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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e reh t 1/1990

Zeitreihenanalyse

1.1. bis 6.1. 1990

An der Tagung über Zeitreihenanalyse, die unter der Leitung von P.L. Davies (Essen), J.
Franke (Kaiserslautern) und G. Neuhaus (Hamburg) stattfand, nahmen 38 Statistiker­
innen und Statistiker aus neun Ländern teil. Neben einigen allgemeinen aktuellen Themen
aus der Zeitreihenanalyse sowie benachbarten Gebieten (z.B. der nichtparametrischen
Kurvenschätzung) standen Beiträge im Mittelpunkt, die die neueste Entwicklung in
folgenden Problemkreisen widerspiegelten:

• Fragen der datenadaptiven Modellselektion

• Bootstrapping von stationären Prozessen

• Nicht-lineare bzw. nicht-Gaußsche Zeitreihenanalyse

• Robustheitsfragen und andere Aspekte von Abweichungen von klassischen Modell­
annahmen

Dabei wurde ein nicht unerhebliches Gewicht auf Fragen der Anwendung (ökonomische
Zeitreihen, Hydrologie, Image Processing, etc.) und die sich daraus entwickel~den

mathematischen Fragestellungen gelegt.
Die Tagung war rur alle T~ilnehmer sehr anregend und bot reichlich Gelegenheit zu
intensivem Gedankenaustausch und ausgiebiger Diskussion der einzelnen Beiträge.

Die Tagung beschloß der Dank, den Prof. J. Durbin im Namen der Teilnehmer unseren
Gastgebern vom Oberwolfacher Forschungsinstitut für die gastfreundliche, ja herzliche
Annosphäre in ihren Räumlichkeiten aussprach, die allen den Aufenthalt während der
Tagung äußerst angenehm und fruchtbar gestaltete.
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Vortragsauszüge:

J. ANDEL:

Statistical analysis of positive time series

- 2 -

•

An AR(l}1nodel for positive random variables Xt can be written as Xt = b Xt- I + et )

where et are üd positive random variables and b E [0,1). In this case

b* = min (X2/X1)' ..) Xn/Xn-l) is a strictly eonsistent estimator for b under general

eonditions. The distribution of b* is known when et are exponentially distributed. If we

have a stationary AR(p)-model X t = bl X t-l + ... + bp X t- p + et with b1~ 0, .. ') bp ~

oaod et > 0) then a good estimator of (bI' ... , bp) is tha.t which minimizes b1+...bp
under the eonditions X t - bl X t-l - ... - bp X t- p ~°(t =p+l, ...) n) and ~ ~ 0 (k =
1) ..., p). This estimator is also strietly consistent under some eonditions conceming the
distribution of et. The results are generalized to nonlinear models of an autoregressive

type.

J. BEHRENS:

Robust order selection for autoregressive·processes with outliers

For the purpose of approximating a linear process {Xt}te Z by an autoregressive process of

order p Shibata (1980, AS) called an order selectioo~ e Po = (I, ... ) Pn} based on the

data Xl, ... , Xn asymptoticallyefficient (as. eff.) if

~(P] 1 as n ~ 00

min Ln(p)
. pEP

n

for a given loss funetion Ln(p) (e.g. MSE of prediction). To generalize this approach in

the ease of oulliers (eonsider Yt =xt (1 -~) + vt zt )Pr (zt = 0) large) the least squares- -
estimates are replaced by GM-estimates <1> 1(p), ... ) <1>p(p) given by the minimization of

n p

L P(Yt-h .. ·,Yt-p, Yt - L llj Yt-j)
l=p+l j=l

with respect to 111, ...) IIp for suitable p.
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An order selection.is called robust aso eff. if it is aso eff. for Ln(p) based on p instead of a

quadratic function. Under assumptions 00 {Yt}, p, Po we can get a robust aso eff. order

selection from the data. For special (nonrobust) p classical methods as Are are obtained.

R. Bhansali:

Consistent recursive estimation of the order for ARMA - processes

A new criterioo to be used at stage 11 of the Hannan-Rissanen (1982, Biometrika)'

procedure is derived, and its coosistency established. Simulations suggest that the

criterion should provide reasonable results with a finite time series, especially when T, the

number of observations, is large.

M. Cameron:

Specmun estimation with variable bandwidth

The peaks and troughs of spectra often have different curvatures and so, if a kernel

es'timator is used, a kernel whose bandwid~ varies with frequency should be used. As an

approach to deciding on the bandwidth at each frequency, we use a step function as a
model for the spectrurn and detennine the positions of discontinuites using partitioning

algorithms.

Although discontinuous, these estimates are usefnl as a diagnostie for highlighting very
large or very small periodogram values, as a method of panitioning frequeneies for a'

further band-by-band analysis, and as a method of obtaining a non-parametrie estimate of

prediction variance. .
Simulations show that, as an estimator of prediction variance, the automatie method has

substantially less bias than fixed bandwidth estimators for speetra with sharp peaks. TheeJ possible rost is a slightly inflated variance ofthe estimatof.

. T. Cipra:

Robustification ofrecursive methods in time senes analysis

The contribution is devoted to robustifieation of some popular reeursive methods of

smoothing, predic'tion and estimation in' ti~e series. The following topics will be e.g.

discussed: 1. robustification of exponential and direct smoothing; 2. recursive version of

AM estimates (Approximate Maximum Likelihood Type Estimates) for ARMA models

with additive outliers and recursive version of CMM estimates (Conditional-Mean
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M-Estimates) for AR-models with additive outliers.

R. Dahlhaus:

Data mpers in time senes analysis

Tbe imponance of data tapers is discussed for various areas of time series analysis
including nonparametrie situation, parametrie estimation , order seleetion and predietion.
For nonparametrie estimation a mathematic"al model is presented which proves the
advantages of data tapers. We eonsider the integrated relative mean square error over an
(with the sampie size) increasing elass of stationary processes which ineludes for example ..
ARMA-processes whose roots converge to the unit cirele. The model enables us to prove .,
theoretically the leakage effect, a trough effect and a variance effeet for spectra1 estimates.
Furthermore, results are presented for the approximation of Toeplitz manices which lead
to better approximation for the Gaussian likelihood function. The results are demonstrated
by simulations.

M. DeistIer:

Linear dynamic errors-in-yariables models

We consider problems of identification of linear dynamic errors-in-variables models (i.e.
models where in principle all observations are contaminated by noise). In our framework
neither the number of equations nor the classification of the variables into inputs and
outputshas to be known apriori. We analyse the relation between the observations and
cenain system characteristics. In particular we are interested in adescription of the set of
all systems correspönding.1o given second moments of the observations and in a
characterization of the maximum number of equations compatible with given second
moments of the observations. Special emphasis is given to the case of one input (and
many outputs in general) and to the case of one output (and many inputs in general). . '

J. Durbin:

Extensions of KaIman modellin~ to non-Gaussian data

Some reeent work on extensions of the KaIman stat~ space model to deal with
non-Gaussian data, including count, binary, categorial and exponential data, will be

discussed. Tbe relation to the dynamic generalised linear model is considered. Some
f~er extensions will be suggested. Tbe ideas are exemplified by considering Poisson
data.
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D. Findley:

Porperties of the log-likelihood ratio sunporting the comnarison of non~nested,

aImroximatinl: models

We are interested in the behavior of the log-likelihood ratio when incorreet and

non-nested models are compared. This situation is very eonunon in practice. We have

used Ale in hundreds of such time series modeling situations at the Census Bureau with

reasonable success, but it is clear from the problems which occasionally <>ceur that a

deeper understanding of this easily ealculated statistic is needed. We showed that the

situation in which the difference of AIC's (and the likelihood ratio) have a limiting
distribution for non-nested comparisons give rise to some interesting theoretical examples

but are not 100 relevant for application. In more relevant situations, the mean square of the

log-likelihood ratio has order" N 1/2, so large sampIe analysis are unioformative. It is

important to develop methods to estimate the mean square of the log-likelihood ratio of
incorrect models far fixed sampIe sizes.

Th. Gasser:

Data adaptive CYtVe estimatiQn

In this talk curves ~ay be regression functions, probability and spectral densities and their

derivatives. Tbe well-known nonparametric estimatoTS involve the choice "of a smoothing
parameter, the bandwidth. Based on kernel estimators, we have developped a method for

ehoosing the bandwidth in a rational way from the data while minimizing MSE.

In contrast 10 popular cross-v~dation,it reHes on the asymptotically optimal bandwidth

and needs the integrated squared second derivative of the curve. Both in theory and in

simulation the new method is superior to cross-validation, in partieular in variability. The

method ean be generalized to the situation of correlated (mixing) residuals in a regression

context.

X,. Guyon:

Descrjption of the set of good choice of a model in a parametrie identification prOblem·

Suppose that (X1,...,xn) - (Pa,o)' ae e open subset of Rn. Denote 11.={1:2,...m} this

bigmodelandPO~nthetrueone.LetP: = argmin (V(ap, Tn) ,+ C(n)/n·p}, p = IPI
p~n

be an estimation of Po on the basis of the penalized contrast V(9, Tn)' We show that
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under quite large hypothesis, the set of bad choice Mn = {oo: ~ *" Po} cao be described

by: Mn ~ {oo: 11 Tn -:-10 11 ~ TlO (C(n)/n)ll2 ) ,ife(n)/n ~ Öofor some constants TlO' ÖD·

This results generalize the work of Bai e1. al. (J. Muh. Analysis) done in the specific

context of detennination of the order of an AR-model.
Applications are given to general time series identification, random fields, linear or ,

non-linearregression, categorial models. Under supplementary hypothesis, control of the

probability of Mn are given.

w. Härdle:

Resampling in curve estimation

We consider the problem of resampling from estimated residuals in the context of

nonparametrie regression smoothing. Let Yi = m(xi) + Ei and Ei = Yi - iiih(Xi) the

estimated residual. We use the so-called

Wild Bootstrap :

Define Ei = lli Ei ,with"i ~i~ having a two-point distribution G = P Öa + (l-p) Öb

such that Ba "i =0, Ba Tli2 =1, Eo !1i3 =1.
We show that this particular method of resampling works in a variaty of problems, among

them constrllction of simultaneous error bars.

eh. Hesse:

Some results for processes with infinite yariance

e·

Linear processes with ·infinite variance (such as autoregressive processes with stable

innovations) are being used to model, certain economic time series such as stock price
changes, inflation rates, etc. Interesting statistical problems do arise with respect to the 4a.,'
applicability of the classical statistical methods which are almost always designed for •

situations of finite variance and finite Fisher infonnation. In this ta1k we study properties
of the empirical distribution funcrlon, of LS-estimators and of the empirical characteristic

function.

J.-P. Kreiss:

Bootsb'apping ARe00>-processes

Many papers about bootstrap techniques in time series analysis discuss the parametrie
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autoregressive moving average models, which are related to the familiar bootstrap of
regression models with fixed design. Related papers to this subject are Freedman (1981),
Efron and Tibshirami (1986), Bose (1988), Franke and Kreiss (1989).
All these papers ~sumed that the model order is known. So we deal with stationary

stochastic processes (Xt: tE Z) which pos~ss an AR(oo)-representation, only. That is

Xt = L av Xt- v + t; , t E Z,
v=l

(ft) üd with zero mean and finite variance. 1 - L av zv *0 'TI Izl S 1+11 is also assumed.
v=l

Ta this model we fitted an AR(p(n»-process (p(n) -+00) on the basis of the given set of

data Xl' ... , Xn. From this we obtain estimated residuals~ . These values are used to

carry through the proposed resampling scheme. We eod" up with bootstrap values

xi n"'" x~ n of the time series itself. Finally we prove that the proposed bootstrap, ,
procedure is asymptotically valid as an approximation of the standardized distribution of
the empirical autocovariance.

H.R. Künsch:

Yariance estimation fOT dependent observations

We consider a sampIe of stationary strong mixing process and a statistic Tn obtained by

applying a functional to an empirical marginal of fixed dimension. We investigate three
procedures 10 estimate the variance and the centered distribution of T0 respectively: direct

estimation of "the asymptotic variance, blockwise jackknife and blockwise bootstrap. First
we summarize the results of Künsch, Ann. Statist. 17 (1989), and then we present new
developments and open problems: techniques for reduce the bias, frrst order Edgewonh
expansions for the studentized statistics, broader classes of statistics (regression
estimators, periodogram) and processes with long range dependence.

Pham Dinh Tuan:

Maximum likelihood estimation for multivariate autoregressiye models

For shon data and when the observed process has sharp spectral peaks, usual methods of
autoregressive (AR) model fitting methods may. be outperfonned by the maximum
likelihood (ML) method. Moreover, man)' of them do not always provide an AR

polynomial estimate with roots inside the unit circle andl or cannot be generalized to the
multivariate case. In this work, we develop a simple algorithm to compute the ML
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estimatefor multivariate AR models. We provide an explieit expression for the log­
likelihood in terms of the forward and backward AR eoeffieients and innovation
covariances. Further, the gradient of the likelihood with respeet to an appropriately
ehoosen set of parameters can be obtained through the resolution of a certain linear' system
of equations. Tbe estimate can then be construeted by the Fisherfs scoring method, or by
~ conjugated gradient method. Same simulating results will be given .illustrating the
performance of the methc)(l.

B. Pötscher:

Effects of Model selenon 00 inference

Tbe asymptotic properties of parameter estimatoTS in a model whieh has been selected by
a model seleetion procedure using the same data set are investigated. (Tbe estimation
framework considered is essentially Quasi Maximum Li~elihood estimation.) In
partieular, the asymptotic distribution of the parameter estimators is derived for a
partlcular model seleetion procedure based on a sequence of hypothesis tests. The
resulting asymptotic distribution is compared with the distribution delivered by standard
asymptotic theory ignoring the mcxlel selection process.

P.M. Robinson:

Automatie bandwidth seleetion in nonparametrie aod semiparametric fre9uency domain
analysis of time series

•

Unifonn consistency of nonparametrie spectral estimation is established in the presence of
a general data-dependent bandwidth. A bandwidth is also involved in the estimation of
the limiting covariance matrix of ordinary least squares estimates in the presenee of
disturbance serial correlation of unknown form, and in the efficient es timation of
regression coefficients in the presence of distwbance serial correlation of unknown fonn. e
In both problems we show that the limiting distribution of the operationally scaled !

regression estimates is unaffected by use of a general data-dependent bandwidth. We
consider a cross-validation method of bandwidth determination. We show that the
cross-validated bandwidth converges in probability to the optimal minimum-integrated­
mean-squared--error bandwidth. The results we deseribed previously Qold for this
cross-validated bandwidth.
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R. von Sachs:

Peak-insensitiye nonpararnetric spectrum estimation

We study the problem of nonparametric spectrum estimation of a stationary time series

that might contain periodic components. In that case the periodogram ordioates at

frequencies near the frequencies of the perioclic components have significant amplitude,

and can be regarded as outliers in an (asymptotically) exponential sampie. This motivates

us to robustify the usual kernel estimator for the spectral density by applying the theory of

M-estimation already being studied in the regression context of deterministic design ( see

Härdle and Gasser, 1984). Dur modified estimator has a certain insensitivity against those

regarded outliers in the frequency-domain that, as some advantage, don't need a precise

modelling. We show consistency of the resulting spectral estimator in the general case,

and asymptotic normality in the special case of a Gaussian time series. The proposed

procedure is applied to some simulated series.

w. Schmid:

Tests on the existence of outliers in time series

Suppose that a realization of a process is given, which coincides with an.autoregressive

process if no outliers OCCUT. In order to check the data on the existence of outliers, a test

of discordancy is required.

In my talk I want to present several outlier tests, which base 00 a comparison of the

observations with certain predietors. We distinguish between the case that an upper bound

for the number of outliers is known or not. The asymptotic distribution of the test statistic

under the null hypothesis (no outlier) is calculated.

A result on the. asymptotic behaviour of a likelihood ratio test under the alternative

hypothesis is also given. In this case the mean-shift model is used to describe the

occurence of outliers. Funhermore these tests have been compared by means of a

simulation study.

S. Schnatter:

Aspects of modelling time series with non-linear state spare models

Non-linear state space models are a rather interesting, but hardly used technique in time

series analysis. Statistical inference for non-linear state space models will be discussed

from a Bayesian point of view. An approximate filtering procedure, which is a
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modification of the multiprocess filterin"g approach of Harisonl Stevens, is suggested.
Furthennore, Bayesian Forecasting, Model Diagnostics and Model Discrimination for
non-linear state space models will be considered.
As an example, non-linear state space models based on a component model with linear
trend are presented. These models are applied to a time series of yearly ground water level
data from a station in Austria. "

u. Stadtmüller:

Laws of iterated - and of sin~le logarithm

We assume that (Xn) is a sequence of iid random variables, and we are interested in the

asymptotic behaviour of weighted sums L ankXk w.r.to a.s. convergence. We consider
k .

weights {amc} which are defmed by certain summability methods. The case of the Cesam

method, Le. ank = l/n, l~~, is weil known,.here we obtain the usual SLLN iff Xl E LI

and the Ln... iff Xl E ~ and E(X1) = O. A different behaviour occurs in case of e.g. the

Euler method, Le. ank = ( : I'A.k / (l+'A.)n, l~, where the LIL is replaced by a law of

single logarithm. We consider here a generalization of the Euler method, so called
Jakimovski methods, giving laws of iterated - and of single logarithm.

w. Stute:

Prediction intervals for explosive AR(1}-processes

We consider a no~-stationary (explosive) AR(I)-process Xi =ßXi-l + Ej , i ~ 1, IßI > 1.

It is known from Anderson (1959) that the LSE Pn of Pconverges geometrically fast, the

limit distribution depending on the whole of the error distribution Frather than finitely

many parameters of F. For prediction of Xn+s on the basis of XO' Xl"·" Xn we

consider Xn+s = P~ Xo' In this paper we derive prediction intervals In+s containing

Xn+s such that for given levels PI' P2

(*) P( P( Xn+s E In+s I Jen, Xl"'·' Xn ) ~ I - PI) ~ 1 - P2 .

The methodology rests on a careful study of the so-called residual empirical process. A
bootstrap version of (*) is also valid.

.'.
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T. Subba Raa:

Nonlinear time senes analysis (wim special reference 10 Bilinear models)

We often make two important assumptions when analysing time series. They are (i)'

stationarity, (ii) linearity (Gaussianity). In real situations, these assumptions may be not
realistie. In this talk we eoneentrate on analysing data whieh may not be linear. In recent
years several nonlinear time series models have been purposed, and one of them is the
Bilinear model. In this paper we diseuss the properties of this model, especially
coneentrate on some reeent results obtained for identifying (tentative) the order of
estimation of the parameters of the model. Tbe methods we develop are eanonieal
correlation analysis similar to the techniques developed by Akaike, Subba Rao, Tsay and
Tiao for linear time senes models. Tbe methods are illustrate9 with examples.

M .. Taniguchi:

A bi~her order ~eneralizarion of4Cam's Wird lemma'

Suppose that p(n) is the probability measure indueed by a eollection of n observations. It

is desired to test a hypothesis H: p(n) =Pn against the alternative A: p(n) =Qo' Let j be

a class of tests specified under H. Theo LeCam's thirdle~ gives an automatie fonnula

of the limiting distribution of t E j under H.
Here we generalize this lemma by using a higher order Edgeworth expansion. ~irst, a

coneept of higher order contiguity is introdueed.Tben the Edgewonh expansion of t E j

is given up to second-order under the second-order contiguous alternative. Using this

expansion some second-order asymptotic power properties ·of t E T are discussed. Tbe
results ean be applied to iid ease, non-iid case, multivariate analysis and time series
analysis. Two concrete examples are given. One is a Gaussian ARMA process (dependent
case), aJid the other is a nonlinear regression model (non-identieally distributed case).
Finally we give some numerical studies. Tbe results agree with the theory.

A.B. Tsybakov:

Op~ma1 rates of convergence in image processing

We consider the problem of estimation of an unknown image f: X --+ R1, X =[O,l]N,

frorn a sequence of observations Yin = f(xin) + ~i' where xin e X are some points and ~i

are iid random errors. It is assumed tbat the image f contains two smooth parts: the
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informative part where the values of f are large, and the background where the values are

small. On the boundary between these two parts there is an abrupt change. It is proved

that the minimax risk in the problem of image estimation decreases with a certain rate and

the estimator of f is proposed that achieves this optimal rate. This rate depends on the

smoothness of f on the informative part and on the background as weH as on the

smoothness of the boundary.

H. Walk:

On stochastic recursions fOT linear models with fmeeast feedback

Convergence problems for learning processes in linear models with foreeast feedback

motivate investigation of the recursion

n
Xn+1 = l/n· L Bk Xk + l/n·Sn

k =jn

(Kottmano, Mohr 1988/89) with jn/n ~ a E [0,1); random elements Bn and Xn, Sn in

L(B) and B, resp. (B = RP or more general real separable Baoaeh space). Under the

assumptions

ODe obtains Xn ~ 0 (a.s.). If the spectral conditioo is sharpened to 'Y = 1/2 and the

condition on (Srlo) is replaced by a weak invariance principle with convergence ~order

0-1/2 and random limit Y in Cß [0,1], then under a mild additional assumption a

corresponding assertion holds for (Xn) with random limit Z, where Z(O) = 0 aod Z

satisfies the functional stochastic differential equation

dZ(t) = B/t·( Z(t) - Zent) ) dt + dY(t) ,t E (0,1] .

M. Weba:

Estimating integrals of continuous time series

In order to estimate integrals of continuous time series, conventional methods use optimal

or asymptotically optimal linear estimators. Knowledge of covariances is assumed, or

re.strictive regularity conditions are required. H elassical q~adrature fonnulae are applied
pathwise, it is possible to verify convergence (in the p-th mean) towards the desired
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integral by means of an extension argument; covariances or additional conditions are

unnecessary. The extension argument can be generalized in order to estimate multilinear

functionals of time series.

Ching-Zong Wei:

Some unsolved problems on nonstationarv autoregressive processes

The autoregressive process Xn = ß1Xn-1 +...+ßpXn-p + En is said to be stationary if all

roots of <p(~) =~p - ßl ~p-l -...- ßp are inside the unit circle. If some roots are on t~e

unit circle, it is said to be unstable, and explosive if some roots are outside the unit circle.

In this talk, the consistency and limiting distribution of the least squares estimates are
discussed The unsolved problems that are related to the optimal inference, order selection

and contral of unstable systems are also presented.

Berichterstatter: Rainer v. Sachs
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