
MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

l' a gun g s bel ich t 40/1991

Knoten und Verschlingungen

8. 9. - 14. 9. 1991

The conference was organized by U. Koschorke (Siegen) and J. Levine (Waltham).
The topics of lectures and discussions comprised a broad spectrum of recent

developments in the understanding of knotting and linking phenomena, e. g.: the
link concordance problem and related techniques of localization and representation
spaces; quantum-invariants of links in 3-manifolds.

Abstracts 0/ the talks

c. Kearton
Branched Cyclic Covers of Knots.

(joint work with S.M.T.Wilson)

Let k be an n-knot and let Km denote the m-fold branched cyclic cover of k. If
Km is a sphere, then we have a knot km which is the fixed point set of a Zm-action,
and quotienting out by this action gives us back the knot k.

The order of a polynomial / (t) is the Icm (possibly infinite) of the orders of its
roots. The Alexander invariant of a knot module is its annihilator,which by work
of Crowell is the quotient of the first Alexander polynomial by the second.

Theorem: Let k be a simple (2q - l)-knot, q > 1, whose Alexander invariant
has finite order m and is not square-free. Then Kr is a sphere for all r coprime to
m, and the corresponding kr are all distinct.

In the next two results, B(p) is a function arising from transcendental number d:' .
Theorem: Let k be an n-knot, at least one of whose Alexander invariants has

infinite order, and degree p. If Kr is a sphere then r < B(p). In particular, there
are only finitely many knots kr covering k.

Theorem: Let 1 be astahle knot or a simple 3-knot at least one of whose
Alexander invariants has infinite order, and degree p. If 1 = kr for some knot k,
then r < B(p). In particular, there are only finitely many such knots k r , and hence
only finitely many inequivalent Zr-actions on sn+2 with fixed point set 1.
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Uwe Kaiser
Alexander-modules of band constructions.

We derive short exact sequences which relate Alexander-modules of fusion links
to covering modules of the original link. Here the fusion link is the result of attach­
ing aI-handle to a link in 53 reducing the numher of components. The strong fusion
is the fusion completed by the unknotted circle which links the band. Alexander­
moduls of strong fusions are related to the original link in a more rigid way. We
give applications:

1) The Alexander--'polymonial of a strong fusion does not depend on the choice
of band (onlyon the components where the band is attach~d) and satisfies an easy
relation with the polynomial of the original link.

2) An explicit formula for the Alexander-polynomial of any band-sum of two
knots can be given depending on the polynomials of the knots and the band.

Daniel S. Silver
An Entropy-like Invariant for n-Knots.

Growth rates of group endomorphisms were introduced by Rufns Bowen in 1978
in order to study topological entropy of continuous maps. We use them to define an
"entropy-like "invariant 7 K for any n-knot (spherical or disk n-knot) K, provided
that the commutator subgroup cf the knot group 1T}(X(I()) is finitely generated.
In the special case of a fibered hyperbolic l-knot K, 7K is the log of the stretching
factor of the pseudo-Anosov monodromy.

In general7h' is sensitive - capable of distinguishing many n-knots having the.
same Alexander module. Applications of the invariant include:

1. construction of new doubly slice fibered I-knots; .
2. description of a ribbon concordance obstruction for fibered l-knots pairs;
3. detecting noninvertibility for certain higher-dimensional n-knots.
In the final part of the talk we discuss some published work of o. Kakimizu

[Math. Ann. 284], and use these ideas to extend the definition of 7K in a natural
way for all l-knots. We conclude with the observation that Kakimizu's 1-knot
invariant p(S) can be defined for any n-knot, suggesting that the invariant iK can
be defined in a natural way for any n-knot, too.

P. Gilmer
Concordance of Classical Knots and Links.

I will describe a Witt group obstruction to knot cobordism which combines the
obstructions of Levine and Casson-Gordon. Then I will discuss joint work with
Livingston on link concordance and the question: when is a link concordant to a
boundary link.

.,.
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Pierre Vogel
Representations of Link Groups.

Let G be the fundamental group of the complement of a high dimensional link.
A choice of meridiens induces a morphism from a free group F to G.

The only properties of this map are the following:
- it induces an isomorphism on H 1 and H 2 (with integral coefficients)
- and it is normally surjective.
If the link is a boundary link, the map F -+ G split, but in general it is not

the case. Nevertheless the canonical map from F to its algebraic closure F' (in the
sense of Levine), factars uniquely through G.

Let r be a connected compact Lie group.
Theorem: every representation of F to r extends to a representation of G.
This theorem is a consequence of:
Theorem: every representation from F to r extends to. a representation of F'.
In the proof of this last theorem, we need to construct p(a) where p is a. repre-

sentation from F to r which is near the trivial representation, and a is an element
of F'. We define it as a sum of aseries induced by the Magnus expansion of a arid
we prove the convergence of this series.

Ju. Drobotukhina
Links in lRp3.

To links in lRp3 the notions of diagram, alternating diagram und Reidemeis­
ter moves are extended. Jones-type polynomials for links in lRp3 are defined.
Kauffman-Murasugi theorems on relationship between Jones polynomial and cross­
ing number are extended to the case of links in lRp3. Criteria for non-affiness of
projective links are formulated in terms of the generalized Jones polynomial. This
polynomial plays the key role in classification of irreducible projective links up to
6-crossings.

Projective analogs of the Monteninos links are classified up to homeomorphism
and isotopy.

Tim D. Cochran
Group Theoretic Invariants .of Homology Cobordism of 3-manifolds.

We present some new invariants to detect when two compact oriented 3-manifolds
X, V with 8X ~ 8V are homology cobordant relative to 8. When X = B3 -L these
are invariants of link concordance. Specifically suppose f : G -+ 'Tr is a homomor­
phism of groups which induces an isomorphism on H I ( ; Zp) and an epimorp~sm

on H2 ( ; Zp). Suppose G is finitely-generated and 'Tr is finitely presented. For any
epimorphism fjJ : 'Tr ~ Zp(p prime) define ir = ker fjJ, G= ker( <p 0 f).

Theorem: 1 : G -+ ir is a isomorphism on H1 ( ; Zp) and an epimorphism on
H2 ( ; Zp) and for any n E Z+ j induces isomorphisms

j: G/Cn ® Z(p) -+ ir/1fn ®Z(p)

(Gn/G;+I ® Z(p) ~ Tfn/'Trn+I 0 Z(p), Gn = lower-central series).
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Victor Kobelskii
Relations between Alexander modules of a high-dimensional link and its
sublink.

Let K be an n-component link of codimension 2 and let L be the sublink of K,
obtained by removing the n-th component of K. The relation between Alexander
polynornials t1(K) E Z[tt1, ... t;=l] = An of K and ß(L) E Z[tt1, ... t;:t] = An-I
of L in classical case (i. e. dirn K = 1) is described by Torres formula. Recently Tu­
arevhas'proved that in (odd) high-dimensionalcaseß{L) ~ 6{K)(t I , ... tn-I, l).xX,
where A E An-I, aug (A) = 1, ove"rbar denotes the conjugation in An- 1 and ~ is an
equality up to multiplication by units of An - t • He also has conjectured, that there
are no other restrietions on this polynomial A. Unfortunately, it's not a true.

Theorem: A == 1. •
Actually, it 's possible to say more:
Theorem: Let Hi{K) and Hi(L) be i-th Alexander modules of K and L re­

spectively and 2 ~ i ~ dimL - 1. Then Hi(L) = Hi{K) @An An-I, where An- t is
considered as An-module with trivial action of tn.

Nathan Habegger
Quantum Homology based on the Kauffman bracket.

The Atiyah-Segal axiomatic system for topological quantum field theory has
solutions in 2+ 1 dimensions. One model, based on the Kauffman bracket invariant
for banded links in the 3-sphere, leads to solutions precisely for even roots of unity of
the parameter ql/4 = A. Precisely, one must take into account an extra structure
(Pontryagin structure) for the axiomatic system to be satisfied in which case it
is (essentially) unique. For raots of unity of q, these are the SU(2)q invariants
predicted by Witten and verified by Reshetikin-Ttrraev. For odd roots of unity of
A 2 , these invariants were also discovered by Kirby and Melvin.

M. Farber
Noncommutative rational functions and links.

We show that rational functions on non-commuting variables (introduced first
in the theory oflanguages) give an algebraic classification of link modules. More
precisely, each link module M determines a rational function XM, and XM classifies
M up to semi-simple equivalence. The properties of XM, and its relations to classical •
invariants will be described.

We show also (joint with P. Vogel) that the ring of rational functions coincides
with the eohn localizationt of the free group ring with respect to the augmentation.

Larry Smolinsky
The framed Braid group and 3-manifolds.

Let B n be the braid group and 7r : B n ~ En be the function given by 7r(Ui) =
(i, i + 1) E En for i = 1, ... n - 1. The framed braid group is :Fn = zn ~ B n where
B n acts on E n via E n.

Framed braids determine 3-manifolds via,

(orget orientation
c10sing do surgery

{Framed braids} ----+ {oriented framed links} ------tl {3-manifolds}
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Theorem: Two framed braids represent homeomorphic 3-manifolds if they are
equivalent under an equvalence relation generated by 5 moves.

Every representation of:Fn is constructed from representations of zn and certain
subgroups of B n (those that preserve some partition of the initial points of the
braids). Examples via cabling and Jones' algebraic An will be given.

Victor Kobelskii
Intersections of high-dimensional knots.

Let K 1 and K 2 be the n-dimensional knots in the sphere sn+2, and let their
(transversal) intersection be the sphere tao. In such a situation we have four knots:
Kt,K2, k C K 1 (denoted by k1 ), and k C K 2{k2). The question is to describe the
connections between these knots. It 's obvious that Seifert surfaces of k1 and k2 are
cobordant. The main result is that for simple odd-dimensional knots this is the
only restriction, even if we ask the knots K 1 and K 2 to be trivial:

Theorem: Let k1 and k2 be two arbitrary simple knots of dirn = 4k - 3, k ~ 2,
or two simple knots of dirn = 4k -1, k ~ 1 with equal signatures. Then there exist
two intersected trivial knots K 1 and K 2 such that the knot k C Kl, is equivalent
to k1 and the knot k C K 2 is equivalent to k2 •

G. T. Jin
Polygonal Knots.

In the three dimensional Euclidean space, every knot is ambient isotopic to a
polygonal knot, i. e., a simple closed curve obtained by joining finitely many vertices
with straight line segments. The minimal number of vertices (or equivalently edges)
of the family of polygonal knots which are ambient isotopic to a given knot is
certainly a knot invariant. We'll call it the polygon index, and denote by p(k),. -the
polygon index of K. The superbridge index defined by N. Kuiper gives a good lower
bound for p. For any knot 2sb(K) ~ p{K), where sb(K) denotes the superbridge
index of K. If (r,s) = 1 and 2 ~ r < s, then 2min{2r,s} ~ p(Tr,s) ~ rmin{nln >
2;}, where Tr,s is the torus knot of type (r,s). Also, pe) -1 is strictly subadditive
with respect to the connected sum of knots.

Kent Orr
The status of the link slice problem.

It follows from Ledimet's exact sequce that the (codimension 2) link slice prob­
lem splits up into a homotopy problem and a surgery problem. Unfortunately,
realization of homotopy obstructions is difficult, since there is both a lack of ex­
amples and invariants 'are hard to compute (taking values in unknown homotopy
groups of "bad spaces"). Recently W. Mio gave a concordance classification of
links SP U S2p-l C S2p+l in terms of knot concordance and Kojima's 7]-fruction
(computable invariants). The following approach might give rise to new interesting
examples: Associate to concordance classes of codimension two links, links with
only one codimension two component. Two examples of those constructions are
discussed. (reported by Uwe Kaiser)
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J erome Levine
Signature Invariants of Unitary Representations.

If A is a hermitian matrix over CG, the complex group algebra of a group G, and
p is a unitary representation of G, then by considering the signature of p(A), one
obtains a function a..\ defined on the real algebraic variety of unitary representations
of G. This can be (and has been) used to study the various surgery obstruction
groups of G. For the homology surgery groups of Cappel-Shaneson, u..\ is "piece­
wise continuous"and well-defined on a Zariski-open set. aÄ is related to manifold
invariants obtained from the twisted eta-invariants of Atiyah-Patodi-Singer.

We are particularly interested in re-interpreting a..\ as an invariant of the as­
sociated "torsion-pairing"on a dimension-one torsion CG-module obtained from a
theorem of Vogel. This is related to the problem of giving a direct topological
definition of the Atiyah-Patodi-Singer invariant.

Berichterstatter: U. Kaiser
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