
MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e r ich.t 29/1989

Freie Randwertaufgaben, insbesondere numerische Behandlung
und optimale Steuerung

9.7. bis 15.7.1989

Die'Tagung wurde organisiert von K.-H. Hoftinann (Augsburg)
und J. Sprekels (Essen).

Im Mittelpunkt des wissenschaftlichen Programms standen insgesamt 34 Vortragsbei­
träge zur mathematischen Theorie, Numerik und Steuerung verschiedener Klassen von
freien Randwertproblemen, die bei der Modellierung physikalisch-technischer Vorgänge
auftreten. Insbesondere handelte es sich um folgende Problemkreise: Hysteresis-Phäno­
mene bei thermomechanischen Phasenübergängen in Festkörpern, nicht-isotherme spi­
nodale Dekomposition, Phase-:-Field-Modelle, Stefan- und Muskat-' Probleme, Spritz­
guß, KristaJIzucht, Strangguß von Stahl, Oberflächenwellen, Oberflächenspannung, Ka­
pilla.rflächen, Überscha1lströmungen und Strömungen durch poröse Medien.

Die Tagung wurde mitgeprägt durch eine intensive Diskussion der Vorträge und an­
grenzender Problemstellungen, die insbesondere auch während der Abendszeit im klei­
neren Kreis stattfand.

Die angenehme Atmosphäre der Tagung, die nicht zuletzt der exzellenten Bet'reuung
durch die Mitarbeiter des Instituts zu verdanken ist, sei noch besonders erwähnt. Im
Namen der Tagungsteilnehmer danken wir Herrn Prof. Dr. M. Barner und seinen
Mitarbeitern herzlich dafür. .

vortragsauszüge

H. W. ALT:

Non-isothermal phase separation in binary systems 11

We prove the existence oi a weak solution (u,v,w) E L2([0,T]; H I •2 (fl; Iß.3» of the
phase-separation model presented in the first talke Here we assume that K. =const. The
dift'erential equations are

-v + <P.u(u,w) - "V. (ItW "V u) = 0,

8t u + "V .J= 0, where; = -(lu \J v -112 'V w),
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-Otft',w(U,w) + 'V. q+ 9 = 0, where q= 122 'V w -ln 'V v,

with boundary conditions

8;iU=0, J.ii=O, q.n=p(u,w).

The main difliculty which arises is the absence of a maximum principle for tempera­
ture, therefore the inequaJity w > °must be a result of the construction of a solution.
We achieve this by imposing a side condition ~ ::; w ::; : {or the time discrete problem
with step size T. By the physical &5sumptions on the potential ft' we obtain in the limit
f -+ 0 that w > °a.e., and that the variational inequality in fact is an equality..A
compactness argument in time then enables us to go the limit T -+ o.

M. BROKATE:

Optimal control of shape memory alloys

We consider an optimal control proble~ tor the shape memory alloy eq';ations

Utt - (8F:(f) + F~(f))z + U zzzz = 1

8e - SF;(f)Ee - Szz = 9, f = u z ,

where 1,9 and the boundary temperature Sr are the controls. It is proved that the
map (/,9, Sr) -+ (u, 8) has a directional derivative in appropriate. function spaces, and
that necessary optimality conditions in form of a variationalinequality and an adjoint
equation hold. (joint work with J. Sprekels, Essen) .

G. CAGINALP:

The phase 8eld model - theory and numerical computatio~..

The sharp interface that anses from any of the major phase transition problems (clas­
sical or modified Stefan, etc.) ean be smoothed using the phase field approach as a
numerical too1. The computations in one dimensional space and n-dimensions with ra­
dial symmetry indieate that this in an efficient method tor dealing with stifF equations
and results in a very accurate interface determination without explicit tracking. The
technique also provides a numerical verification of the concept of an unstable critieal
radius of solidification.

J. N. DEWYNNE - J. R. OCKEND"ON:

Nu~erical.solution of the co~tinuoWicasting problem

The process of continuous casting has considerable technological importance, but in
practice the solidification is liable to lead to imperfeetions and instabilities. A thorough
understanding of these problems is not 'yet .available, but they are commonly believed
to originate in the region of the easter where the solidification ürst takes place. For a

,...
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simple one-phase model, with everywhere constant casting velocity, an explicit classical
solution is available in the case that cooling is (effectively) a Dirichlet boundary condi­
tion. This solution exhibits upstream influence, in which the freezing begins upstream
of the point where cooling starts in the mould. ,For relatively weak cooling, however,
there is no upstream influence and the possibility of sensitive dependence on the data
(even though for quite general cooling existence and 'uniqueness of a weak' solution is
known). A numerical investigation is needed to c1arify the matter, and because a fine,
unbiased, resolution of the phase boundary is necessary, a boundary integral methode has been proposed and implemented.

R. B. GUENTHER:

Damping or surface'water waves

The problem of shallow water, edge waves incident on a sloping beach is discussed. A
nonlinear model for the wave heights is proposed and a numerical example is given.

J.. HASLINGER:

Numerical solution of optimal control problems, governed by variational
inequalities

Let neo) = {(Zt, Z2) E 18.210 < Zt < a(Z2)' Z2 E (0, I)}, a E UGd, where

Ud = {a E CO,t{[O, 1])10 < Co ~ a(z2) ~ ~h la'(z2)1 ~ C2 , meas O(a) = C~} =10

is aspace of control variables. In any n{a), a E Uad, we assume the unilateral boundary
value problem:

1
-ß u{a) + u(a) = /
~u(a) = 0 on r t

u(a) ~ 0, :: ~ 0, u~ = 0 on r(a)

~ :vher~ r(a) = {(Zt, Z2) E IR.2IZt ~ a(z2)' %2 E ~O, I)}, r t = an(a) - real. Let l(a) =
• 211~II~t/2,80(a) be a cost functlonal. We conslder the problem

{
Find Q. E Uod such that
l(a·) :5 l(a) Va E Ud.

u. HORNUNG:

N~ericalcalculatioD of capillary surraces

If a volume n of liquid fi11s partially a container ~ and is at rest a free surl'ace r will
separate the liquid from the rest of the container. The equilibrium configurations are
minimizers oi the energy functional .
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with the constraint V = 10 dO =prescribed. Here B is the Bond number, z the vertical
coordinate, R the rotational Bond number, r the distance !rom the &Xis Gf rotation, and
ß a factor describing the adhesion to the wetted part E of the container walls 8~. A
finite element method is 'presented that allows to calculate solutions of this variational
problem. Several numerical examples are shown.

L.-S. JIANG:

Perturbation ofan interface to a difFraction problem and a two-dimensional _
approximating Muskat problem _

In my talk. two subjects are talked about. The first one is the perturbation problem
of interface to a diffraction problem, and the second one is an approximating Muskat
problem.

A new straightening transformation has been found to introduce the perterbution of
interface to aperturbation of coefficients of equations and boundary values, then the
optimal estimates in space 0 2+0 have been obtained.

We use this perturbation theorem to consider an approximating Muskat problem.
The existence and uniqueness of the solution for this second order evolutional elliptic
free bound8.ry problem are proved in local by the fixed p'oint theorem.

B. KAWOHL:

Regularity, uniqueness and numerical experiments far a relaxed optimal
design problem

Consider the problem or" designing a cylindrical bar' of maximal torsional.rigidity out
of prescribed proportions of two different elastic materials. Moreover, the cross-section
(} of the bar is prescribed. An energy approach leads in a canonical way to a relaxed
variational problem, whose solution displays a free boundary. There are subdomains
0., i = 1,2,3 of n in which I\l ullies in certain ranges. The Euler equaiions are elliptic
in 0 1 and 0 3 , but not in O2 • The lecture contains recent results on numerical experiments _
(joint work with G. Wittum), uniqueness (open problem posed by Murat and Tartar; _
joint work with J. Stara) and regularity of solutions. The proofs use rearrangement
techniques, variational arguments and the coarea formula. In particular the uniqueness
proof is nonstandard.

N. KENMOCHI:

A new proor of the uniqueness 0"( solutions to two-phase Stefan problems
ror D«;)nlinear parab.olic equations

We consider the uniqueness' of solutions to two-phase stefan problems for adass of
nonlinear parabolic equations. Our dass includes parabolic equations of the form

· r

(*)
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where 2 ~ p < +00, p(.): IR -+ IRis a bi-Lipschitz continuous and increasing function
and g(.) is a maximal monotone graph in IRx IRwith 0 E 9(0) and bounded range R(g)
in [Il In general, the strong maximum principle, which is the most standard tool in the
uniqueness proof for one-dimensional Stefan problems, does not hold for equation (*).
Also, we consider the Stefan problem with nonlinear flux conditions such aB unilateral
boundary conditions (Signorini boundary conditions) on the fixed boundaries z = 0, 1.
In such cases, the uniqueness of solution to the Stefan problem is not obtained in the
weRk (enthalpy) formulation of S. Kamenotskaja. In this talk we give a new proof ofe the uniqueness for Stefan problems without using the strong ma.ximum principle.

K. KIRCHGÄSSNER:

Surface waves under small surface tension

It is a long standing open problem whether solitary waves exits on the surface of a
liquid if the Bondnumber is less than one third. A proof is p~esented, via normal form
theory, that, for any order of algebraic approximation, the answer is affirmative. The
persistence for the full vectorfield is conjectured and arguments are given. (Joint work
with 9. 1005s, Nice)

P. KNABNER:

Travelling wave solutions or reactive ftow problems in porous media

We study travelling wave solutions (u,v,c), u ~ 0, v ~ 0, of

(TW)

atU + 8ttP(u) +atv - D8:n :u + qozu = 0
8tu = kf(u,v)
11.(-00)=11.·>0,
v( ~oo) = v· > 0,

in "IR

U{+oo)=0
v(+oo) = 0

e This is a model for solute transport in porous media, where the substance reacts with
the grain surface (adsorption). (D > 0, q > °are constants)

'1' and f need not be Lipschitz continuous up to 11. = °or v = 0; this leads to a
degeneration in (TW).

Besides existence and uniqueness we investigate the finiteness of the wave, i.e. the
vanishing of u cr v for finite dOWDstream values. For j(11., v) = tpt(u) - v and f( 11., v) =
11. - ep2(v) we characterize this situation. Finally we analyse the 1imit processes
k·-+ 00, D > 0; k < 00, D '\, °and k -+ 00, D '\, O.

D. KRÖNER:

About a new upwind scheme ror the Euler equation in 2-D

In this lecture we present a new upwind scheme for the compressible inviscid Euler
equation in 2-D. The most frequently used sche~es to approximate this kind of systems
are the dimensional splitting (or fractional step) schemes. They reduce the 2-D problem
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to two 1-D steps in the direction of the cartesian coordinates. Although they are
used very often to simulate flows in 2-D, for some special cases you may run into
problems. This may happen for instance if you will compute a shear flow or if you
look at the stability conditions for a strongly unisotropic problem. Therefore people
tried to deve10p some new algorithm for the Euler equation in 2-D. Qur approach is
based on the selection of a locally prefered direction. This one is used to diagonalize the
system in order to get a single equation in 2-D. This is then solved with a finite volume
method and an upwind dicretization. Finally we show the results of some numerical
experiments.

M. KUBO:

Periodicity of saturated-unsaturated ftow in porous medium

Unsteady saturated-unsaturated flow in porous medium is described by an equation
of paräbolic--elliptic type. The boundary of the porous medium is suvposed to be in
contact with the atmosphere, reservoirs and an impervious layer. We have obtained
the eDstence and uniqueness of the solution of this problem for any prescribed initial
data. And the solution is to be proved to have a strong time derivative as an L2-valued
function. The second result is concerned with the large time behaviour of sölutions. We
have proved that there is one and only one periodie solution which is asymptotically
stable, provided that the given data are periodie in time.

F. KUHNERT:

Numerische Lösung von Aufgaben mit &eien Rändern aus der Praxis

Das Spritzgießen und Pressen von flachen Kunststofferzeugnissen wird mathematisch
durch die Hele-Shaw-Näherung für zähe Strömungen beschrieben. Die Transforma­
tion in Variationsungleichungen führt dazu, daß der freie Rand (Fließfront) nicht mehr
explizit in der Aufgabenstellung vorkommt. Für die dabei entstehende Klasse von
Variationsungleichungen vom Volterraschen Evolutionstyp werden Existenz- und Ein­
deutigkeitssätze formuliert. Im Falle linearer Aufgaben werden numerische Algorithmen
aus der Variationsformulierung abgeleitet, um eine iterative Korrektur des freien Randes
zu vermeiden.

X.LIU:

Frechet difFerentiability of the &ee boundary operator ror a Muskat-type
problem

We consider the one-dimensional Muskat problem. It is wel1 known that there exists a
unique global classical solution u',8 under the assumptions upon the data

11(t) and 12(t) E CO,1[O,T], u,o(z) E 0°,1[0,1],

11(0) = uo(O), 12(O)=u,o(l)·

•

                                   
                                                                                                       ©



~
I

- 7 -

We prove that under the same assumptions the solution operator S which to each pair of
boundary data (/1,/2) assigns the correponding free boundary, is Frechet differentiable
and that the F-derivative is Lipschitz continuous. We give the boundary value problem
which represents the F-derivative of S.

A. MEIRMANOV:

Principles ofsimulating the models ofphase transitions in multiparametrie

• media

The paper suggests the principles of simulating the mathematical models of phase tran­
sition in multiparametrie media for the case when the different phases are described by
the same number of independent thermodynamical parameters. The main attention is
paid to the conservation laws in a divergence form, convenient for calculations, and the
axioms of equilibrium thermodynamies.

G.H. MEYER:

Free boundaries with curvature

This talk will be concerned with front tracking for parabolic free boundary problems
which contain a curvature term in the free boundary condition. A method of lines dis­
cretisation is applied to obtain a coupled system of ordinary differential equations which
is solved iteratively. An essential feature in tbis approach is the algebraic elimination
of derivatives orthogonal to the front tracking directio~ from the normal and tangen­
tial. derivatives on the free boundary. The method is then applied to the undercooled
two phase Stefan problem with a Gibbs Thomson interface condition. We shall con­
clude with comments on a new convergence proof for this approach for problems with
a globally defined free boundary condition.

H.D. MITTELMANN:

• Energy stability ofthermocapillary convection in a model ofthe ftoat-zone
crystal growth process

Thermocapillary convection (TC) is a fluid motion driven by surface-tension gradients
on a liquid-gas in·terface. This type of convection plays an important role in materi­
als processing, particularly in crystal growth. The main reason for instability of TC
appears to be the onset of time-dependent oscillatory TC. This causes material imper­
feetions in the produced crystal. First, the steady state is computed. Then using the
Marangoni number Ma as governing parameter, energy stability is applied to determine
sufficient conditions for stability, i.e. the flow is stable for Ma < MaE. The computation
of MaE is a highly nontrivial numerical problem, for which a complex method is pre­
sented inyolving several nest~d nonlinear iterations. The core is a nonstandard inverse
iteration procedure to compute the sm8.llest positive eigenvalue of Az = ABz, where
A, B are both symmetries but indefinite. Extensive numerical results are reported which

                                   
                                                                                                       ©



- 8

show remarkably good agreement witb model experiments for Prandtl numbers of size .
0(1). Tbe method, bowever, allows to compute for tbe materials actually used, as sili­
con with Prandtl number 0(10- 2

), both in terrestrial and microgravity (sp"ace shuttle)
environments.

I. MÜLLER:'

The size of the hysteresis in pseudoelasticity and its dependence on temper­
ature

Many mathematical models for hysteresis phenomena produce non-monotone cha­
racteristics. This is the case for instance for pseudoelasticity, where the load-deformation
curve is as shown in the figure.

•
One may then argue that such curves imply a hysteresis that is bounded by the two

dashed horizontallines in the left figure. Actually, however, there are cases when the
. break-through occurs reversibly along an intermediate horziontalline, see central figure.
That raises the question whether there CRD be a case in which the size of the hysteresis
is as shown in the right figure. In this research it is shown that this is indeed the ease.
The area enclosed by the hysteresis loop is equal to 2A, where A is a eonstant that
determines the interfacial energy Az· (1 - z) of aphase mixture where two phases are
mixed in the proportion z / (i - z).

In the Landau theory of phase transitions the load-deformation curv~s are simple
analytic functions, whose downward sloping region becomes less pronounced at higher
temperatures. It eRD then be shown that - as a result of this behaviour - the height
of the hysteresis nrst grows with increasing temperature and then ·decreases. This
behaviour finds some support in tensile experiments with shape memory alloys in the
pseudoe1astic temperature range.

M. NIEZGODKA:

Coupled-8eld models of the dynamics of phase transitions in shape mem­
oryalloys

We consider phenomenological models of coupled thermomechanical proeesses aeeom­
panying structural phase transitions in shape-memory alloys. These are systems alter­
nating between one-Ioop, non-monotone constitutive relations at low temperatures and
the double-Ioop relations at high temperatures. The proposed models are eonstructed
within an erlended Landau-Ginzburg tbeory of phase transitions, with surfaee effects
taken into aceount. For tbe one-dimensional model, discrete approximations .are con­
structed. Results on the numerical stability of tbe discrete approximations are reported.

•
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. We also give some results on the convergence of the discrete solutions, uniform in case
of regular initial and boundary data. (Joint work with J. Sprekels, Essen.)

P.D. PANAGIOTOPOULOS:

Free boundary value problems expressed in terms of hemivariational in·
equalities

In mechanics there is a variety of vari~tional formulations which arise wh~ ~ateri~
laws and/or boundary conditio~s are derived by nonconvex, generally nondifFerentiable
energy ~ctions in terms of th~ generalized gradient of F.H. Clarke - R.T. Rockafe11ar.
They have a precise physic81 meaning: they express the principle of virlual work (or
power) in its inequality form.. The materia11aws. and the bOw1d~ eonditions are
generally multivalued and no~onotoneand give rise' to free BVPs. The coresponding
variational formulationsare ealled hemivariational inequalities, because they differ due
to the laek of eonvexity nom the classieal variational inequalities. This presentation
deals with the eDstence and approximation theory of the solutions of hemivarlational .
inequalities in Sobolev spaces and in BD-spaces. Some numerical results illustrate the
theory.

M. PAOLINI:

•

An adaptive 8nite element method ror two-phase Stefan problems in two
space variables: implementation and numerical results

A descnption of the implementation of a local refinement strategy for two phas.e Stefan
problems on planar domains based on linear finite element approximation iso given. The
strategy is based on equidistributing interpolation errors obtaining a typical triangu­
lation which is coarse far nQm the free boundary, where the discretization parameters
satisfy the usual parabolic relation, and refined in its vieinity in orde.r to obtain the
hyperbolic relation. Theoretical results campel that a mesh cannot be modmed tor a
number of time steps, so that a prediction of the movement.of the free boundary is nec­
essary. Moreover we decide that subsequent meshes are independent !rom each other,
thus forcing the use of an efticient mesh generator tor general planar domains, which is
based on the advancing front technique. At eaeh time step a number of tests are per­
formed in order to ensure that the computed free boundary does not escape nom the
refined region and that the locar mesh size still satisfies the various constraints arising
fr:om the first and second derivatives of the computed solution. Finaily three numer-
·ical experiments are presented illustrating the various features of the implementation
including the presence' 'oi mushy regions and the developping of cusps along the free
boundary.
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I. PAWLOW:

Non-isothermal phase separation in binary systems I

A mathematical model of non-isothermal düfusive phase separation in binary systems is
proposed. A typical situation· there is that the system, initi8.lly in one-phase thermody­
namical equilibrium state, upon rapid cooling transfers to a non-equilibrium state within
the COeDstence region of its phase diagram. Activated by a fluctuation, the system
evolves towards a new equilibrium state with spatially non-homogeneous structure that
locally" separates different phases. The model is constructed within the general Landau- e
Ginzburg theory of phase transitions and is simultaneoulsy based on non-equilibrilPD
thermodynamics approach to desription of coupled mass and heat transport processes.
In the case o~ one space dimension, a method for solving the resulting nonlinear initial­
boundary value problem is presented and numerical results are discussed with data that
correspond to specifi.c metallic alloys. The simulation experiments deliver information
on the kinetics of phase separation at vanous stages, on the driving lactors and the
impact of the thermal treatment.

J.-F. RODRIGUES:

Aremark on the optimal control oC a Steran problem with C°-observation
oC the free boundary

Motivated by the continuous casting Stefan probem, in several space dimen~ions, we
describe two recent results which allow to prove the existenceof an optimal control
for a cost functional involving the CO-norm of the free boundary: first, we justify
the asymptotic model, as the Peclet number v ~ 00· (high velocities of extraction),
based on the parabolic two-phase Stefan problem (where time is identified with the
extraction spacial direction); second, we give, for tbis' problem in a known degenerate
case considered by Nochetts (1987), a new sharp estimate for the continuous dependence
of the fr~ boundary with respect to the variation oi the data. Tbis results is applied
to the optimal control with the observation of the nondegenerate free boundary.

J.C.W. ROGERS:

Numerical solution oC hydrodynamic free boundary problems

A generalized formulation of hydrodynamies as a system of conservation laws subject
to a one-sided density constraint has been used to solve underwater explosion problems
and free surface problems without applied pressures. Numerical results are shown, and
are compared with theoretical predictions in some benchmark cases.

•
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T. "ROUBICEK:

A 8nite-el~ment approximation oC SteCan problems in heterogeneous me­
dia

The nonlinear heat transfer problem with phase transitions in heterogen~us,but piecewice
homogeneous medium is investigated in the enthalpy formulation.A regularization
of the contaet conditions between the homogeneous subdomains is employed, and af­
terwards the problem is approximated numerically by means of the backward Euler

eformula in time and linear finite elements in 8pace, using also the linear interpola­
tion and a numerical integration to obtain a scheme readily implementable on comp~t­

ers. The convergence of the approximate solutions is proved under the conditions that
p -+ 0, h -+ 0, T -+ °and" in addition, T2

/ P -+ °and hIT is bounded, where h is the
mesh parameter, T is the time-step length, and p is the thermal resistivity of the surfaces
between the adjacent homogeneous subdomains (p is the regularization parameter).

J.L. VAZQUEZ:

Free boundaries, uniqueness and asymptotic behaviour of slow diffusion
with strong reaction

We consider the reaction-düFusion problem

zE mtN,t>O u(z,O) = uo(z) ~ 0 for z E mtN

with exponents m > 1 > P which imply slow dül'usion (since the diffusion coeflicient
, mum

-
1 -+ 0 as u -+ 0) and strong reaction (R{u) =' uP/u -+ 00 as u -+ 0). The

effect of the diffusive term on, say, compactly supported initial data leads to compactly
supported solution. On the other hand the ODE ü = up"has solutions branching away
from u = 0, i.e. ii = c.tG,a = 1/{p - 1). When both terms are combined the result
depends critically on the number p + m - 2 = q If' q ~ 0 there are infinitely many
solutions, ranging from a minimal solution with compact support to a positive maximal

_solution. On tbe contrary for q < 0 either Uo ~ 0 in which case there is only a solution
"u (&nd u > 0) or Uo == 0 and then you may the homogeneous solutions u. A travelling

wave analysis is performed and shows (in N = 1) minimal speed of propagation c > °
for m + p = 2 and finite interfaces for m + p > 2 (p< 1,m > 1). (Work in
collaboration witb A. de Pablo, V.A.M.)

c. VERDI:

An adaptive flnite element method ror two-phase Stefan problems: sta­
bility and error estimates

Based on equidistributing interpolation errors, a loca.l mesh refinement strategy is pre­
sented. A typical triangulation is coarse away!rom the discrete interface, where dis­
cretization parameters satisfy a parabolic relation, whereas is locally renned in its vicin­
ity for the relation to become hyperbolic. Numerical tests are performed on the com­
puted solution to extract information about first and second derivatives as weIl as to
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predict discrete free boundary Iocation. The resulting scheme is stable ~d necessi­
tates Iess degree of freedom than previous practical methods on quasi-uniform meshes
to achieve the same. asylnptotic accuray. An O(ql/2) rate of convergence nolds in the
natural energy spaces.

R. VERFÜRTH:

Aposteriori error estimators and adaptive mesh re8nement for flnit~ el­
ement dis"cretizations of the Navier-Stokes equations

We present two ä. posteriori error estimators for the mini~ementdiscretization of the
Stokes equations. -One is based on a suitable evaluation of the residual of the finite ele­
ment solution. The other one is based on the solution of suitable Ioeal Stokes problems
involving the residual of the finite element solution. Both estimators are globally upper
and locally lower bounds for the error of the finite element discretization. Numerical
examples show their efliciency both in estimating the error and in controlling an auto­
matie, se1f-adaptive mesh-rennement process. The methods presented here ean casily
be ge~eralized to t~e Navier-Stokes equations and to other discretization sch~mes.

A. VISINTIN:

Surface tension efFects in two-phase systems

Consider a solid-liquid system of a homogeneous suhstance in a domain {} E fR3. In
stationary eonditions one can assume that temperature 8 E LI(n) is given, and then
look for the phase field X(z)(X = -1 in solid, X = 1 in liquid). Accounting for sudace
tension effects, we introduce the free enthalpy functional

'l,(X) = ~C fn[8X + 8(X' -l»)dz +i fn IVxl tor lxi ~ 1 in (l,

where c, 8, q are constants > O. Absolute and relative minimia of Ws ~ LI(O) are then
interpreted as states of stahle and metastable equilibium, respective1y. It can also be
shown that such states do not have any mushy region (i.e., lxi = 1 a.e. in 0). In the
evolution problem, the Euler equation

8tPs(X) 3 0

is coupled with the Stefan equation

{JB 8x
Cp 8t + L 8t - V . (kV9) = f;

. eDstence of a weak solution can be proved.

A.F. VOYEVODIN:

Peculiarities of applying tbe Crac~ional step method to the numerical so­
lution of the Stokes system

The paper deals with consideration of a system of equations for viscous incompressible
fluid. To solve numerically the boundary-value problemsby the fractional step method,

•

•
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. the use is made of a special method of solving the difference equations that excludes a
necessity in iteration methods of determination of the vortex function on the domain
boundaries.

W.L. WENDLAND:

Transonie flows around airfoils

The two-dimensional compressible, steady, inviscid How around an airfoil with given
constant subsonie travelling velocity Voo at 00 develops pockets of supersonie fiow with
a free shock boundary !rom supersonie to subsomc velocity. Here, we consider the model
of the second order full potential equation for irrotational, isentropic fiows which admits
weRk solutions with diseontinuous gradient. Circulation is induded and the Kutta­
Youkowski condition at the trailing edge. The fundamental questions of existen~e and
uniqueness for this problem are still open.

Here we present a finite element conjugate gradient method which is based on an opti­
mal control problem aso~atedwith the Bateman principle where a nonconvexfunctional
is minimized on a convex admissible set of functions. The weak solution is not unique
without an additional selection principle which here is model1ed by a mesh dependent
penalty term penalizing large positive accelerations exc1uding expansion shocks. Berger
proved recently that this finite element method converges in W1.p for any p E (0,00),
provided the transonie "entropy" solution to the full potential equation would exists
and be unique. This is the completest convergence result currently known. As a con­
sequence, one would also have uniform convergence of the approximate shock curves.
Several numerical test computations are shown.

Literature:
[H. Berger, G. Warnecke, W. Wendland: Fimte elements for transonie potential fiows.
To appear in "Numerical Methods for Partial Differential EquatioDs"]
[H. Berger: A convergent finite element formulation for transonie :ßow~ To appear in
"Numerische Mathematik"]

s. ZHENG:

Global existence and stability of solutions to the phase 8eld equations

The global existence of solutions tp the phase field equatioDs which were proposed
by Caginalp to describe the phase transitions with finite thickness is proved which
improved corresponding results by Caginalp. The asymptotic behavior of solution and
the corresponding stationary problem are also extensively studied.

Berichter.datter: J. Sprekel&
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