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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e reh t 53/1991

Stochastic Geometry, Geometrie Statistics, Stereology

8.12. bis 14.12.1991

Die Tagung fand unter der Leitung von R.E. Miles "(Queenbeyan), E.B. Vedel Jensen

(Aarhus) und W. Weil (Karlsruhe) statt. Sie hatte 42 Teilnehmer, die alle einen

Vortrag hielten. Gegenüber früheren Veranstaltungen über das gleiche Thema fiel

diesmal das große Interesse an der Ta~ auf, das dazu führte, daß eine Reihe von

Interessenten nicht eingeladen werden konnte,

Die Vorträge beschäftigten sich fast ausschließlich mit aktuellen Forschungs­

ergebnissen' und dokumentierten die ganze Breite der drei Gebiete Stochastische

Geometrie, Geometrische Statistik und Stereologie. Dabei wurden auch benachbarte

Gebiete wie <;lie Integralgeometrie oder die Geometrie der Fraktale gestreift.

Erwähnenswert ist, daß diesmal verstärkt Vorträge aus dem Bereich Stereologie

gehalten·'wurden, die direkt Anwendungen in der Medizin und den Materialwissen­

schaften betrafen.

Der internationale Teilnehmerkreis unterstreicht die wachsende Bedeutung,

die der Stochastischen Geometrie und ihren Anwendungsgebieten zukommt.

Vortragsauszüge

R.V. Ambartzumian:

Measure generation in tbe space Qf lines in R3

In the book by the author "Combinatorial Integral Geometry" (Wiley, 1982) several

functionals have been proposed which under certain conditions admit continuation to

measures in tbe spaces of byperplanes in Rn. Some cf these ideas can be also applied

to construction of measures in tbe spaces of flats less than n-l in dimension. The
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paper presents a number of theorems concerning the case of lines in R 3
. As a corol­

lary the following result is obtained:

To any linearly additive smooth metric in R3 corresponds a measure in the

space of lines in R3 whose image under the map

line -+ point of its intersection with a plane

on each plane generates a measure on the same plane born by the restrietion of the

original metric to tbe plane in question.

A.J. Baddeley:

Hausdorff metric for capacities

We gener~se tbe Hausdorff metric to spaces of capacities (increasing, outer -regular

set functions mapping tbe empty set to zero) and verify that it generates the

appropriate topologies (sup-vague and sup-weak). Under natural identifications it

coincides with tbe Hausdorff metric .for. compact sets, the Uvy-Proborov metric for

weak convergence of probability measures, and a quantity used in defining

Skohoro<Ps M
2

topology for D[O,l].

Applications to stocbastic geometry are sketched.

I. Bäräny:

Approximation Qy random polytopes

Given a convex compact body K c R d with val K = 1, the random polytope K is de-
n

fined as the convex hull of n points cbosen randomly, independently, and uniformly

from K. For large n, K
n

approximates K with high probability. We measure this ap­

proximation by the expectation of the volume of K \ K
n

' which we denote by

E(K,n). When d = 2 and n = 3, Blaschke proved that

E(~2)3) ~ E(K,3) ~ E(IT,3)

where ~2 and If are the triangle and tbe ball (of area 1), resp. The right hand

inequality'was extended by Groemer to any d and ß, hut the conjecture E(Lld,n) ~

E(K,n) is open. We prove that

lim in! E( K,n) >1 + _l_
n ECLl d ,n) - d+1

unless K is a simplex. The proof is based on tbe following asymptotic formula. If P c
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R cl is a convex polytope witb volume one, tben

E(P,n) = TI?} (log n)d-l (1 + 0(1))
(d+1) cl -1 ( d-1)! n

where T(P) stands for tbe number of towers of P, Le., the number of chains Fo C F
1

C

F
2

C ... C Fcl-I where F i is an i-dimensional face of P.

(Joint work with C. Buchta)

v. Benes:

Anisotropy in systems Qf particles

The lecture presents some ideas eoncerning the use of marked point processes in the

modelling of anisotropie partiele structures. It ineludes processes of ellipsoidal marks

[M~ller, 1988; Benes, 1989a], simultaneous distribution of anisotropy of particle

orientation and of spatial dispersion [Benes, 1989b]. Anisotropie segment processes

are recently investigated from the point of view of weighted mark eorrelation analysis

and nearest neighbour orientation analysis [Stoyan, 1990; Stoyan and Benes, 1991].

Benes V. [1989a] Acta Stereo!., 8/2,701.

Benes V. [1989b] Geobild '89, ed. Hübler A. et al., Akademie-Ver!. Berlin, 135.

Mtlller J. [1988] J. Appl. Probab., 25, 332.

Stoyan D. [1990] Statistics, 3, 449.

Stoyan D., Benes V. [1991] J. Mieroseopy, to appear.

A. Cabo:

Convex hulls II
See P. "Groeneboom.

R. Coleman:

Vertieal seetions

The deeomposition of the invariant random (IR) measure for lines in R
3

into an IR
measure for lines in a horizontal plane and a sina-weighted IR measure in tbe

vertical plane is demonstrated. (a is tbe latitude of the line witb respeet to, the

horizontal.) This gives a procedure for tbe stereological sampling by IR lines

(Baddeley, Oberwolfacb 1983).
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If a speeimen is within a sphere, then an IR line section of the sphere which

intersects the specimen is IR within the speeimen. We can therefore restrict our

considerations to spheres. The projection of an IR line section of a sphere gives a line

in the horizontal plane which is from a length -weighted density. This apparently

contradiets the decomposition result.

R. Cowan:

Topological aspects 2f cell divisions _

We postulate an imaginary organism which grows in a monolayer on a planar medi- ..

um. It starts from one cell which has a eonvex polygonal shape with k sides. The cell

divides by connecting two sides by a division line. In the 'wild-typel, each of the <:)
choices is equally likely. After tbe first division, tbe two polygonal daughter cells

divide synchronously according to the same meebanism. Cell divisions proceed in this

manner with synchronous but independent divisions.

Let X
n

be tbe number of sides of a randomly chosen polygon from generation n
(the first cell is generation 0). It is easily shown that E X

n
~ 4 as n --+ 00, but most

interestingly: X - 3 dinnb. I Poisson with mean 1 . Methods of proof involve tbe
n

recognition of a multitype branehing process of eell types.

The talk also examined many variations of dividing rule, with equilibrium

distributions given in each case. These 'mutant' versions included x-philic mutants

(where a x-daughter is always created where possible), x-phobie mutants (where

x-daughters are avoided) and x-selfish mutants (where x-type eells refuse to divide

to ensure there own survival). Subtle competition between 'cliques' of cell types were

explored.

R. Cowan & V.B. Morris (1988) J. Theor. Biol. 131 33-42

R. Cowan (1989) Adv. Appl. Prob. 21 233-234 e
L.M. Cruz-Orive:

The star -volume distribution: @ application tQ duplex stainless steel

The motivation of this study was how to characterize tbe mierostructure of a two­

phase material (duplex stainless steel). The non-metallic inelusions of the material

are rather anisotropie, and they can be modelled by a stationary process ~ = {1'1 of

bounded particles in R3
. (It is however suggested that only Istar-boundedness' is
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necessary.) A useful, well-known descriptive measure for ~ is its ·star volume· t\r
The ·star-volume distribution I VUu), (u E unit hemisphere) is defined by not aver­

aging the relevant integrand over directions.

It is shown how to estimate VU u) from vertical sections. From the empirical

VU u), a final descriptive measure is estimated, namely the ellipsoid of inertia, with

its principal axes along the natural axes of anisotropy of ~. Steels processed in three

different ways are thereby compared, with a final interpretation diffieult to guesse before seeing the data.

An open problem is how to prediet error varianees from systematic observa­

tions of a bounded funetion defined on the unit sphere - even ·on the unit circle!

(Joint work with L.M. Karlsson, S. Larsen, and F. Wainschtein)

R. Dwyer:

On the convex hulls of random balls

While the convex hcli of nd-dimensional balls in Ra is not a polytope, it does have

an underlying combinatorial structure similar to a ~lytope's. In the worst case, its

combinatorial complexity ean be of order n(nld/2 ). The thrust of this work is to

show that its complexity is typieally much smaller, and that it can therefore be

constructed more quicklyon average than in the worst case. Ta this end, three

models of random d-balls are developed, and the expected combinatorial complexity

of the convex hull of n independent random d-balls is investigated. For one model,

this expectation is 0(1) as n grows without bound. For another, it is O(n(d-l)/(3d).

The third model is analyzed only for d = 2; the expected combinatorial complexity is

0(1).
(Joint work with F. Affentranger )

W.F. Eddy:

A convex~ algorithm

Problem: Given n points in the interior of a circle, find the largest (in area) empty

convex subset. The solution set consists of ares of the circle and straight lines. Each

straight line is determined by one or t wo points. A simple variational argument

shows that for edges determined by a single point, the point must He at the midpoint
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of the edge.. An explicit construction of the solution"is given for n = 1,2,3 and for n =

2 a map is given describing the structure of the solutions. For n =4 it is shown that

the solution is a quadrilateral only for very special configurations of the points.

E. Enns:

Some nearest neighbor families

Randomly generated points in R d are connected to their nearest neighbors. These

points (called individuals) form conneeted clusters (called societies) .. If one has ne
points generated in such a way that nearest neighbors are uniquely ~efined, tben let:

Mn = tbe number ofsocieties formed, 1 ~ Mn ~ [n/2] ,
m

and if Mn = m, K. = the number of individuals in the jth society, ~ K. = n .
J ~j~ 1

Form an enclosure process, such as a convex hull or smallest enveloping sphere about

each society. What is tbe distribution of tbe volume of an enclosure, or inhabited

region? If n --+ 00 so one has a constant density p of points in R d
, then what fraction

of space is inhabited? If M' is the number of societies per unit volume, tben M' =

p lim M In. For an enclosure process there is a passibility that a society of size K. = k
n 1

embeds another. What is this probability?

Within a society of size K. = k, let V. = the number of individuals that con-
1 I

sider the i th individual as their nearest neighbor. We classify an individual by· his

number Vi' so that:

Individual set of such number of

classified as individuals individuals in set

if V.=O Lonely 2 L
le L V.=O •1 $'

V.=l Normal f N
K L".yVi = N,1

V.>2 Friendly :Y Fle L,:?Vi ~ 2F,,-
Ie

Then L Vi = k = Lle + Nie + Fle ~ NJc + 2FIe or LJc ~ FIc •

i=l

Also Vi ~ f(d) where /(1) = 2, f(2) = 5, /(3) =.11 etc.

The presentation gave more specific results for d = 1 when points are genera-
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m=l

[ n /2] SZ

Zn ~ Sm P(M = m) =--------
~ n ~ coth(~) + 1

CD

L
n=2

ted on a line from either a uniform distribution or a Poisson process. (These are

equivalent, see Pyke 1965 JRSS, B.) Results include the distributions of Mn and F lc '

for example

P. Goodey:

Determination 2f convex sets trom randorn sections

We consider random k-dimensional sections of a convex body K in d-dimensional

Euclidean space. The classical erofton formula expresses the size of K aS an average

of the size of Sections of K. We shall investigate the possibility of retrieving the shape

of K from the "average shapen of its sections. We show that, in case k = 2, the shape

of Kis determined by that of its sections, whereas, for k = 1, this is not true.

(Joint work with W. Weil)

P. Groeneboom:

Convex huBs I
A. Cabo:

Convex hulls 11

We study the-limiting behavior of functionals of convex hulls of sampies in R d
. An

example of such a functional is the number of vertices of the convex hull. It is shown

that in the plane one can obtain limit results for these functionals by studying a

Markov process, generating the extreme points of a Poisson point process, which is

t~e Iocallimit of apart of the original sampie process.

Furthermore, it is shown that in R3 similar techniques can be used. For exam­

pIe, the study of the locallimiting behavior of the convex hull of a random sampIe of

points in the interior of a ball leads in a natural way to the study of extreme points of

a Poisson point process inside a paraboloid. In this case one can as~ate with each

realization of the Poisson point process a random tessellation of the plane, where the

insides of the polygons of the tessellation correspond to directions of planes of support

hitting only one point of the Poisson process. A sketch is given of a method for

recovering properties of the convex hull,. walking along a test line through the
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tessellation.

Finally we apply the method mentioned above to a uniform sampIe from the

interior of a convex polygon in the plane. It is sbown tbat it allows us to obt~n

limiting results for tbe remaining area and length of tbe boundary. For tbe remain­

ing area we prove a centrallimit theorem. However, the length of the boundary bas a

different bebavior. A characterization of tbe limiting behavior is given in terms 'of a

functional of a Poisson process and tbe first two moments of the limiting distribution

are explicitly determined.

-',

H.J.G. Gundersen:

Estimation Qf connectivity

The stereological estimation of the Euler - Poincare cbaracteristic or tbe Euler

number, X, seems traditionally to have been made through the relationship to the

integral of Gaussian curvature, C: C = 411"X • However, all estimators of curvature

naturally require isotropy, which seems an unnecessary complicati<:>n for tbe estima­

tion ofthe integer-valued, total Euler number. Moreover, tbe traditional approach

est X = est XV • V
with aseparate estimator of tbe density Xv and of the total specimen volwne, V, is

met with several problems in finite and inhomogeneous specimens.

A more direct approach- is the traditional estimator

est X= LXi· IIr 1

j
wbere tbe specimen is split or partiti'oned in a completely arbitrary but known way,

one then sampIes in j steps. a uniform fraction f
Tc

of t4eu~ieces. In each of the small

pieces in the final sampIe, one evaluates the Euler number..The contribution from

the artificial surfaces, edges, and corners is always known for a known partition. If.
the partition is the simple one produced by three roughly orthogonal set of planes,

with no intersection within a set, the real Euler number of a little slab, s, is

X2 Xl Xo
X. = X3 -'-4"-'

wbere X
2

through Xo are the Euler numbers of the artificial surfaces, edges and

corners, respectively. An alternative correction under translation is given by Prassad

et al., Acta Stereologica 8, 101-106 (1989). With the aci'ditivity of the Euler number

and preserving strictly t,be contribution from each piece to tbe total Euler number,

the fractionator estimate is unconditionally unbiased. Biological examples of capillary
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and bone trabieular networks are presented.

J. Hüsler:

Convex hulls Qf random points

Consider the convex hull Cn of a sampie of n randomly placed points in a unit drele.

To construct efficiently the convex hull, not al1 points are needed. We show that

asymptotieally only the J?Oints belonging to the ring K
1

\ Kr are used to compute the

convex hull, where Kr denotes a clrele with radius r and where r = r(n) ~ 1 as

n --+ 00. We prove the relation between the rate of r(n) --+ 1 and the error probability

of not eorreet eonstruetion of the convex hull C by tbc random subset of points,
n

tending to O. A simpler method is also discussed whieh ean be easily used for more

general cases, where the points are not unifo!mly distributed in K
l

.

K. Kieu:

A. stereological formula involving non -uniform sampling

The strueture of interest is supposed to be a surface f(J (with integer dimension d) in

the Euelidean spaee Rn. The observed sampie is the interseetion f{J n VJ, ,p being a

random p-dimensional surface. The random surface 'r/J is supposed to be such that

there exists a funetion f wi~h

E AP('r/Jn A) = J I(x) An(dz) for all A eRn,
A

Ai, i ~ n, being the i-dimensional Hausdorff measure.

The following formula is discussed

E f h(z,tP) Ad-n+P(dz) = f E z [h(x,1/J)G(cp,1jJ,z)]j(z) A4(dz) ,
cpn,p cp

where lE
z

denotes the mean operator under the Palm distribution of VJ at x and

G(f{J,1jJ,z) is the (n-p)-dimensional volume of the projection onto the orthogonal of

the tangent of 1/J at x of a unit eube in the tangent of cp at z.

The case where I (x) :: 1 has been eonsidered in Zähle (1982). The proof for a

non stationary 1/J is discussed in the ease where 1/J is parametrized by a point of a

surface.

Also, the use of tbe formula is discussed in the case where cp is the product of a

surface q, with itself and· VJ is the product of a random surface " with itself. In
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general, 1/J cannot be assumed to be stationary. Then tbe formula provides results of

interest for second -order stereology. In particular, the stereological formulas for

second -order properties of planar curves, presented in Ambartzumian (1981) and

Stoyan (1981), appear to be particular cases of this use of the general formula.

D. MaIinion:

Products Qf 2.2 randem matrices and seguences Qf random triangle shapes

A sequence of random triangle. shapes is obtained by iterating: choose three points at •

random in the interior of a triangle to form tbe next generation triangle. This process

may be represented by a product of i.i.d. 2.2 random matrices. It is also possible to

represent a 2.2 matrix by a triangle, and thus to define the Ishape l of a matrix. Tbus

products of i.i.d. 2.2 random matrices may be represented by a sequence of random

triangle shapes. This gives a new way of exploring tbe asymptotic beha~our of

products of random matrices. In particular, a more tractable formula is derived for

the upper Ljapounov exponent. This shape approach also holds in higher dimensions.

S. Mase:

On asvrnptotic eguivalence Qf grand canonical MLE and canonical MLE for Gibbsian

wint process models

Consider a random point pattern XA on a bounded region A and we want to fit the

Gibbsian point process model to this pattern. For each fixed potential function ~(r),

we parametrize the local energy of XA as

z·IXA + Q L{~(Iz-yl); z,y E XA' zl- y},

where z is tbe chemical potential and Q is the inverse temperature (in the pbysical

context). Basically H is natural to consider that the point number IXA is random •

and varying and we need to estimate both z and Q (tbe grand canonica1 Gibbsian

model). But if our main interest is in tbe parameter Q, we can take the conditionaI

point of view by fixing the point number and get the canonical Gibbsian model which

includes only the parameter Q.

Let (x,a) be the grand canonical MLE of (z,a) and let er be the canonical MLE

of Q. We can show that the asymptotic variances of er and ä are the same (at least if

z and/ or' Q are small enough).
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T. Mattfeldt:

Number and spatial arrangement 2!' particles within biological membranes

Freeze fracture is a preparative laboratory method by which membranes of biological

structures (cells, mitochondria, mitoplasts) -can be split parallel to tbeir surface. In

tbe electron microscope, sucb preparations sbow particles on a flat smootb back­

ground. Tbese intra-membraneous particles (IMPs) presumably consist of proteins

and constitute important functional elements of tbe membrane, wbereas tbe back­

ground represents largely lipids. It is diffieult to judge for tbe· human mind whether

the IMPs are arranged purely at random, in clusters, or in a pattern witb mutual

repulsion.

It was tbe aim of this study to develop metbods for tbe quantitative analysis

of IMPs under experimental conditions. An algorithm for the automatie detection of

IMPs using an image analyzer is described. This algorithm provided the coordinates

of tbe IMPs. From tbe empirical data, we determined tbe number" of IMPs per unit

area of membrane. In addition, the pair-correlation function g(r) and tbe reduced

second-order moment measure function K(r) of the IMPs were determined, where r

represents the Euclidean distance between different IMPs. The empirical estimates

of g( r) and K( r) were cbecked versus the null hypothesis of a stationary Poisson point

process in the plane, wbere g( r) = 1 and K( r) = 'lfr2• As estimates were available witb

replication (different cells and individuals), confidence intervals were caJculated

directly from the empirical data, which obviated the need for Mante" Carlo simula­

tions of point patterns.

(Joint work with H. Frey, I. Pavenstädt-Grupp, and O. Haferkamp)

J. Mecke:

Extremal properties Qf ßat processes

Stationary Poisson k-flat processes in the d-dimen~ional Euclidean space are COn­

sidered (d/2 5 k 5 d-l). The mean k-content of the process per unit volume is said to

be tbe intensity A, and the mean (2k-d)-content per unit volume of the 2-intersec­

tion manifold is called intersection density u. Tbe problem is to maximize u for given

A bya suitable choice of the directional distribution of the process. The ~aximal q is

known for al1 pairs (d,k) where d-k is a factor of d, in same cases also the ~orre­

sponding directional distribution can be described.
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R.E. Miles:

Homogeneous reetangular tessellations

Homogeneous random tessellations (HRT's), in whieh every eell is a rectangle, are

coDsidered. Vertiees are of T- or X-type. An anthropological study by H. MeEldow­

ney (Hawaii) shows that the former may throw light on the chronology of the forma­

tion of rectangle boundaries. Beyond homogeneity it is natural to also suppose

isotropy, Le. stoehastic invariance under both z t--+ yand z +---+ -z. Homogeneity =~

U (rectangle sides) = a U ß where ß = U (!ines) and a = U (bounded seg-

ments). The unions of collinear connected reetangle sides -in Q are called I -segments.•

Deletion of ßyields a HRT, with U(rectangle sides) = U(I-segments). A first

order theory shows that all 1st order moments of interest are expressible in terms of
- -

just 3 quantities: Cl = I-segment intensity, 1= mean I-segment length and Hz =
mean number ofT-vertices on a random I-segment.

Specific models for HRT'S are presented. Gilbertls needle model is speeiallzed

to this case, but seems intractable due to the 'blocking effeet '. However, it has been

simulated by M. Mackisack (QUT, Brisbane); bunches of elose parallel I-segments

therein may be avoided by starting with '--rather than -e--type 'seeds'. The

corresponding elosely approximating Gi!bert penetration model admits a full analysis

of rays and offsets.

A final model for HRT is that of Igrowing squaresi, the reetangles of whieh

contain either 1 or 0 of the initial square centre -points. This too has been simulated

by M. Mackisack.

I.S. Molchanov:

Statistics Qf randorn sets: ernpirical capacities approach •

The approach to statisties of random sets based on empirical capacity functionals is

proposed. Its mathematical ground is formed by the Glivenko-Cantelli theorem and

the funetionallimit theorem for empirical capacities. It is shown that this approach

allows to unify many previously obtained esti~atorsand to derive new estimators for

the Boolean model parameters. In partieular, new estimators for the shape of a

non -random grain and the size distribution for the randomly scaled typieal grain are

diseussed. The empirical capacities approach is effective in handling with noisy or

spatial censored observations (in case the observed image is modified by another

                                   
                                                                                                       ©



- 1 J -

random closed set). Tbe nation of quantiles of random sets is introduced and their

estimators are considered. General properties of set -valued estimators (bias,

consistency, variance) and the maximum likelihood method for random sets are also

discussed.

J. M~ller:

Johnson - Mehl tessellations: exact and numerical results and simulations

A unified exposition of random Johnson -Mehl tessellations in tl-dimensional

Euclidean space is presented. In particular, Johnson-Mehl tessellations generated by

time -inhomogeneous Poisson processes and nucleation -exclusion models are studied.

The 'practica1' cases d = 2 and d = 3 are discuSsed in detail.

The talk consists of two points based on [1] and [2], respectively.

Part I. Analytic results: Several new results are established including first and

second order moments of various characteristics for both Johnson-Mehl tessellations

and sectional Johnson - Mehl tessellations.

Part 11. Simulations: An efficient simulation procedure which generates

'typical' crystals is discussed and some empirical results which illuminate the effect

of nucleation-exclusion conditions is presented.

[1] ~ller, J. (1992): Random Johnson-Mehl tessellations. Adv. A1mL. Prob. To

appear.

. [2] M~ller, J. (1992): Generation of Johnson-Mehl crystals and comparative analysis

of models for random nucleation. In preparation.

F. Montes:

Random sets and coverage measures

It is well known that a random set determines its coverage measure. The talk gives a

necessary and sufficient condition for the reverse implication. We introduce the

concept of random closed support for any random measure and, using it, an equiva­

lent formulation of the above condition. This alternative formulation constitutes a

first step in the search for a way to recognize a random measure as being the random

coverage measure of a random set.

The talk is completed with a proposition allowing to construct, for any random

set, smootbed version verifying tbe condition and final considerations about tbe
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extension of the results and a "natural" generalization of the definition of coverage

measure.

(Joint work with G. Ayala and J. Ferrandiz)

w. Nagel:

Covariograms Qf~ polygons

For compact subsets X of the euclidean space Rn, Matheronls covariogram C(X,.) is

defined by

C(X,h) = V(xn (X+h», hER'" •
where V denotes the volume. The covariogram is (np to the factor V 2(X)y the densi­

ty of x-y, where x and y are random points which are independent and uniformly

distributed on X. If X is convex, then C(X,) is related to the family of orientation

dependent chord length distributions (or the joint distribution of direction and

length of random chords resp.).

Theorem: Let X
l
,X

2
c R? be compact convex sets, Xl a polygon. If C(Xl ,· ) ::

C(X
2
,· ), then there is avE ]R2 such that Xl = X

2
+ v or Xl = -X

2
+ v (Le. C deter­

mines convex polygons up to translation and retlection).

Two ways of generalizing tbe covariogram were discussed.

T. Norberg:

Ordered couplings Q{ random sets

Let <p and T/J be two given random sets. By a coupling of '{J and T/J we understand a

pair (~,~) of random sets based on tbe same probability 'space and such that ~ ~ <p

and ~ g !/J. Couplings always exist. Take, e.g., q, and ~ independent. A coupling is.

ordered, if ~ ~ "a.s., and we indicate the existence of an ordered coupling of <p and 1/J

by writing <p ~n 1/J.

In tbe talk we describe a necessary and sufficient condition for the existence of

an ordered coupling of two given random closed sets. Tbe basic topological space in

which the random closed sets live is assumed to be locally compact and second

countable.
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There are similar results in the cases when the random sets are compa.ct

saturated or compact cr compact convex.

V.K. Oganian:

On configurations generated hY random chords 2I ! planar convex domain

Let D be a bounded convex domain in R 2 and lJD be its boundary. Denote by a the

space of lines in R 2
, [D] = {g e a : 9 n D I- 0} and C", = {(gl, ... ,g",).: there exists a

pair of lines g. , g. for which g. n g. n lJD I- 0}. The set [D] n \ C is the union of a
, 1 '1 n

finite number of connected subsets from an, Le. [D] n \ Cn = Uj Bnie ' where

B .n B . = 0, i I- j. There are only finitely many such sets B L , some being
m ~ ~

equivalent up to permutation of the lines. Let AnJ: be the union of all equivalent BnJc .

The AnA: will be called components. Denote by "'n = .JjX •• • xJj. J where Jj is the meas-

n t imes

ure on a which is invariant with respect to the group of Euclidean motions of R 2
• As

LA: ~,,(AnA:) = IöDI ", we can say about the probabilities of AnA: : p... = ~,,(AnA:)'

18DI-1I. The main result is to obtain expressions for Pnj (n = 3,4). These expressions

have a form of linear combinations of some integral parameters which depend on D.

An example of the integral parameters is I = r Xn(g) dp,(g) (n-th moment of
n J [D]

tbe chord X(g) = 9 n D, introduced by W. Blaschke). The question arises: What infor­

mation carry tbe probabilities PnJc about tbe convex domain m This problem had

been solved after some so-called additional relations between the integral parame­

ters.

Y.Ogata:

Space-time evolution 2I magnitude frequency distribution inferred from earthquake

catalogs

Lists of earthquakes are publisbed regularly by the seismological services of most

countries where earthquakes occur at all frequently. These lists give epicenter of

each shock, foca! depth, origin time and instrumental magnitude. Empirical law for

magnitude frequency suggests the exponential distribution for shocks above a thresh-
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old magnitude where almost shocks are detected. The parameter of the exponential

distribution is knoWn to vary dependent on time and space. On the other hand, de­

tection rate of shocks varies depending on tbe magnitude, time and space. In the

talk, a model ~s given which simultaneously analyzes these dependencies by tbe like­

lihood -based inferences. Applications of tbe model and method to tbe eartbquake

data in and around Japan are also presented.

J.Ohser:

Variances Qf different estimators for the speeifie line length •

The usual method to estimate tbe specific line length LA of stationary and isotropie

fi bre processes is to measure its total line length U( W) in a sampling window Wand

to divide U( W) by tbe area of the sampling window. This simple method can be mod­

ified in several ways. Such modified estimators are used e.g. in image analysis.

On tbe base of the second order theory of stationary and isotropie random

measures the estimation variance is computed for general classes of estimators of LA'

Analytica1 results can be obtained in tbe case of isotropie Poisson line processes.

From these results improved estimators of LA are derived.

D. Pfeifer:

Time dependent pattern processes

A statistical analysis of random spatial patterns in marine or terrestrial ecosystems

often requires the simultaneous consideration of time, space and migration. For

instance, the spatial distribution of birds or geese in a eertain observation area is

varying over time due to flights (incoming/outgoing) and individual movement on

the ground; similarly, the spatial distribution of sand worms in the wadden sea

depends on death, birth and migration of larvae. Here we discuss the most simp1ett

case of modelling such phenomena as a time -dependent (Markovian) spatial birth­

death-Poisson process for which limiting distributions over time are readily

available.

J.P. Rasson:

Clustering and discriminant analysis based Q!! Poisson point processes

The clustering rule based on maximum likelihood estimations under Poisson process
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bypothesis is this one: find tbe partition into k clusters sueh that tbe sum of tbe

Lebuesgue measures of tbeir convex hulls is minimal. A diserimination rule based on

the eonvex bulls is also proposed. Tbe similarity between an individual and a

population is measured by tbe difference between tbe Lebesgue measures of tbe

convex bulls of tbe training set with and without the individual. This procedure

satisfies most of Fisher and Van Ness admissibility conditions. Interesting results are

obtained for the error rate estimation by Itresubstitutionlt and Itleaving one out"

methods. Tbe deeision surfaee is shown to be pieeewise linear. Several real examples

in remote sensing are analyzed.

K. Sandau:

An estimation procedure for tbe joint distribution Qf spatial direction and thiclrness

Qf Dat bodies

in practice cracks of soH, membranes or walls of cells are tbe objeets of consideration

which are summarized in the following under tbe term tlat bodies. To each point of

the body's surface tbere is assigned anormal direction and a thiekness. Considering

tbe selection of a point on the surface as a random event a joint probability

distribution of direetion and thiekness is implied. However, in practiee tbe data

cannot be observed directly, only the profiles in plane sections can be examined. A

further eonstraint is that these sections must be vertieal for practical reasons. Tbe

visible thickness and tbe visible direetion shall be surveyed along test lines situated

in the vertical sections at tbe points wbere the test lines hit tbe fiat bodies. H test

lines are available in all possible spatial directions tbe joint probability distribution

can be estimated. Otherwise further assumptions are necessary. In an application a

special rotation-symmetrie case is eonsidered wbere only vertical and horizontal test

lines are used. In this case a parametric approach is proposed and a parameter

estimation is added.

R. Schneider:

HAudorn projections Qf regular simplices

If ~ is the regular n-simplex in Rn and if n
d

denotes the orthogonal projeetion from

Rn onto an isotropie rando~ d-subspace of Rn, then IIdT' is a random polytope. Let

fi(Hd~) denote tbe number of its k-dimensional faces (0 ~ k < d ~ n-l). For the
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expectation of this random variable, it is shown that
tl-I

m& 2tl d ..J= -.4-1 -2-
E f.(Htll ) N - (e+l) ß(1 r

-, 1~ ) (1r log n)
Jd

as n tends to infinity. Here ß( tc, ~-1) denotes the internal angle of the simplex T' at .

one of its k-faces. The result contributes to a questi~n posed by Goodman and

Pollack.

(Joint work with F. Mfentranger)

M. Stoka:

Hitting probabilities for random ellipses and ellipsoids

Let 5t denote a rectangular lattice in the Euclidean plane E
2

generated by

(4- b) -rectangles.. In this paper we consider the probability that a random ellipse

having main axes of length 2a and 2ß, with 2ß ~ 20 -< min (a,b) intersects ~. We

asswne namely that the lattice se is the union of two orthogonal sets S24 and .92h of

equidistant lines and evaluate the probability that the ellipse intersects 9l
41

or 9lh •

Moreover, we consider the dependence of the events· that the ellipse intersects 9l
a

and that the ellipse intersects 9lb • We study further the case when the main axes of

the ellipse are parallel to the lines of the lattice and satisfy 2ß = min (a,b) < 20 =
max (a,b). In this case, the probability of intersection is one, and there exist almost

surely two perpendicular segments in se, within the ellipse. We evaluate the distri­

bution function, density, mean and variance of the length of these segments. We

conclude by a generalization of this problem in dimension three.

•

F. Streit:

Statistica1 tests for comparing different stochastic models in stochastic geometry •

After a summary of the relevant methodology of statistical inference for marked

point processes the following particular problems are investigated:

1. How can one decide by means of a statistical test and based on a spatially

restricted observation of a germ -grain model whether interpenetration of the grains

is possible?

2. Selection among different Stienen -models by means of a statistical test.
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H.S. Sukiasian:

On metrics generated hY !@g functions

One of the versions of the Hilbert 's 4-tb problem in R 3 can be as follows: in R 3 we

have a continuous and linearly additive metric F(PI;P2). Is it true that this F can be

represented as

(1) F(PI ;P2 ) =p.(PI / P2) ,
where p. is some measure in the space of planes, PlIP

2
is the set of planes which

separate the points PI and P2 ?

We consider metries, for which exist so-caIled flag densities. We have solve.d

the following problem: what condition guarantees that a flag funetion generates a

measure (or a signed measure) by means of (I).

M. Tanemura:

Random packing. tessellations and statisties on the sphere

The surface of the sphere is anon - Euelidean space and shows interesting aspeets

different from the usual Euelidean spaces. We eonsider a random sequential packing

of spherical eaps and Voronoi tessellation cf objects on the unit sphere with some

applications. The diseussion will refer to the method of obtaining eonfigurations with

certain optimal properties.

Eaeh point on the unit sphere is also regarded as a vector whfeh represents

the 3-D direetion of non-isotropie objects. We present a likelihood procedure of

estimating parameters of directional interaetion for tbe special case of eonfigurations,

Le., time series of unit veetors, on tbe sphere.

E.B. Vedel Jensen:

Stereological estimation based on isotropie slices through fixed points

In the present talk, stereological estimators of number, length, surface area and

volume in R 3
, based on measurements in an isotropie slice through tbe origin 0, are

presented. Measurements of 3-D angles are not needed. The estimators depend only

on distance measurements. Tbe estimation principle is generalized, using isotropie

r-sliees through tbe origin 0 in R 11 and an isotropie grid of q-subspaces.

(Joint work with K. Kieu)
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R.A. Vitale:

L metries and Gaussian processes-p-----
Tbe Hausdorff m~tric between a pair of convex bodies in R d can be regarded as tbe

L
m

metric between tbeir support functions. Accompanying distances of Lp type, 1 ~ P

< 00, can be defined in a natural way. In earlier work, these were shown to satisfy

upper and lower inequalities with respect to the Hausdorff metric. Recently it has

become apparent that the system of lower bounds can be generalized and re -cast as

a class of companion inequalities for Gaussian processes. A key tool is the isonormal

map, which identifies such processes with subsets of Hilbert space. In this newe
setting, a natural passage to intinit~ dimensions can be done. .

w. Weil:

fuum2tl densities Qf randorn sets

Tbe anisotropy of stationary rand~m sets X and particle point processes Y in Rd has

to be expressed by directional characteristics. Since the centred support function

h(K,.) of a convex body K eRd is an additive and translation invariant functional, it

has an additive extension to the convex ring. ~or random sets X in the extended

convex ring (Le. locally finite unions of convex bodies), a support density hx can be

introduced (in analogy to the classical querrnass densities) as

hx = lim [Vd(rB)] -1 E h(Xn rB,.)
"""(1)

(where V
d

is volume and B the unit ball). hx is a continuous function on tbe unit

sphere and fulfills

hX =E [h(Xn W,·) - h(Xn a+w,.)]

(where W is the unit cube and a+w the lupper right l boundary). In the plane, the_

following formula holds for a sampling window Kin the convex ring -

E h(Xn K,·) = A(K) hx + AA h(K,.)
(A(K) is the area of K and AA the area density of X), higher dimensional analogs

involve densities cf mixed functionals (cf X and K). As a consequence, for a (planar)

Boolean model X (with underlying Poisson particle process Y cf intensity 1), it is

shown that
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where K is a convex body representing the I mean sbapel of Y (and A is the mean

area of tbe particles in Y). Consequently, the mean shape of Yean be estimated from

measurements of the union set X.

M. Zähle:

Random fractal sets and measures

In order to give a rigorous mathematieal definition of statistieal self-similarity as

used in pbysies, Palm distributions 9f random fractal measures have to be intro­

duced. They also appear in form of tandem fractional tangent measures of strict1y

self-similar sets in the sense of Meran and Hutehinson. Tbe corresponding invari­

anee relations and ergodie theorems lead to the coneept of fractional densities of such

measures which may explieitly be eomputed for Cantor type sets.

H. Ziezold:

Statistical decisions based on mean~ and mean shapes

Figures and shapes are equivalence classes of k-ads x E cf. Means are defined in the

sense of Freehet with respect to suitable metries. For m independent. realizations of a

figure distribution P and n independent realizations of a figure distribution Q a

decision rule for testing Ho : P = Q is proposed.

Berichterstatter: W. Weil

                                   
                                                                                                       ©



- 22 -

Tagungsteilnehmer

Prof.Dr. Ruben V. Ambartzumian
Institute of Mathematics
Armenian Academy of Sciences
Marsala Bagramjan av. 24b

EreV3n 375019
USSR

Prof.Dr. Adrian J. Baddeley
Centre for Mathematics and Computer
Science
t~rl~ i slaan 4 i 3

NL-I098 SJ Amsterdam

Prof.Dr. Imre Barany
Mathematical Institute of the
Hungarian Academy cf Sciences
P.O. Bo:< 127
Realtanoda u. 13-15

H-136li· Budapest

Dr. Viktor Benes
Deot. of Math. and Constructive
Ge~metry~ Fac. of Engineering
Czech. Technical University
~\arlovo nam. 13

12135 Prague 2
CZECHOSLOVAKIA

Annoesjka J. Cabo
Center for Mathematics and
Computer Science
P. o. Box 4079

NL-I009 AB Amsterdam

Dr. Rodney Coleman
Department of Mathematics
Imperial College
Huxley Building
180 QL~een' s Gate

GB- Landen SW7 2BZ

Prof.Dr. Richard Cowan
Department of Statistics
Hang Kang University

Hang t(ong
HONG t~ONG

Prof.Dr. Luis M. Cruz-Orive
Institut fUr Anatomie
Universität Bern
Postfach 139
BL~hlstr. 26

eH-300a Ber ~1 9

Prof.Dr. Rex A. Dwyer
Department of COMputer Science _
North Carolina State University ~
Box 8206

Raleigh , Ne 27695-8206
.USA

Prof.D~. William F. Eddy
Dept. of Statistics
Carnegie Mellon University

Pittsburgh , PA 15213
USA

                                   
                                                                                                       ©



Prof.Dr. Ernest G. Enns
Dept. of Mathematics
University of Calgary
2500 University Drive N.W.

- 23 -

Prof.Dr. Kien Kieu
INRA-Laboratoire de Biometrie
Route de Saint-Cyr

F-78026 Versailles Cedex

Prof.Dr. Paul R. Goodey
Dept. of Mathematics
University of Oklahoma
601Elm Avenue

Calgary
CANADA

Norman
USA

T2N lN4

OK 73019-0315

Prof.Cr. Cavid Mannien
Statistics and Computer Science
Royal Holloway &Bedferd New College
University of Landon
Egham HilI

GB- Egham Surrey TW20 OEX

Prof.Dr. Piet.Groeneboom
Dept. of Mathematics and
Computer Scienee
Delft University of Technalogy
P. o. Ba ~{ 356

NL-2600 AJ Delft

Prof.Dr. Hans J0rgen Gundersen
Sterealogical Research laboratory
Bartholin Building
University of Aarhus

DK-8000 Aarhus C

Prof.Cr. Jürg Hüsler
Mathematische Statistik
und Versicherungslehre
Universität Bern
Sidlerstraße 5

CH-3D 12 Bert1

Prof.Cr. Shigeru Mase
Faculty of Integrated Arts and
Sciences .
Hiroshima University
Higashi-Sende-Machi~ 1-1-89

730 Hiroshima
JA~AN

Prof.Dr. Torsten Mattfeldt
Institut fUr Pathologie
Universität Ulm
Oberer Eselsberg M23

W-7900 Ulm
GERMANY

Prof.Dr. Joseph Mecke
Institut für Stochastik
Universität Jena
Universitätshochhaus
Leutragraben 1

0-6900 Jena
GERMANY

                                   
                                                                                                       ©



Dr. Roger E. Miles
RMB 345

Queanbeyan ~ NSW 2620
AUSTRALIA

Prof.Dr. Ilya S. Molchanov
Chair of Mathematics
Kiev Technological Institute Food
Industry
Vladmimirskaya 68

252017 Kiev
USSR

Jesper Moller
Afd. for Teoretisk Statistik
Matematisk Institut
Aarhus Universitet
Ny Munkegade

DK-8000 Aarhus C

Prof.Dr. Francisco Montes
Facultad de Matematicas
Universidad de Valencia
Dr. Mal it1er ~ 50

E-46100 Burjasot

Dr. Werner Nagel
Mathematische Fakultät
Friedrich-Schiller-Univ~rsität

Jena
Universitätshochhaus~ 17. OG.

0-6900 Jena
GERMANY

24 -

~ ..

Prof.Dr. Tommy Norberg
Dept. of Mathematics
Chalmers University of Technology
and University of Gbteborg

8-412 96 Götebarg

Prof.Dr. Viktor K. Oganian
Department of Mathematics
Erevan State University
ul. Mravyat1a • 1

375 049 Erevan
USSR

Prof.Dr. Yoshihiko Ogata
Institute of Statistical
t1athemat i es
4-6-7 Minami Azabu, Minato-ku

Takyo 106
JAPAN

Prof.Dr. Joachim Ohser
Sektion Metallurgie und
Werkstoffkunde
Bergakademie Freiberg
Gustav-Zeuner-Str. 5

0-9200 Freiberg
GERMANY

Prof.Dr. Dietmar Pfeifer
Fachbereich Mathematik/Informatik
Universität Oldenburg
Carl-von-Ossietzky-Str.
Postfach 2503

W-2900 Oldenburg
GERMANY

                                   
                                                                                                       ©



!/..
~.-

Prof.Dr. Jean·Paul Rasson
D~partement de Math~matiques

Facultes Universitaires
Notre-Dame de 1a Paix
Rempart de 1a Vierge 8

8-5000 Namur

Dr. Konrad· Sandau
Institut fUr Angewandte Mathematik
und Statistik
Universität Hohenheim
Postfach 70 05 62

W-7000 Stuttgart 70
GERMANY

Prof.Dr. Ralf Schneider
Mathematisches Institut
Universität Freiburg
A1bertstr. 23b

W-7800 Freiburg
GERMANY

Prof.Dr. Marius Stoka
Ist. Geometria
Universita di Torino
Via Principio Amadeo 8

- 25 -

Prof.Dr. Gaik S. Sukiasian
Institute of Mathematics
Armenian Academy of Sciences
pr. MareshaI Bagramian 24b

Erevan 375019
USSR

Prof.Dr. Masaharu Tanemura
Institute of Statistical
Mathematics
4-6-7 Minami Azabu, Minato-ku

Tokyo 106
JAPAN

Prof. Dr. Eva Bjorn Vedel- Jens en
Afd. for Teoretisk Statistik
Matematisk Institut
Aarhus Universitet
Ny r"lunkegade

DK-8000 Aarhus C

Prof.Dr. Richard A. Vitale
Department cf Statistics
University of Connecticut
Ba>: U-120

1-10123 Torino Storrs
USA

cr 06268

Prof.Dr. Franz Streit
Beet ion de Math~matiques

Universite de Geneve
Case posta1e 240

CH-121i Gen~ve 24

Prof.Dr. Wolfgang Weil
Mathematisches Institut 11
Universität Karlsruhe
~\aiset"str. 12

W-750D Karlsruhe
GERt1ANY

                                   
                                                                                                       ©



Prof.Dr. Martina Zähle
Institut fUr Stochastik
Universität Jena
Universitätshochhaus
Leutragraben 1

0-6900 Jena
GERMANY

Prof.Dr. Herbert Ziezald
FB 17 - Mathematik/Informatik
Universität Kassel
Postfach 10 13 80
Heinrich-Plett-Str. 40

W-3500 ~(assel

GERMANY

- 26 - '-\\.,

                                   
                                                                                                       ©


