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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 1/1990

Zeitreihenanalyse

1.1. bis 6.1. 1990

An der Tagung iiber Zeitreihenanalyse, die unter der Leitung von P.L. Davies (Essen), J.
Franke (Kaiserslautern) und G. Neuhaus (Hamburg) stattfand, nahmen 38 Statistiker-
innen und Statistiker aus neun Lindern teil. Neben einigen allgemeinen aktuellen Themen
aus der Zeitreihenanalyse sowie benachbarten Gebieten (z.B. der nichtparametrischen
Kurvenschiitzung) standen Beitrige im Mittelpunkt, die die neueste Entwicklung in
folgenden Problemkreisen widerspiegelten:

» Fragen der datenadaptiven Modellselektion
* Bootstrapping von stationiren Prozessen
* Nicht-lineare bzw. nichi—-GauBsche Zeitreihenanalyse

. Robustheitsfragen und andere Aspekte von Abweichungen von klassischen Modell-
annahmen .

Dabei wurde ein nicht unerhebliches Gewicht auf Fragen der Anwendung (6konomische
' Zeitreihen, Hydrologie, Image Processing, etc.) und die sich daraus entwickelnden

mathematischen Fragestellungen gelegt.

Die Tagung war fiir alle Teilnehmer sehr anregend und bot reichlich Gelegenheit zu

intensivem Gedankenaustausch und ausgiebiger Diskussion der einzelnen Beitrige.

Die Tagung beschloB der Dank, den Prof. J. Durbin im Namen der Teilnehmer unseren
Gastgebern vom Oberwolfacher Forschungsinstitut fiir die gastfreundliche, ja herzliche
Atmosphire in ihren Rédumlichkeiten aussprach, die allen den Aufenthalt wihrend der
Tagung duBerst angenehm und fruchtbar gestaltete.
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Vortragsausziige:

J. ANDEL:
S - - ! ! i f .. ‘. .

An AR(1)-model for positive random variables X, can be written as X; =bX; ; +¢,,

where e are iid positive random variables and b € [0,1). In this case

b* = min (Xp/X 1,y Xp/X-1) is a strictly consistent estimator for b under general - .
conditions. The distribution of b* is known when €, are exponentially distributed. If we

have a stationary AR(p)-model X;=bj X; j +.. + bp Xt—p +e withby20, ..., bp 2>

0 and ¢; > 0, then a good estimator of (by, ..., bp) is that which minimizes b1+...bp

under the conditions X;—by X;_j —... —=bp X, 20(t=p+l,...,n)and by 20 (k =

1, ..., p). This estimator is also strictly consistent under some conditions concerning the
distribution of e;. The results are generalized to nonlinear models of an autoregressive

type.

J. BEHRENS:

Robust order selection for autoregressive processes with outliers

For the purpose of approximating a linear process { X}, 7 by an aittoregressive process of

order p Shibata (1980, AS) called an order selection p,, € P, = {1, .., py} based on the
data Xy, ..., X, asymptotically efficient (as. eff.) if

Lo —)ml asn — oo

prélilgn La(p) '

for a given loss function L,(p) (e.g. MSE of prediction). To generaiize this approach in
the case of outliers (consider y; = x; (1 —zy) + v, 2, Pr (z, = 0) large) the least squares

estimates are replaced by GM—estimates ® 1 (p), ..., d>p(p) given by the minimization of

n

P
2 P(Yiloe-sYiops Y1 — ): Nj Yi-j)
t=p+l j=1

with respect to 1y, ..., p for suitable p.
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An order selection is called robust as. eff. if it is as. eff. for L, (p) based on p instead of a
quadratic function. Under assumptions on {y,}, p, p, we can get a robust as. eff. order
selection from the data. For special (nonrobust) p classical methods as AIC are obtained.

R. Bhansali:

Consistent recursive estimation of the order for ARMA — processes

A new criterion to be used at stage II of the Hannan-Rissanen (1982, Biometrika)
procedure is derived, and its consistency established. Simulations suggest that the
criterion should provide reasonable results with a finite time series, especially when T, the
number of observations, is large.

M. Cameron:
S imation with variabl dwidth

The peaks and troughs of spectra often have different curvatures and so, if a kernel
estimator is used, a kemnel whose bandwidth varies with frequency should be used. As an
approach to deciding on the bandwidth at each frequency, we use a step function as a
model for the spectrum and determine the positions of discontinuites using partitioning
algorithms.

Although discontinuous, these estimates are useful as a diagnostic for highlighting very
large or very small periodogram values, as a method of partitioning frequencies for a’
further band-by-band analysis, and as a method of obtaining a non-parametric estimate of
prediction variance. :

Simulations show that, as an estimator of prediction variance, the automatic method has
substantially less bias than fixed bandwidth estimators for spectra with sharp peaks. The
possible cost is a slightly inflated variance of the estimator.

~T. Cipra:

Robustification of recursive methods in time series analysis

The contribution is devoted to robustification of some popular recursive methods of
smoothing, prediction and estimation in time series. The following topics will be e.g.
discussed: 1. robustification of exponential and direct smoothing; 2. recursive version of
AM estimates (Approximate Maximum Likelihood Type Estimates) for ARMA models
with additive outliers and recursive version of CMM estimates (Conditional-Mean
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M-Estimates) for AR-models with additive outliers.

R. Dahlhaus:
Da 1S in ti ies analysis

The importance of data tapers is discussed for various areas of time series analysis
including nonparametric situation, parametric estimation , order selection and prediction.
For nonparametric estimation a mathematical model is presented which proves the
advantages of data tapers. We consider the integrated relative mean square error over an
(with the sample size) increasing class of stationary processes which includes for example
ARMA-processes whose roots converge to the unit circle. The model enables us to prove
theoretically the leakage effect, a trough effect and a variance effect for spectral estimates.
Furthermore, results are presented for the approximation of Toeplitz matrices which lead
to better approximation for the Gaussian likelihood function. The results are demonstrated
by simulations.

M. Deistler:
I . 1 ’ . . o ]] ! 1

We consider problems of identification of linear dynamic errors-in—variables models (i.e.
models where in principle all observations are contamninated by noise). In our framework
neither the number of equations nor the classification of the variables into inputs and
outputs has to be known a priori. We analyse the relation between the observations and
certain system characteristics. In particular we are interested in a description of the set of
all systems corresponding .to given second moments of the observations and in a
characterization of the maximum number of equations compatible with given second
moments of the observations. Special emphasis is given to the case of one input (and
many outputs in general) and to the case of one output (and many inputs in general).

J. Durbin:

E . f Kal jelli Gaussian d
Some recent work on extensions of the Kalman state space model to deal with
non-Gaussian data, including count, binary, categorial and exponential data, will be

discussed. The relation to the dynamic generalised linear model is considered. Some

data.
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further extensions will be suggested. The ideas are exemplified by considering Poisson
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D. Findley:

Porperties of the log-likelihood ratio supporting_the comparison of non-nested,
approximating models

We are interested in the behavior of the log-likelihood ratio when incorrect and
non—nested models are compared. This situation is very common in practice. We have
used AIC in hundreds of such time series modeling situations at the Census Bureau with
reasonable success, but it is clear from the problems which occasionally occur that a
deeper understanding of this easily calculated statistic is needed. We showed that the
situation in which the difference of AIC's (and the likelihood ratio) have a limiting
distribution for non—nested comparisons give rise to some interesting theoretical examples
but are not too relevant for application. In more relevant situations, the mean square of the
log-likelihood ratio has order N2, so large sample analysis are uninformative. It is
important to develop methods to estimate the mean square of the log-likelihood ratio of
incorrect models for fixed sample sizes.

_ Th. Gasser:

D I . ) - -

In this talk curves may be regression functions, probability and spectral densities and their
derivatives. The well-known nonparametric estimators involve the choice of a smoothing
parameter, the bandwidth. Based on kernel estimators, we have developped a method for
choosing the bandwidth in a rational way from the data while minimizing MSE.

In contrast to popular cross—validation, it relies on the asymptotically optimal bandwidth
and needs the integrated squared second derivative of the curve. Both in theory and in
simulation the new method is superior to cross-validation, in particular in variability. The
method can be generalized to the situation of correlated (mixing) residuals in a regression
context.

Suppose that (Xy,....Xp) ~ (Pe,n), 0e © open subset of R™. Denote M ={1;2,...m} this
big model and Py c ™M the true one. Let 1;; = a;%; n’ytn {V(®p, Ty) + C(n)/n-p}, p = IPI

be an estimation of P on the basis of the penalized contrast V(6, T;). We show that

Forschungsgemeinschaft

o®



UFG

Deutsche

- 6 -

under quite large hypothesis, the set of bad choice M, = {w: 13; # Py} can be described
by: Mp < {w: I T, —v 121y (C(n)/n) 122} if Cn)/n < 8y, for some constants 1, 8.
This results generalize the work of Bai et. al. (J. Mult. Analysis) done in the specific
context of determination of the order of an AR—-model.

Applications are given to general time series identification, random fields, linear or .

non-linear regression, categorial models. Under supplementary hypothesis, control of the
probability of M, are given.

W. Hardle:
Resampling in curve estimation

We consider the problem of resampling from estimated residuals in the context of
nonparametric regression smoothing. Let Y; = m(x;) + €; and gi =Y; - r’n\h(xi) the
estimated residual. We use the so-called
Wild Bootstrap :
Define e; =M t'—‘:l , with 1; iid, having a two—point distribution G = p 8, + (1-p) &},
such that EGM; =0,Egni2=1,Egnd=1.
We show that this particular method of xesainpling works in a variaty of problems, among
them construction of simultaneous error bars.

Ch. Hesse:

; It ith infinite vari

Linear processes with ‘infinite variance (such as autoregressive processes with stable
innovations) are being used to model certain economic time series such as stock price
changes, inflation rates, etc. Interesting statistical problems do arise with respect to the
applicability of the classical statistical methods which are almost always designed for
situations of finite variance and finite Fisher information. In this talk we study properties
of the empirical distribution function, of LS-estimators and of the empirical characteristic
function.

J.-P. Kreiss:
Bootstrapping AR (eo)}-processes

Many papers about bootstrap techniques in time series analysis discuss the parametric
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autoregressive moving average models, which are related to the familiar bootstrap of
regression models with fixed design. Related papers to this subject are Freedman (1981),
Efron and Tibshirami (1986), Bose (1988), Franke and Kreiss (1989).

All these papers assumed that the model order is known. So we deal with stationary

stochastic processes (X;: t € Z) which possess an AR(e)-representation, only. That is

X, = D ayXpy + &, te Z,
v=1

(g,) iid with zero mean and finite variance. 1 — z a, zV #0 V Izl £ 147 is also assumed.
v=1

To this model we fitted an AR(p(n))-process (p(n) —<o) on the basis of the given set of
data X, ..., Xj,. From this we obtain estimated residuals e’[,\n - These values are used to
carry through the proposed resampling scheme. We end up with bootstrap values
X;,n,..., X:,,n of the time series itself. Finally we prove that the proposed bootstrap
procedure is asymptotically valid as an approximation of the standardized distribution of
the empirical autocovariance.

H.R. Kiinsch:

r

nden rvation

We consider a sample of stationary sn'oﬁg mixing process and a statistic T,, obtained by

applying a functional to an empirical marginal of fixed dimension. We investigate three
procedures to estimate the variance and the centered distribution of T, respectively: direct
estimation of the asymptotic variance, blockwise jackknife and blockwise bootstrap. First
we summarize the results of Kiinsch, Ann. Statist. 17 (1989), and then we present new
developments and open problems: techniques for reduce the bias, first order Edgeworth
expansions for the studentized statistics, broader classes of statistics (regression
estimators, periodogram) and processes with long range dependence.

Pham Dinh'Tuan:

For short data and when the observed process has sharp spectral peaks, usual methods of
autoregressive (AR) model fitting methods may. be outperformed by the maximum
likelihood (ML) method. Moreover, many of them do not always provide an AR
polynomial estimate with roots inside the unit circle and/ or cannot be generalized to the
multivariate case. In this work, we develop a simple algorithm to compute the ML
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estimate for multivariate AR models. We provide an explicit expression for the log-
likelihood in terms of the forward and backward AR coefficients and innovation
covariances. Further, the gradient of the likelihood with respect to an appropriately
choosen set of parameters can be obtained through the resolution of a certain linear system
of equations. The estimate can then be constructed by the Fisher's scoring method, or by
a conjugated gradient method. Some simulating results will be given illustrating the
performance of the method.

B. Potscher:
Eff £ Model selcti inf

The asymptotic properties of parameter estimators in a model which has been selected by

. a model selection procedure using the same data set are investigated. (The estimation

framework considered is essentially Quasi Maximum Likelihood estimation.) In
particular, the asymptotic distribution of the parameter estimators is derived for a
particular model selection procedure based on a sequence of hypothesis tests. The
resulting asymptotic distribution is compared with the distribution delivered by standard

asymptotic theory ignoring the model selection process.

P.M. Robinson:

Automatic bandwidth selection in nonparametric and semiparametri uency domain

analysis of time series

Uniform consistency of nonparametric spectral estimation is established in the presence of
a general data—dependent bandwidth. A bandwidth is also involved in the estimation of
the limiting covariance matrix of ordinary least squares estimates in the presence of
disturbance serial correlation of unknown form, and in the efficient estimation of
regression coefficients in the presence of disturbance serial correlation of unknown form.
In both problems we show that the limiting distribution of the operationally scaled
regression estimates is unaffected by use of a general data—dependent bandwidth. We
consider a cross-validation method of bandwidth determination. We show that the
cross—validated bandwidth converges in probability to the optimal minimum-—integrated-
mean-squared—error bandwidth. The results we described previously hold for this
cross—validated bandwidth.
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R. von Sachs:

Peak_insensi . N

We study the problem of nonparametric spectrum estimation of a stationary time series
that might contain periodic components. In that case the periodogram ordinates at
frequencies near the frequencies of the periodic components have significant amplitude,
and can be regarded as outliers in an (asymptotically) exponential sample. This motivates
us to robustify the usual kernel estimator for the spectral density by applying the theory of
M-estimation already being studied in the regression context of deterministic design ( see
Hirdle and Gasser, 1984). Our modified estimator has a certain insensitivity against those
regarded outliers in the frequency-domain that, as some advantage, don't need a precise
modelling. We show consistency of the resulting spectral estimator in the general case,
and asymptotic normality in the special case of a Gaussian time series. The proposed
procedure is applied to some simulated series. ’

W. Schmid:

Tests on the existence of outliers 1n time series

Suppose that a realization of a process is given, which coincides with an.autoregressive
process if no outliers occur. In order to check the data on the existence of outliers, a test
of discordancy is required.

In my talk I want to present several outlier tests, which base on a comparison of the
observations with certain predictors. We distinguish between the case that an upper bound
for the number of outliers is known or not. The asymptotic distribution of the test statistic
under the null hypothesis (no outlier) is calculated.

A result on the asymptotic behaviour of a likelihood ratio test under the alternative
hypothesis is also given. In this case the mean—shift model is used to describe the
occurence of outliers. Furthermore these tests have been compared by means of a
simulation study.

S. Schnatter:
lling time series with non-linear state space models
Non-linear state space models are a rather interesting, but hardly used technique in time

series analysis. Statistical inference for non-linear state space models will be discussed
from a Bayesian point of view. An approximate filtering procedure, which is a
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modification of the multiprocess filtering approach of Harison/ Stevens, is suggested.
Furthermore, Bayesian Forecasting, Model Diagnostics and Model Discrimination for
non-linear state space models will be considered.

As an example, non-linear state space models based on a component model with linear
trend are presented. These models are applied to a time series of yearly ground water level
data from a station in Austria. ' -

U. Stadtmiiller:
i — and of single logarith
We assume that {X ) is a sequence of iid random variables, and we are interested in the
asymptotic behaviour of weighted sums X ap Xy W.I.to a.s. convergence. We consider
X ;

weights {ap; } which are defined by certain summability methods. The case of the Cesaro
method, i.e. apy = 1/n, 1<k<n, is well known, here we obtain the usual SLLN iff X € Ly
and the LIL iff Xy € L, and E(X{) = 0. A different behaviour occurs in case of e.g. the
Euler method, i.c. apy = [ 2 )Xk / (14+0)P, 1<k<n, where the LIL is replaced by a law of

single logarithm. We consider here a generalization of the Euler method, so called
Jakimovski methods, giving laws of iterated — and of single logarithm.

W. Stute:

Prediction in s for explosive AR(1)-processes

We consider a noq—stationary (explosive) AR(1)-process X; = B Xj1+¢g,i21, B> 1.
It is known from Anderson (1959) that the LSE B, of B converges geometrically fast, the
limit distribution depending on the whole of the error distribution F rather than finitely
many parameters of F. For prediction of X, ¢ on the basis of X, X;...., X, we
consider §n+s =B Xp- In this paper we derive prediction intervals fn+s containing

~

X1+ Such that for given levels pq, py

*) P( P(Xpys€ Insg | Xgo Xpos Xg)21-p1) o 1-ps.

The methodology rests on a careful study of the so—alled residual empirical process. A
bootstrap version of (*) is also valid.
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T. Subba Rao:

We often rmake two important assumptions when analysing time series. They are (i)

stationarity, (ii) linearity (Gaussianity). In real situations, these assumptions may be not
realistic. In this talk we concentrate on analysing data which may not be linear. In recent
years several nonlinear time series models have been purposed, and one of them is the
Bilinear model. In this paper we discuss the properties of this model, especially
concentrate on some recent results obtained for identifying (tentative) the order of
estimation of the parameters of the model. The methods we develop are canonical
correlation analysis similar to the techniques developed by Akaike, Subba Rao, Tsay and
Tiao for linear time series models. The methods are illustrated with examples.

M.. Taniguchi: .

Suppose that P(™ is the probability measure induced by a collection of n observations. It
is desired to test a hypothesis H: P(®) = P, against the alternative A: P(M) = Qp- Let T be
a class of tests specified under H. Then LeCam's third lemma gives an automatic formula
of the limiting distribution of t € T under H.

Here we generalize this lemma by using a higher order Edgeworth expansion. First, a
concept of higher order contiguity is introduced.Then the Edgeworth expansion of t € T
is given up to second—order under the second-order contiguous alternative. Using this
expansion some second—order asymptotic power properties of te T are discussed. The
results can be applied to iid case, non-iid case, multivariate analysis and time series
analysis. Two concrete examples are given. One is a Gaussian ARMA process (dependent
case), and the other is a nonlinear regression model (non-identically distributed case).
Finally we give some numerical studies. The results agree with the theory.

A.B. Tsybakov:

Optimal rates of convergence in image processing

We consider the problem of estimation of an unknown image f: X — Rl X = [0,1]_1\1,
from a sequence of observations y;, = f(x;,) + &;, where x;, & X are some points and &;
are iid random errors. It is assumed that the image f contains two smooth parts: the

o®
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informative part where the values of f are large, and the background where the values are
small. On the boundary between these two parts there is an abrupt change. It is proved
that the minimax risk in the problem of image estimation decreases with a certain rate and
the estimator of f is proposed that achieves this optimal rate. This rate depends on the
smoothness of f on the informative part and on the background as well as on the
smoothness of the boundary.

H. Walk:
On stochastic recursions for linear models with forecast feedback

Convergence problems for learning processes in linear models with forecast feedback
motivate investigation of the recursion
n
Xpe1 = Vo 3, By Xy + UnSy
k=jn

(Kottmann, Mohr 1988/89) with j,/n — a € [0,1), random elements B, and X, S, in
L(B) and B, resp. (B = RP or more general real separable Banach space). Under the

_ assumptions

B, S5 BeL®), IByll =0, (1), Syn =0,

spec B < (M(1-oM); re A 27)C withy=1,
one obtains X;, = 0 (a.s.). If the spectral condition is sharpened to ¥ = 1/2 and -the
condition on (Sy/n) is replaced by a weak invariance principle with convergence order
n~Y/2 and random limit Y in Cg[0,1], then under a mild additional assumption a

corresponding assertion holds for (X;;) with random limit Z, where Z(0) = 0 and Z
satisfies the functional stochastic differential equation

dZ(v = B/t(Z® -Z(ar) ) dt + dY(Q®) ,te (0,1].

M. Weba:

Estimating i f continuous timy

In order to estimate integrals of continuous time series, conventional methods use optimal

or asymptotically optimal linear estimators. Knowledge of covariances is assumed, or
restrictive regularity conditions are required. If classical quadrature formulae are applied
pathwise, it is possible to verify convergence (in the p—th mean) towards the desired
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integral by means of an extension argument; covariances or additional conditions are
unnecessary. The extension argument can be generalized in order to estimate multilinear
functionals of time seres.

Ching-Zong Wei:
Some unsolv blems on nonstation ive process

The autoregressive process X, = B,X,; +...+[3pxn_p + ¢, is said to be stationary if all
roots of @({) =P — By (P11 —..— Bp are inside the unit circle. If some roots are on the
unit circle, it is said to be unstable, and explosive if some roots are outside the unit circle.
In this talk, the consistency and limiting distribution of the least squares estimates are
discussed. The unsolved problems that are related to the optimal inference, order selection
and control of unstable systems are also presented.

Berichterstatter: Rainer v. Sachs
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