the semigroup S(X) of continuous self-maps of a space X

For “most” spaces there are at most three congruences p for which S(X)/p
is isomorphic to S(Y) for some generated space Y. The existence of a largest
proper and a smallest proper congruence is investigated. The semigroups of a
number of spaces, including all Euclidean n-cells, have a largest proper congruence
while the semigroup of many local dendrites with finite branch number do not. On
the other hand, it is rare for a semigroup S(X) to fail to have a smallest proper
congruence although there are examples. The partially ordered set Con(S(X)) of
all continuuin congruences on S(X) is studied. If X is a local dentrite with finite
branch number, then Con (S(X)) is order isomorphic to a certain partially ordered
set of collections of subcontinua of X on which A < B for two such collections means
that that each B € B is the union of copies of subcontinua from .A. This fact is
used to obtain e.g. a characterization of those local dendrites with finite branch
number for which Con(S(X)) is a lattice. Further information on Con(S(X)) is
provided. Finally those congruences on S(X) which commute with the equivalence
relation identifying two mutually inverse maps are completely determined for a great
many spaces X . It turns out that there are two such congruences if X is connected
and six if it is not.

{1.4] J. E. PIN. The profinite and the p-adic topologgy for the free monoid
The profinite topology for the free group was introduced by M. HALL and
was extended by REUTENAUER to the case of free monoids to be the initial topology
making all monoid morphisms into finite discrete groups continuous. In the same

way the p-adic topology is defined by replacing “groups” by “p-groups”. One

restricts one’s attention to “simple” subsets of the free monoid and tries to determine

their properties in relation to these topologies: Are they open or closed? Can one

compute their closure? The “simple” sets we have in mind are the recognizable (or
regular) sets of automata theory. These sets are completely described by a finite
monoid, called the syntactic monoid of the set. We show that certain topological
properties of a recognizable set are reflected by some simple algebraic properties of
its syntactic monoid. We discuss our conjecture that the converse is true and its
possible applications. (Details will appear in J. of Algebra in “Topologies for the
free monoid”.) ’

[1.5) L. RENNER. Algebraic varieties and semigroups

M. S. PuTcCHA and I developed the theory of linear algebraic semigroups
over the past eight years. The most interesting objects among these are the irre-
ducible monoids. The major results in their theory include (1) a characterization
of regular elements, (2) a numerical classification of normal monoids with reduc-
tive group of units, (3) a classification of normal (completely) regular monoids
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with solvable unit groups, (4) a generalization of the (group theoretic) BRUHAT
decomposition to reductive monoids, (5) a determination of the conjugacy classes
in reductive monoids, generalizing the classical JORDAN normal form of an endo-
morphism. Related topics include the equivariant embedding problem for spherical
homogeneous spaces.

(1.6] C. TERP Mazimal compact subgroups in locally compact groups via
invariant cones

Maximal compact subgroups in locally compact connected groups are com-
monly established through some fixed point argument, but not through an argu-
ment using Zorn’s Lemma. Contrary to the mere existence of maximal compact
subgroups, the inductivity of the set of all compact subgroups is inherited by all

" closed subgroups. We use the fact that a compact group, acting linearly on a convex

closed pointed cone, has a fixed point in the algebraic interior of the cone (for in-
variant cones cf. also [2.4], [3.2], [3.5), [3.9]), and we show that in a locally compact
group G the partially ordered set of compact subgroups is inductive if and only if
the totally disconnected locally compact group G/Go has this property.

[2] Functional analysis
(See also BAKER (4.1}, HILGERT [3.4], MISLOVE [6.4])

[2.1] C. BERG. Positive definite and related functions on semigroups

This survey discusses the theory of positive definite and related functions on
abelian semigroups with involution. Special emphasis was placed on developments
since the appearence of the book by C. BERG, J. P, R. CHRISTENSEN and C. U.
RESSEL on “Harmonic analysis on semigroups” (Springer-Verlag Heidelberg etc.,
1984). In the integral representation of positive definite functions on S we had

- earlier focused on RADON measures yu on S* defined on the BOREL o-algebra

Deutsche

B(S). It turns out to be fruitful to consider measures y on the smallest ¢-algebra
A(S5*) rendering the evaluations p — p(s): S* — C measurable. The notions of
BISGAARD and RESSEL of semiperfect and perfect semigroups are discussed. Here
a semigroup S is semiperfect if every positive function ¢ on S is a moment function:
©(s) = [s. p(s)du(p) for some p on A(S*).

[2.2] C. CHOU. Weakly almost periodic functions on groups

Let G be an infinite discrete group. (1) For E C G, let E denote the
closure of F in the weak almost periodic compactification G¥. Set E=E \G.
A subset E of G is called a T-set, respectively, Rw -set, if zEn yE = @ for
z # y in G, respectively, if xg is weakly almost periodic and -E_.E BE. Al
T-sets are Rw-sets, and Ry -sets were studied by W. RUDIN and W. A. F.
RUPPERT. We show that every G contains an Rw-set D which is not a finite
union of T-sets; hence there exists an w € D 2 AD such that w is not strongly
G-discrete. Question: If E isa T-set and w € E, is a — aw:G¥ — G¥w a
homeomorphism? (2) Let DWAP(G) C WAP(G) denote the set of all bounded
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functions on G whose double orbit {zf, | z, y € G} is relatively weakly compact.
In general, DWAP(G) # WAP(G). Conjecture: DWAP(G) =WAP(G) iff G is an
extension of an abelian by a finite group.

[2.3] J. DUNCAN. Topological theories for inverse semigroups and their
representation

A representation theory of inverse semigroups into the set of partial isome-
tries of a Hilbert space calls for an investigation of star semigroups S of such
operators. For example, this gives easily the list of monogenic ones. The.natural
topology is the weak operator topology with separately continuous multiplication
and continuous involution. For a topological semigroup S, it is not clear how to
define the C* algebra C*(S) of S in such a way that it reduces to the traditional
'C*-algebra of a locally compact group. The key problem is to achieve the definition
for a semilattice. A definition is given for some classes, but the “naturality” of the
definition remains in question. -

[2.4] J. FARAUT. Analysis on ordered symmetric spaces
"Let S be a closed semigroup in a locally compact group G. Then H = SN
S~ is a closed subgroup, and S defines an invariant ordering on the homogeneous
space X = G/H. A causal kernel is a function K:X x X — R vanishing outside
{(z,¥) | y < z}. The VOLTERRA-algebra V(X )t is the space of invariant causal

. kernels, equipped with the composition product of kernels. If there exists a.n

involution z +— z# of S such that (i) (zy)# = y#*z# (ii)) Vz € H ) ¥ =71,
(iii) (Vz € S)z# € HzH, then V(X)! is commutative. Example. G = SI(2,C),
H=S82,R), S= exp(i-C)H with an invariant cone C in the Lie a.lgebra sl(2,R).

[2.5] A. M. LAU. Amenability of semigroups

A historical introduction into the investigation of amenability of discrete
and semitopological semigroups is presented, and an extensive summary is given of
recent developments and open problems.

[2.6] A. L. T. PATERSON. Representation theory for inverse semigroups

The motivation for the study of such a theory arises from operator algebras
(such as the CUNTZ algebras) which are generated by inverse semigroup represen-
tation. The regular representation of such a semigroup S is faithful, so that the
representations of S separate points. The theory depends on developing a “twisted”
disintegration theory based on C*(E), where E is the idempotent semilattice of
S. This leads to a quasi-invariant measure on the filter completion X of E with
respect to a natural action of S on X in terms of partial 1 — 1 maps. Associ-
ated with this set-up is a natural groupoid G whose elements consist of suitable
pairs (s,z), s € S, z € X, and the representation theories of S and G essentially
coincide. This allows the well-developed representation theory of groupoids to be
applied to give information about inverse semigroup representations.

[2.7) H.L. VASUDEVA. Multiplier spaces on [0,1] and their preduals
Let I be the real unit interval [0,1] with its structure of a compact topo-
logical semigroup given by the maximum operation. Further let L?(I), 1 <p < o0
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| denote the L?-spaces with respect to LEBESGUE measure and C(J) the Banach al-
| gebra of continuous functions on I with the maximum norm. The Banach modules
| - Homg(py (LP(I), L9(I)), are characterized for p < g.

[3) Lie Theory

(See also BROWN [6.1], BROWN and HILDEBRANT [6.2],
FARAUT {2.4], KUPKaA [1.3], SKRYAGO [6.6])

In 1938, GARRET BIRKHOFF showed that & local semigroup with identity
with an identity neighborhood homeomorphic to a Banach space and with a strongly
differentiable multiplication at 1 is a Lie group. For topological semigroups this is
not true. Strong differentiability at 1, therefore, appears to be a powerful condition.
Indeed, it implies the existence of local one-parameter subsemigroups in a local
differentiable semigroup on an admissible set, provided certain additional-conditions
are satisfied (e.g., local compactness in the case of finite dimensional manifolds or
the existence of a strongly differentiable arc at the identiy in the Banach manifold
case). Strong differentiability the identity 1 of a Jocal semigroup also implies that
a smooth boundary is a local group.

[3.2] N. DORR. Invariant orders on Lie groups

A semigroup S in a Lie group G satisfying ¢Sg~! C S defines a group
quasiorder via z < y iff y € Sz. Question: Are the intervals Dy = aSN Sh!
compact? (Cf. [2.4].) We discuss two possibly typical examples for which this
is not the case: (1) Let G be the universal covering group of S1(2,R). The
CARTAN-KILLING-form on sl(2,R) is Lorentzian and determines two opposite in-
variant cones, each of which generates a subsemigroup S of G which containsa
whole half-space; as a consequence, some intervals Dg; fail to be compact. (2)
Let V be a 2n-dimensional Hilbert space with a fixed non-degenerate skew sym-
metric automorphism d. The Lie algebra g = R x V x R with the Lie bracket
[(r,v,2),(r',v',2")] = (0,r-dv' — r'-dv, (dv|v')) and the invariant Lorentzian form
q((r,v,z),(r',v',z')) = rz' + r'z + (v|v') supports pointed generating invariant
Lorentzian cones. The one determined by the forward light cone W of ¢ gen-
erates an invariant semigroup S = (exp W) in the corresponding simply con-
nected Lie group G = R x V x R with the multiplication (r,v,z),(r',v',2') =
(r+ v +e"d, 2+ 2 + 3{dvle"?')). Now S contains the whole half space
[27,00] x V x R. Once more, there are noncompact intervals.

\

|

{3.1] M. ANDERSON. Strong differentiability in semigroups
\
|
\

[3.4] J. HILGERT. Applications of Lie semigroups in analysis

Let G be a Lie group and n: G — U(H) a unitary representation. Consider
analytic extensions 7: ' — C(H) from a complex manifold I' with SHILOV boundary
G which is at the same time a semigroup into a the semigroup of contraction opera-
tors on ‘H. Examples of this type of analytic extnesions have been considered (i) by
KRAMER, MOSHINSKY, SELIGMAN, BRUNET (1973-85) for G = Sp(n,C) NU(n,n)
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and the (projective) representation # associated to the CCR, as a computational
device in nuclear physics, (ii) by HOWE (1987) for G = Mp(n,R), the metaplectic
group, and the metaplectic representation 7, as a computational device to prove
estimates for symbols of pseudodifferential operators, (iii) by GELFAND-GINDIKIN,
OL’SHANSKII, STANTON (1977-85), for G hermitian symmetric and 7 in the holo-
morphic discrete series, in order to construct HARDY-spaces on which the holomor-
phic discrete series can be realized in a uniform fashion. It turns out that the first
two examples are essentially the same. G. I. OL’SHANSKII gave a general construc-

—tion of the analytic extension for simple groups. The methods used are flexible and

can employed for other groups as well.

[3.4] A. EGGERT. Semialgebras in reductive Lie algebras

Let L be a finite dimensional real Lie algebra. A wedge (or closed con-
vex cone) W in L is called a semialgebra if there is a CAMPBELL-HAUSDORFF-
neighborhood B such that (WNB)*(WNB) C W. Using LAWSON’S Theorem on
tangent hyperplane subalgebras we show the following Theorem. Let W be a gen-
erating semialgebra in a reductive Lie algebra L. Then there are ideals Sy,..., Sk
(k =0,1,...) all of which are isomorphic to s1(2,R) and one ideal L* of L such
that () L=51®--- @S ®L*, (i) E=(WNS1)®---@(WNS)®(WnL*), (iii)
All WNS; are generating semialgebras in S; = sl(2,R) and WNL* is an invariant
wedge in L*. This result classifies all semialgebras in reductive Lie algebras, since
the semialgebras in s1(2, R) are well known and for a classification of invariant cones
one is referred to the monograph mentioned in [3.5] below.

[3.5] K. H. HOFMANN. Lie semigroup theory

For a general Lie theory of semigroups three tasks have to be mastered:
The infinitesimal theory , the local theory, and the global theory. We present an
introduction to the infinitesimal theory. With a (local or global) subsemigroup S of
a Lie group G one associates a convex cone W = L(S) in the Lie algebra g of G.
The characteristic condition reads e*d W C W for all z € g with.z, —z € W. This
gives the concept of a Lie wedge, one of the possible generalizations of a Lie algebra.
Also discussed are Lie semialgebras and invariant cones and their characterizations.
The details will appear in the monograph “HILGERT, J., K. H. HOFMANN, and J.
D. LAWSON, Lie groups, convex cones, and semigroups, Oxford University Press,
664438 pp., July 1989”.

[3.6] J. P. HOLMES. Differentiable semigroups

A differentiable semigroup is a topological semigroup S on a C'-Banach
manifold with a continuously differentiable multiplication. Theorem. If C is a
component of the set E(S) of idempotents of S then there is an open neighborhood

onto

U of C so that thereis a C!-retraction I': U =23 C so that z['(z) = I'(z)z is in the
maximal subgroup H(I(z)) containing the idempotent I'(z) for all z € U. This
result allows us to conclude that Cis a C?-submanifold and that each e € E(S)
is contained in some paragroup R such that RN E(S) is a neighborhood of e in
E(S). The examples include the multiplicative semigroups of Banach algebras.
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[3.7] J. D. LAWSON. Embedding semigroups into Lie groups

Let S be a cancellative topological semigroup on a connected Euclidean
manifold. One can make sense locally of left quotient sets and obtain a local
group which is locally euclidean and which admits in a natural way a local right
action on S. By a result of JACOBY, the local group is locally isomorphic to
a simply connected Lie group G(S ). For the product § x G(S ), there exists a
topology finer that the product topology on S x G(S) such that in the sequence
S « 5xG(S) — G(S) the left hand mapis a covering projection and the right hand
map is a local homeomorphism. The analytic structure on G(S ) pulls back to S to
make it an analytic semigroup. One component S of Sx G(S ) is a subsemigroup
and the restriction § — § remainsa covering projection. The group G(S ) acts as
deck transformatuions g(s,h) = (s, gh), and the subgroup leaving S invariant is a

countable central subgroup Gs. Then S — 6(5)/65 def G(S) is the free group
on the semigroup S and G(S) is a Lie group iff S is algebraically embeddable in
a group.

[3.8] K. H. NEEB. globality in the Lie theory of semigroups

With a subsemigroup S of a Lie group G we associate a Lie wedge L(S) =
{z € g | expR*-z C §}. (Cf. [3.5]) There are Lie wedges W in the Lie algebra g
of certain Lie groups G which do not arise in this fashion. Lie wedges which do are
called global in G. Our objective is the characterization of global Lie wedges. We
describe the tool of covering homomorphisms of connected Lie groups and how it is
applied to the problem of globality. In particular, we classify the global Lie wedges
in Lie groups whose Lie algebra is compact.

[3.9] K.-H. SPINDLER. Classification of invariant cones

The existence of an invariant cone W in a real Lie algebra L imposes
restrictions on the structure of L. In L there is a compactly embedded CARTAN-
algebra H. The fine structure of the root decomposition of L with respect to H is
discussed. An invariant poinrted generating cone W in L is uniquely determined
by its intersection C = W N H. A cone C is the trace of an invariant cone in L
if and only if it is invariant under the Weyl group and a certain set of rank one
operators. The existence of such cones C can be determined from an enriched
root diagram. The final goal is a complete classification by completely geometrical
and combinatorial means in the spirit of the classification of simple complex Lie
algebras.

{3.10) W. WEIss. Embedding local semigroups into global ones

For every Lie wedge W in a firiite dimensional Lie algebra g there exists a
local semigroup S with L(S) =W (cf. [3.5]). Beginning with dimension 3 one can
exhibit Lie wedges W for which there is no subsemigroup S of a Lie group with
L(S) = W. We give two constructions for any pointed cone W in a Lie algebra
8 showing that topological semigroups S exist which are locally embeddable into
a Lie group G with L(G) = g and satisfy L(S) = W. One construction is a free
one based the adjoint functor theorem, the other is an analytic one based on causal
paths in G with respect to the left invariant causal structure given on G through
the transport of W.
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[4) Probability and measure theory
(See also MISLOVE {6.4])

[4.1] J. W. BAKER. Measure algebras on semigroups
We survey some developments in the field of measure algebras since ca.
1980. Some of the most significant developments concerened multipliers, ARENS

. regularity and biduals, and weighted measure algebras. The subject of multipliersin

its most interSting aspect is covered by VASUDEVA (sée [2.6]) so that we concentrate
on results on ARENS regularity and biduals of L(G) and M(S,w) and on some
works on representations of foundation semigroups and their measure algebras.

[4.3] W. Hazobp. Stability and self-decomposability

Stable, semistable and self-deconiposable probabilities on R? can be char-
acterized as the possible limit distributions of suitably normalized sums of indepen-
dent random variables; or, on the other hand, by certain functional equations for
their FOURIER transforms. The latter can be understood as relations of the cor-
responding convolution semigroups. It is possible to generalize the second concept
to probabilities on locally compact groups and it turns out that it is essentially
sufficient to consider simply connécted Lie groups. For this class of groups we ob-
tain a description of the collections of all possible stable, semistable, respectively,
self-decomposable measures. Moreover, again in analogy to to the vector space
case, on nilpotent Lie groups, stable and semistable measures can be characterized
as possible limit distributions. (Cf.S. NOKEL, Doctoral Dissertation, Universitat
Dortmund.) The proofs are based on the special structure of the semigroup M!(G);
probability is not involved.

[4.4] H. HEYER. The embeddabdility of infinitely divisible probability mea-
sures into continuous convolution semigroups

In the classical probabilistic set-up, the problem of embeddability is already
present in the work of LEVY and was studied in the frame work of locally compact
groups by K. R. PARTHASARATY, RANGA RAO and VARADHAN as well as many
others; the monograph “H. HEYER, Probability distributions on locally compact
groups, Springer-Verlag Heidelberg etc., 1977” is a source of reference. The embed-
dability problem has recently been extended to the context of hypergroups. For a

hypergroup X, the following result—mainly due to M. VoIT, 1988—is discussed -

in the relation to its classical predecessors: (i) If X is arcwise connected, then any
infinitely divisible probability measure u on X can be embedded in a continuous
convolution semigroup (g¢)i>0 in M*(X) with p, # u¢ = peye for all 5,¢ > 0 and
vague-lim¢—o #¢ = €, such that u; = p. In the case that X is hermitian this state-
ment remains true if, in addition, X has no proper compact hypersubgroup. The
report concludes with an outlook on related research in the context of connected
Lie groups. "
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[4.5] A. MUKHERJEA. Probability theory in semigroups

It is shown that using semigroup methods we can describe the weak con-
vergence of the sequence of convolution interates u™ of a probability measure on
the semigroup of finite dimensional matrices. Discrete time versions of the voter
model (as discussed by LIGGETT in his book on “Interacting particle systems”) and
the contact process (also discussed in this book) can be treated using semigroup
methods. Certain results and examples in these contexts are presented.

{5) Semigroups with one-sided or separate continuity

[5.1] J. F. Berglund. Semigroup compactifications

A semigroup compactification of a semitopological semigroup S is a pair
(X,%) with a compact right topological semigroup X and a continuous homomor-
phism #:S — X. A P-compactification is a compactification with property P. A
necessary and sufficient condition (save some technical details) for a universal P-
compactification to exist is that the property is preserved under the formation of

subdirect products. With this theorem it is easy to see that a universal connected

compactification, for instance, does not necessarily exist. On the other hand, many

universal compactifications exist including those defined by ldentmes and implica- -

tions.

[5.2] P. MILNES. Distal functions and ELLIS-groups ,
Foi a HAUSDORFF compact right topological group G let A(G) = {t €

G | s > st, ts are both continuous}. From a result of ELLIS (1957) we know that_

G is a topological group if A(G) = G. The results on non-topological G include
the structure theorem of NAMIOKA (1972) for the case that A(G) is dense, and
the structure theorem of RUPPERT (1975) for the case when the right translations
8 +— st are even equicontinuous. The two classes of examples intersect precisely in
the class of topological compact groups. We describe an example of a HAUSDORFF
compact group falling into neither category.

[5.3] J. PYM. Compact semigroups with one sided continuity

Semigroups with one-sided continuity appear naturally in the theory of
transformation semigroups as solutions to many universal mapping problems. A key
example is the STONE- CECH-compacrtification 8S of a discrete semigroup S, or,
more specially, SN. One topic of the survey is a technique for obtaining in a simple
way strong algebraic results on SN and other semigroups not superficially similar,
for example that these contain copies of the free group on 2¢ generators. The
algebraic structure underlying this has been observed (PAPAZYAN) to correspond
to a set of distinct finite'sums FS(z,) = {zi, + zi, + -+ zi, |1 <2 < --- <
im}, where (z,) is a sequence in the semigroup. If S is cancellative, then any
neighborhood V in 8S of any idempotent e in S\ S contains a set of distinct
finite sums in S (VAN DOUWEN, HINDMAN) so that V actually contains a free
group on 2¢ generators.
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[5.4] W. A. F. RUPPERT. Compact semitopological semigroups

This is an overview of the theory of compact semigroups on which multi-
plication is continuous in each variable separately. We comment on main trends,
tools and results, including semitopological semigroups on compact manifolds, weak
almost compactifications of semisimple Lie groups versus abelian groups and other
topics. (As a reference see W. A. F. RUPPERT, Compact semitopological semi-
group: An intrinsic theory, Lecture Notes in Mathematics 1079, Springer Verlag
Heidelberg etc., 1984)

{5.5] J.-P. TROALLIC. Seémigroupes affines semitopologiques compacts

Ce"travail a pour but de présenter quelques aspects de la théorie des semi-
groups affines semitopologiques compacts. Dans les sections 4 et 5, deux types de
problémes sont abordés quit ont trait, les uns a 'existence de points de continuité
a gauche pout des actions séparément affines et séparément continus de semigroups
affines semitopologiques compacts (section 4), les autres & I’extrémalité des points
de continuité 4 gauche obtenus (section 5). Ces deux sections ont ceci en commun
qu’elles s’appuient I'une et 1'autre sur une variante d’un résultat de NAMIOKA con-
cernent la dentabilité. Cette variante est ’outil principal de ce travail; elle joue un
réle comparable a celui que joue le théoréme de point fixe de RYLL-NARDZEWSKI
dans ’approche originale de la présque-périodicité faible. Les sections 6,7 et 8 sont
consacrées a des applications des résultats établis dans les sections 4 et 5.

6] Topological algebra, topological sem.igroups, order theory
g g
(See also PIN {1.4]) '

[6.1] D. R. BROWN. Semigroups on n-cells, unique divisibility, and matri-
ces

Let S be a semigroup of a compact n-cell with minimal ideal K, and
suppose that S is uniquely divisible with £ = {1} U K and with trivial groups.
Also assume zS C Sz for all z € S and cancellation on S\ K. For any idempotent
e € E let let C(e) denote the core {z € S| ze = ez = e}. The possibilities for
the dimension of the core are given by dimC(e)+dimK =n for k =0,...,n ~1.
Various theorems for particular values of k are discussed. The aim is to show that
portion S\ K outside the minimal ideal is embedded into a metabelian Lie group.

[6.2] D. R. BROWN and J. A. HILDEBRANT. Embedding compact t-semi-
groups into compact unigquely divisible semigroups

A t-semigroup is a semigroup whose subgroups are singleton. The class
of compact commutative semigroups with are embeddable into compact uniquely
divisible semigroups includes according to our present knowledge: (1) semigroups
which have a totally disconnected semilattice continuous homomorphic image whose
point inverses are power ideal semigroups, (2) t-semigroups in which the down set
of each idempotent has a neighborhood in its core which is contained in the image
of the map z + z2, (3) t-semigroups in which each idempotent has a finite down
set and a core (see [6.1}) satisfying a suitable condition, (4) semigroups containing a
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cancellative element in their divisor. It is proved that for a compact n-dimensional
power-cancellative commutative topological semigroup S the subsemigroup S\ {0}
is embeddable into a cone in R™ if each element of S\ {0} is divisible. :

[6.3] G. GIERZ and A. STRALKA. Sublattices of R™

Let n € N be a positive integer. A family a;;:(0,1) — (0,1}, 1 <4, <
n of upper semicontinuous monotone functions satisfying (1) a;j(1) = 1 for all
i, 7, (2) aii(z) = z for all i and z, (3) @;j 0 ajx > ai for all i, jk is called
an inf-seam. If (aij)i<ij<n is an inf-seam, then L = {(z1,...,2zn) € [0,1]" |
z; < aij(z;) foralli, j} is a closed connected sublattice containing 0 and 1.
Conversely, every closed connected sublattice of [0,1]" containing 0 and 1 is of

-this form. Applications. A sublattice L C R™ is full if it is compact and the

interior of L is connected and dense in L. A point z € 8L is a C,-point, if
there is a neighborhood U of z and a continuous function ¢:U — R such that (1)
8LNU = {p € R" | ¢(p) = 0} and (2) grad ¢(z) # 0. Theorem. If L is full, then
{z € OL | z is a C,-point} is a dense G in L. We call a full sublattice L C R"
a lattice sphere if Prime(L) = Coprime(L). Theorem. Up to isomorphy, there is
exactly one lattice sphere in dimensionl 1, 2, and 3. If the dimension is at least 4,
then there are uncountably many pairwise non-isomorphic lattice spheres in each
dimension. ) :

[6.4] M. W. MISLOVE. History and applications of compact semilattices

We trace the development of the structure theory of compact semilattices
and their apparatus. The development of the notion of a LAWSON semilattice is
described, and the structure theory of these semilattices elucidated. Applications of
objects—also known as continuous lattices to general topology are described, where
they-arise as the open set lattice of locally compact sober spaces. But we also give
applications to harmonic analysis. In this context, we have the following Theorem.
For a locally compact semilattice the following two conditions are equivalent: (1)
The algebra M(S) of all finite regular Borel measures is symmetric. (2) S has
compactly finite breadth, that is, for all compact subsets K C S there is a finite
subset ' C K with inf F = inf K. (3) S contain no copy of 2N. If these conditions
hold, then AM(S) is the filter semilattice of the discrete semilattice Sg4. Thus the
idempotent measures are direct sums of point masses, and the invertible measures
are exactly the exponential measures.

.

[6.5] A. AND J. SELDEN. The continuous extended bicyclic semigroups

We discuss closures of certain semigroups in locally compact topological in-
verse semigroups in which inversion is continuous. First we provide the background
information on the free inverse semigroup with one generator and on the closures
of the discrete and continuous bicyclic semigroups, as well as on the closures of the
discrete and continuous extended bicyclic semigroups. We then list some examples
of topological inverse semigroups on the plane to provide a setting for the following
application of the previously mentioned results: If S is a topological inverse semi-
group on the plane containing no non-trivial groups and whose idempotents form a
line, then § is a continuous extended bicyclic semigroup.
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[6.6) A. M. SKRYAGO. Matriz representations of regular semigroups

Let S be a compact regular semigroup. The following questions have to
be discussed: (1) Do the finite dimensional representations separate the points?
(2) Does a representation of a subgroup of S extend to a representation of S?
(3) How are all representations of S to be classified? Regarding question (1) we
have the following Theorem. S is representeably if and only if each connected com-
ponent is contained inaD-class and any maximal simple CLIFFORD-subsemigroup
is a rectangular band of groups. Regarding (3) we propose the Theorem. A rep-
resentation with 0-simple image is a tensor product of a group representation and
a representation of an H-trivial O-simple semigroup. We describe various results
concerning the extension problem (2).

- [6.7] H.-J. WEINERT. Eztensions of topological semigroups by right quo-
tients
Let (S,-,S) a topological semigroups with topology S and let (T,:) =
Q+(S,2) = {ad™? | a € S, d € T} a semigroup of right quotients of S with respect
to a subsemigroup T of S. The problem is to describe all topologies 7 on T :such
that (T,:,7T) is a topological semigroup with 7|S C S, and to describe conditions
under which a subgroup G of (T,-) is a topological group (G, , T|G). This problem
is completely solved for the special case that 7|S = S and S € 7. In general,
suitable topologies s on T provide us with a base {UQ™! |U € S, 2 € s} for such
a topology. We discuss generalisations. In that context, cf. J. K. LUEDEMAN, A
topological semigroup of quotients, Studia Sci. Math. Hung. 14(1979), 77-82.

Reporters: . . K. H. Hofmann
J. D. Lawson
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