
MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e reh t 29/1990

Variat ionsrechnung

08.07. bis 14.07.1990

Die Tagung fand unt~.r der Leit~ng von Herrn R.Hardt (Houston), Herrn J .Jost

(Bochum) und Herrn F.Tomi (Heidelberg) statt. Die Teilnehmer kamen aus der

Bundesrepublik Deutschland, Italien, den USA und anderen Ländern und ver­

traten eiJ1en ·breiten Themenkreis der Variationsrechnung. Schwerpunkte der Vor­

träge stellten Variationsprobleme aus der Differentialgeometrie dar, insbesondere

.Ergebnis aus der Theorie der Minimalflächen, der harmonischen Abbildungen, der

Yang-Mills Felder, der hamiltonschen Systeme sowie allgemeiner elliptischer Vari­

ationsprobleme..

Die Ergebnisse wurden in interessanter und verständlicher Weise vorgetragen.e Sicherlich gab es auf der Tagung viele Anregungen.
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Vortragsauszüge

A. Ambro3etti:

Singular Hamiltonian Systems

The existence of periodie solutions of conservative systems

{

ij + V'(q) =0

~1412 + V(q) =h

(h < 0, given) is discussed in the ease whe'n V behaves like -lqjQ ,0 < a < 2.

The results apply to gravitational field (i.e. when V(q) = -~ + "l(q)) as weIl as

to a dass of N-body systems..

The proof rely on a variational principle eonsisting in looking for critical points of

111

·2 111

,J( u) = - Iu I . - V (u)u
2 0 2 0

on the manifold Mn = {u E H 1 .2(SI,R - {O}): Jo
1

V(u) + tv'(u)u = h}.

G. Anzellotti:

Functionals Depending on Curvatures

I consider the problem of the existence of minimizers for functionals of the type

:F = 1M f(cur.vature of M)d1i
n

where M is an-dimensional submanifold of the Euclidean (n+l )-dimensional

space. The key idea is t'o consider the rectifiable current 1IG] I associated to the

graph G = {(z, v( z)) I z E M} of the Ganss map v : M -+ sn. The key remark is

that the area of G is bounded by the surn of the area of M and of the LI nornlof

the curvatures (exterior powers of tangential gradient of v ) of M. It follows that if

M j is a minimizing sequence for :F(M), nnder suitable coerciveness assumption for

the functional, and with suitable boundary or side conditions, the currents I{Gj]l
have a. subsequenee that converges weakly to a rectifiable eurrent E in Rn+l x sn

and this E is a good candidate to be a minimizer. The properties of the currents ~

obtained as above, and the fnnctionals defined on these currents are investigated.
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All this has been obtained in a joint work with Rau! Serapioni and Italo Tamanini

of Trento Uni versi ty.

G. Buttazzo:

Relaxed Formulation for a Class of Shape Optimization Problems

A shape optimization problem can be considered as a minimum problem of the

form

(1) nlin{~(A) : A EA}

w here ~ is a functional to be minimized over a" class A of admissible domains.
. .

Problems of this kind anse in various questions of mechanics and structural engi-

neering, where the volume constraint lAI S; k seenlS also a reas~nable condition to

impose.

In several situations it is possible to prove that problem (1) d.oes not admit any

solution, so that the "relaxed" problem

(2)

is introduced, where Mo is a suitable class of Borel measures. We prove that the

relaxed problem has always a solution and we find some necessary conditions of

optimality.

G. Dal Afa30:

Integral Representation of Functionals Defined on BV(O)

Let n be a bounded open subset of Rn with smooth boundary, let ß( 0) be the 17­

field of all Borel su~sets of n, and let F : B V (n) x ß(n) -" [0, +(0) be a functional

such that

(a) for every -u E BV(O) the set fune.tion F(u,·) is a Borel nleasure on 0,

(b) for eyery open subset A of n the function F(·, A) is eonvex and LI (n)~lower

semicontinuous on BV(fl),

(c) there exists a positive constant c such that

LIDul ~ F(u, B) ~ ellBI +LIDulJ

for every u E BV(!l) and for every B E B(!l).
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Then there exists two Borel functions f, h : n x Rn ~ [0, +(0) and a non-negative

Radon measure ,J.L on n such that for every (u, B) E BV(11) x B(O) we have the

"integral reprse.ntation _

F(u, B) =L j(z, V,.u)dJL + Lh(z, I~:I )ID~ul,

where Du = (V ~'U)dJ.L+D;uis the Lebesgue-Nilrodym decomposition of the vector

measure Du "and lß:1is the Radon- Nilrodym derivative of the measure Du with

respect to its variation IDul. The function f(x, z) is convex with respect to z ,

while h(z, z) is positively homogeneous of degree one with respeet to z. Moreover e
we have Izi ::::; f(x, z) ::; c(l + Izl) and Izl ::; h(x, z) S; cl=l.
This integral representation result, proved in collaboration with G.Bouchilti, has

several applications to r-convergence and relaxation problems for functionals with

linear growth.

u. Dierkes:

Singular Variational Problems

We consider minimizers of the potential energy functional

.in ~Vl~O := {u E L1+a : U ~ 0,u 1+a E BV(O)},o: > 0, where n c Rn denotes

some domain with Lipschitz boundary and 4> E L 1+a (an) is a prescribed function.

Theorem 1: There exists a minimum u E BVl~Q(n) of Eo • If n ::::; 6, then each

minimum u E CO(O) n CW( {u > o}). In general it is true that l{u = O}I > 0 in

particular, if Q = 1 then Ifu = 1}1 ?: 'Hn~~i80) - sUP80 4>.

Theorem 2: S~ppose that an is mean convex near Xo E an and that 4> is continuous

at Zoo Then !im u(x) = </>(xo). Furthermore, if iOn addition, an E C 3 , °< </> E
z-zo

Cl,a and u E C 2 (fl e ) n CO(n~), where n~ := {x E n : d-ist(x,an) < e}, then

u E CO,l(n~).

Theorem 3: Let a > 0, n 2: 2 be arbitrary. To each R > °there exists r E (0, R),

fJ > 0, W E co,t(TR,r), where TR,r = BR(O) - Br{o}, ·w f/. Co,t+t: for any e > 0,

which minimizes
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on 8BR(O),
on 8B r (o).

The cones C;: := {zn+I = ß[z~+o 0 o+J:~J ~} are stationary (or E",o Concerning

the minimizing properties of C~ we have:

Theorem 4: Suppose 0:: + n 2: 7 w.here a 2: 2, n 2: 3 or 0:: +n 2: 8 where 0:: 2: 1, n 2::
2. Then C~ minimize Eo. locally in BV1~Q' Ir 0:: = 1, n ::; 6 or n = 2, Q ::; 5 then

C~ do not mi~~mize Eo..

Let M C Rn X R+ he an n-dimensional manifold and let EQ = IM z~+ldlln denote

its "a-energy". It turns out that the second variation is given hy

c~ is called stahle, if 62 Eo {C~) 2:: 0 for all ~ with compact support in C~ - {o}.

Theorem 5: C~ are stahle, if 0:: + n 2:: 4 + Ja. If a + n < 4 + J8 then there is no

stahle cone in Rn X R+ with singularity at zero.

Remark: Theorems 4 and 5 imply that for Q E [2 + v'8,5] the two-dimensional

cones C2 are st~hle hut not minimizing.

F~ Duzaar:

Integral Currents with Prescribed Mean Curvature Form

Suppose we are given an oriented (n-t)-dimensional compact subnlanifold r C

. Rn+k, k 2: 1, without boundaryandavector-valued n-formf!: Rn+k ~ I\n(Rn+k,R n+k )

of class Cl having the property that for aB simple n-vectors 'L'1 A •.. A ·t'n

O( x, V 1 1\ .- .. 1\ t'n) 1- Span f1.'1 , •.. , t' n ] .

Assuming that the associated scalar mean curnature form w : Rn+k ~ 1\ n+1 Rn+k

being defeined by the equation

",{x, Va 1\ ••. 1\ .vn ) = Va . O(x, Vl (\ ••• A vn ), \11..'] A ... /\ Vn

is closed we can prove the following
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Theorem.

(A) Suppose that w satisfies that

Iwl oo < n. Vo.n
+

l

2Ar

where Ap denotes the area of an area minimizing current subject to the boundary

I[r]!. Then there exists an integer multiplicity rectifiable current T = T(M, 8, e)

with compact support and boundary Hf] I which is a solution of the "rriean curva­

ture equ~tion"

for all x E CJ (Rn+k), sptX n r = 0.

(B) Let R := {z E Rn + k
\ f, sptT n Bp(x) is for some ball Bp(x) an oriented

n-dimensional submanifold of dass C 2 with mean curvature vector n(·,~)}~ Then

R is open and dense in sptT \ r. in the codimension one case k=l we .have .

Sing(T) = 0 for n ~ 6, Sing(T) distrete for n = 7, fi-dinl(Sing(T) :s; n - 7 for n

~ 8.

References:

[1] F.Duzaar, M.Fuch: On the existence of integral currents with pr~cribed

mean curvature vector, Manus. Math. 67, 41-67 (1990)

[2] F.Duzaar, M.Fuch: On integral currents with constant mean curvature, to

appear on Rend. Sem. Mat. Univ. Padova 1991

J. Ee1l3:

Exponential Harnlonicity

Preliminary report on work by J. Eells and L. Lenlaire.

Consider the functional E( cP) = J eld~12 of maps cf> : M ---;. lV between Riemannian

manifolds. Formally its Euler- Lagrange operator is

•

•
(1)

where r( 4» is the standaed tension field of cf> ( == div{ <1» ).

Does every minimum of E in np 2:: lL:i (/vI, N) satisfy r( <1» = 0 weakly? Yes, in cases

dirn M = 1 and dim N = 1.

Prop.: If M is a circle, then the smooth solutions of T( rP) = 0 coincide with those

of r(4)) == o.
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The operator d</> . Vldt/>1 2 has a life of its own:

Prop.: If dirn N 2:: 3 and 4> : M -+ N is a harmonie Dlorphim, then T(4)) = 0

iff the fibres of 4> are minimal submanifolds - - that being a characterization of

solu.tions of

(2)

•
In cas.e N = Rand M a domain of Rm

, G.Aronsson has made a lovely study of

solutions of (2), characte~izi!lgit as the Euler-L~grange.equation of the functi~nal

Gu Chaohao:

Some Problems in Physics Related to Extrenlal Surfaces

Thr.ee kinds of problems in physics which we related tö the extremal surfaces in

Euclidean space and Minkowski space-time are presented.

(1) Potential flows of incompressable ideal fluid:

It is proved that minimal surfaces can be expresse~ as

where cfl is a hartllOnic function of 1st degree and (u,v, w) is the direction of the

norolal.

Consider ("lL,'v, w) as the space-coordinates and- (x ,y, z) as the flow velocity at the

point (u,.v,.w). We obtain exact solutions of stationary three dinlensional potential

flows.

Dual Plateau problenl is reduce to solving the Dirichlet problem for a linear elliptic

PDG on sphere which is s.olvable.

(2) The motion of strings in Minkowski space-time RJ+n :

The world surface of a moving string in a non space-like extremal surface.. The

Cauchy problem for the m<:>tion is solved. explicitly and globally provided the initial

data are C 2 and space-li~e exact for a dis~ret set of points.

The explicit expression of the position of astring at time t can be

t+s t-s
Z = 11(-2-) + 12(-2-)' x = (Xl, ... ,Xn ).
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Where /1 (51 ) and /2 (52) are equations of two eurves in Rn and SI, 52 are there are

lengths re.spectively.

(3) The Born-Imfeld equation for nonlinear electrodynamics

The equation is

This is just the equation of extremal surface in R1+2 if we identify 'fJ == y. If

E + 1 > H the equation in hyperbolic, the Cauchy problem ean be solved globally

without singularities. e
If E + 1 - H changes its sign, from the theory of extrenlal surface of mixed type,

the Cauchy problem with C 2 initial data does not admit a solution in general,

even loeally.

Matthias Giinther:

Isometrie Embeddings of Riemannian Manifolds

In 1956 J.Nash proved, that every Riemannian manifold (M,g) of elass C"(5 ~ 3

or S = (0) possesses an isometrie embedding u E C" in an euclidian spaee Rq with

a suitable (high) value of q. One of the main steps in Nash's proof is the solution

of the associated perturbation problem, i.e. the determination of an isometrie

embedding u +v of (M,g + f) if an isometrie embedding U of (M,g) is known and

f is small in some sense. In solving .this perturbation problem a serious difficulty

arises,namely the so-ealled 1055 of differentiability. To overeome this difficulty,

Nash invented a eOlnplicated iteration procedure, which is nowadays known as

Moser-Nash technique or hard inlplicit function theorem.

In our talk we give.a very simple method to handle the perturbation problem with

the help of the Banach fixed point theorern. Further we gi ve a result coneerning a

minimal value of q.

eh. Hamburger:

•
Regularity for an Elliptie System

We prove global regularity for the vector-valued differen'tial rn-forms w = (w1
, ••• ,wN )

defined on a Riemannian manifold with boundary M, which are solutions of the

system

6(p(jwI2}w) = 0 dw == 0 in M,
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subject to the Neunlann boundary condition

(N) w.l = 0 in 8M.

(*) and (N) arise as Euler equations and natur~l boundary condition for eohomo­

logical minima of the functional J f(w}vg, where f(w) = k(jwI 2 ) with k' = p.
M

Theorem. Let M be of dass Clt
l (which implies that the metric 9 is Lipschitz).

Suppose that

fn(-w) . (e, <) 2:: Iwlp-21~12

IfTt(w) - f"(y)l :::; c(lwl 2 + ly12)p-~-a j·w _ yj2

for p > 1, er > O.

Then any weak solution w E Lioe of the system (*) with boundary condition (N)

is globally Hölder continuous in M. .

The theorem is a generalization of the interior regularity results of K. Uhlenbeck

(1977) and M. Giaquinta - G. Modiea (1976).

We prove boundary regulari ty by freezing the metrie at a boundary point and by

approximating w by a solution X of (*) with respect to the frozen metrie.We then

extend X by refleetion a arc the boundary and we apply the i~terior estimates to

the extended from X. By virtue of the Lipschitz continuity of the metric, we can

control. the norm f(X - ·w)2, this obtaining the required boundary estimates for

w.

Robert M. Hardt:

• Some New Harmonie Maps from 8 3 to 52

Here we discuss the questioll of the existenee of a harmonie map from a spatial

domain to 52 which has preseribed Dirichlet boundary data and prescribed singu­

larities. There are several related and partial results. B. Chen and R. Hardt show

this is possible if J IV l2dx is replaced by J IVltlPdx for.2 < p < 3. Given the singu­

lar set, L. Mon (Comm. P.D.E. 1989) constructs a bridge-like domain connecting

the .singularities and a suitable harmonie map on this donlain. C. Poon obtains

for any a E jj3, a harmonie map Ua which is smooth away from a and whieh

equals the identity on 52. R. Hardt, F.H. Lin, and ~. Poon solve the prescribed

singularity problem in case the boundary data is axially-symmetrie, noneonstant,

and nonsurjeetive and the singular set lies on .the axis. The latter paper involves
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work on a relaxed energy functional studied by F. Bethuel, H. Brezis, J. Coron,

M. Giaquinta,G. Modica and J. Souc~k (Manuscripta Math. 1989).

Hu Hesheng:

On the Lump Phenomena of Yang-Mills Fields

We give a nonexistence theore.m of the lump phenomena for Yang-Mills flelds in 4

dimensional Minkowski space-time R3+1 .

Definition. If there exists positive constants R, e, to such that

J Too(t,x)d3 x > €

Izl<R

holds true for every t > to, it is called that the field admits lumpphenomena.

H~re Too' is the energy density of the Yang-Mills Held and lxi ~ Jxi + x~ + xi.

Theorem. For any compact grotip, there a~e no lurnps for a pure Yang- Mills field

in R3+1 whose energy satisfies

where 0 ~ 'A < l,r =: lxi.

The theorem weakens the finite energy condition (which corresponds A = 0 here)

in Weder's paper.

The energy condition in the above statement cannot be renlovecl.We show this by

given an exact solution of the pure Yang-Mills fields admitting lunlp phenomena.

Ex. Take Gauge group 5U(2) and potential in the following form

bo = 0

bl = bz = b3 = k sinlemn(kt)

where k is a constant sinlernn (kt) is an elliptic function.

J.ToodV = 21TR3 k4 > 0

B(R)

this is an nonstatic lump solution of the 5U(2) pure Yang-Mills field.

•
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The above result holds true not only fo..r the Yang-Mills fields hut also for the

Gauge fields with energy-momentum tensor oheying the eonservation law. Some

lump solutions which satisfy the eonservation law hut not sat~sfy the Yang-Mills

equations are given.

Gerhard Huisken:

Interior Estimates for Hypersurfaces

Mean curvature evolution of smooth hypersurfaces has heen studied under various

global assumptions. Here we prove regularity estimates for geometrie quantities

of any order whieh are interior both in spaee and time. In partieular, we obtain

loeal gradient and eurvatur~ estimates in regions where the hypersurfaee can be

represented as a graph.

A -major application of these estimates is the unexpeeted result that the mea~

eurvature flow admits a smooth solution for all time in the elass of entire graphs

over Euelidean space, assuming only 10eal Lipsehitz coniinuity of the initial surfaee

without growth eonditions near infinity.

All of this represents recent joint work with Klaus Ecker (Meibourne).

Norb~rt Jakobowsky:

Interior and Boundary Regularity of Weak Solutions to the Equation of Preseribed

Mean Curvature

Weak solutions to the systeIll a.x = 2H(z )x u /\ Xv in a domain n c R2 are'proved

to belong to C2t~(!1,R3 ),J.L E (0,1), if H(z) = H 1 (x) + H2 (x), Hi E C O,l (113 , R) n

Loo,VHi E LOO(i = 1,2,), suplzIIVH1 1 < 00, sup jzH2 (x),1 < 1. Considering
R3 Izl>K

the real valued funetion Ix - al 2 for same a E R3
, using the special structure of

the system, the Courant-Lebesgue lemma, and the isoperinletrie inequality, first

eontinuity is obtained a.e. in fl, then throughout S1. FinaIly, weIl known results

imply C2
.JI. regularity.

Boundary regularity of weak solutions to the eorresponding Diriehlet problem can

be obtained by using the result of partial regularity. If the boundary data are

assumed to be bounded and continuous, weak solutions are proved to be bounded

and continuous resp.

                                   
                                                                                                       ©



- 12 -

l. lost:

Group Actions, Gauge Transforolations, and th.e Calculus of Variations

This is a joint work with Xiao- Wei Peng.

Let M be a Banach manifold with "weak" Riemannian metric < .,. >, 9 a Banach­

Lie group acting isometrically on M.

Let (J be a Banach space, eil : J\tt -+ 8 smooth.

Suppose

is an elliptic complex, where i: Lie (Q) -+ TM is the differential of the action of

Q, i p its evalution at p E M; likewise jp : TpM ~ (J is the differential of «1'.

Examples:

1) M a conlpact manifold, M = {metrics on M}, Q = {diffeomorphisms of -i\tIl,
eil giving some curvature condition like Einstein or Kähler-Einstein.

2) M a cOOlpact Riemannian manifold, E a vector bundle over M with struc­

turegroup G, M = {G-connections onE}, t} = {Gauge transformations},

~ again a curvature condition like antiselfduality or flatness.

w.l.o.g. 4-(p) = o. One is interested in (Mo = ~ -1 (0»

Mo/t}

and the induced metric on this space.

For p,q E M, let

•

1):

E(p, q) := inf dist 2 (p, gq).
gEG

For q elose to p, the implicit function theorem implies the existence of a unique •

minimizing g. In the above examples, the metric is an L 2 -metric

(h,h') = Jtr'(g-lhg-1h')dvolg for gE M

M

2): (A, B) =Jtr(A A *B) w.l.o.g. G semisimple, compact.

M

The Euler-Lagrange eqs. of Ethen deterrnine g.

For a,ß E TpM, tangential to Mo, orthogonal to {I-orbit:

82

< a,ß >== 8s8t E(p,p + ~Q + sß)J,,=t=o.
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Thus, in order to compute the metric in the above example's, one has to vary the

Euler-Lagrange eqs. of E and compute .the corresponding variation of the solution.

This method enahles us to give a general formula for the curvature of the induced

metric on Mo/f), including as special cases ~esults of Tromba, Wolpert, Groisser­

Parker, Zograf-Takhtadzhyan.

Applications to symplectic geometry are give'n. In particular, one considers the

moduli space of stable vector bundles over a Riemannian surface ~. This moduli

space has a symplectic structure depending only on the differentiable structure of

E, hut not on its complex structure. A complex structure on r;, however, in turn

determines a complex strucutre on this moduli space, and then also ametrie.

Dur method can compute the affect of variations of the complex structure of E on

the metric of the moduli space of stahle vecto.r bundles.

s. Luckhaus:

Stability of Minimizing p- Harnlonic Maps

The problem is to show that a weakly convergent sequence of minimizing p-harmonic

maps with values in an arbitrary compact Riemannian manifo~d N C Rk , is con­

verging strongly to a minimizer. This is achieved using' as a tool the following

lemma to change the boundary data with small cost in the energy.

Lemma. If~, v are in H;(8M, N) then for small A, with constants depending on

M, p only, one can find 'W E H; (8M x (0, A), N) withw(·, 0) = u, w(., A) = v and

and

ess. sup dist (w, N) ::: cK1
- fp (J lu - viP)~A-;

A consequence is the following theorem

Theorem. Ifu ll are converging weakly in H~(M,N) to.u, and iffor v E H;(M, .IV)

such that v - U II 18M = 0 otherwise arbitrary, f IVulIlP ::; J IVvlP holds. Then

J IVulIlP converges to J IVuIP. And U also minimizes J IVujP among all functions

in H;(M,N) with the same boundary values.

Similar functionals and problems with constraint.s can also be treate.d.
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L. Modica:

. Singular Perturbations and Calculus of Variations

Con~id.er the minimization problem

min F(u)
uEH

where H is a- function space and F is a functional defined on H. When existence,

or uniqueness, or regularity of solutions of (*) fails to be true, it is often useful to

add to F a singular perturbation eS(-u), to solve the problem

min"(cS(u) + F(u)],
uEH

and to study the asymptotic behavior as c -+- 0+ of the solutions U e of (*e)' In

fact, it frequently happens that the limit point Uo of U e has the right properties

which were lacking for the> solutions of (*) ..

Example 1. In the gradient theory of phase transitions one has

F(u) = JW(u)dx, H = {u E L1 (n; Rn) : jUdx =~}
o n

with m E ~ln given, W : Rn -+- R continuous, W 2: 0, W(-u) = 0 if and only if

u E {0:1, ... ,Gi} with ai E Rn (1 ::; i ::; k). Solutions of (*) are given by piecewise

constant functions on partitions of n in k subsets with prescribed volumes, without

any regularity of the interfaces of the partition.

By taking S(u) = JIVul 2 dx, the liolit point 'Uo of u~ has the same form as before,
n

but in addition the interfaces satisfy a variational principle and so they are smooth.

Example 2. In the theory of elastic solid materials by 1. Fonseca a similar phe­

nomenon occurs. One has here

F(u) =JW(Vu)dx,H = {u: fl C R3
-+ R3

: Judx = m,JVudx = IJA+(l-IJ)B} •

n n n

where .Vu is matrix, W 2: 0, W(M) = 0 if,and only if M = RA or M = RB

where A, Bare fixed matrices, A - B = a ® n, R is any rotation; m E R3 , f) E]O, 1[

are given. It is easy to find that the solutions of (*) are piecewise affine functions

loyered orthogonally to n. The singular perturbation S(u) = ~..J IV~ I selects
1 1) {}

among them only those ones satisfying a minimum principle.

Example 3. The functional

F(u) = J/«U;-1)2+ u:)dxdY Q=]O,1[x]O,1[CR2

Q
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has no minimum point for suitable boundary values. A singular perturbation

method allows to construet a sequence of minimizers of perturbed problems which

r.epresents a generalized solution of (*) in the sense of the Young measures.

1. Nikolaev.:

(x,q)

Smoothness of Convex Surfaces and Generalized Solutions of the Monge-Ampere.

Equation on the..Base of Differential Properties of Quasiconformal Ma'ppings

This is a joint work with Prof. S.Z. Sefel.Considered is the equation Z~z . Z~y ­

Z~y = f(x, y, z, V' z) ~ m > 0 (*). Here Z(x, y), x 2 + y2 ~ r2 is considered to be

a generalized solution. We prove that if f(x, y, z, V'Z) is bilatorally bounded by

positive constante m and r then Z{x,y) E Wl n c1,O:,e E [f,+oo), a E (O,l) and

e-+ 00, a -+ 1 as l!vIIm -+ 1. Apriori estimates are given also. To state a second

result 'we introduce a coneept of funetions has m, a)- appro~mate differential

(m = 0,1,2 ... ,a E (0,1)). We define it for a null point (a general case is defined

similary):

<p( z), Ix I ~ T, X E R4 has a (m, a )-approximate differenital if there exists a polyno­

mial Pm(x) such that lep(x) - Pm(x)l ~ Clxlm + Q
, lxi ~ T. Dur second result states

that if at same point f(x,y,z,z~,z~) has a (m,a)-approximate differentiai then

at the very same point the solution of (*) has (m + 2, Q )-approximate differential.

We also give corresponding apriori estilnates.

To prove these hoth theorems we consider a mapping cf) which orie can deflned

using the commutative diagramm:

• (x,y)
/

1

(p,y)

(q = z~,p = z~).

The mapping.cf) turns out to be a quaisconfornlal one whose coefficient is estimated

by the right-hand side of (*). Besides weIl known properties of quasiconformal nlap­

pings, we had to prove the theorem stating that any "almo.st conformal mapping

<pli, that is KIp(z)l ~ Clxl m +a has (m + 1,a)-approximate differential.
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J. Pitt3:

Recent Results in Minimal Surfaces aod Applications

Let M be a smooth, compact, oriented, (k +1)-dimensional Riemannian manifold

(k 2: 2), and let B~ denote the space of k-dimensional flat chain boundaries

modulo two in M. Since B~ is a K(Z2, 1) space, it follows H;(B~, Z2) = 12 for aH

f. = 1,2, .... Representatives in each homology dass may be explicitly constructed.

A minimum/maximum construction in a Lusternik-Schnielman setting may be

carried out in each homology dass to yield stationary k-dimensional varifolds on

M.

If 2 ~ ~. ~ 6, then the varifolds are supported on smooth, compact embedde'd

minimal hypersurfaces in M. Under various fairly general conditions, one may

show that M supports many or infinitely many distinct minimal surface. When

k = 2, these methods may be used to find new minimal surfaces of computable

genus (depending on the topology of M). Here are also some new existence results

when k 2: 1, in which case the minimal surfaces are regular excep~ possibly for a

compact singular set of Hausdorff dimension at most k - 1.

H. Rosenberg:

Surfaces of Constant Curvature

We discuss existence and unicity results for compact embedded surfaces in 1R3 of

constant Gaussian or mean curvature (K -surfaces and H -surfaces).

Conjecture. Every Jordan curve withoui inflection points in"R3 bounds a K -surface.

•

Theorem. Let Cl, C2 he convex curves in parallel planes. Then they bound a

K -surface and H -surface; hoth connected (Hoffman, Rosenberg, Spruck). •

The main tool is the techl1ique of Cafferelli, Nirenberg, Spruch where they prove

a graph over a convex planar curve extends to a graph that is a K -surface.

Theorem (Sa Earp, Brits-Meeks, Rosenberg): Let C be a" convex planar curve

and M a compact embedded H -surface, transverse to ·the plane of C along C,

8M = C. Then M is contained in a halfspace determined by C. In particular M

inherits the symmetries of C.

Theorem (Rosenberg, 5a Earp): Assurne M is complete embedded H -surface,

8M = C = planar convex curve, M C halfspace determined by C and M vertically

cylindrlcally bounded. Then M inherits the sy~metries of C; in particular, if C

is a circle then M = Deleauney.

We obtain conditions which ensure M is indeed in a halfspace.
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F. Sauvigny:

Minimal Surfaces Solving a Semi-Free Boundary V~ue Problem with a Simple

Projection onto aPlane

Let S := {(s(t),z) E R3 1t E R, zER} be a supporting surface which is a cylinder

over the plane embedded curve 'E given by s( t) : R ~ R2 E C 2+0
• We take a

Jordan are r := {(x, y, h(z, y)I(x, y) E r} which is a graph over the plane convex

are rand meets S only at its end points (S(t 1/ 2 ), h{S(t1/ 2 ») E S with tl < t2. The

curves r. and E bound a plane domain G with the convex hull Go. We now fix the

conditions

Cl: The straight line L(t) := {p E R2 1(p - s(t» . s'(t) = O} only meets Eu r in

the point s(t) for all t E (-00,t1) U (t2'+OO).

C2: The lines L(t), t E [tl, t2] yield a simple foliation of Go.

Theorem. Let {r, S} be a configuration as above with Cl and C.2. Then each

parametrie minimal surface X(u,v) := (x{u,v),y(u,v),z(u,v)) : B ~ R3 solving

. the partially {ree boundary value problem for this configuration is a graph defined

over the plane domain G.

Proof. We show by an index method that the plane map f( u, v) := (z(u, v), y(u, v» :

B -+ R2 is a diffeomorphism, taking the free boundary condition iota account .

. Remark. We do not need a convexity condition on the free boundary.

Applications:

1. We obtain a solution of the minimal surface equation in the - not neces­

sarily" convex - domain G with mixed boundary conditions.

2. We achieve a uniqeness result for the semi-free boundary value problem for

aparametri.c minimal surfaces spanned into such configu:rations.

R. Schumann:

Regularity for Signorini's Problem in Linear Elasticity

In 1981 Kinclerlehrer proved that the solution of the variational inequality cor­

responcling to Signorini's problem of plane elasticity belongs to the Hölder space

C 1+o for ·some Q E (0, 1). Here the result is that Cl +0 -regularity is true for all

space dimensions n ~ 2. By means of a pseudodifferential operator the problem is

reduced to a variational inequality on the boundary of the domain which can be

treated by scalar methods.
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L. Simon:

Asymptotic Behavior of Geometrie Extrema near ~ingular Points

Suppose u is an energy. minimizing map between compaet Riemannian manifolds

M,N (of dimension n and m respectively), and l.et Zo be a singular point for u

such that ~ has a "cylindrial" tangent map 'I' : Rn --+ N at Zo; that is, sing 'I' is a

line fand <p is invariant under translation in direction f. Thus, modulo a rotation

of Rn taking ,the line ! to th.e z n ~oordinate axis, we have

<p(x l , .• . , zn-I, zn) = 'Po(x l , ... ,x,n-I)

where 'Po : Rn
-

I
--+ N is minimizing, non-const~nt, and h~mogenous of degree

zero. The set of all such 'I' is denoted by T. Notice that in cas~ n = 4 and m = 2

we have that 'Po is a conformal map of 52 to N; denote its topological degree by

k(~ 1) and let 7i be the set of Cf) in T with k = 1.

Theorem. If n = 4, if N is .difIeomorphic to 52, and if <p E ~ is a tangent map

for u at a singular point xo, then 3 q > 0 su'ch that Bu (xo)n sing u is an embedded .

Ci,er arc for some a = a( M, N) E (0, 1).

An unsatisfaetory feature of this theorem is that it requires <p E 7i rather than

<p E .7. However if N is metric~ly elose to 52, then a theorem of Brezis, 'Coron .

and Lieb, and aremark of F. H. Lin gives 7i = T, and in this case we can assert

that sing u is a finite union of closed embedde~ Jordan ares whieh are el,er in

their interior, such a pieture ~as pre,viously obtained, with CO ta " ares, by" Hardt'

and Lin.

N. Smale:

On the Yamabe Problem for Non-Compact Manifolds

In this talk, we will discuss some recent results on the Yamabe problem for non­

compact manifolds. In particular, we consider the question: for what. submanifolds

Ak ~ sn, does there exists on sn\Ak, a. conlplete, confoftually flat metric of

constant positive scalar curvature? It follows from a theorem of Schoen and Yau,

that for such a metric to exists, we must have k ::; n~2. On the other hand very

little is known on the existence question. Sehoen has proven that one can take

A = {PI, ... ,Pk}, k > 1, or A = limit set of c~rtain Kleinian groups. Also there

are explieit solutions for A a round subsphere. In recent work (jointly with Rafe

Mazzes) we have studied perturbations of the known solutions on sn\sk, and

•
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have proven: If A is any sufficiently small C 3
t
Q (a E (0, 1)) perturbation of a

round Sk ~ sn, then sn\A ad.m.its an infinite dimensional family of compiete

eonformally flat metries of eonstant positive scalar eurvature. .The theorem is

proven by studying the linearized equations about the trivial solutions and using

the implicit funetion theorem~ The main difficulties are that the Iinearized operator

has .serious .degeneraeies, and infinite dimensional null. space.. These diffieulties

are overeome by using techniques of miero-Ioeal analysis and the theory of eonie

operators.

M. Struwe:

Periodie Solutions of Hamiltonian Systems on Almost Every Energy Surfaee

Let H be a Hamiltonian of c~ass C2 on R2
n and suppose 51 = H-1 ( {I}) is a (C 2 _)

eompact energy surface. Then for almost ~very ß in a suitable neighbor~90d-of 1

we establish the existence of aperiodie solution to the Hamiltonian ~ystem

:i: = JVH(z),J = (-~d i;),
on the energy surface Sß = H-l ({ß}).

The proof is based on a refinement of ideas by Viterbo, resp. Hofer and Z~hnder.

B. White:

Existence of Embedded Minimal Disks .

Let F be a smooth positive function on the unit sphere aB c R3 . Then F defines

a funetional (also denoted F) on compact surfaces in R3 by the fornlula

F(M) = JF(v(z»dA(z)

zEM

where v( x) is the unit normal to M at z and dA( x) in the surface area element. I

prove:

Theorem. Let 0 be a 'smooth elosed embedded CUlve in aB. Then among all

smooth embedded disks D with boundary C, there exists one for which F(D) isa

minimum.

In partieular, in case F

minimizing disko

1 this shows existence of a smooth embedded area

Berichterstatter: Xiao-Wei Peng
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