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The conference was organized by K. H. HOFMANN (Darmstadt), J. D.
LAWSON (Baton Rouge), and J. S. PYM (Sheffield). Participants carne from the
USA (19), the FRG (12), Canada (4), Oenmark (3), France (3), tbe UK (2), Austria
(1), India (1), the Netherlands (1), and the, USSR (1). The diversity of the parti
cipants' arigins was matched by the diversity of their inathematica.1 interests. The
conference drew researchers whose primary field of mathematical activity ranged
through such varied matbem!1tical disciplines as Lie theory, topological algebra,
harmomc and functional analysis, representation theory, probability theory, and
algebraic geometry.

In order to accomodate t~s variety of interests, the organizers built the coh
ference around a large nuinber (i6) of one hour survey lectures whieh were planned
well in advance. They served the purpose of making the broad audience aware
of major research trends, of pointing out the major developments and the current
state of tbe art, and of stiggestihg open problems ahd futili'e lilies of research in
the atea covered by the ~nfereb.ce. The coIIimon thread was semigroups, hut semi
groups in analytic, topölogical, Lie theoretical and reiated contexts. Manuscripts
of the surveys were solicited prior to the conference, and plans were 80lidified at
the meeting for the publication of a collection of the compiete set. This mono
graph should beroine a usefuI source both for reference .and for open problems in
the discipline-more so than a standard proceedings volume. Othet contributors
presenting original research at the conference were encouraged to submit articles to
the specialized journal in the subject.

Several recent developments and results were reported at the conference.
There were survey talks (3) and papers (8) i~ the recently emerged Lie theory of
semigroups, further the structure of topological semigroups with jointly, separately,
and one-sidedly coIitinuous multiplication, and differentiable semigroups. Other ar
eas receiving broad coverage were functional Bild harmonic a.nalysis in their relations
t"o semigroup theory. An elegant semigroup-theoretical proof of \'Rn der Waerden's
Theorem on arithmetic progressions was presented. The recently published solution
of Hilbert's Fifth Problem in the semigroup rontext was reported OD. A new ap
proach to the classical theory of algebraic groups via their Zariski-closures, algebraic
semigroups, was presented. Of special interest were reports on the cross connections
of semigroup theory with such applled disciplines as control- and systems-theory,
stochas'tics, theoretical 'physics, and theoretical computer seience, and with other
mathematica1 -disciplines such as combmatorial number theory ahd representation
theory.

A hook table was set up from the Institute's well-furnished library display-
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ing sonle twenty-four books on the topological and analytical theory of semigroups
that have appeared over the last 25 years. Many of the authors were among the
participants.

Contributions by several young participants bode weil for the productivity
and creativity of the area in the future.

The excellent personal computer facilities coupled with laser printing capa
bility were a great help for the organizers in their planning and '!EX printing of the
daily programs.

Abstracts

The abstracts of tbe contributions to tbe conference are clivided into tbe
following disciplines

[1] Applications to algebraic geometry, computer- science, group theory, num-
ber theory, systems theory, topology,

[2] Functional analysis,

[3] Lie theory,

[4] Probability and measure theory,

[5] Semigroups witb one-sided or separate continuity,

[6] Topological algebra, topological semigroup, order theory,

[1] Applications to algebraic geometry, computer science,

number theory, systems theory, topology

[1.1] N. HINDMAN. The semigroup ßN and its application.5 to number
theory

The operations + and . on N extend to its STONE-CECH-compactification
ßN, making it a compact left topological semigroup. We discuss the history of the
application of tbese operations to results in RAMSEY theory (combinatorial number
theory) including some very recent proofs of VAN DER WAERDEN'S Theorem on
arithmetic progressions.

•
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[1.2] 1. KUPKA. Semigroup8 in control theory
The object is tbe presentation of some applications or potential applications

of semigroups to the theory of systems. V·le discuss the theory of accessibility where
such applieations have been most prominent~ We continue with realization theory
where we feel semigroup theory could help. Other domains of interest in tbe with
applieations of semigroup theory are loeal controllability and optimal eontrol.

[1.3] K. D. MAGILL, JR. Trend! and directioß.' in the intJestigation 0/
congruence.5 on the ßemigroup SeX) 0/ continuou.! ßelf-map8 0/ a 8pace X

For "most" spaces there are at most three eongruences p for whieh S(X)/p
is isomorphie to S(Y) for same generated space Y. The existenee of a largest
proper and a smallest proper congruence is investigated. Tbe semigroups of a
number of spaces, ineluding a1l Euelidean n -ceIls, have a Iargest proper congruence
while the semigroup of many loeal dendrites ~th finite branch number do not. On
the other hand, it is rare for a semigroup S(X) to fail to have a smallest proper
congruence 8.lthough there are eXainples. The partially ordered set CODc(S(X)) of
811 coiltinuurtl congmenees on SeX) is studied.·ff X is a Ioeal dentrite with finite
branch number, .then Con c (S(X)) is order isomorphie to a eertain partially ordered
set of colleet,ions of subcontinuaof X on whieh A :5 8 for two such collections means
that that each BEB is' the union of copies of subeontinua from A. This faet is
used to obtain e.g. a characterization of those loeal dendrites with finite braneh
nuinber for which COhc(S(X)) is a lattice. F\rrther information on CODc(S(X)) is
provided. Finally those congruences on S(X) which commute with the equivalence
relation identifying two mutually inverse maps are completely determined for a great
many spaces X. It turns out that there are two such congruenees if X is conneeted
a.b.d six if it is not.

[1.4] J. E. PIN. The profi,nlte and th'e pwadic topologgy for the free monoid
The profinite topology för the free group was introduced by M. HALL and

was extended by REUTENAUER to the case of free monoids to be the initial topology
making all monoid morphisms ioto finite discrete groups continuous. In the same
way the p-adie topology is defined by replacing "groups" by "p -groups" . One.
restriets ane's attention to "simple" 'subsets of the free monoid and tries to determine
.their properties in relation to these topologies: Are they open ~r closed? Can. one
compute their closw-e? The "simple" sets we have in mind are tbe recognizable (or
regu.lar) sets of automata theory. These sets are completely deseribed by a finite
monoid, called the .5yntactic monoid of the set. We show that certain topological
properties of a recognizable set are refleeted by some simple algebraic properties of
its syntactic monoi-d. We discuss our conjeeture that the converse is true and its
possible applications. (Details will appear in J. of Algebra in "Topologies for the
free monöid".)

[1.5] L. RENNEiL -Algebraic tJarietie.5 and .5emigroup.5

M. S. PUTCHA and 1 developed the theory of linear algebraic 8emigroups
over the past eight years. The most interesting objects among these are the irre~

ducible monoid&.The major resuits in their theory include (1) a characterization
of regular elements, (2) a numerieal classificatioD of normal monoids with reduc
tive group of units, (3) a classification of normal (completely) regular monoids
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with solvable unit groups, (4) a generalization of the (group theoretic) BRUHAT

decomposition to reductive monoids, (5) adetermination of the conjugacy classes
in reductive monaids, generalizing the classical JORDAN normal form of an ende
morphism. Related topies include the equivariant embedding problem ·for spherical
homogeneous spaces.

[1.6] C. TERP Maximal compact subgroups in locally compact groups via
invariant cones

Maximal compact subgroups in locally compact connected groups are com
monly established through same fixed point argument, but not through an argu
ment using Zorn's Lemma. Contrary to the mere existenee of maximal compact
subgroups, the inductivity of the set of all compact subgroups is inherited by all •

. closed subgroups. We use the fact that a compact group, a.cting linearlyon a convex
closed pointed cone, has a fixed point in the algebraic interior of the cone (for in
variant cones cf. also [2.4], [3.2], [3.5], [3.9]), and ~e show that in a locally compact
group G the partially ordered set of compact subgroups is inductive if and only if
the totally disconnected locally compact group GIGa has this property.

[2] Functional analysis

(See also BAKER [4.1], HILGERT [3.4], MISL.OVE [6.4])

[2.1] C. BERG. P03ititJe definite and related function.s on semigroups
This survey discusses the theory of positive definite and related functions on

abelian semigroups with involution. Special emphasis was placed on developments
since the appearence of the book by C. BERG, J. p~ R. CHRISTENSEN and C. U.
RESSEL on "Harmonie analysis on semigroups" (Springer-Verlag Heidelberg ete.,
1984). In the integral representation of positive definite functions on S we had

. earlier focused on RADON measures J.l on S* defined on the BOREL Cf -algebra
8(5). It turns out to be fruitful to consider measures JJ on tbe smallest Cf-algebra
A(S*) rendering tbe evaluations p 1-+ pes): S· -+ C measurable. The notions of
BISGAARD and RESSEL of semiperfeet and perfect semigroups are discussed. Here •
a semigroup S is 3emiperfect if every positive function e.p on S is a moment function:
c,o{s) = J5- p(s)dp.(p) for some p. on A(S*}.

[2.2] C. CHOU. Weakly almo-,t periodic function.s on groups

Let G be an infinite discrete group. (1) For E ~ G, let 15 denote the
closure of E in the weak almost periodie compactification GW. Set E = E \ G.
A subset E of G is ealled aT-set, respectively, Rw-set, if xE n yE = 0 for
x f; y in G, respectively, if XE is weakly almost periodic and E ~ ßE. All
T-sets are Rw-sets, and Rw-sets were stuwed by W. RUDIN and W. A. F.
RUPPERT. We show that every G contains an Rw -set D which is not a finite
union of T-sets; hence there exists an w E 15 ~ PD such that w is not strongly
G-discrete. Question: If E is aT-set and w E E, is o· .....-+ QW: GW -+ GWw a
homeomorphism? (2) Let DWAP(G) ~ WAP(G) denote the set of all bounded
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functions on G whose double orbit {%fJ/ I X, Y E G} is relatively weakly compact.
In general, DWAP(G) =F WAP(G). Conjecture: DWAP(G) =WAP(G) ifr-G is an
extension of an abelian by a finite group.

[2.3) J. DUNCAN. Topologica.l theorie.! for inver.!e .!emigroup.! and their

repre.!entation
A representation theory of inverse semigroups into the set of partial isome

tries of a Hilbert spaee ealls for an investigation of star semigroups S of such
operators. For example, this gives easily the list of monogenie ones. The.natural
topology is the weak operator topology with separately continuous multiplieation
and eontinuous involution. For a topologieal semigroup S, it is not elear how to
define the C· algebra C*(S) of S in sueh a way that it reduces to the traditional
·C· -algebra of a locally compact group. The key problem is to achieve the definition
for a semilattice. Adefinition iso given for some classes, hut· the "naturality" of the
definition remains in question.

[2.4] J. FARAUT. Analysi.! on ordered .!ymmetric .!pace3

Let S be a closed semigroup in ~ locally cot:Dpact group G. Then H = S n
S-1 is a closed subgroup, and S defines an invariant ordering on the homogeneous
space X = G/ H. A causal kernel is a function K: X x X ~ R vanishing outside
{(x, y) I y :5 x}. The VOLTERRA-algebra V(X)b is the 8pace of invariant causäl

. kemels, equipped With the composition product of kemels. If there· exists an
involution x ....... x# of S such that (i) (xy)# = y#x# , (ii) (Vx E H) x# = x-I,
(iii) (Vx E S) x# E HxH , then V(X)b is commut~tive. Example. G = 81(2, C),
H = 51(2, R), S = exp(i·C)H with an invariant cone C in the Lie algebra 51 (2, R).

[2.5] A. M. LAU. Amenability of .!emigroup3
A historica1 introductioD into the investigation of amenability of discrete

and semitopologieal semigroups is presented, and an extensive summary is given of
recent developments and open problems.

[2.6] A. L. T. PATERSON. R.epre3entation theory for inver3e 3emigroups
The motivation for the study of such a theory arises from operator algebras

(such as the CUNTZ algebras) which are generated by inverse semigroup represen
tation. Tbe regular representation of such a semigroup S is faithful, so that the
representations of S separate points. Tbe theory depends on developing a "twisted"
disintegration theory based on C·(E), where E is the idempotent semilattice of
S .- This leads to a quasi-invariant measureon the filter completion X of E with
respect to a natural action of S on X in terms of partial 1 - 1 maps. Associ
ated with this set-up is a natural groupoid G whose elements consist of suitable
pairs (s, x), sES, x EX, and the representation theories of S and G essentially
coincide. This allows the well-developed representation theory of groupoids to be
applied to give information about inverse semigroup representations.

[2.7] H.L. VASUDEVA. Multiplier .!pace.! on [0,1] and their preduaL,

Let I be the real unit interval [0,1] with its structure of a compact topo
logical semigroup given by the maximum operation. FUrther let LP(I), 1 ~ p ~ 00
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denote the LP.-spaces \\--ith respect tb LEBESGUE measure and G(I) the Banach al
gebra of continuous functions on I witb the maximum norm. The Banacb modules

_Homc(l) (LP(I), Lq(I)) , are characterized for p ~ q.

[3] Lie Theory

(See also ,BROWN [6.1], "BROWN and HILDEBRANT[6.2],
FARAUT [2.4], KUPKA [1.3], SKRYAGO [6.6])

[3.1] M. ANDERSON. Strongdifferentiability in 3emigroup3
In 1938, GARRET BIRKHOFF showed that a Ioeal semigroup With identity

with an identity neighborhood homeomorphic to a Banach space and with a strongly
differentiable multiplieation at 1 is a -Lie group. "For topological semigroups this is
not true. Strong differentiability at 1, therefore, appears to be a powerful eondition.
Indeed, it implies the existenee of loeal one-parameter subsemigroups in a Ioeal
differentiable semigroup 00 an admissible set, provided certain additional'conditions
are satisfied (e.g., 10eal compactness in the ease of finite dimensional manifolds or
the existence of a strongly differentiable are at theidentiy in the Banach manifold
csse). Strong differentiability the identity 1 of a local semigroup also implies that
a smooth boundary is a Ioeal group.

[3.2] N. "DÖRR. Invariant orders on Lie groups
A semigroup S in a Lie group G satisfying 959-1 ~ 5 defines a group

quasiorder via x ~ y iff y E Sx. Question: Are the intervals Dah = aS n Sb- 1

compact? (Cf. [2.4].) We discuss two possibly typical examples for which this
is not the case: (1) Let Gbethe universal covering group of 51(2, R). The
CARTAN-KILLING-form on sl(2, R) isLorentzian and determines two opposite in
variant cones, each of which generates a subsemigroup S of G' whieh containsa
whole half-space; as a consequence, same intervals Dab fail to be compact. (2)
Let V be a 2n -dimensional Hilbert space with a fixed non-degenerate skew sym
metrie automorphism d. The Lie algebra 9 = R x V x R with the Lie bracket
[er, v, z), (r', v', z')] = (0, r·dv' - r'·dv, (dvlv') and the invariant Lorentzian form
q((r,v,z),(r',v',z'») = rz' + r'z + (viv') supports pointed generating invariant
Lorentzian cones. The one determined by the forward light cone W of q gen
erates an invariant semigroup S = (expW) in the corresponding simply COD

neeted Lie group G = R x V x R with the multiplication (r,v,z),(r' ,v',z') =
(r + r', v + er.dv', z + z' + ! (dv ler.du'). Now S contains the whole half spaee
[21r, 00] x V x R. Onee more, there are noncompa.ct intervals.

[3.4] J. HILGERT. Applications 01 Lie .5emigroups in analy.,is
Let G be a Lie group and 7r: G -+ U('H.) a unitary" representation. Consider

analytie extensions ;r: r -+ C(11) from a complex manifold r"with SHILOV boundary
Gwhich is at the same time a semigroup into a the semigroup of contraction opera
tors on 'H. Examples of this type of analytic extnesions have been considered (i) by
KRAMER, MOSHINSKY, SELIGMAN , BRUNET (1973-85) for G = Sp(n, C) n D(n, n)

e,
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and the (projective) representation 1f associated to the CCR, as a computational
device in nuclear physics, (ii) by HOWE (1987) for G = Mp(n, R), the metaplectic
group, and the metaplectic representation 1T, as a eomputational device to prove
estimates for symbols of pseudodifferential operators, (iii) by GELFAND-GINDIKIN,
OL'SHANSKII, STANTON (1977-85), for G hermitian symmetrie and 1r in the holo
morphic discrete series, in order to construct HARDY-SpaCes on which the holomor
phic discrete series ean be realized in a uniform fashion. It turns out that the first
two examples are essentially the same. G. I. OL'SHANSKII gave a general construe-

-tion of the analytie extension for simple groups. The methods used are flexible and
ean employed for other groups as weil.

[3.4] A. EGGERT. Semialgebras in reductive Lie algebras

Let L be a finite dimensional real Lie algebra. A wedge (or closed con
vex cone) W in L is ealled a semialgebra if there is a CAMPBELL-HAUSDORFF
neighborhood B such that (W n-B) *(W nB) ~ W. Using LAWSON'S Theorem on
tangent hyperplane subalgebras we show the following Theorem. Let W be a gen
erating semialgebra in a reduetive Lie algebra L. Then there are ideals SI, . .. , Sk
(k = 0,1, ...) all of which are isomorphie to sl(2,R) and one ideal L* of L such
that (i) L = 51 e· ··EBSkEBL*, (ii) E = (WnSl)EB···El)(WnSk)e(WnL*), (iii)
All WnSj are generating semialgebras in Sj ;::: sl(2; R) and WnL* is an invariant
wedge in L *. This result elassifies all semialgebras in reductive Lie algebras, sinee
the semialgebras in sl(2, R) are weIl known and for a classificatio-n of invariant cones
one is referred to the monograph mentioned in [3.5] below.

[3.5] K. H. HOFMANN. Lie 3emigroup theory

For a general Lie theory of semigroups three tasks have to be mastered:
The infinitesimal theory , the Ioeal theory, and the global theory. We present an
introduetioD to the infinitesimal theory. With a (local or global) subsemigroup S of
a Lie group GODe associates a eonvex cone W = L(S) in the Lie algebra 9 of G.
The charaeteristic condition reads ead zw ~ W for all x E 9 with.x, -x E W. This
gives the CODcept of a Lie wedge, one of the possible generalizations of a Lie algebra.
Also discussed are Lie 3emialgebra3 and invariant cones and their eharacterizations.
The details will appear in the monograph "HILGERT, J., K. H. HOFMANN, and J.
D. LAWSON, Lie groups, convex cones, and semigroups, Oxford University Press,
664+38 pp., July 1989".

[3.6] J. P. HOLMES., Differentiable semigrOv.p3

A dilferentiable semigroup is a topological semigroup S on a CI-Banach
manifold with a continuously differentiable multiplication. Theorem. If C is a
component of the set E(S) of idempotents of S then there is an open neighborhood

U of C so that there is a C1-retraction r: u~ C so that xr(x) = r(x)x is in the
maximal subgroup H (r(x») containing the idempotent r(x) for all ,x EU. This
result allows us to eonelude that C"'is a Cl -submanifold and that each e E E( S)
is contained in some paragroup R such that Rn E(S) is a neighborhood of e in
E(S). The examples include the multiplicative semigroups of Banach algebras.
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[3.7] J. D. LAWSON. Embedding JemigroupJ into Lie groups
Let 5 be a cancellative topological semigroup on a connected Euclidean

manifold. One can make sense locally of Ie{t quotient sets and obtain a Ioeal
group which is locally euclidean and which admits in a natural way a loeal right
action on S. By a result of JACOBY, the loeal group is loeally isomorphie to
a simpIy conneeted Lie group C(S). For the product 5 x C(5), there exists a
topology finer that the product topology on S x C(S) such that in the sequence
S +- S X C(S) -+ G(S) the left hand map is a covering projection and the right hand
map is a Ioeal homeomorphism. The analytic structure on G(S) puBs back to S to
make it an analytic semigroup. O~e component S of S x C(S) is a subsemigroup
and the restrietion S -+ S remaitlSa covering p~ojeetion. The group CeS) acts as •

deck transformatuions g(s, h) = (s, gh), and the subgroup Ieaving S invariant is a

countable central subgroupGs. Then S -+ G(S)/Gs ~f C(S) is the free group
on the semigroup S and C(S) is a Liegroup iff S is algebraically embeddable in
a group.

[3.8] K.H. NEEB. globality in the Lie theory ol.!emigroups
With a subsemigroup S of a Lie group G we associate a Lie wedge L(S) =

{x E 9 I expR+·x ~ 5}. (Cf. [3.5]) There are Lie wedges W in the Lie algebra 9
of certain Liegroups Gwhich do not arise in this fashion.Lie wedges which do -are
called global in G. Our objective is the characterization of globalLie wedges. We
describe the tool of covering homomorphisms of connectedLie groups and how it is
applied to the problem of globality. In particular, we classify -the global Lie wedges
in Lie groups whose Lie algebra is compact.

[3.9] K.- H. SPINDLER. Classifieation 01 invariant eones
The existence of an invariant cone W in areal Lie algebra L imposes

restrietions on the structure of L. In L there is a compactly embedded CARTAN

algebra H. The fine structure of the root decomposition of L with respect to H is
discussecl. An invariant po~ntted generating cone W in L is uniqu~ly determined
by its iiltersection C = W n H. A cone C is the trace of an invariant cone in L
if and only if it is invariant under the Weyl group and a certain set of rank one
operators. The existence of such cones C can be determined from an enriched •
root diagram. Thefinal goal is a complete classification by completely geomeirical
and combinatorial means in the spirit of the classification of simple complex Lie
algebras.

[3.10] W. WEISS. Embedding loeal 3emigroup.! into global one.!
For every Lie wedge W in a finite dimensional Lie algebra 9 there exists a

10cal semigroup S with L(S) = W (cf. [3.5]). Beginning with dimension 3 one can
exhibit Lie wedges W for which there is no subsemigroup S of a Lie group with
L( S) = W. We give two constructions for any pointed cone W in a Lie algebra
9 showing that topological semigroups Sexist which are locally embeddable into
a Lie group G' with L(G) = 9 and satis{y L(S) = W. One coostruction is a free
one based the adjoint functor theorem, the other is an analytic one based 00 causal
paths in G with respect to the left invariant causal structure given on G through
the transport of W.
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e.

[4] Probability and measure theory

(See also MISLOVE [6.4])

[4.1] J. W. BAKER. Mea.5ure algebra.5 on .5emigroup-,
We survey some developments in the field of measure algebras since ca.

1980. Some of the most significant developments concerened multipliers, ARENS

regularity and biduals, and weighted measure a1gebras. The subject of multipliers in
its most inte!Sting aspect is covered by VASUDEVA (see [2.6]) so tbat we concentrate
on restilts on ARENS regularity and bidua1s of LI(G) and M(S,w) and on some
works on representations of foundation semigroups and their measure' algebras.

[4.3] W. HAZOD. Stability and .5elf-decompo.5ability
Stable, semistable andself-decomposable probabilities on Rd can be char

acterized a.s the possible limit distributions of suitably normalized sums of indepen
dent random variables; or, on the other hand, by certain fu11ctional equations for
their FOURIER transforms. The latter can be understood ä.S relations of the cor·
responding convolution semigroups. It is possible to generalize the second concept
to probabilities on locally compact gioups and it tUrns out that it is essentially
sufficient to consider simply connected Lie groups. For this class öf groups \\Te ob
tain a description of the collections of al1 possible stable, semistable, respectively,
self-decomposable measures. Moreover, again in änalogy to to the vector space
case, on nilpotent Lie grotips, stahle and semistable measures tau be characterized
as possible limit distributions. (Cf.S. NOKEL, Doctoral Dissertation, Universität
Dortmuild.) The proofs are based on the special structure of tbe semigroup MI (G);
probability is not involved.

[4.4] H. HEVER. The embeddability of infinitely divi.5ible probability mea
-,ure.5 into continuow convolution "emigroup.5

In tbe classical probabilistic ~et-up, the problem of embeddability is already
present in the work of LEVY and was studied in the fraine work of locally compact
groups by K. R. PARTHASARATY, !tANGA RAo and VARADHAN as weIl as many
others; tbe monograph "H. HEYER, Probability distributions on locally compact
groups, Springer-Verlag Heidelberg etc., 1971" is a source of reference. The embed
dability problem bas receiltly been extended to the context of bypergroups. For a
hypergroup X, the following result-mainly due ~o M. VOlT, 1988-is discussed
in the relation to its classical predecessors: (i) If X is arcwise connected, tben any
infiDitely divisible probability measure J.l on X tan be embedded in a continuous
convolution'semigroup (Pt)t>o in .M1(X) with Pa * JJt = Pa+t for all S, t > 0 and
vague-limt_O Pt = Ee such that J.lI = J-l. In the case that X is hermitian this state
ment remains true if, in addition, X has DO proper compact hypersubgroup. Tbe
r~port concludes with an outlook on related research in tbe context of connec~ed

Lie groups. .
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[4.5] A. MUKHERJEA. Probability theory in seinigroups
It is shown that using semigroup methods we can describe the weak con

vergence of the sequence of convolution interates pn of a probability measure on
the semigroup of finite dimensional matrices. Discrete time versions of the vater
model (as discussed by LIGGETT in his book on "Interacting particle systems") and
the contact process (also discussed in this ~ook) can be treated using semigroup
methods. Certain results and examples in these contexts are presented.

[5] Semigroups with one-sided or separate contin~i~y

[5.1] J. F. Berglund. Semigroup compactifications
A semigroup compactification of a semitopological semigroup S is a pair

(X, tIJ) with a compact right topological semigroup X and a continuous homomor
phism ?jJ: S -+ X. A P-compactification is a compactification with property P. A
necessary and sufficient condition (save some technical details) for a universal P
compactification to exist is that the property is preserved under the formation of
subdirect products. With this theorem it is easy to see that a universal connected .
compactification, for .instance, does not necessarily exist. On the other hand, many
universal compactifications exist including those deflned by identities and implica~ ."
tions.

[5.2] P. MILNES. Di3tal functions and ELLIS-groups
Fot a HAUSDORFF compact right topological group G let A(G) = {t E

Gis t-+ st, ts are both continuous}. From a result of ELLIS (1957) we "know that
G is a topological group if A(G) = G. The resu1ts on non-topological G include·
the structure theorem of NAMIOKA (1972) for the case that A(G) is dense, and
the structure theorem of RUPPERT (1975) for the case when the right translations
s 1--+ st are even equicontinuous. The two classes of examples intersect precisely in
the class of tcipological compact groups. We describe an example of a HAUSDORFF
compact group falling into neither category.

[5.31 J. PVM. Compact 3emigroup3 with one 3ided continuity
Semigroups with one-sided continuity appear naturally in the theory of

transformation semigroups as solutions to many universal mapping problems. A key
example is the STONE- CEcH-compacrtification ßS of a discrete semigroup S, or,
more specially, ßN. One topic of the survey is a technique for obtaining in a simple
way strang algebraic results on ßN and other semigroups not superflcially similar,
for example that these contain copies of the free group on 2C generators. The
algebraic structure underlying this has been observed (PAPAZYAN) to correspond
to a set of distinct finite~sums FS {X n } = {XiI + Xi 2 + ... + Xi" I i 1 < i 2 < ... <
im}, where {x n} is a sequence in the semigroup. If S is cancellative, then any
neighborhood V in ßS of any idempotent e in ßS \ S contains a set of distinct
finite sums in S (VAN DOUWEN, HINDMAN) 50 that V actually contains a free
group on 2C generators.

•
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[5.4] W. A. F. RUPPERT. Compact "emitopological "emigroup"
This is an overview of the theory of compact semigroups on which multi

plication is contiouous in each variable separately. We comment on main trends,
tools and results, including semitopological semigroups on compact manifolds, \veak
almost compactifications of semisimple Lie groups versus abelian groups and other
topics. (As a reference see W. A. F. RUPPERT, Compact semitopological semi
group: An intrinsic theory, Lecture Notes in Mathematics 1079, Springer Verlag
Heidelberg etc., 1984)

[5.5] J .-P. TROALLIC. Semigroupe" affine3 "emitopologique3 compacy
Ceb travai1a pour hut depresenter quelques aspects de la theorie des semi

groups affines semitopologiques compacts. Dans les sections 4 et 5, deux types de
problemes sont abördes quit ont trait, les uns a. l'existence de points de continuite
a. gauche pout des actions separement affines et separement continus de semigroups
affines sernitopologiques compacts (section 4), les autres a l'extremalite des points
de continuite a gauche obtenus (section 5). Ces deux sections ont ceci en cornmun
qu'elles s'appuient l'une et l'autre sut une variante d'un resultat de NAMIOKA COD

cern~nt la dentabilite. Ceite variante est l'outil principal de ce travail; elle joue UD

röle comparable a. celui que joue le theoreme depoint fixe de RVLL-NARDZE\VSKI

dans l'approche originale de la presque-periodicite faible. Les sections 6,7 et 8 sont
consacrees ades applications des resultats etablis dans les sections 4 et 5.

[6] 'töpological algebra, topological semigroups, order theory

(See also PIN [1.4])

.[6.1] D. R. BROWN. Semigroup3 on n -cel13, unique divj.,ibility, and matri-

ce"
Let 5 be a semigroup of a compact n-cell with minim8.1 ideal K, and

suppose that S is uniquely divisible with E = {I} U K and with trivial groups.
Alsoassume xS~ Sx forall x E S andcancellationon S\K. Foranyidempotent
e E E let let C(e) depote the core {x E S I xe = ex = e}. The possibilities for
the dimension of the core are given by dirn C(e) +dirn K = n for k = 0, ... , n - 1.
Various theorems for particular values of k are discussed. The aim is to show that
portion S \ K outside the minimal ideal is embedded into a metabelian Lie group.

[6.2] D. R. BROWN and J. A. HILDEBRANT. Embedding compact t -"emi
group3 into compact uniquely divj.,ible 3emigroup"

A t -"emigroup is a semigroup whose subgroups are singleton. The class
of compact commutative semigroups with are embeddable into compact uniquely
divisible semigroups includes according to our present knowledge: (1) semigroups
which have a totally disconnected semilattice continuous homomorphic image whose
point inverses axe power ideal semigroups, (2) t -semigroups in which the down set
of each idempotent has a neighborhood in its core which is contained in the image
of the map x J-+ x 2 , (3) t -semigroups in which each idempotent has a finite down
set and a rore (see [6.1]) satisfying a suitable condition, (4) semigroups containing a
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cancellative element in their divisor. It is proved that for a compact n-dimensional
power-cancellative commutative topological semigroup S the subsemigroup S \ {O}
is embeddable ioto a cone in Rn if each element of S \ {O} is divisible.

[6.3] G. GIERZ and A. STRALKA. Sublattices 01 Rn

Let n E N be a positive integer. A family Qij: [0, 1] --+ [0,1], 1 :5 i, j :5
n of upper semicontinuous monotone functions satisfying (1) aij(l) = 1 for all
i, j, (2) Oii(x) = x for all i and x, (3) aij 0 a jA: ~ aiA: for all i, j k is called
an inf-seam. If (O'ijh:S:itj~" is an inf-seam, then L = {(Xl, ... ,XN) E [0,1]" I
Xj :5 Qij(Xj) for all i, j} is a c10sed connected sublattice containing 0 and 1.

? Conversely, every closed connected sublattice of [0,1]" containing 0 and 1 is of
. this form. Applications. A sublattiee L ~ Rn is Jull if it is compact and the
interior of L is connected and dense in L. A point x E 8L is a Cl -point, if
there is a neighborhood U of x and a continuous function l{): U --+ R such that (1)
8L n U = {p E' Rn I <p(p) = O} and (2) grad rp(x) =f. O. Theorem. If L is fuH, then
{x E aL I x is a Cl -point} is a dense G6 in aL. We call a fuH sublattice L ~ Rn
a lattice sphere if Prime(L) = Coprime(L). Theorem. Up to isomorphy, there is
exact1y one lattice sphere in dimensionI!, 2, and 3. If the dimension is at least 4,
then there are uncountably many pairwise non-isomorphie lattice spheres in each
dimension.

[6.4] M. W. MISLOVE. Hi.!tory and applications 01 compact $emilattices

We trace the development of the strueture theory of compact semilattiees
and their apparatus. The development of the notion of a LAWSON semilattice is
deseribed, and the struetu~e theory of these semilattices elucidated. Applications of
objects-also known as continuow lattices to general topology are described, where
they· arise as the open set lattiee of locally eompaet sober spaees. But we also give
applieations to harmonie analysis. In this context, we have the following Theorem.
For a locally compaet semilattice the following two eonditions are equivalent: (1)
The algebra M(S) of all finite regular Borel measures is symmetrie. (2) S has
compactlyfinite breadth, thai is, for all eompact subsets K ~ S there is a finite
subset F ~ K with inf F = inf K. (3) S eontain no copy of 2N . If these conditions
hold, then ßM(S) is the filter semilattice of the discrete semilattice Sd. Thus the •
idempotent measures are direct sums of point masses, and the invertible measures
are exact1y the exponential. measures.

[6.5] A. AND J. SELDEN. The continuous extended bicyclic semigroups

We discuss closures of certain semigroups in locally compact topological in
verse semigroups in which inversion is continuous. First we provide the background
information on the free inverse semigroup with one generator and on the closures
of the discrete and continuous bieyclic semigroups, as weIl as on the closures cf the
discrete and continuous extended bicyclic semigroups. We then list some examples
of topological inverse semigroups on the plane to provide a setting for the following
application of the previously mentioned results: If S is a topological inverse semi
group on the plane containing Dq non-trivial groups and whose idempotents fonn a
line, then S is a continuous extended bieyclic semigroup.
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[6.6] A. M. SKRYAGO. Matrix repre3entation3 01 regular 3emigToup3

Let 5 be a compact regular semigroup. The following questions have to
be discussed: (1) Do the finite dimensional representations separate the points?
(2) Does a representation of a subgroup of Sextend to a representation of 5?
(3) How are all representations of S. to be classified? Regarding question (1) we
have the following Theorem. S is representeably if and only if each connected com
ponent is eontained inc 'D-elass and any maximal simple CLIFFORD-subsemigroup
is a reetangular band of groups. Regarding (3) we propose the Theorem. A rep
resentation with O-simple image is a tensor product of a group representation and
a representation of an ?i-trivial O-simple semigroup. We describe various results
coneerning the extension problem (2).

[6.7] H.-J. WEINERT. Exten3ion3 01 topological 3emigToups by right quo-
tienu

Let (S,·, S) a topological semigroups with topology S and let (T,·) =
Qr(S, E) = {ad- 1 la E 5, d E E} asemigroup of right quotients of S with respect
to a subsemigroup E of S. The problem is to describe a11 topologies T on T ;such
that (T,·, T) is a topological semigroup with TI5 ~ S, and to describe conditions
under which a subgroup G of (T,·) is a topological group (G,', TIG). This problem
is completely solved for the special case that TI5 = S and 5 E T. In general,
suitable topologies 5 on E provide us with a base {Un -1 I U ES, n ES} for such
a topology. We discuss generalisations. In that context, cf. J. K. LUEDEMAN, A
topological semigroup of quotients, Studia Sei. Math. Hung. 14(1979), 77-82.

Reporters: K. H. Hofmann
J. D. Lawson

J. S. Pym

                                   
                                                                                                       ©



- 14 -

Tagunßsteilnehmer

Prof. Dt'. M. Anderson
De.pt. of Mathematics
University af Hawaii at Hila

Prof. Dr. D. R. Brown
Department of Mathematics
University of Hauston
4800 Cal~oun Road

Hila
USA

HI 96720-4091
Haus ton
USA

TX 77004

Prof. Dr. J. W. Baker
Dept. of Mathematics
University of Sheffield
Hicks Building
Hounsfield Road

Prof. Dr. C. Chou
Dept. of Mathematics
State University of New Vork at
Buffalo
106, Diefendorf Hall

GB- Sheffield 53 7RH Buffalo ~ NY 14214
USA

Prof. Dr. C. Berg
Matematisk Institut
Kobenhavns Universitet
Universitetsparken 5

DK-2100 t<obenhavn

Prof. Dr. J. F. Berglund
Dept. of Mathematical Sciences
Virginia Commonwealth University

Richmond , VA 23284-2014
USA

Dr. J. P. R. Christensen
KTAS~ UN
Norregade 21

DK-1199 Kobenhavn K

N. Dörr
St.-Andre-Str. 17

6105 Ober-Ramstadt
•

Prof. Dr. J. Duncan
Dept. cf Mathematics
University of Arkansas

Prof. Dr. T. M. Bisgaard
MatematisK Insti tut
Kobenhavns Universitet
Universitetsparken 5

DK-2100 Kobenhavn
Fayetteville
USA

AR 72701

                                   
                                                                                                       ©



A. Eggert
Liebigstr. 79

6100 Darmstadt

Prof. Dr. J. Faraut
Insti tut da f1athematiques
lli,iversite Louis Pasteur
7, rue Rene Descartes

F-67084 Strasbourg Cedex

Prof. Dr. G. Sierz
Dept. of Mathematics
University of California

- 15 -

Prof. Cr. J. A. Hildebrant
Dept. of Mathematics
Louisiana State University

Baton Rouge , LA 70803-4918
USA

Dr. J. Hilgeri;
Mathematisches Institut
der Universität Erlangen
Bismarckstr. 1 1/2

8520 Erlangen

Prof. Dr. N. Hindman
Dept. of Mathematics
Howard University

Riverside
USA

CA 92521 Washington
USA

De 20059

Prof. Dr. W. Hazod
Fachbereich Mathematik
der Ut1i v~r s i tä t Ocr tmund
Postfach 50 05 00

4600 Dortmund 50

Prof. Dr. H. Heyer
Mathematisches Institut
der Universität Tübingen
Auf der MorgensteIle 10

7400 Tübingen 1

Prof. Dr. K.H. Hofmann
Fachbereich Mathematik
der TH Darmstadt
Schlo6gartenstr. 7

6100 Darmstadt

Prof. Cr. J. W. Hogan
Dept. of Mathematics
Marshall University

Huntington , WV 25701
USA

                                   
                                                                                                       ©



- 16 -

Prof. Dr. J. P. Holmes
1875 Kalanianaole Ave.
apt. 602

.- Hila , HI 96720
USA

Prof. Dr. K. Keimel
Fachbereich Mathematik
der TH Darmstadt
Schloßgartenstr. 7

6100 Darmstadt

Pr~f. Dr. I. Kupka
Department of Mathematics
University of Toronto

Toronto, Ontario M5S lAl
CANADA

Prof. Dr. A. T. Lau
Dept. of Mathematics
University of Alberta
632 Central Academic Building

Edmonton, Alberta T66 261
CANADA

Prof. Dr. J. D. Lawson
Oept. of Mathematics
Louisiana State University

Baton Rouge , LA 70803-4918
USA

Prof. Dr. K. D. Magil1
Dept. of Mathematics
State University of New Vork at
Buffalo
106, Diefendorf Hall

Buffalo , NY 14214
USA

Prof. Dr. P. Milnes
Dept. of Mathematics
University of Western Ontario

London, Ontario N6A 5B7
CANADA

Prof. Dr. M. W. Mislove
Dept. of Mathematics
Tulane University

New Orleans LA 70118
USA

Prof. Dr. A. MUkherjea
Dept. of Mathematics
University of South Florida

Tampa , FL 33620-5700
USA

K. H. Neeb
Goethestr. 31

6115 Münster

                                   
                                                                                                       ©



- 17 -

Prof. Dr. A. L. T. Patersan
Dept. of Mathematics
University of Aberdeen
The Edward Wright Building
Dunbar Street

Dr. W. Ruppert
Insti tut fl~r Mathematik und
Angewandte Statistik
Universität für Bodenkultur
Gregor-Mendel Str. 33

GB- Aberdeen AB9 2TV A-1180 Wien

Prof. Dr. J. E. Pin
14, rue du Four

Prof. Dr. A. SeIden
Dept. of Mathematics
Tenn Techtlological University

F-94500 Champigny
Cookeville
USA

TN 38505

Prof. Dr. J. S. Pym
Dept. of Mathematics
University of Sheffield
Hicks Building
Hounsfield Road

Prof. Dr. J. SeIden
Dept. of Mathematics
Tenn Technological University

Cookeville , TN 38505
USA

GB- Sheffield 53 7RH

Prof~ Dr. L. Renner
Department of Mathematics
Middlesex College
Universi ty o'f Western Ontar io

Landon, Ontario NbA 5B7
CANADA

Prof. Dr. L. J. M. Rothkrantz
Onderafdeling der Wiskunde en
Informatica
Technische Hogeschool Delft .
Julianalaan 132

NL-262B BL Delft

Prof. Dr. A. M. Skryago
Department of Mathematics
f<uban State Un i vers i ty

350040 Krasnodar
USSR

Dr. f<. Spindler
Fachbereich Mathematik
der TH Darmstadt
SchlotSgartenstr. 7

6100 Darmstadt

                                   
                                                                                                       ©



                                   
                                                                                                       ©



- 18 -

Prof. Dr. J. W. Stepp
Department of Mathematic:s
University of Haustan
4800 Calhoun Road

Prof. Dr. A. Stralka
Dept. of Mathematics
University of California

Hausten
USA

Riverside
USA

TX 77004

CA 92521

Prof. Dr. H. L. Vasudeva
Department of Mathematics
Panjab University

. Chandigarh 160014
INDIA

Prof. Dr. H.J. Weinert
Institut für Mathematik
der TU Clausthal
Erzstr. 1

3392 Clausthal-Zellet"feld

c. Terp
Fachbereich Mathematik
der TH Darmstadt
Sc:hloßgartenstr. 7

6100 Darmstadt

Prof. Dr. J. P. Troallic
Faculte des Sciences et des
Techniques
Universite du Havre
25, rue Philippe Lebon

F-76600 Le Havre

w. Weiss
Fachbereich Mathematik
der TH Darmstadt
Schloßgartenstr. 7

6100 Darmstadt

                                   
                                                                                                       ©



                                   
                                                                                                       ©


