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Tagungsbericht 29/1990

Variationsrechnung

- 08.07. bis 14.07.1990

Die Tagung fand unter der Leitung von Herrn R.Hardt (Houston), Herrn J.Jost
(Bochum) und Herrn F.Tomi (Heidelberg) statt. Die Teilnehmer kamen aus der
Bundesrepublik Deutschland, Italien, den USA und anderen Lindern und ver-
traten einen breiten Themenkreis der Variationsrechnung. Schwerpunkte der Vor-
trige stellten Variationsprobleme aus der Differentialgeometrie dar, insbesondere
Ergebnis aus der Theorie der Minimalflichen, der harmonischen Abbildungen, der
Yang-Mills Felder, der hamiltonschen Systeme sowie allgemeiner elliptischer Vari-
ationsprobleme. .

Die Ergebnisse wurden in interessanter und verstandlicher Weise vorgetragen.
‘ Sicherlich gab es auf der Tagung viele Anregungen.
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Vortragsausziige : -

A. Ambrosetti:
Singular Hamiltonian Systems

The existence of periodic solutions of conservative systems

§+V'(g) =0
1. : .
EIQIZ + V{q) =h ‘

h <0, given) is discussed in the case when V behaves like —-1:,0 < o < 2.
g lal

The results apply to gravitational field (i.e. when V(g) = —-I;—| + W(q)) as well as
to a class of N-body systems. .

The proof rely on a variational principle consisting in looking for critical points of

1 1
s =5 [ [ v

on the manifold M, = {u € H"*(S',R - {0}) : fo] V(u) + 1V'(u)u = h}.

G. Anzellotti:

Functionals Depending on Curvatures

I consider the problem of the existence of minimizers for functionals of the type

F =/ curvature of M)dH" !
ot °

where M is a n-dimensional submanifold of the Euclidean (n-+1)-dimensional

space. The key idea is to consider the rectifiable current |[G]| associated to the
graph G = {(z,v(z)) | £ € M} of the Gauss map v : M — S™. The key remark is
that the area of G is bounded by the sum of the area of M and of the L! norm of
the curvatures (exterior powers of tangential gradient of v ) of M. It follows that if
M; is a minimizing sequence for F( M), under suitable coerciveness assumption for
the functional, and with suitable boundary or side conditions, the currents |{G;]]
have a subsequence that converges weakly to a rectifiable current ¥ in R*+! x S"
and this Tisa good candidate to be a minimizer. The properties of the currents ¥
obtained as above, and the functionals defined on these currents are investigated.

Deutsche @
DFG Forschungsgemeinschaft ©




-3 -

All this has been obtained in a joint work with Raul Serapioni and Italo Tamanini
of Trento University.

G. Buttazzo:

Relaxed Formulation for a Class of Shape Optimization Problems

A shape optimization problem can be considered as a minimum problem of the

form
(1) min{®(A) : A € A}

where & is a functional to be minimized over a class A of admissible domains.
Problems of this kind arise in various questions of mechanics and structural engi-
neering, where the volume constraint |A} < k seems also a reasonable condition to
impose.

In several situations it is possible to prove that problem ( l).d_oes not admit any
solution, so that the "relaxed” problem

(2) min{®(n) : p € Mo}

is introduced, where My is a suitable class of Borel measures. We prove that the
relaxed problem has always a solution and we find some necessary conditions of

optimality.

G. Dal Maso:

. _ Integral Representation of Functionals Defined on BV (Q)

Let §2 be a bounded open subset of R™ with smooth boundary, let B(€2) be the o-
field of all Borel subsets of 2, and let F : BV(2)x B(€?) — [0, 4+0oc) be a functional
such that : C

(a) for every u € BV(R2) the set function F(u,-) is a Borel measure on ,

(b) for every open subset 4 of Q2 the function F(-,A) is convex and LY(Q)-lower
semicontinuous on BV (1),

(c) there exists a positive constant ¢ such that

/ 1Dul < Flu,B) < 181 + [ |Dul
B B

for every u € BV(2) and for every B € B(Q2).
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Then there exists two Borel functions f,h : @ x R® — [0, +00) and a non-negative
Radon measure u on € such that for every (u, B) € BV(Q) x B() we have the
"integral reprsentation .

Fu,B) = [ f(e,Vuuds+ [ bz D)D),

| Du|

where Du = (V ,,u)du+D;u is the Lebesgue-Nilrodym decomposition of the vector

measure Du and I_g_:l is the Radon- Nilrodym derivative of the measure Du with

respect to its variation |Du|. The function f(z,:) is convex with respect to z ,

while h(z, z) is positively homogeneous of degree one with respect to z. Moreover .
we have [z] < f(z,2) < (1 + |2]) and |z| < h(z,z) < ¢|z|.
This integral representation result, proved in collaboration with G.Bouchilti, has

|
|
| several applications to I'-convergence and relaxation problems for functionals with
linear growth.

U. Dierkes:

Singular Variational Problems

We consider minimizers of the potential energy functional

1
Fa= / w1 Dup + —/ Wit — g*eldH,
a l+aJon

din BV = {u € Li1q 1 u 2 0,47+ € BV(Q)},a > 0, where 2 C R™ denotes
some domain with Lipschitz boundary and ¢ € L, +a(09) is a prescribed function.

Theorem 1: There exists a minimum u € BV:H,(Q) of Eo. If n < 6, then each
minimum u € C*(2) N C¥({u > 0}). In general it is true that {u =0} >0in .
particular, if @ = 1 then |[{u = 1}| >

n—,__lrgw, — Supsq ¢.

Theorem 2: Suppose that 90 is mean convex near z¢ € 30 and that ¢ is continuous
at zg. Then lim u(z) = ¢(zo). Furthermore, if in addition, 92 € C?, 0 < ¢ €
C»* and u G Cz(ﬂg) N C°%.), where Q, := {:c € O : dist(z,00) < ¢}, then
u € C*(,).

Theorem 3: Let a > 0, n > 2 be arbitrary. To each R > 0 there exists r € (0, R),
6>0,we C°’%(TR,,.), where Tr,» = Br(o) — B-(0), w & C%i+¢ for any ¢ > 0,

which minimizes

1
/ u®y/1 + |Dul* + —— ful* — w!te|dH,
Tr,. 1+a 8Tg, .
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where

_ [ 6 on 8Br(o),
i on 8B.(0).

The cones € := {zny1 = /7% [z3+.. . +22] 1} are stationary for E,,. Concerning
the minimizing properties of C2 we have:

Theorem 4: Suppose a+n > 7 wherea > 2, n > 3 or a+n > 8 where a >1,n>
2. Then Cg minimize E, locally in BV, e lfa=1,n<6orn=2, a<5then
C3 do not minimize E,.

Let M C R™ x R* be an n-dimensional manifold and let £, = Jar 2 41dH, denote

its "a-energy”. It turns out that the second variation is given by
#8a(m) = [ 22, (196 - aetihu, € - 1APE )N,

C3 is called stable, if §2£4(CZ) > 0 for all £ with compact support in C;‘:‘ — {o}.

Theorem 5: CZ are stable,if a +n >4+ 8. fa+n <4+ V/8 then there is no
stable cone in R™ x R* with singularity at zero.

Remark: Theorems 4 and 5 imply that for a € [2 + V3, 8,5] the two-dimensional
cones C§* are stable but not minimizing.

F. Duzaar:

Integral Currents with Prescribed Mean Curvature Form

Suppose we are given an oriented (n-1)-dimensional compact submanifold T' C

R™** k> 1, without boundary and a vector-valued n-form 2 : R*+* — A™(R™HE RRFE)

of class C! having the property that for all simple n-vectors v; A --- A Un
Nz,v3 A2 Av,) L Spanfry,---,u,].

Assuming that the associated scalar mean curnature form w : R*+* — An+1gn+k
being defeined by the equation

W(z,v0 A Avp) =vg - Qz,01 A+ Avy,), Yoy AN Aoy,

is closed we can prove the following
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Theorem.
(A) Suppose that w satisfies that

QAn+t1
n- ../_
|“’]oo < 24r

where Ap denotes the area of an area minimizing current subject to the boundary
[[T]l. Then there exists an integer multiplicity rectifiable current T = (M, 8,¢)
with compact support and boundary |[T]| which is a solution of the "mean curva-
ture equation” |

(%) /M(divMX + X -Q(-,€))0dH" = 0

for all z € C(R™**), sptX NT = 0.

(B) Let R := {z € R™** \ T, sptT N B,(z) is for some ball B,(z) an oriented

n-dimensional submanifold of class C? with mean curvature vector (-,¢ )}: Then

R is open and dense in sptT \ T. in the codimension one case k=1 we have _

Sing(T) = 0 for n < 6, Sing(7') distrete for n = 7, 'H—dim(Sing(T)) <n-Tforn

>8.

References: )

{11  F.Duzaar, M.Fuch: On the existence of integral currents with prescribed
mean curvature vector, Manus. Math. 67, 41-67 (1990)

(2] F.Duzaar, M.Fuch: On integral currents with constant mean curvature, to

appear on Rend. Sem. Mat. Univ. Padova 1991

J. FEells:

Exponential Harmonicity

Preliminary report on work by J. Eells and L. Lemaire.
Consider the functional E(¢) = [ eldel” of maps ¢ : M — N between Riemannian
manifolds. Formally its Euler- Lagrange operator is

(1) T($) = div(e!™’dg) = 4" (r(g) + do - V|dg|?),

where 7(¢) is the standaed tension field of ¢ ( = div(¢) ).

Does every minimum of E in Np>1 LY(M, N) satisfy 7(¢) = 0 weakly? Yes, in cases
dim M =1 and dim N =1.

Prop.: If M is a circle, then the smooth solutions of T(¢) = 0 coincide with those
of 7(¢) = 0.

Forschungsgemeinschaft
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The operator d¢ - V|dg|? has a life of its own:

Prop.: If dim N > 3 and ¢ : M — N is a harmonic morphim, then T(¢)=0
iff the fibres of ¢ are minimal submanifolds —— that being a characterization of

solutions of

@ - dé - V]dgl? = 0

In case N = R and M a domain of R™, G. Aronsson has made a lovely study of

solutions of (2), charactenzmg it as the Euler-Lagrange equation of the functional
lim V/ [dg|?P.
p—oo

Gu Chaohao:

Some Problems in Physics Related to Extremal Surfaces

Three kinds of problems in physics which we related to the extremal surfaces in

Euclidean space and Minkowski space-time are presented.
(1) Potential flows of incompressable ideal fluid:

It is proved that minimal surfaces can be expressed as
z=%,,y= tI>.',,vz =9,

where @ is a harmonic function of lst degree and (u,v,w) is the dlrectlon of the
normal.

Consider (u,v,w) as the space-coordinates and (z,y, z) as the flow velocity at the
point (u,v,w). We obtain exact solutions of stationary three dimensional potential
flows.

Dual Plateau problem is reduce to solving the Dirichlet problem for a linear elliptic
PDG on sphere which is solvable.

(2) The motion of strings in Minkowski space-time R**+" :

The world surface of a moving string in a non space-like extremal surface. The
Cauchy problem for the motion is solved explicitly and globally provided the initial
data are C? and space-like exact for a discret set of points.

The explicit expression of the position of a string at time ¢ can be

t+s

z f( ) f2( )’ i=(zl)"':zn)'
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Where fi(s1) and f2(s2) are equations of two curves in R™ and s, s; are there arc

lengths respectively.

(3) The Born-Imfeld equation for nonlinear electrodynamics

The equation is
1+ ‘Pi)‘Pu — 200000 — (1 — ‘Pf)vJu =0 (p;=F,p,=—H)

This is just the equation of extremal surface in R'*? if we identify ¢ = y. If
E +1 > H the equation in hyperbolic, the Cauchy problem can be solved globally
without singularities.

If E+1 — H changes its sign, from the theory of extremal surface of mixed type,
the Cauchy problem with C? initial data does not admit a solution in general,
even locally. )

Matthias Gunther:

Isometric Embeddings of Riemannian Manifolds

In 1956 J.Nash proved, that every Riemannian ma.nifol;:l (M,g) of class C*(s > 3
or s = 00) possesses an isometric embedding u € C* in an euclidian space R? with
a suitable (high) value of g. One of the main steps in Nash’s proof is the solution
of the associated perturbation problem, i.e. the determination of an isometric
embedding u + v of (M, g + f) if an isometric embedding u of (M, g) is known and
f is small in some sense. In solving this perturbation problem a serious difficulty
arises,namely the so-called loss of differentiability. To overcome this difficulty,
Nash invented a complicated iteration procedure, which is nowadays known as
Moser-Nash technique or hard implicit function theorem.

In our talk we give a very simple method to handle the perturbation problem with
the help of the Banach fixed point theorem. Further we give a result concerning a
minimal value of g. ’

Ch. Hamburger:

Regularity for an Elliptic System

We prove global regularity for the vector-valued differential m—forms w = (w?,...,w")

defined on a Riemannian manifold with boundary M, which are solutions of the

system

(*) §(p(lwl®)w) =0 dw =0in M,
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subject to the Neumann boundary condition
(N) wl'=0 indM.

(*) and (N) arise as Euler equations and natural boundary condition for cohomo-
logical minima of the functional f f(w)vg, where f(w) = k(jw|?) with k' = p.

Theorem. Let M be of class C*! (which implies that the metric g is Lipschitz).
Suppose that

fr(w) - (£,6) 2 w2 (¢
1F*(w) = A < ellwl® + 1) =7 e — y)?

forp>1,a > 0.

Then any weak solution w € LT of the system () with boundary condition (V)
loc

is globally Holder continuous in M.

The theorem is a generalization of the interior regularity results of K. Uhlenbeck
(1977) and M. Giaquinta — G. Modica (1976).

We prove boundary regularity by freezing the metric at a boundary point and by
approximating w by a solution X of (x) with respect to the frozen metric. We then
extend X by reflection a arc the boundary and we apply the interior estimates to
the extended from X. By virtue of the Lipschitz continuity of the metric, we can

control the norm f(X — w)?, this obtaining the required boundary estimates for

w.

Robert M. Hardt:

Some New Harmonic Maps from B® to S?

Here we discuss the question of the existence of a harmonic map from a spatial
domain to §? which has prescribed Dirichlet boundaty data and prescribed singu-
larities. There are several related and partial results. B. Chen and R. Hardt show
this is possible if [ |V|?dz is replaced by JIVuj?dzr for 2 < p < 3. Given the singu-
lar set, L. Mon (Comm. P.D.E. 1989) constructs a bridge-like domain connecting
the singularities and a suitable harmonic map on this domain. C. Poon obtains
for any a € B%, a harmonic map u, which is smooth away from a and which
equals the identity on S2. R. Hardt, F.H. Lin, and C. Poon solve the prescribed
singularity problem in case the boundary data is axially-symmetric, nonconstant,
and nonsurjective and the singular set lies on the axis. The latter paper involves
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work on a relaxed energy functional studied by F. Bethuel, H. Brezis, J. Coron,
M. Giaquinta,G. Modica and J. Soucek (Manuscripta Math. 1989).

Hu Hesheng:

On the Lump Phenomena of Yang-Mills Fields

We give a nonexistence theorem of the lump phenomena for Yang-Mills fields in 4

dimensional Minkowski space-time R3+?!.

Definition. If there exists positive constants R, ¢,ty such that
Too(t,z)d’z > ¢
lz|<R
holds true for every ¢ > t, it is called that the field admits lump phenomena.
Here Too is the energy density of the Yang-Mills field and |z| = Vet + 22 4+ g2, : |

Theorem. For any compact group, there are no lumps for a pure Yang-Mills field
in R®*! whose energy satisfies

t
/%ld:’z< A (A constant)

where 0 <A < :l;,r = |z|.

The theorem weakens the finite energy condition (which corresponds A = 0 here)
in Weder’s paper.

The energy condition in the above statement cannot be removed.We show this by ‘

given an exact solution of the pure Yang-Mills fields admitting lump phenomena.

Ex. Take Gauge group SU(2) and potential in the following form

by =10
by =by =b3 =k smlemn(kt)

where k is a constant sinlemn (kt) is an elliptic function.

/ ToodV = 20 Rk > 0
B(R)

this is an nonstatic lump solution of the SU(2) pure Yang-Mills field.

‘Forschungsgemeinschaft © @




The above result holds true not only for the Yang-Mills fields but also for the
Gauge fields with energy-momentum tensor obeying the conservation law. Some
lump solutions which satisfy the conservation law but not satisfy the Yang-Mills

equations are given.

Gerhard Huisken:

Interior Estimates for Hypersﬁrfaces

Mean curvature evolution of smooth hypersurfaces has been studied under various
global assumptions. Here we prove regularity estimates for geometric quantities
of any order which are interior both in space and time. In particular, we obtain
local gradient and curvature estimates in regions where the hypersurface can be

represented as a graph.

A major application of these estimates is the unexpected result that the mean
curvature flow admits a smooth solution for all time in the class of entire graphs
over Euclidean space, assuming only local Lipschitz contmmty of the initial surface
without growth conditions near mﬁmty

All of this represents recent joint work with Klaus Ecker (Melbourne).

Norbert Jakobowsky:

Interior and Boundary Regularity of Weak Solutions to the Equation of Prescribed
Mean Curvature

Weak solutions to the system Az = 2H(z)z, Az, in a domain Q C R? are'proved

to belong to C**(Q,R%),u € (0,1), if H(z) = Hy(z) + Ha(z), H; € C*(R*,R)N
L=, VH; € L*(i = 1,2,), sup[z||VH)| < oo, sup |zH,(z),| < 1. Considering
R3 jzI>K .

the real valued function |z — a|? for some a € R®, using the special structure of

the system, the Courant-Lebesgue lemma, and the isoperimetric inequality, first

continuity is obtained a.e. in (2, then throughout Q. Finally, well known results

imply C?* regularity.

Boundary regularity of weak solutions to the corresponding Dirichlet problem can
be obtained by using the result of partial regularity. If the boundary data are
assumed to be bounded and continuous, weak solutions are proved to be bounded

and continuous resp.
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J. Jost:

Group Actions, Gauge Transformations, and the Calculus of Variations
This is a joint work with Xiao-Wei Peng.

Let M be a Banach manifold with ”weak” Riemannian metric < -,- >, G a Banach-
Lie group acting isometrically on M.
Let & be a Banach space, ® : M — 8 smooth.
Suppose ‘ )

0— Lie(G)->T,M-20 0
is an elliptic complex, where i : Lie(G) — TM is the differential of the action of
G, 1p its evalution at p € M; likewise j, : T, M — @ is the differential of ®.

Examples:

1) M a compact manifold, M = { metrics on M}, G = { diffecomorphisms of M},

® giving some curvature condition like Einstein or Kahler-Einstein.

2) M a compact Riemannian manifold, E a vector bundle over M with struc-
ture group G, M = {G —connections on E}, G = { Gauge transformations},

® again a curvature condition like antiselfduality or flatness.

w.lo.g. &(p) = 0. One is interested in (M, = &~(0))

My /G

and the induced metric on this space.

For p,qg € M, let
E(p,q) = inf dist?(p, gq).
9€G

For g close to p, the implicit function theorem implies the existence of a unique

minimizing g. In the above examples, the metric is an L? —metric

1): (h,h') = /tr'(g_lhg—lh')dvolg forge M
M
2): (4,B) = /tr(A A *B) w.lo.g. G semisimple, compact.
. M .

The Euler-Lagrange egs. of E then determine g.

For @, € T, M, tangential to My, orthogonal to G—orbit:

32
<a,f>= @E(Pyl’ + .ta + sﬂ)]a=¢=0-

Forschungsgemeinschaft

o®




UFG

Deutsche

Thus, in order to compute the metric in the above examples, one has to vary the

Euler-Lagrange eqs. of E and compute the corresponding variation of the solution.

This method enables us to give a general formula for the curvature of the induced
metric on M, /G, including as special cases results of Tromba, Wolpert, Groisser-
Parker, Zograf-Takhtadzhyan.

Applications to symplectic geometry are given. In particular, one considers the
moduli space of stable vector bundles over a Riemannian surface . This moduli
space has a symplectic structure depending only on the differentiable structure of
%, but not on its complex structure. A complex structure on £, however, in turn
determines a complex strucutre on this moduli space, and then also a metric.
Our method can compute the affect of variations of the complex structure of ¥ on

the metric of the moduli space of stable vector bundles.

) S. Luckhaus:

Stability of Minimizing p—Harmonic Maps

The problem is to show that a weakly convergent sequence of minimizing p—harmonic
maps with values in an arbitrary compact Riemannian manifold N C R*, is con-
verging strongly to a minimizer. This is achieved using as a tool the following

lemma to change the boundary data with small cost in the energy.

Lemma. If u,v are in H}(8M, N) then for small A, with constants depending on
M, p only, one can find w € H}(8M x (0,)), N) with w(-,0) = u,w(-,A) = v and

/IVwi” = cA/[IVui’ +|VolP + |u — v|P] =: AK?

and
ess. sup dist (w, N) < cxl-#(/ lu — v|P)T A3

A consequence is the following theorem

Theorem. Ifu, are converging weakly in H)(M, N) to u, and if for v € H;(M, N)
such that v — u,|gps = O otherwise arbitrary, f|Vu, [P < f|Vv|? holds. Then
J IVu, |P converges to [ |Vu|P. And u also minimizes [ |Vu|P among all functions
in H}(M,N) with the same boundary values.

Similar functionals and problems with constraints can also be treated.
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L. Modica:

- Singular Perturbations and Calculus of Variations

Deutsche

Consider the minimization problem
(*) min F(u)

where H is a-function space and F is a functional defined on H. When existence,
or uniqueness, or regularity of solutions of () fails to be true, it is often useful to

add to F a singular perturbation S(u), to solve the problem
(xc) minfeS(u) + F(u)),

and to study the asymptotic behavior as ¢ — 0% of the solutions u, of (*:). In
fact, it frequently happens that the limit point uo of u. has the right properties
which were lacking for the solutions of (x). -

Example 1. In the gradient theory of phase transitions one has

F(u) = /W(u)dz,H ={uve Lf(n; R™): /udz =m}
a Q .

with m € R™ given, W : R* — R continuous, W > 0, W(u) = 0 if and only if
u € {a1,...,a;} with @; € R™ (1 <4 < k). Solutions of () are given by piecewise
constant functions on partitions of 2 in k subsets with prescribed volumes, without
any regularity of the interfaces of the partition.

By taking S(u) = [|Vu|?dz, the limit point up of u. has the same form as before,
Q

but in addition the interfaces satisfy a variational principle and so they are smooth.

Example 2. In the theory of elastic solid materials by I. Fonseca a similar phe-
nomenon occurs. One has here

F(u) = /W(Vu)dz,H ={u:QCR* - R*: /udz = m,/ Vudz = §A+(1-6)B} .
1] Q

Q

where Vu is matrix, W > 0, W(M) = 0 if and only if M = RA or M = RB
where A, B are fixed matrices, A — B = a®mn, R is any rotation, m € R3, § €]0,1]
are given. It is easy to find that the solutions of (*) are piecewise affine functions

loyered orthogonally to n. The singular perturbation S(u) = zf ]V%JH selects
Liq

among them only those ones satisfying 2 minimum principle.

Example 3. The functional

F(u) = //((u: -1+ u;)dzdy Q =]0,1{x]0,1[C R?
Q
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has no minimum point for suitable boundary values. A singular perturbation
method allows to construct a sequence of minimizers of perturbed problems which

represents a generalized solution of (*) in the sense of the Young measures.

1. Nikolaev:

Smoothness of Convex Surfaces and Generalized Solutions of the Monge;Ampére‘

Equation on the Base of Differential Properties of Quasiconformal Mappings

This is a joint work with Prof. S.Z. Sefel.Considered is the equation Z, - z), -
ny = f(z,9,2,Vz) > m > 0 (+). Here Z(z,y),2z% + y* < r? is considered to be
a generalized solution. We prove that if f(z,y,z, VZ) is bilatorally bounded by
positive constante m and r then Z(z,y) € W7 N C"*,¢ € [f,+0), a € (0,1) and
€ — o0, a@ — 1 as M/m — 1. Apriori estimates are given also. To state a second
result ‘we introduce a concept of functions has m,a)— approximate differential
(m = 0,.1,2 -..,a € (0,1)). We define it for a null point (a general case is defined
similary): »

@(z),1z} < r,z € R* has a (m, a)—approximate differenital if there exists a polyno-
mial Pr(z) such that |p(z) — Pn(z)| < Clz|™**,|z| < r. Our second result states
that if at some point f(z,y,2,z},2,) has a (m,a)—approximate differential then
at the very same point the solution of () has (m + 2, a)—approximate differential.

We also give corresponding apriori estimates.

To prove these both theorems we consider a mapping ® which oné can defined

using the commutative diagramm:
(z,9)
(z,y) T (g=1z,p=2)
N\

(p,y)

The mapping & turns out to be a quaisconformal one whose coefficient is estimated

by the right-hand side of (*). Besides well known properties of quasiconformal map-
pings, we had to prove the theorem stating that any "almost conformal mapping
¥", that is K (z)1 < C|z|™** has (m + 1,a)—approximate differential.
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J. Piits:

Recent Results in Minimal Surfaces and Applications

Let M be a smooth, compact, oriented, (k +1)~dimensional Riemannian manifold
(k > 2), and let B? denote the space of k—dimensional flat chain boundaries
modulo two in M. Since B} is a K(Z,1) space, it follows Hf(B2,Z;) = 1, for all i
£ =1,2,.... Representatives in each homology class may be explicitly constructed.
A minimum/maximum construction in a Lusternik-Schnielman setting may be

carried out in each homology class to yield stationary k—dimensional varifolds on

M.

If 2 < k < 6, then the varifolds are supported on smooth, compact embedded
minimal hypersurfaces in M. Under various fairly general conditions, one may
show that M supports many or infinitely many distinct minimal surface. When
k = 2, these methods may be used to find new minimal surfaces of computable
genus (depending on the topology of M). Here are also some new existence results
when k > 1, in which case the minimal surfaces are regular except possibly for a

compact singular set of Hausdorff dimension at most k — 1.

H. Rosenberg:

Surfaces of Constant Curvature -

We discuss existence and unicity results for compact embedded surfaces in R of

constant Gaussian or mean curvature (K —surfaces and H —surfaces).
Conjecture. Every Jordan curve without inflection points in R* bounds a K —surface.

Theorem. Let C;,C; be convex curves in parallel planes. Then they bound a

K —surface and H —surface; both connected (Hoffman, Rosenberg, Spruck).

The main tool is the technique of Cafferelli, Nirenberg, Spruch where they prove

a graph over a convex planar curve extends to a graph that is a K —surface.

Theorem (Sa Earp, Brits-Meeks, Rosenberg): Let C be a convex planar curve
and M a compact embedded H—surface, transverse to the plane of C along C,
OM = C. Then M is contained in a halfspace determined by C. In particular M

inherits the symmetries of C.

Theorem (Rosenberg, Sa Earp): Assume M is complete embedded H —surface,
OM = C = planar convex curve, M C halfspace determined by C and M vertically
cylindrically bounded. Then M inherits the symmetries of C; in particular, if C
is a circle then M = Deleauney.

We obtain conditions which ensure M is indeed in a halfspace.
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F. Sauvigny:

Minimal Surfaces Solving a Semi-Free Boundary Value Problem with a Simple
Projection onto a Plane

Let S := {(s(t),z) € R*|t € R,z € R} be a supporting surface which is a cylinder
over the plane embedded curve ¥ given by s(t) : R - R? € C**2, We take a
Jordan are I' := {(z,y, h(z,y))|(z,y) € [} which is a graph over the plane convex
arc I and meets S only at its end points (s(¢1/2), h(s(21/2))) € § with t; < t5. The
curves I' and ¥ bound a plane domain G with the convex hull Gy. We now fix the

. conditions

Cl: The straight line L(t) := {p € R*|(p — s(t)) - s'(t) = 0} only meets SUTL in
the point s(t) for all ¢ € (—o0,1;) U (¢2,+00).

C2:  The lines L(t),t € [t1,1;] yield a simple foliation of G,.

Theorem. Let {I', S} be a configuration as above with C1 and C2. Then each
parametric minimal surface X(u,v) = (z(u,v), y(u,v), z(u,v)) : B-R solving
. the partially free boundary value problem for this configuration is a graph defined
over the plane domain G.

Proof. We show by an index method that the plane map f(u,v) := (z(u,v), y(u,v)) :
B — R? is a diffeomorphism, taking the free boundary condition into account.

‘Remark. We do not need a convexity condition on the free boundary.

Applications: .
1. We obtain a solution of the minimal surface equation in the — not neces-

sarily convex — domain G with mixed boundary conditions.

2. We achieve a unigeness result for the semi-free boundary value problem for

' a parametric minimal surfaces spanned into such configurations.

R. Schumann:

" Regularity for Signorini’s Problem in Linear Elasticity

In 1981 Kinderlehrer proved that the solution of the variational inequality cor-
responding to Signorini’s problem of plane elasticity belongs to the Holder space
C'*< for some a € (0,1). Here the result is that C'*®—regularity is true for all -
space dimensions n > 2. By means of a pseudodifferential operator the problem is
reduced to a variational inequality on the boundary of the domain which can be
treated by scalar methods.
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L. Simon:

Asymptotic Behavior of Geometric Extrema near Singular Points

Suppose u is an energy minimizing map between compact Riemannian manifolds
M,N (of dimension n and m respectively), and let zo be a singular point for
such that « has a "cylindrial” tangent map ¢ : R® — N at zo; that is, sing p is a
line £ and ¢ is invariant under translation in direction £. Thus, modulo a rotation
of R™ taking the line £ to the z™ coordinate axis, we have

e(z!,..., 2" 2") = go(z!,...,z

et )

where o : R®! — N is minimizing, non-constant, and homogenous of degree
zero. The set of all such ¢ is denoted by T. Notice that in case n = 4 and m = 2
we have that ¢ is a conformal map of §? to N; denote its topologlcal degree by
k(> 1) and let 7; be the set of ¢ in T with k = 1.

Theorem. Ifn =4, if N is diffeomorphic to 5%, and if ¢ € Tiisa -ta.ngent' map

for u at a singular point zo, then 3o > 0 such that B,(z)N sing u is an embedded :

Cl=arc for some o = a(M,N) € (0,1).

An unsatisfactory feature of this theorem is that it requires ¢ € 7; rather than

¢ € T. However if N is metrically close to S?, then a theorem of Brezis, ‘Coron -

and Lieb, and a remark of F. H. Lin gives 7, = 7, and in this case we can assert
that sing » is a finite union of closed embedded Jordan arcs which are C!*® in
their interior, such a picture was previously obtained, with C% arcs, by Hardt

and Lin.

N. Smdle:

On the Yamabe Problem for Non-Compact Manifolds

In this talk, we will discuss some recent results on the Yamabe problem for non-
compact manifolds. In particular, we consider the question: for what submanifolds
A* C 8", does there exists on S™\A*, a complete, conformally flat metric of
constant positive scalar curvature? It follows from a theorem of Schoen and Yau,
that for such a metric to exists, we must have k < "—;2- On the other hand very
little is known on the existence question. Schoen has proven that one can take
A = {p1,...,px}, k > 1, or A = limit set of certain Kleinian groups. Also there
are explicit solutions for A a round subsphere. In recent work (jointly with Rafe
Mazzes) we have studied perturbations of the known solutions on $™\§*, and
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have proven: If A is any sufficiently small C3 (a € (0,1)) perturbation of a
round §* C S™, then S™\A admits an infinite dimensional family of complete
conformally flat metrics of constant positive scalar curvature. The theorem is
proven by studying the linearized equations about the trivial solutions and using
the implicit function theorem. The main difficulties are that the linearized operator
has serious degéneracies, and infinite dimensional null space. - These difficulties
are overcome by using techniques of micro-local analysis and the theory of conic

operators.

M. Struwe:

Periodic Solutions of Hamiltonian Systems on Almost Every Energy Surface
Let H be a Hamiltonian of class C? on R*™ and suppose S; = H~!({1})is a (C?-)

compact energy surface. Then for almost every 8 in a suitable neighbor_hgod of 1

we establish the existence of a periodic solution to the Hamiltonian system

. 0 id
¢ =JVH(z),J = (_id, 0),

on the energy surface Sg = H~1({8}).
The proof is based on a refinement of ideas by Viterbo, resp. Hofer and Zehnder.

B. White:

Existence of Embedded Minimal Disks

Let F be a smooth positive function on the unit sphere 8B C R®. Then F defines

a functional (also denoted F) on compact surfaces in R® by the formula

F(M) = / Flv(z))dA(z)
zEM
where v(z) is the unit normal to M at z and dA(z) in the surface area element. I
prove:

Theorem. Let C be a 'smooth closed embedded curve in 3B. Then among all
smooth embedded disks D with boundary C, there exists one for which F(D) is a
minimum.

In particular, in case F = 1 this shows existence of a smooth embedded area

minimizing disk.

Berichterstatter: Xiao-Wei Peng
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