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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e reh t 13/1990

Maßtheorie
18.3. bis 24.3.1990

Nach einer Pause von fast sieben Jahren wurde wieder eine Arbeitstagung ."Maß­
theorie" in Oberwolfach veranstaltet. Diese Tagung stand unter der Leitung von
S. Graf (Passau), D. Kölzow (Erlangen). und- D. Maharam-Stone (Boston). An ihr
nahmen 50 Mathematiker aus 16 Ländern teil. Es wurden 48 Vorträge gehalten.
Außerdem fand eine "~roblem Session" statt. .

Wie bisher ist geplant die Proceeding der Tagung als Lecture Notes in Mathematics
des Springer-Verlages zu veröffentlichen.

Dem Direktor des Mathematischen Forschungsinstituts, Herrn Professor Barner, und
seinen Mitarbeitern sei an dieser Stelle für die große Unterstützung gedankt, die den
erfolgreichen Verlauf der Tagung ermöglichte.
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Vortragsauszüge

1. Meßbarkeitsprobleme

w. FILTER

Measurability in the dual of a Riesz space •

Let L be a Riesz space with separating order continuous dual L;. Fix a weak order
unit W of the extended order continuous dual r(L), let C(w) denote the set of all
components of w, and let R ~ C(w) n L-: satisfy
(i) 9, hER =? 9 V h,9 A hER, .
(ii) 9, hER, h 5: 9~ 9 - hER, and
(iii) R "3 g" ! 9~ gER.
For all e E r(L)+ and 6 > 0 there ia a greatest es E C(w) with ees ~ 8es. Set
R := {e E r(L)+ I es A gER for all 9 E R,8 > O} and MR := R- R. Then MR
is a Riesz subspace and a unital subalgebra of r(LJ t and the elements of MR are
called R-measurable. Moreover, if R satisfies a Hahn-type decomposition property,.
then'a Radon-Nikodym theorem holds for the elements of L (with densiti~ in MR)"
which is valid - in contrast to the classical measure theoretic situation '-. without
any further assumptions. The proofs use representation theory of Riesz spaces.

E. GRZEGOREK

Hereditary measurable sets

HAis &. u-field, then we denote by I(A) the family of all A E A such that X E A'
holds for every X E P(A). The following proposition is known: .

PROPOSITION. Let A be a u-field on 8 such that ..A\I(A) ECCe and P(X) \I(..A) f/.
CCC tor every X E P(S) \ I(A). Then I(A n X) = I(A) n X tor every X E P(S)". e
On the other hand we have the following results:

THEOREM 1. (ZFC) There is a u-field A on the realline R such that [R]~No ~ A,
there is a nontrivial nonatomic finite measure on A, and there is X E P(R) \ I(A)
with I(A n X) = P(X) and I(..A) n X = (X]:SNo.
THEOREM 2. (ZFC) Let B be a u-field on S such that B \ {0} ~ [S]>No, and let A
be the u-field generated by B and [S]~No. Then I(A) = [8]:SNo.
Here 'P(S) denotes the power set of S, (S)~No := {X E 1'(8) I cardX :::; No}, and
[S]>No := {X E 'P(8) Icard X > No}.
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G. KOUMOULLIS

A generalization of Borel measurable functions

R. W. Hansell's theorem that a disjoint Borel additive family in a complete metric
space is u-discretely decomposable ia generalized to Cech-complete (nonmetrizable)
spaces, replacing discreteness by a weaker concept of scatteredness and assuming
that the cardinal of the family is less than the least two-valued mea.surable cardinal.
Moreover, the result holds for point-finite H-Borel additive families. (An H-Borel set
ia a member of the u-algebra genera.ted by the fa.mily of all H -sets or resolvable sets.)
Then we show tha.t most of the consequences of Hansell's theorem in the theory of
Borel measurable functions continue to hold for H-Borel measurable functions on
nonmetrizable spa.ces. Finally, using Ba.ire category in spaces of Radon measures in
some cases, we find connections between.mea.surability properties of functioDB and
tbe concep~ of (q- )fra.gmenta.bility.

A.H. STONE

The measurability of nonsingular transformations

An example is given, on the assumption of the continuum hypothesis, of an involu­
tion (a bijection of period 2) ! of the unit interval onto itself, such that f (and /-1)
takes null sets to null sets, but f takes a. measurable set to a nonmeasurable one.
Question: Is the continuum hypothesis needed here?

2. Maßfortsetzungen

D. BIERLEIN

Measure ~tensions and measurable neighbours

Let (0, A,p) be a probability space, let (!t)teT be a family of real functions, where T
is any index set, and. define fT := (!t)tET, BT := B(RT), and AT:= 0'{AUfi1(BT».
We consider the set F of all mea.sure extensions of p to AT- According to a result of
1982, there is a one-to-one correspondence between F and the set of all probability
measures p on A' * BT satisfying
(i) p(A x RT) = p(A) for all A E A, and
(ii) P*(hT(f2» = 1, where hT : n -+ n x RT : x ...... (X,!T(X»,
By a.dding further conditions to (i) and (ii), we define Fgl and F(71 as the two
subsets of F corresponding to the globally resp. u-locally A-measurable neighbours
9T : n -+ RT of !T. Using a u-Iocally A-measurable neighbour 9T of !T, we extend
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p first to A * BT and then to AT. In this way we obtain :Fgl ~ :Fu' = ex:F. The
identity F(1' = ex:F was first proven by W. Stich (1989) who used a different method
involving a result of Haupt and Pauc on u-ideals of p.:'null sets. Examples show that
each of the following situations may occur: 0 =F :Fgl #:- ex F, 0 = :Fg, =F ex:F = :F,
and 0 = Fg , =F ex:F -:F :F.

w. HACKENBROCH

Conditionally independent common extensions of measures

Let (Pi)ieI be a finite family of probability measures on u-algebras At of subsets of
some set 0, respectively, and let B ~ niel Ai be a fixed O'-algebra on which a1l Pi
agree (i. e. (pi)iEI ia B -consistent).

THEOREM. Assume that for all but one i E I there exist regular versioRs 01 the
conditional ezpectations E~. Then there exists a (unique) common extension P 01
the Pi which is B-conditionally multiplicative (i. e. E:XnAj = TI E:XA, , Ai E .Ai)
iif (At) is (8, (pi»-conditionally independent (i. e. nAi = 0 ==> nE:,XAj = 0,
Ai E At). This latter condition is also implied whenever. each 8 -consistent family
(pi, pi )i~jel with pi <: J.&j, i =F j EI, admits a common extension (8-conditionally
multiplicatlve or not). .

This genera.1izes a classical result of Marczewski for B = {0,!1} and arecent result
of Bartfai and Rudas for B = niel A.

J. LEMBCKE (with H. WEBER)

Decomposition of group-valued measures with respect to their regular
extendability

Let 'R. be a subalgebra of some Boolean algebra 1', Je S;; P, G a complete-Hausdorff
Abelian group, and P : 1(, -+ G an s-bounded finitely additive measure. Under
certain assumptions on the regularity of P and on }(" JJ has a unique decomposition
IJ = P.r + Pd with s-bounded measures Pr and JJd such that
(i) pr admits an extension to an s-bounded Je-regular mea.sure on the algebra Q

generated in l' by 1(, U Je, and
(ii) for every s-bounded Je-regular measure A on Q with AI1l -< pd, one has '\IR = o.
Moreover, Pr and P,d can be explicitly calculated by means of p, and there'is even an
s-bounded X:-regular extension Vr of J.Lr to Q such that 'R, is dense in Q with respect to
the topology defined by V r on Q. The proo! makes use of a Lebesgue decomposition
theorem with respect to FN-topologies by T. Traynor and an extension theorem for
regular s-bounded measures by Z. Lipecki.
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z. LIPECKI

Extensions of posit~ve additive set fUDctions from an algebra to a larger
one: A sbort survey

The following topics are discussed:
1. Peano-Jordan and Lebesgue completions.
2. Adding new null sets.
3. Adding a single set.
4. Extension to 2°.
5. Extreme extensions.
6. Maximal extensions.
7. Tight extensions.
8. Hahn-Banach type extensions.
~. O~her doIIiinated extensions.

. 10. Common extensions. .
.11..St9chastically independent eXten.sions.
12. Simultaneous extensions.

. K. I? SCH~IDT (wi.t~ G. WALDSCHAKS)

CommoD.extensions of order bounded vector measures

Let M and N be algebras of subsets of some set 0, let G be a Dedelcind complete
Riesz spare, and let p. : M -+ G and v : N -+ G be order bounded vector measures
which agree on M nN. We give a general condition on M and N in.terms of the
(finite) partitions of n in these algebras which implies that p. and v have an order
bounded common extension <p : 2° -+ G. The result "unifies and extends two results
obta~ed by.Z. Lipecki (1986) in the case G = R.

R. M. SHORTT (with K. P. S. BHASKARA RAa)

Extensions of finitely additive measures

Let A, B, :F be fields of subsets of some set n with A ~ :F and B ~ :F, let G be an
Abelian group, and let p. : A -+ G and 1/ : B -+ G be charges (i. e. finitely additive
set functions) which agree on An 8 (i. e. they are consistent). We ask when there is
a common extension p on F for p. and v (i. e. when there exists acharge p: :F -+ G'
such that pfA = J.l and pIs = v) . .1t is known from A. Basile and K. P. S. BhaskaXa
Rao (1988) that this is true whenever G ia compact or a direct summand of such ,
a group. This includes the case of divisible groups, in particular G = R. We ask
whether such a p exists for all Abelian groups. We have proved this in ea.se either
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(1) A or B is finite, or
(2) A and B are independent (i. e. 0:1 A E A,0:f; BEB =} An B ~ 0).
For a free Abelian group of cardinal c there is an example where such a p does not
exist. This derives from an observation of G. M. Bergman (1990). The main open
question is whether such a p exists for G = Z.

3. Produktmaße, Desinteg~ationund Liftings

R. A. JOHNSON (with W. WILCZYNSKI)

Finite products of Borel measures

Suppose p, 11, ~ are finite, countably additive, nonnegative, nonzero measures on tbe
Borel sets of X, Y, Z, respectively. Define, if possible, 11IJ on the Borel sets of X x y
by (IIIJ)(M) := f II(Mx) dp, where Mx := {y E Y I (x,y). E M}. This ia possible if
II(Mx ) is Jl-measurable a.s a function in x for ea.ch M E B(X x Y). It ia easy to see
that vp extends the usua! direct product measure Jl x v defined on B(X) x B(Y)
and that a one-sided Fubini theorem holds for v IJ. To what extent does associativity
hold for such products? H A{lIp) is defined, then so is (~II)JJ and these two are equal.
But if (AII)p is defined, we da not know if ,\(IIJl) is always defined. Moreqver, even
if All, Ap, and VJl are defined, we do not know if (~v)Jl is defined.

D. RAMACHANDRAN

A note on perfect measures

Ever since Kolmogorov introduced the trinity (0, A, P) as the model for pröbability
theory, there have been several attempts at defining "nice" classes of probability
spaces with just enough structure to be useful in applications. P on (O, A) ia called
compact if there exists K:, ~ A such that
(i) {Kn } ~ K, n::1 K n = 0 ==> n~=l K n = 0 for some m ~ 1, and
(ii) for ea.ch A E A, P(A) = sup{P(K) IK E 1\" K ~ A}.
Pis called perfeet if PIAo is compact for all countably generated Ao ~ A. The notion
of Doob's regular conditional probability is introduced and the question of V. V. Sa­
zonov whether there is a perfect probabiiity spare which does not admit Doob's
regular conditional probability is answered by using an example due to K. Musial.
In the p;rocess, compact probability spaces are characterized as disintegrable proba­
bility spaces. Same useful consequences are derived and some open questions are
stated.

6
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w. STRAUSS

On strongly lifting compact spaces

From a paper of A... G. Babik~r, G. Hello, and W. Stranss it is known that, for any
strongly lifting compact space, each Ba.ire measure on that space has the property
that auy lifting is almost strong. The converse is an open problem. For Banach
spaces under their weak topology the converse holds, hut it is unknown whether it
holds for dual Banach spaces nnder their weak* topology.

4. Geometrische Maßtheorie

R.J. GARDNER (with M. LACZKovlqH)

Failure of the cancellation law

In 1929, A. Tarski showed the equivalence of the following two statements:
(1) There is a finitely additive) G-invariant measure JJ : 'P(X) -+ [0,00] such that

JJ(E) = 1.
(2) EiSnot G-paradoxical (i. e. E ~G 2E).
(Here E ~ X, 'P(X) is the power set ·of X, G is a group of bijections acting on" X,

. "'G means equidec~mposablewith respect to G, and nA means n copies öt A). The
proof of this uses the cancellation law, nA "'G nB ==> A /"VG B~ which was proved
by König and VaIko in 1925. Stan Wagon asked if, when A ~"··'P(X) ia ä prop·er
subalgebra, the cancellation law holds when all the sets concernedare to be in A; this
would give the corresponding version of Tarski's theorem where P(X) ia replaced
by A. But we show by an exa.mple that the cancellation law fails, even if we have
the following simple situation: X ~ R, A is the algebra generated by intervals
intersected with X and with endpoints in R \ X, and G is .a group of isometries
ofR. .

e P. MATTILA

Singular integrals and rectifiability of measures in the plane

Let JJ be a locally finite Borel measure in the complex plane C. It is well-known that
for sufficiently regular one·dimensional p., e. g. an L2-measure on a rectifiable curve,
the Cauchy principal value Gp(z) := liIIle_o fC\B(.ltt:)«( - Z)-l dp.«() E C exists for
JJ-almost all Z E C. Ta the converse direction one cap prove:

THEOREM. I/, for JJ-almost all z E C, liminfe-+oe-1JJ(B(z,e)) > 0 and Cp(z)
exists, then p, is rectifiable in the sense that there are rectifiable curves r 1, r 2, ••.

such that JJ(C \ ~l ri) = o.
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L. MEJLBRO

Positivity principles in geometrical measure theory

In connection with the work on the still unfinished· book of J. P. R. Christensen,
L. Mejlbro, D. Preiss, J. Tiser, Uniqueness 0/ Radon Measures and Vitali Relations
in Infinite Dimensional Spaces, Preiss and Tiser have produced the following results:

THEOREM 1. Any signed measure on a separable Hilb~rt space that is nonnegative
on .all "small balls" is nonnegative if and only if the dimension 0/ the Hilbert space
is finite.

THEOREM 2. Any signed measure on a separable Hilbert space that is nonnegative
on oll "large balls" is nonnegative if and only if the dimension 0/ the Hilbert space
is infinite.

THEOREM 3. There exists a separnble Banach space X and a troly signed measure
on X which is nonnegative on all balls.

W. F. PFEFFER

The GauBs-Green theorem

-I define a well behaved averaging process such that the divergence of any continuous
vector field differentiable outside a set of q-finite codimension one Hausdorff measure
is averageable and the Gauss-Green fonnula holds. Domains of integration are
bounded sets of finite perimeter (BV sets), and the integral is invariant with respect
to lipeomorphisms. .

5. Maße und Integrale auf unendlich-dimensionalen
Räumen

1. DOBRAKOV

Feynman type integrals as multilinear integrals

We give two equivalent definitions of Feynman type integrals as multilinear integrals.
One of tbem ia based on the finiteness of the multiple LI_gauge, while the second
ia hased on the existence of certain iterated integrals. The equivalence of tbe two
definitions ia one of the deepest results in the theory of multilinear integration.
The theory of multilinear integration developed by the autbor is now available. In
particular, we have tbe validity of the Lebesgue dominated convergence theorem.

8
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G. W. JOBNSON (with G. KALLIANPUR)

Homogeneous chaos, p-forms, scaling, and the Feynman integral

Let Co(~) be the space of continuous functions x on ~ such that %(0) = 0,
and let PI be Wiener mea.sure on Co(~). The scaled Wiener mea.sures Pa :=

Pt 0 q-t, q > 0, corresponding to Wiener processes with variance q2, are concen­
trated on a continuum 00" 0' > 0, of disjoint subsets of Co(~). This introduces
certain measure-theoretic subtleties which, however, canse little difficulty when a
fixed scaling is involved. When a problem involves various scalings, as with the ana­
lytic Feynman integra.l, attention roust be paid to these subtleties. Hu and Meyer
recently gave a. formula for the Feynman integral of a. function / in terms of the de­
composition of f in Wiener chaos. This formula carne out of earlier work of Meyer
and Yan on the Hida calculus and involv~ the problem of extending in a "natural"
way the multiple Wiener-Ito integra.l from 0 1 to 0(1. The solution of this problem
can be obtainec:t by the lifting ~f p-forms on the white noise space L2(~) to random
variables on Co(~).

I. KLUVANEK

Integration structures

An integration structure on a. space n is determined by a vector spa.ce .c of scalar
valued functions on 0, a seminorm q : .c --. ~, and a linear ma.p I, : L, --t E, where
E is a Banach space, satisfying tbe following conditions:
(C) 11,(/)1~ q(f) for every f E .c, and
(BL) if fj E r, for j = 1,2, ..., E~l q(fj) < 00, and I is a function on n such

that I(w) = Ei=l fj(w) for every wEn for whicb E~llfj(w)1 < 00, then
f E L, and q(f) ~ r;~1 q(fj).

A few examples of integration structures, indicating the extent of the genetalization
of the classical integration theory, are given. In particular, adefinition of f: f dg,
where 9 is a function having infinite variation on every sub-interval of (a, b) in the
vein of Paley-Wiener-Zygmund, is indicated.

M. SION

Measures on infinite dimensional spaces

Given an index set I and a range space V, the problem is to construct a measure
P on some n ~ VI having specified finite dimensional projectioDs, i. e. ima.ges of P
under projections 'lrj : (} 3 w ...... wlj E Vj for finite j ~ I. A canonical construction

9

                                   
                                                                                                       ©



of an outer measure p. on VI provides conditions on n and the system of finite
dimensional distributions to obtain the desired P. This includes results of Wiener,
Minios, Sazonov, and leads to the study of concepts of nuclearity: Nuclear spaces r

and nuclear cylinder measures.

6. Rekonstruktionsprobleme

H. G. KELLERER

Uniqueness in bounded moment problems

"Let (O,A,p) be au-finite measure space and let 1(;. be a closed subspace of ,C1(JJ)
with. supp K, =1-1 O. The following uniqueness problem is treated: Which sets A E A
are determined by the integrals f fXA dp., f E K, ? More precisely, XA is compared
with functions 0 ~ 9 ~ 1 and their integrals f fg dp.: Results of Shepp (1986)
and K~mperman (1988) show that the condition A =p {f ~ O} for some f E K is
sufficient but not necessary for uniqueness. To get a: complete characterization of all
K:-determined sets it is not enough to consider JC-separated sets of order 1, where
'1 is a countable ordinal, but one has to enlarge K. to Borne hull ~ by extending the
usual weak convergence to limits not in .c1(p.).

MAIN RESULT: A" is K,-deterrnined iff there exists a representation A =p {f > O}
and A =p {f < O} for some f E K,.

A. VOLCIC

Rearrangement of measurable sets

Extending some results from the discrete case due to Ryser in a. joint work wit.h
A. Kuba, we prove the following result:

THEOREM. IfT(x, y) := x-Y+ /yOO Ra(t) dt- /; Ba(t) dt, where G is the nONnalized
rearrangement of a measurable set F 01 finite measure, then all sets having the same
projections as G contain 11(G) := U[O,x] x [O,'y] and are distinct from Io(G) :=

U [x, 00) x [y, 00), where in both cases the union is taken ouer all (x, y) such that
T(x,y) = o.
The complement of 11 (G) U Jo(G) can be covered by countably many sets having
the same projections as G, and also by countably many complements of such sets.
Rearranging back 11(G) and Io(G), one gets results for the original set F.

10
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7. Stochastische Probleme

R. BECKER

Continuity and separability of random functions

We study processes which have a given separating set S (in Doob's theory). The
set of their laws is an extremal set of measures. With an almost sure continuity
assumption, we show that the law of each process is determined by its projection
on S., With only an assumption of continuity in probability, the projection on S of
the law of the process has a property of extremality.

A.IwANIK

Baire category theorems for stochastic operators

Let (0, A, p) be a standard probability spare. An operator T E ~(Ll(p)) is called.
stochastic, T E S, if TI ~ 0 and IITIII = 11111 for every 1 ;::: O. Every T E S
extends naturally to arbitrary nonnegative measurable functions. H Tg ~ 9 for
some 9 > 0, then we say that T admits the subinvariant mea.sure dA = 9 dp.
By 8'5:.>" we denote the family of all T E S for which A is subinvariant, where A
is any u-finite measure equivalent to p. An operator T ES<>.. is called mixing,
T E Mix S<>.., if IB'T"XA dp -+ 00 whenever >'CA) + A(E) < 00.- We investigate the
Baire category of Mix S<>.. with respect to the three natural operator topologies in
.c(Ll(p)). The set MixS'5:.>" turns out to be residual with respect to"the operator
norm topology and the strong operator topology, while it is meager for the weak
operator topology. The latter result extends the classical theorems of Rokhlin and
Sachdeva for transformations.

NGUYEN Duc TUAN

Classifying the infinitely divisible probability measures via the
generalized selfdecomp osable structure

A special subclassification of the infinitely divisible probability measures is dis­
cussed which is based on the fractional order (G, ß)-selfdecomposable struciure,
where G = {G(t) I t > 0 and limt_O G(t).x = 0 for each .x E X} is a strongly conti­
nuous one-parameter multiplicative group of bounded linear operators on a Banach
space X and /3 ~ o. First-type representations of a-order, 0 < a ~ 00, (G,tJ)-self­
decomposable probability mea.sures are solved. Their second-type representations
are improved and perfected, and relations between the Arst- and second-type repre-
sentations are established. Some related problems are discussed. .
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L. SUCHESTON (with L. SZABO)

Almost everywhere operator convergence theorems and martingales

Because of a general principle reducing multiparameter convergence to the one­
parameter case, it is importa.nt to know wh~n a multiparameter martingale can be
represented by iterated conditional expectations depending on index sets of lower
dimension. This problem is considered for block martingales.

H. VON WEIZSÄCKER (with G. WINKLER)

A comment on stochastic integration

The following sta.ndard results of semimartingale theory are shown to be valid (with
easy extensions of the proofs) without the "usual conditions" on the underlYlng
filtration:

THEOREM 1. (following an idea of Stroock and Varadhan) The space of right­
continuous adapted processes satisfying 11 SUPt~O IXtillp < 00 is complete for this
seminoMn.

THEOREM 2. Every admissible measure on the predictable sets is induced by a

right-continuous a. s. increasing predictable process.

THEOREM 3. If X is a right-continuous semimartingale, then it is also one for
every equivalent probability measure.

(From the authors' text Stochastic Integrals: An Introduction, View~g, to appear)

8. Funktionalanalytische Probleme

•

R. FRANKIEWICZ

The Enfto-Rosenthal theorem on LP-spaces

The following results can be proved:

THEOREM 1. Let p be a finite measure and 1 < p < 00. IffWJ ~ dimV(p) .- e
min{ cMd A I A ~ LP(Jl) 'and span A = LP(p) }, then LP(J.') cannot be embedded into
a Banach space with unconditional base.

THEOREM 2. If ZFC is consistent, then ZFC and Theorem 1 with W2 replaced by
.#Wl is consistent.

THEOREM 3. It is consistent that the' measure algebra LM/ ß , where LM cOnSists
01 all Lebesgue measurable subsets of [0, 1] and ß is an ideal 01 sets 01 measure zero,
can be embedded into the quotien,t of the power set ofw modulo the ideal of all finite
sets when eH is false.
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K. MUSIAL

A characterization of weak compactness in the space of Bochner
integrable functions

Let ({l, A, p) be a finite measure space and let X be a Banach sp,,:ce. Denote by
S(JJ, X) the collection of all X -valued simple functions, and let T be the topology on
LI (p, X) generated by S(J.L, X*) ~ LI (11, X)*. Let n denote the family of all finite
A-partitions of nordered by refinement and, for fELl (1', X) and 'Ir E II, let f.
denote the conditional expectation of f with respect to u(1r). Let K ~ L1(p, X) be
a set satisfying the following conditions:
(i) K iso bounded and J.'-uniformly integrable, and
(ii) for each E E A, the set {JE f dJ.L I f E K} is relatively weakly compact.

PROPOSITION. 1/ X has RNP, then the following are equivalent:
(1) K is relatively weakly compact.
(2) For each f E Ll(J.', X), the net (flr) converges weakly quasi-unijonnly on K.
(3) Each u E Ll(p,X)* is T-continuous on K.
The previous result is due to F. G. J. Wüd who gave· a nonstandard proof of it.
I present a standard pro~f and variants of the result.

9. Integraldarstellungen

B. ANGER (with C. PORTENIER)

Radon integrals and Riesz representation

As an example of an abstract Riemann type approach to integration and Riesz
representation through function cones, we introduce Radon measures on arbitrary
Hausdorff spaces X from the functionaJ analytic point of view and prove represen­
tation theore~ of Riesz type hy means of Radon integrals.

A Radon integral is a linear functional p : SeX) -+ (-00, +00], defined on the
function .cone S(X) of all lower semicontinuous functions from X to (-00, +00]
which are positive outside some compact set, which is regular (i. e. I'(s) = I'*(s) :=

sUP-_StES(X) -pet) holds for all s E S(X». Suppose that T is a lattice cone of
lower semicontinuous functions on X cind that T : T -+ (-00, +00] is a regular
linear functional which is tight (i. e. sUPKe.c(X) T*(tX1() = 0 holds for all t E T_,
where X:(X) is the collection of all compact subsets of X). H 10 denotes the lattice
of upper envelopes of families of functions in T, then the following holds:
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EXTENSION THEOREM. 1fS(X) = 10, then T. is the oiily extension of T to aRadon
integral. .

REPRESENTATION THEOREM. 1f S_(X) ~ 10, then there exists a unique Radon
integral on S(X) r~pre~entingT.

COROLLARY. 1f T ~. C(X) is a linearly separating Stonean vector lattice, then
.there ex~ts a bijection between the tight positive linear.forms on T and those Radon
integrals which essentially integrate T.

C. PORTENIER

The Prokhorov-S~zonovtheorem as a representation theor~m

Using the Corollary of B. Anger's abstract, I give a new proof of the theorem of
.Prokhorov-Sazonov:

THEOREM. 11 'H is a Hilbert space, there is a bijection betw~en bounded Radon
integrals JJ on. 1l~ and positive definite functions ~ on 'H. which are continuous with
respect to the topology generated by the ~eminonns cp t-+ (cp Iqcp)1/2,. where -e .. is· a
positive nuclear operator in 1i. This is gäv'en by ~(<p) = f ei(fPl·) dJJ for cp E 'H.

The main step is to eonstruct p. from ~ using the Representation Theorem. One
defines a linear form.,., on the algebra A of a.Il trigonometrie polynomials on 'H~

by fJ(L: Chei(fPhl.») := E eh <1>(cph). Using Bochner's· theorem in the finite ~ensional

ease, one proves first that ", is positive and can be extended to a positive linear form
T· on the uniform closure of the real part of A. This .is a vector lattice satisfying tbe
conditions one needs, and all amounts to prove that T is tight, which follows fro.rn
Minios' lemma.

The same method can be used to prove Minlos' theorem.

G. WINKLER:

Simplexes of measures with closed extreme boundary and presentability
of Hausdorff spaces

We consider closed bounded Choquet simplexes of tight mea.sures on a Hausdorff
space. H the extreme boundary is closed, tben each element i.s the baryeenter of
a uniquely determined tight probability measme on the extreme points. (p ia the
barycenter of p if p(!3) = Jv(B) dp(v) for every· Borel set B of the underlying
Hausdorff space.) Consequently, for Hausdorff spaces tight exehangeable measures
can uniquely be decomposed into products of tight measures by means of a tight

14
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measure on the products. In the terminology of P. Ressei (which mimics the ter­
minology introduced by Hewitt and Savage) this means that Hausdorff spaces are
Radon presentable.

10. Methoden der Nonstandard-Analysis

VV.A.J. LUXEMBURG

Nonstandard discrete measures

The main purpose of the talk is to explain the role the nonstandard real line or
hyperreal Une plays in analysis, in particular measure theory. The following is a
brief example: .

Let [0,1] be the unit interval of R, tbe realline, and let *[0,1] be its extension in *R,
a hyperreal number system. Let Wo be an infinitely large natural number and let
w := wo! . Define the hyperfinite grid n := {~ I k = 0, ... ,w} for the unit interval.
From t~e definition of w it follows that ncontains all the rationals. Furthermore,
for every x E (0, 1] there exists a unique k E [0, w] such that ~ ~ x < ~ and so the
standard part of n in all of (0, 1). Let F(fl) be the space of all the interna! *R-valued
functions defined on n and let M(n) be the subspace of all p. E F(fl) such that,
for all f E C[O, 1], p(f) := u=o IJ(~) *f(~) is finite. Then it can be shown that
the mapping () : IJ 1-+ st(p) of M{fl) into the algehraic dual of C[O, 1] is onto. Let
M 1(n) be the family of allp. E M(n) with Ek=O IJl(e)1 finite. Then the image of
M 1(n) under ~ ia the Banach dual of C[O, 1]. In particuIar, if IJ(~) = : for a1l1c,
then ~(Jl) ia the Lebesgue integral.

By means of this method one obtains a hyperfinite representation theory of integrals
which has & wide range of applications in measure theroy, probability theory, and
the theory of stochast.ic processes.

D. ZIMMERMANN

Uniqueness of ergodie decompositions via nonstandard methods

Let P be a set of transition probabilities on a IDeasurable space (O,:F) and let C(P)
be the set of its invariant probability measures. It is shown that if there exists a
representing measure for p E C(P) on (exC(P), 0'( {q -+ q(F) I F E .F}», then
it is uniquely determined. Ta prove this, we use nonstandard methods to identify
the representing measure with the weak limit of a net which is independent of the
representing measure.
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11. Fraktale Begriffsbildungen und Methoden

c. BANDT

Hausdorff measures and interior distance on fractals

The study of shortest paths in fractals is motivated by physical problems concerning
transport in disordered media. For a class of finitely ramified self-similar sets we
show that an interior metric" can only be defined by means of a certain Hausdorff
mea.sure. Conditions for the existence of such a. metric are given. An example shows •
that, even for simple deterministic fractals, transport properties can heavily ~epend

on the direction.

C. D. CUTLER

Dimension distributions and exact-dimensionality of ergodie
tr:ansformations

.Let T': K -+ K be a measurable mapping, where K is a compact Bubset of R d , and
suppose JJ is an ergodie, invariant measure with respect"to T. Associated with JJ are
VarlOUS definitions of dimension (e. g. Hausdorff dimension, pointwi~e dimension,
correlation dimension). We diseuss the relations between these notions of dimension
and present conditions under which jJ can be regarded as exact-dimensionaL The
relation' of this to the study of dynami~al sy~tems and attractors is discussed.

G.A. EDGA~

Fractal dimension of self-affine sets

The computation of the Hausdorff dimension and the packing dimension ia by now
more or less understood for self-similar fractals. I consider the problem of computing
the dimension of self- affine fractals. Same explicit examples in two-dimensional
Euclidean spare are discussed.

D. KÖLZOW

On Hausdorff decompo,sitions of measures

Based on a decomposition theorem for vector lattices with respect to achain of
bands, a unified approach to the decomposition theorems of Lebesgue, Caratheodory,
and Rogers-Taylor is given. In addition, a new 'decomposition, based on exact
absolute continuity with respect to Hausdorff measures, is presented (a joint work
with B. Bongiomo). By an example, it is shown that the diffuse mea.sures in the
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sense of Rogers and Taylor form a strictly smaller class than those of the new
d-ecomposition. Finally, an application to veetor analysis is sketched.

R. D. MAULDIN

Continua which admit ametrie under which it has D'-finit~ Hl-measure

Let X be a metrizable continuum. For each x E X, set Ko{x) := X and, for each
ordinal 0:, let K cr+1{x) be the maximal subcontinuum of Kcr{x) which contains only
countably many Ioeal separating points of Ko(x) and Ko(x) := (Ip<o Kp(x) if er is
a limitordinal.

THEOREM. (1) Por each 0: < Wl, there are only countably many x E X such that
Ko(x) is nondegenerate. .
(2) There ezists an 0: < Wl such that Kcr{x) = {x} for all x EX.

CONJECTURE. If (I) and (2) hold, then X possesses ametrie under which X has
er-finite linear Hausdorff measure.

P. SINGER

A Fourier transform associated with fractal Brownian motion

The following fractional-integrated Fourier transform is studied:

( exp(it . x) - 1
_:Facp{t) := ca. lRd IIxlla. ep{x) dx,

where g := (0: + d)/2 with 0 < 0: < 2 and ep : Rd -+ C. In the case er = d ~ 1 resp.
d = 1, Wiener resp. Molehan and Ciesielski dealt with such a transform. We study
:Fo on Ll{lIxll(l-d)/2dx) resp. L2(dx), establish relations to ordinary Fourier trans­
form, and prove an inversion formula. We apply this to fraetional Brownian motion
to show SDE for this proeess, a Fourier representation by white noise of the dual
process, and a factorization of the eovariance operator f r-+ fRd r0(', s)f{s)a(s) ds,
where r 0 is the eovarianee of fractional Brownian motion and a a weight function.
Furthermore, we use :Fa to prove an inversion formula of Helgason type for a frac­
tional Radon-transform of Noda type associated to fraetional Brownian motion.

S. J. TAYLOR

Using measures to define fractals

H a fractal is to be more than a "pretty pieture" one needs defining properties.
Hausdorff measure is based on economical covering of a set E ~ R d, while pa.cking
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measure uses efficient packing of disjoint balls with centres in E. Using the power
functions cp(s) = sQ, either of these measures defines a dimensional index. It is
proposed that a set should be ca.lled a fractal if these two indices coincide. Additional
regularity conditions then yield desirable properties and theorems.

s. C. WILLIAMS

Multiplicative processes

Random measures are generated through a multiplicative cascade. The Hausdorff
dimension of the support is calculated a.long withconditions for the non-triviality
of the measures.

P. ZAJDLER

A local definition of multifractals

There are fractals which have a certain Hausdorff dimension hut locally are not of
this dimension. Therefore, the Hausdorff dimension in a point x with respect to a
set E is defined to be the infimum of the Hausdorff dimensions of the intersections of
E with open neig~bourhoodsof x. This Ioeal dimension is also given by the 0: = "0:0

where the (convex) upper o:-density of x with respect to E (introduced by Wallin)
jumps from 0 to 00. The inequa.lity between Hausdorff and topological dimension
also holds for these Hausdorff dimensions in a. point. Therefore, a set for which
the Ioeal Hausdorff dimension is always greater than the topological dimension and
which has at least two different Hausdorff dimensions could be ca.lled a multifractal.

12. Nicht-kommutative und nicht-additive Maßtheorie

P. DE LUCIA

A non-commutative version of the Lebesgue decomposition theorem

Let (L, S, 0,1, ') be an orthomodular lattice, let G he a topologica.l commutative
group, and let a(L, G) denote the set of a.ll additive functions from L to G. H M
is an ideal of L, we say that p. E a(L, G) is M-continuous (resp. M-singular) if
M ~ N (I') (resp. if there exists some c E L such that c E M and. cf E N (p)). An
ideal M of L is a p-ideal if x 1\ (x' V c) E M holds for all c E M and x E L. We ean
prove the following:

18
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THEOREM. Let p. E a(L, G)J let" be an infinite cardinalJ and let M be a 1(,­

orthocomplete p-ideal 01 L such that M\N(p) satisfies the I(,-chain condition. Then p
is uniquely representable as p. = '1+e with '1, eE a(L, G) such that '1 is M-continuous
and eis M-singular.

E. PAP

Non-additive measure theory and applications to non-linear partial
differential equations

We investigate l.-decomposable measures, where .1. is a t-conorm. Among other
results we have analogues of classica.l measme theory theorems: Lebesgue decom­
position, Saks decomposition, Darboux property, compact range theorem, extension
theorems. The important tool for tha:t ia the topological connection with submea­
sures and corresponding results of L. Drewnowski and I. Dobrakov. We investigate
also the regularity of t-conorm decomposable mea.sures and pay special attention to
sup-decomposable mea.sures and the non-uniqueness of their extension. This fact
causes same difficulties in the construction of an integral analogous to the Lebesgue
integral. Using results of V. P. Maslov and his coworkers, we apply the obtained
results to some non-linear partial differential equations and a generalized Belhnan
equation which giyes a close link with algorithms for parallel processing on compu­
ters of the fifth generation.

13. Verschiedenes

A. JOVANOVIC

More details on Rudin-Keisler order

In the Rudin-Keisler order of types of ultrafilters, normality conditions .characterize
the minimal types. In the set MK of all ultrafilters over some index K the normal
ultrafilters are the minimal ones. Weakly normal ultrafilters are the minimal,ones
in the layer of uniform ultra.filters. The key is the existence of minimal unbounded
functions modulo ultra.filter leading to generalized normality: An ultrafilter D over
K is A (weakly) normal if there ia a.n f E nD K such that 9 <D f implies 9D =
const. (gD <D const. < K for weak normality). A A weakly normal D which is
uniform contains information about minimal elements in the Ath layer. Thus the
weak normality trace of an ultrafilter gives all information about minimal elements
below the ultrafilter in all ultrafilter norms. A weak normality is preserved by
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CCC extensions. The Rudin-Keisler order expands to a hierarchy of real valued
mea.sures, where the minimality of measures is determined by tbe same .sort of
normality conditions.

E. NOVAK

Average errors in numerical analysis

Let S(f) := ~O,l]d f(x) dx, where f is a function from F := {f : [O,l]d -+ R I
II/(a) Ilex;) :5 1 for all partial derivatives of order k }. We approximate 8(/) by sums •
Ei=1 Gif(Xi). The worst case error of optimal metbads tends to 0 as n-k/d. There-
fore, we consider the average error. For any mea.sure on F, the optimal methods
converge as n-k

/ d- 1
/

2 on the average. We next study the average error of quadrature
formulas for a. class of monotone functions. We use a natural measure and prove
that adaptive methods are much better than nonadaptive oues. We also study the
approximate solution of /(x) = 0 and prove that bisection, whicb is optimal in the
WOfSt case, fails to be optimal on the average fOf the natural measure and also for
the Brownian bridge. (Some of these results have been obtained in a joint work with
S. Graf.)

Berichterstatter: K. D. Schmidt
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