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Niedrigdimensionale Topologie

8.9 bis 14.9.1991

The meeting was organised by M. Boileau (Toulouse), K. Johannson (Knoxville)
and H. Zieschang (Bochum). The participants presented recent developments in
low-dimensional topology and in particular in 3-manifold theory, mostly centered
around topics such as hyperbolic structures and incompressible surfaces, repre-
sentations of m;, knot polynomials and Witten invariants, Heegaard splittings,
complexity and algorithmic questions, and some related problem from combinato-

rial group theory.

Some of the talks were joint with the parallel meeting "Knoten und Verschlingun-
. gen®. The interaction with the participants of this parallel meeting was interesting
and fruitfull.
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Vortragsausziige

Wolfgang Heil:

Dehn fillings of Kleinbottle bundles

Let M be a fiber bundle over 5! with fiber a once punctured Kleinbottle bundle.

Pedja Raspopovi¢ (Ph.D. thesis 1990) classified all incompressible surfaces in M. ]

This is used to obtain a classification of all manifolds obtained from M By Dehn .
fillings. Several applications are given, e.g. (1) we exhibit a large class of non-

orientable closed manifolds, different from torus bundles, each of which contains -

exactly one incompressible surface, (2) we obtain homeomorphic manifolds from

a fixed (closed) Kleinbottle bundle via distinct surgeries on a section, (3) for a

closed Kleinbottle bundle there is a non-trivial knot k in M such that infinitely

many distinct surgeries on k result in M.

Michael Heusener:

SU,(C)-representation spaces for knot groups

Given a 2-bridge knot b(«,3) C S* we are interested in studying Gap := m(S® —

b(a,B3)). Our approach is to consider the space of all representations of G, g into

SU(2) and SO(3). The representation spaces are described by real plane algebraic ‘
curves Co 3 C R, Ca,1 consistsof n = % lines. In the case 8 = 3a — 2 the curve

Ca g is rational. This leads to an exact description of the representation spaces.

The set Cq g is not an invariant of the knot. Given a homeomorphism h: §% — §3

(orientation preserving or not) with k(b(a,3')) = h(b(e, B)) (BB' = £1mod a) the

result is a birational transformation A: Cpp — Cop-

In the cases 82 = +1moda we use this transformation to derive the following

properties of Cy, g:
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1. If 8% = 1mod a it follows that Co 3 is reducible.

2. If B2 = —1moda there exists a knot b(a,8) such that Co, g is irreducible and

not rational.

This disproves the conjecture that C, g always consists of rational components.

Some remarks about Casson’s invariant are made.

W.B.R. Lickorish:

Pairs of distinct 3-manifolds with the same Witten invariants

The (sl;C)-3-manifold invariant of Witten, corresponding to a root of unity, have |
a very simple description in terms of the Kauffman bracket. This leads to two |
methods of producing pairs of 3-manifolds having, for every root of unity, identical ‘
invariants. It can be seen that often these manifolds are distinct. One of these ‘

methods should produce such examples for invariants based on other Lie-algebras.

Yves Mathieu:

On knot complements in 3-manifolds

When two knots have homeomorphic complements in an orientable 3-manifold M y -
we can ask if the knots are equivalent by homeomoprhism. In other words, is a
knot determined by its complement? Gordon and Luecke (1988) have proved that
nontrivial Dehn surgery on a nontrivial knot never yields the 3-sphere, and so
knots are determined by their complements in the 3-sphere.

We give several examples of manifolds in which knots are not determined by their
complements. .

By two distinct particular Dehn surgeries on the trefoil knot we get the same closed

manifold. The cores of the two surgeries have homeomorphic complements, but
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they are nonequivalent knot. In every compact manifold with boundary a torus
we construct distinct knots with homeomorphic complements.

For homotopically trivial knots in M, compact orientable irreducible with 7y infi-
nite, if M(k;a) = M then either k is hyperbolic or a cable with winding number
2 around a hyperbolic knot. In particular, if H,(M, OM;Q) # 0, homot.opiically

trivial knots are determined by their complement.

Yoshihiko Marumoto:

Stably equivalences of ribbon presentations of knots

A ribbon knot is obtained from a trivial link by connecting bands, and distinct
"connecting manners” might define the same knot. We call this connecting manner
a ribbon pres entation of the knot. Our question is ”How many ribbon presentations
can a knot have?” For rﬁaking this question reasonable, we need equivalence rela-
tions between ribbon presentations of a knot. And we define a stable equivalence
between them. We construct a ribbon presentation of a superspun knot, which is
a generalization of a spun knot, in terms of a classical knot diagram. Then we can

prove that our constructed ribbon presentations of a knot are stably equivalent.

S.V. Matveev:

Complexity theory of 3-manifolds

A compact polyhedron P is called almost special if the link of each of its points
can be embedded in A, where A ist the 1-dimensional skeleton of the standard 3-
simplex. The points whose links are homeomorphic to A are said to be the vertices.
The complexity e(M) of a compact 3-manifold M equals k, if M possesses an

almost special spine with k vertices and has no almost special spines with a smaller
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number of vertices. It turns out that the notion of complexity is naturally related to
practically all the known methods of presenting manifolds and adequately describes

complexity of manifolds in the informal sense of the expression.

Theorem. Let a 3-manifold M; be obtained from a 3-manifold M by cutting along
an incompressible surface F C M. Then ¢(M;) < ¢(M).

Alexander D. Mednykh:

Automorphism groups of three dimensional hyperbolic manifolds

We investigate the discrete Vgroups of isometries acting on three dimensional hy-
perbolic space with fixed points. We obtain an explicit lower bounds for distance
between fixed points of different types. The results are applied to describe max-
imal discrete groups in hyperbolic space and to calculate the isometry groups of

hyperbolic manifolds.

W. Metzler:

Simple h-type of 2-complexes, Andrews-Curtis conjecture and presen-

tations of free products

1) Presentations of free products may need less defining relators than expected
from the factors. This yields examples: a) with defect (G+xH) < def(G)+def(H);
b) potential counterexamples to the relator-gap conjecture.

2) Using one-point unions with Z, x Z,-standard complexes, values of Wh(m;)
can be realized by homotopy equivalences of 2-complexes, thereby distinguisting
sh-tupe and h-type in dimension 2.

3) One point unions with Z; x Z4-standard complex likewise can be used to "im-

prove” sh-equivalences of 2-complexes to Andrews-Curtis equivalences.
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4) Presentations of free products also yield potential counterexamples to the
Andrews-Curtis conjecture with m; # 1. For their treatment we present a) normal
forms and normal Andrews-Curtis moves for presentations of free products and
b) a theorem about ”pushing up” quotients of corresponding defining relators (of

sh-equivalent 2-complexes) in the commutator series of the relator subgroup.

Some of the results are contained in joint publications with C. Hog-Angeloni and -

M. Lustig.

J. Montesinos:

Arithmetic universal groups and 3-manifolds

(joint work with Hilden and Lozano).

In a recent meeting here in Oberwolfach I showed that the Borromean orbifold I
(= Borromean rings with isotropy cyclic of order 4) is universal in the sense that

every 3 - manifold (closed and oriented) is the underlying space of a hypherbolic

‘orbifold covering U. We show the same for the 2-bridge links (not toric) with -

isotropy cyclic of order 12. We discuss the arithmeticity of these and related

groups, using a new arithmeticity criterium.

Yoav Moriah:

Tunnels, bridges and K,

(Joint work with Martin Lustig.)

In this work we use the torsion invariant A(G) = K,(ZG/I)/ + G introduced in -

a previous paper, to compute the rank of the fundamental group G, the tunnel

number and the bridge number for a large class of knots/liriks. For corresponding
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. closed 3-manifolds (i.e. obtained ‘by surgery) we determine the rank of the fun-
damental group and the Heegaard genus. Furthermore A/(G) gives non-isotopic
tunnel systems and non-isotopic Heegaard splittings of arbitrary large gnus. We

derive an invariant A'(G) which distinguishes these, in fact, up to homeomorphism.
Using A/-torsion we provide a lot of evidence for Johannson’s claim ... uniqueness
of Heegaard surfaces fails drastically and is a rather special phenomenon for 3-

manifolds.”

Masaharu Morimoto:

Equivariant Surgery on 3-dimensional Manifolds

(Joint Work with Anthony Bak)

Let G be a finite group. In dimensions n > 5, a G-normal map f: X — ¥V
determines the surgery obstruction in a Witt group of quadratic forms or auto-
morphisms of quadratic form, that ist, the Wall group L.(G,w) or the Bak group,

Wo(Z[G],T,w), if Y ist simply connected and satisfies the gap hypothesis. We

obtained a similar result in dimension three. »

Let G(2) be the set of elements in G of order two. Let f: X — Y be a degree one
G-map. Suppose (1) Y is simply connected; (2) X satisfied gap hypothesis, (3)
dim X9 =1 for any g € G(2), (4) fs: X, — Y, is a homology equivalence. Then

the G-surgery obstruction to converting f into a homology equivalence lies in the

. Bak group W;(Z(G|, max, w).
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H.R. Morton:

Quantum SU(k) link invariants and the Homfly polynomial

A account will be given of the way to realise the general quantum SU (k) link
invariant in terms of the Homfly polynomials of suitable chosen cables about the
link. )

Examples of special cases will be given, for SU(3) ad SU (4), where the invariants

can be calculated in other ways, giving relations between certain link polynomials.

Mario Eduave Munoz:

Dehn surgery on simple knots in 3

Let k be a knot in $°. Denote by M(r) = S3(k,r) the 3-manifold obtained by
performing Dehn surgery on k with coefficient r € QU {1/0}. A(r,s) denotes the
distance between the slopes r and s, i.e. its minimal intersection number.

Supposé k is a simple knot, then in general M(r) will be a simple manifold, i.e. it
will contain no incompressible torus. But there some examples for which M(r) is

nonsimple. The following conjecture was proposed by C. Gordon.
Conjecture: If k is simple, but M(r) is not then A(r,u) < 2 (u denotes a meridian
of k).

We prove that the conjecture holds for strongly invertible knots, and also prove
that if M(r) is nonsimple and A(r,u) = 2, then there is an incompressible torus

in M(r) which intersects the surgery torus twice.

We have some examples for which A(r,u) = 2.
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W. Neumann:

Rigidity of Cusps in Hyperbolic 3-Orbifolds

(Joint work with Alan Reid)

We give examples of a phenomenon conjectured not to exist by D. Cooper and
D. Long and (independently) M. Kapovitch: two-cusped hyperbolic manifolds in

which deformations induced by hyperbolic Dehn surgery on one cusp have the

. other cusp uneffected (we say the latter cusp is "geometrically isolated” from the

UFG

former).

There are, in fact, three different degrees of isolation of cusps from each other,
all of which occur in examples. These types of isolation all have convenient in-
terpretation in terms of the analytic function on the character variety introduced ‘
by Zagier and myself to study volumes. This has interesting theoretical conse- |
quences. For example, two of the types of isolation are symmetric relations (this |
is non-trivial) but the other one — namely the one of the first paragraph of this

abstract — is not. The strongest type of isolation forces a sum formula for volume.

Leonid Potyagailo:

The boundary of deformation space of some hyperbolic surface bundles

over S!

Let us consider the conformal group M(3) = SO(1,4) of $* which is a subgroup
of the isometry group of 4-dimenisonal hyperbolic space. A finitely generated
subgroup G C M(3) is Kleinian iff the domain of discontinuity Q(G) C $* is not
empty.

Deformation space Def(T') consists of all admissible presentations p: I' — M(3)

(p is faithful, preserves the type of elements and is induced by a homeomorphism
f: QT) — Q(p(T))) modulo conjugation.
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An algorithm to recognise the 3-sphere
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We say that G € L iff there eﬁsts a Kleinian subgroup F C G such that
71 (QUF)/F) is infinitely generated. Let’s identify [p] € Def(T') with p(I'). Our

main result is

Theorem; Suppose T is the fundamental group of a closed hyperbplic 3-manifold
which fibers over S, and T is commensurable with a reflection group G in the
faces of a right angled polyhedron D. Then thére exists a finite index subgroup
T'o C T such that

9 Def(To) N L #0.

T.H. Rubinstein: -

An effective algorithm is given to decide whether a closed orientable triénéulated

3-manifold M is homeomorphic to the 3-sphere.

The fundamental proposition, proved by a minimax technique, is that if M = §3

then there is an embedded 2-sphere A which is almost normal, i.e. is normal

outside a small ball. Moreover these is a finite number of possibilities for A is this
ball. So there is an effective procedure to find A by trying all possible pictures in _-
all small balls and attempting to add normal disks constructed by Haken’s method

to complete A.

Split M along a maximal collection of disjoint embedded normal 2-spheres into
pieces My, M,,..., M. Some of these pieces are obviously v3~cells'. If M; is one
of the. other pieces and is homeomorphic to a punctured 3-ball, then there is an
almost normal 2-sphere A; in M;. Push A; off itself on either-side. The number
of intersections of the 2-spheres with the edges and faces of the triangulation
can be reduced by standard moves to give normal 2-spheres in M;. Since A; is a
"barrier”, an isotopic sweep out (possibly with surgeries) across M; is constructed,

proving homeomorphism to a punctured 3-call.
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So M is S% if and only if each (non trivial) M; contains a A;. This completes the
algorithm.

Makoto Sakuma:

Incompressible Seifert surfaces for some arborescent links

Let L be an arborescent link represented by a weighted planar tree T, where each

weight is non-zero and even. Then: (1) L has only "canonical” incompressible
g P

Seifert surfaces; and two such Seifert surfaces are isotopic, if and only if they are -

isotopic via ”canonical” isotopies. (2) The simplicial complex IS(L) defined by O.

Kakimizu is homeomorphic to a ball.

Martin Scharlemann:

Heegaard splittings of product manifolds are standard

Theorem (S.-Thompson): The 3-manifold (surface) x I has a unique irre-
ducible Heegaard splitting.

More generally, there is a hybrid theorem for arcs in (surface) x I which in-
cludes the above and Frohman’s unknotting theorem as special cases.

Theorem (Sci’nultens): The 3-manifold (surface) x S? has a unique irreducible

Heegaard splitting.

Corollary: There are prime closed 3-manifolds with unique irreducible Heegaard

splittings and non-abelian fundamental group.
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Oleg Viro:
Quantum Sl;-invariants: transition to the shadow world
After the discovery of the Jones polynomial for classical knots a lot of new invari-

ants of low-dimensional topological objects were introduced. They are related to

quantum groups. The invariants related to the quantum deformation of sl3(C) can

‘be introduced in an elementary way starting with the Kauffman brackets. In the-

talk it is explained how to pass from the Kauffman brackets to phase models which
can be used for constructing invariants of shadow links and shadow 3-manifolds,

introduced recently by Turaev.

Andreas Zastrow:

Barycentres in hyperbolic geometry and their applications to hyperbolic

manifolds

A barycentric operation on an arbitrary metric space (Y,p) is considered to be

a continuous abelian semigroup-structure on the set H := Ry x Y ("weighted

points”) satisfying additivity of distances, local additivity of weights and a uniformity-

axiom ((i)-(iv)).

Theorem 1: If two more axioms are added to (i)-(iv) (ensuring finiteness of the
dimension an an infinite length for each straight line) then each space permitting
such an operation is either homothetic to the hyperbolic space H" or is an affine

space metrizised by a norm.

Theorem 2: There exists a canonical extension of the barycentric semigroup H to a
barycentric group G. If Y = H", then G is isomerphic to the vector-space of hyper-
bolic functionals which is generated by the functions Y — R, z — cosh(p(z, P)).

Applications: (1) A slightly extended system of these axioms describes the Eu-

clidean or hyperbolic geometry. (2) One obtains a natural definition for barycentric
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coordinates in hyperbolic geometry and for straightening chains. (3) One obtains

a sheaf of hyperbolic functionals on any hyperbolic manifold.

Remark: There exists an interpretation for this barycentric operation in the model

of H" being embedded in the Minkowski-space.

Berichterstatter: Martin Lustig, Bochum

Deutsche
Forschungsgemeinschaft

o




Tagungsteilnehmer

Prof.Dr. Michel Boileau
Mathématiques
Laboratoire AsV
Université Paul Sabatier
118 route de Narbonne

F~31062 Toulouse Cedex

_ Prof.Dr. Gerhard Burde
Fachbereich Mathematik
Universitdt Frankfurt

Robert-Mayer-Str. 4-10
Postfach 111932

W-6000 Frankfurt 1
GERMANY

Prot.Dr. Antonio F. Costa
Dpto. Matematicas Fundamentales
UNED

E-28040 Madrid

Dr. Michele Domergue

U. E. R. de Mathématiques
Université de Provence

3, Place Victor Hugo

F-13331 Marseille Cedex 3

Prof.Dr. Lucien Guillou
Mathématiques
Université de Paris Sud (Paris XI)

LOE

Centre d'Orsay, Eatiment 425

F-91405 Orsay Cedex

Deutsche
Forschungsgemeinschaft

14

Prof.Dr. Wolfgang A. Heil
Department of Mathematics
The Florida State University

Tallahassee , FL 32306
usa

Michael Heusener
Mathematisches Seminar
Fachbereich Mathematik
Universitdt Frankfurt
Postfach 11 19 32

W-6000 Frankfurt 1
GERMANY

Dr. Klaus Johannson

Dept. of Mathematics
University of Tennessee at
Knoxville

121 Ayres Hall

Knoxville , TN 37996~-1300
USA

Prof.Dr. W.B.Raymond Lickorish
Dept. of Pure Mathematics and
Mathematical Statistics
University of Cambridge

16, Mill Lane

GBE- Cambridge , CB2 1ISE

Prof.Dr. Daniel Lines
Dept. de Mathematiques
Universite de Bourgogne
E. P. 138

F-21004 Dijon Cedesx

o



Dr. Martin Lustig

Institut . Mathematik
Ruhr-Universitdt Bochum

Gebdude NA, Universitatsstr. 150
Postfach 10 21 48

W-4630 Bochum 1
GERMANY

. Prof.Dr. Yaoshihiko Marumoto

Department of Mathematics
Osaka Sangyo University
Nakagaito 3-1-1, Daito

Osaka 574
JAPAN

Prof.Dr. Yves Mathieu

U. E. R. de Mathematiques
Universite de Provence

3, Place Victor Hugo

F-13331 Marseille Cedex 3

Prof.Dr. Sergei V. Matveev
Dept. of Mathematics

. Celjabinski State University

oF

ul. Bratjev Kashirinykh, 129

454136 Celjabinskii
USSR

Prof.Dr. Aleksander D. Mednykh
Dept. of Mathematics

Omskii University

pr. Mira 55a

Omsk 644077
USSR

Deutsche
Forschungsgemeinschaft

Prof.Dr. Wolfgang Met:zler
Fachbereich Mathematik
Universitdat Frankfurt
Robert-Mayer-Str. 6-10
Postfach 111932

W-6000 Frankfurt 1
GERMANY

Dr. José M. Montesinos

Facultad de Ciencias Matematicas
Universidad Complutense de Madrid

E-28040 Madrid

Prof.Dr. Yov Moriah
Department of Mathematics
Technion

Israel Institute of Technology

Haifa 32000
ISRAEL

Prof.Dr. Masaharu Morimoto
Dept. of Mathematics

College of Liberal Arts and Sc.
Okayama University

Tsushima

Okayama 700
JAPAN

Prof.Dr. Hugh R. Morton
Dept. of Mathematics
University of Liverpool
P. 0. Box 147

GB- Liverpool L&%9 3BX

o




oF

Dr. Mario Eduave Mumoz
Instituto de Matematicas-UNAM
Circuito Exterior

Ciudad Universitaria

04510 Mexico , D.F.
MEXICO

Prof.Dr. Nikita Netsvetaev
Leningrad -Branch of the Steklov
Mathematical Institute - LOMI
USSR Academy of Science

Fontanka 27

Leningrad 191 011
USSR

Prof.Dr. Walter David Neumann
Department of Mathematics -
Ohio State University

231 West 18th Avenue

Columbus Ohio 43210-1174
UsA

Dr. Jean-Pierre Qtal
Mathématiques

Université de Paris Sud (Paris XI)
Centre d'Orsay, BAtiment 425

F-91405 Orsay Cedex

Prof.Dr. Frédéric Paulin

Dépt. de Mathématiques

Ecole Normale Supérieure de Lyon
46, Allée d Italie

F-69364 Lyon Cedex 07

Deutsche
Forschungsgemeinschaft

16

R

"

Prof.Dr. Leonid D. Potyagailo
c/o Mathematisches Institut der
Universitsdt

Universitdtsstr. 150

W-4630 Bochum
GERMANY

Prof.Dr. Joachim Hyam Rubinstein .
Dept. of Mathematics
University of Melbourne

Parkville, Victoria 3052
AUSTRALIA

Prof.Dr. Makoto Sakuma

Dept. of Mathematics

Osaka University

College of General Education-
Toyonaka

Osaka 560
JAPAN

Prof.Dr. Martin Scharlemann
Dept. of Mathematics
University of California .
Santa Barbara , CA 93106

USA

Prof.Dr. Laurent C. Siebenmann
Mathématiques .
Université de Paris Sud (Paris XI)
Centre d’'Orsay, BAtiment 425

F-91405 Orsay Cedex




Bert Smits
Jozef de Veusterstraat 119

B~-24650 Edegem

Prof.Dr. Pawel Traczyk
Institute of Mathematics
University of Warsaw
PKiN IXp.

00-901 Warszawa
POLAND

Prof.Dr. Oleg J. Viro
Leningrad Branch of Steklov
Mathematical Institute -~ LOMI
USSR Academy of Science
Fontanka 27

Leningrad 191 011
USSR

Deutsche
Forschungsgemeinschaft

Dr. Andreas Zastrow

Institut f. Mathematik
Ruhr-Universitat Bochum

Gebdude NA, Universitdtsstr. 150
Postfach 10 21 48

W-4630 Bochum 1
GERMANY

frof.Dr. Heiner Zieschang
Institut f. Mathematik
Ruhr-Universitdt Bochum

Gebdude NA, Universitdtsstr. 150
Postfach 10 21 48

W-4630 Bochum 1
GERMANY

Prof.Dr. Bruno Zimmermann
Dipartimento di Scienze Matematiche
Universita di Trieste

Piazzale Eurcpa 1

1-34100 Trieste (TS)

o®



oF

Deutsche
Forschungsgemeinschaft

e




