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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht

Variationsrechnung

26.7. bis 1.8.1992

33/1992

Die Tagung fand unter der Leitung von Herrn J. Jost (Bochum), Herrn L. Mod­

ica (Pisa) und Herrn E. Zeidler (Leipzig) statt. In Vorträgen und Gesprächen

haben die Teilnehmer aus vielen verschiedenen Länder (z.B. Deutschland, Italien,

USA, Australien ...) die neuesten Entwicklungen aus den Gebieten: Harnioni­

sehe Abbildungen, Minimalfiächen, Elastizität und allgemmne elliptische partielle
Differentialgleichungen dargestellt und diskutiert.
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Vortragsauszüge

E. Acerbi: FUnctionals with non-standard growth

Many results are known~concerning the regularity of minimizers of integral func­

tionals whose simplest model is Jf(Du)dx, under the growth assumptions:
n .

IzlP ~ j(z) :5 c(1 + IzIP),p > 1,

which are the standard ones. As for non standard growth assumptions:

IzlP $. j(z) $. c(l + IzI9), 1 < P < q,

after an example by Giaquinta whoshows that

j(!DUI2 + cl :x: 1
4
)dx

n .

possesses highly irregular minimizers, some results began appearing. Among these,

I quote two recent ones obtained in collaboration with N. Fusco.

Statement 1: For the funetion

j t IDiulP'dx,Pi > 1 'Vi = 1, .. ~,n, {} C IR"
n 1=1

minimizers are partially c1,a whenever a1l Pi'S arestrietly less than the Sobolev

exponent of the harmonie mean ofthe Pi 's. e
This was a homogeneous, anisotropie ease; an isotropie but inhomogeneous case is

the following

Statement 2: Let {}t,{}2 be two contiguous open sets such that anl n 802 = E

is a Lipschitz surfa.ce and set:

{

PI in {}l

p(x) = ~ in {}2

2

                                   
                                                                                                       ©



The minimizers of I IDu(x)IP(z)dx are locally bounded, and Hölder contin­
OlUEU0 2

uous in {ll U E U O2 , whenever Pl,P2 > 1.

L. Ambrosio: On the singularities 0/ Convex F'unctions

•
Viscosity solutions of Hamilton-Jacobi equations are not necessarily differentiable.

Hence it is natural to study the properties of the singular s~t E (the set of ~

non differentiability points) of these solutions. We can naturaJly split E into

n components EI, ... , Et1 (n being the dimension ~f the domain on which our

viscosity solution u is defined) according to t~e dimension of the superdiHerential

a+u(x) at the singular point x. In a joint work with G.Alberti and P. Carmorsa, I

proved that the semi-concavity properties of u imply that Eie is countably 1in - le _

rectifiable for any integer k E [1, n]. In paI'ticula.r the Hausdorff dimension of Eil:

does not exceed (n - k) and Et1 is at most countable. In a subsequent paper,

written with P. Carmorsa and R.M. Soner, I study the propagation of singularities

providing conditions on the Hamiltonian, which ensure that na singularity x E

E\Et1 ia isolated in E.

Funktion of bounded variation aver non regular surfac~s [cunents, varifolds] arise

naturaJly as weak minimizers of functionals defined on surfaces, for instance func­

tionals depending on eurvatures. A study ofsuch functions has been done by GMT

methods.

•

G. Anzellotti:

P.u. Aviles:

Functions 0/ bounded variation over gene~lized sur/aces

A new pro%/ the regularit1l theory /or minimizing harmonie

maps and applications

Here I will discuss the new proof of the regularity theory for minimizing harmonie

maps and the extension of it to minimizing harmonie maps into same singular

target, i.e. Lipschitz graphs.

3
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G. Buttazzo: Variations on a theme 0/ Lavrenti~1J

The term Lavrentiev phenomenon refers.to a surprising result first demonstrated in

1926 by M. Lavrentiev who showed that it is possible for the variational integral of a

two-point Lagrange problem, which is sequentially weakly lower semicontinuous on

the admissible dass of absolutely continuous functions to possess an infimum on the

dense subclass of Cl admissible functions that is strictly greater than its minimum

vaJue on the full admissible dass. Since that time there have been additional works

devoted to simplifying the original example, demonstrating that the phenomenon .'
can occur even with fully regular integrands, devising conditions which forestall

occurence of the phenomenon, sharpening the specification of the precise dense

subclas8 of admissible functions for which the Lavrentiev gab occurs, presenting

an analogons gap phenomenon in stoch88tic control and in certain (deterministic)

Bolza problems.

Here we adopt the viewpoint that the Lvrentiev gap i:s actually a relaxation phe­

nomenonassigning to each admissible function'u a- Lavrentiev term L(u) ~ 0

which specifies the magnitude of the gap between the value of the variational

functional it seH on u and the smallest sequentiallower limit of the values it takes

on Lipschitzian admissible functions converging weakly to u. Accordingly, given a

sequentially weakly l.s.c. functional G defined on the class of all admissible func­

tions, we proceed first to examine the function F which coincides with G on the

Lipschitz class but is assigned value +00 on aJl non-Lipschitzian admissible func­

tions.. We seek the l.s.c. envelope F of Fon the full dass of absolutely continuous

admissible functions. Then L(u) is the nonnegative quantity defined by

I
I
I

F(u) = G(u) + L(u).

We proved a characterization of L(u) in terms of the value function V associated

with the Lagrange problem: the quantity L(u) is given as a limiting value of

V(x, u(x» as x converges to a critical abscissa for the integrand. This description

is then utilized to provide a rather explicit calculation of L(u) for integrands

satisfying a homogeneity condition as well as for the far larger class of integrands

which only satisfy the homogeneity condition in an asymptotic sense near the

relevant critical abscissa. In particular, the Manila integrands ia fully analyzed by

following this approach.

4
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The presentation of cases in which the Lavrentiev term is identically zero, aswell 88

of certain multidimensional problems,permits a clear discussion of the Lavrentiev

phenomenon for general integral functionals of the calculus of variations.

G. Dal Maso: Some new lower semicontinuity and relaxation re~tJ,lts /or

polyconvu /unctionals

'.

•

For ~ymatrix A, le~ M(A) be the.vector whose components are th~.~e~erminants

'cf an minors of A of auy order. For every bounded open set 0 ~ Rn and for every

'U E W1f1(O, ~k) let

F(u,n) =f VI + IM(Vu(x»12 dx,
n

where Vu(x) denotes,·as usual, the matrix whose entriesarethe partial derivatives

of the ·componentsof u. Note that, if u ECl(O, :l[(A:), then F(u, 0) coincides with

the n-dimensional measure of.the 'graph of the ,function u.

Wecanprove that F('U,!}) :5 lim inf F(Uh,O) whenever U,Uh E Cl (0, RA:) and
h--+oo

Uh --+ 11. in L1(O,IllIe ). The restrietion .u; 11.,:" eCl (O,lRle ) is crucial.. Indeed a

. simple example shows thatG(., n) is not lower semi-continuoUs in W1,1 (0, Ii.1c )

with respect to Ll(O,]i.1c )-convergence.

This fact leads us to consider the relaxed functional J(u,O), defined for every

uE Ll(n,:llk.)~

J(u,!}),:::;:: inf{liminf F(Uh,n) :Uh E C1,Uh ~u}.
h--+oo

1t is clear that J(.,O) is lower se~-continuous on L1(n, IRIe) and that J(u,O) =
F(u"O) for every u E Ol(n, Rh). It is possible to prove that -this equality can be

extended to the case 11. E W1,1I(0,IRA:), with v:= m.in{n,k).

Moreover, if J(u, Oi) = F(u, Oi) for two open sets fh, O2 ) =F(u, 0 1 U O2 ).

Nevertheless, two counterexamples show that, in geD:~ral, the set .function 0 1-+

J(u,ll)is not ·subadditive. In the first one, 'U is a piecewise constant function and

·R =,'k ='2. In the 'second one,n = k =3 and 'uE Wl~~(IR3,Ill3 ) far every J :5 p < 3.
This :shows that, in ,general, for u ~ W 1•1I (0, RA:) we do not have J ('U, 0) =F(u, n)

and that J 'can not :be represented by any ather integral.
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All these results have been obtained in eollaboration with Emilio Aeerbi and ean

be extended, ~th the obvious modifications, to more general po.1yeonvex integrals

of the form

F(u, 0) =Jf(M(V'u(x)))dx,
Cl

where f is eonvex and has a linear behaviour at infinity.

u. Dierkes: A Bernstein restJlt for energy minimizing hpersurjaces •In this talk I eonsider singular variational integraJ.S of non-parametrie type:

E.. (u) = J'11."";1 +IDuI2 ,a > 0,'11. ~ 0,0 S;; IR"
Cl

as weIl as the parametrie counterpart

and CPu denotes its characteristie funetion.

In the ease a = 1, the Euler equation eorresponding to the non-paIaInetrie problem

. di Du a
EB v = --;:::====:=:::======. ';1 + IDul2 u';l + IDul2

was derived by Lagrange and Poisson as a model equation for the so ealled "hanging

roof" problem. Here we are primarily interested in Bernstein type results for

equation EB and for the corresponding parametrie problem respectively.

Theorem 1: Suppose that a + n < 4 + aJ ..~.. (Le. n + a < 5,23 ...). then •
there is no entire, stable, positive solution u E C2(Rn) of equation EB.

Note that for all n ~ a, a > 0 there are entire, positive elassical (and eyenrota­

tionally symmetrie) solutions of $.

'Theorem 2: Suppose that a + n < 4 + 2Jn;a and let M= au be a smooth

boundary ofleast a-energy ea(U) in Jin+l. Then M isa. hyperplane E which either

is perpendieular to the coordinate plane {Xn +l = O} or identieal to {Xn +l = O}.

. 6
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These results will be proved by first obtaining a generalized "Simons inequality"

for the Lapla.cian of lAI and the mean curvature H and then using this inequality

to derlve integral curvature estimates of the type

$ C(n,Q,q)J!Xn+l10 IVeI4+2Qd1i"
M

ve E C: (M, 1Il) and all poSitive q < Vn;o· Finally a suitable choice of eand

approximate energy estimates show that H = lAI = 0, provided n + Q < 4 +
2Vn;o· -

F. Duzaar: Joint work with Klaus Steffen

Bou~dary regularity for minimizing curents -with prescibed

mean CUn1ature

We consider the following situation: Given an orlented submanifold .r ofdimension

n - 1 in Jin+1 ,ar = 0, and a smooth function H : JinM --. Ji we are interested

in boundary rgularity properti~s cf eD;ergy ~ing rectifiable n·currents ~th

prescribed mean curvature H and boundary 8T = B := CI'D. Thenotion of

energy minimality refers to the.energy func~ional associatedwith the presciibed

mean curvature function H; i.e. Eh(T) = M(T)+VH(T) where M(t) is the mass of

T and VH(T) in the weighted H·volume enclosed by T and some fixed rectifiable

n-current Ta. then we have:

Theorem: Suppose T is a rectifiable n-current in r+1 , H : Illn+1 --. Ii in locally

Lipschitz, T is energy minimizing in some neighborhood of a point ~ E 8upp8'T

and the boundary 8T is represented in this neighborhood by an oriented "n - 1

dimensional submanifold r C?f class C 1,0, 0 < Q :5 1, with multiplicity one. Then

either:

(i) en(IITII, a) = ~ and suppT is aCi,ß submanifold with boundary r locally

at a for any 0 < ß < ~Q; or

7
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(ü) en (IITII, a) = m- ~ for some integer m 2: 2 and 8UPP T is a Cl,ß submanifold

loeaJIy at a for any 0 < ß < !a, which in separated byr into two parts on

which T has eonstant multiplicitY- m and m - 1 respectively.
Moreover; ,in both eases the Cl,ß submanifold 8UPP T has (with the orientation

indueed by T) mean eurVature H(x) for any point x elose to a (in the sense of

distributions).

The case H == 0 corresponds ·to absolutelymass minimizing eurrents for which
boundary regularity was proved by Hardt and Simon.'

KlaUs Ecker:. . Loco.I estimates 0/ mean cUnJature flow

We study loeal behaviour of the fiow of hypersurfaces by their mean eurvature.

A comparison argument yielding t.he formation of smgularities in finite t~e for

certain initial surfaces (e~g. dumbbeIl~surface) is given.

We furthermore present (j"oint work with G. Huisken) interior estiinates for a1l

geometrie quantities on the evoluing surfaces, given that we have loeal eurvature

control (or loeal uniform gradient estimates).

~inally, in "the esse of surfaces in 3-manifolds we prove an e-regularity theorem
involving. a loeal curvature integral.

Martin Flucher: A variational approach to Bemouilli'8 free-boundary problem

We study the interior problem on a planar domain 0, Le. given Q"> 0, find A c {}
an~ a funetion 'U solving

d 0 in O\A

{ 'U:~ onaO

iv~ll= Q ~::A e
Partlcular solutions are found by minimization of the capacity eapn(A) among all

A c 0 with lAI = e. The so ealled elliptieally ordered branch of solutions tending

to ao as Q ~ 00 and e -+ 101 is fairly weIl understood. However very few is known

on hyperbolie solutions (luge Q and small e). Using our asymptotic fonnula for

the minimal eapacity among sets of equal area (to appear in Caleulus of Variations

and PDE's), we can s'how that a subsequenee of the minimizer's eoncentrates at a

maximum point of the conformaJ radius on 0 a.s e --. o. Moreover, we eonjecture

8
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that a hyperbolieally disk-shaped solution concentrates at any critica1 point of the

confonnal radius.

Nicola Fusco: Regularity results for a model problem jrom non-linear elas­

tieitll

Consider the functional f IDul2+ Idet Dul2 where 1.1. : n ~ IR2 -+ Ii2 belongs to the
n

space A2W 1,l:= {v E W 1,2(n,Ii2): detDv E L2}. We prove in ajoint paper with

J. Hut~on, that if 1.' is a minimizer, then 1J, E C 1,o, hence 0 00
, in an open set

0 0 C n such that L(O\Oo) = o. The diffieulty here is that the term Idet Dul2 ean

grow in certain directions like IDul4 which is not controlled by the funetional. As

a consequence, the space A2W 1 ,2 is not a linear space. Moreover it iS not known

if smooth funetionS approximate any funetion v E A2W 1,2 in the norm naturally

induced by the functional.

We prove also a maximum principle for minimizers of the above funetional and

combining it with the Courant-Lebesue lemma we ean deduce that u is indeed

eontinuous in the whole n.
Finally.the C1,o partially regul~ty result ean be also extended to a model fune­

tional of the form
kf IDulP+~ IAiDuIP,p > n ~ I,

n 1=1. .

where 1.1. : 0 ~ Illn -+ ]RN , 1 ~ k ~ min{n, N} and IAiDul is the norm of the map

4iDu(X) : AiRn ~ AiR" eanonieally. indueed by Du(x).

Mariano Giaquinta: Some geometrie and analytie aspects 0/ variational problems

/or uector ualued maps

After showing afew simple examples which naturally lead to the nation of Carte­

sian currents, I diseuss a few results obtained in collaboration with Giuseppe

Modica (Firenze) and JiZi Soucek (Praha). In partieular I report on a serie of re­

sults conceming the problem of minimizing harmonie maps between Riemannian

manifolds and the probiem of approximability of Cartesian currents of finite mass

by graphs of s~ooth maps.

9
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Bob GUlliver: The Fredholm index lor branched H -sur/aces 0/ higher genus

.Let :F be aRiemann surface. of genus 9 ~.1 having one boundary component. Let

H be a constant E [-1, 1]. A small H -surface i~ .a mapping I',: :F --+ B! ~ JR3
'. satisfying in local confonnal coordinates (x, y),

{
Izz + ll/'I/ = 2Hfz /\ /'1/
l/zl2 -l/fJ l2 = 0 = Iz . 1'1/

Given integers 'YI ••.• ~ 'Yp ~ 1, we show that the set M H (f. 'Yb ••• 'Yp) of a11small e
H -surfaces having branch points of orders ~ "'Yl, ••• ,"'Yp at P. distinct inienor points,

and no boundary branch points, is a manifold. We further show that the projection

of M H (I, 'Yl , .•. "'Yp) onto the manifold of immersed curves is a Fredholm mapping .

of index 2 f: (1- 'Y~), using the natural Sobolev norms Goint work with Reinhold
~=1

Böhme). .

Pedro M. S.G. Henriques: Noether's theorem and the reduction procedure intro­

duced by Weinstein and Marsden, in the context 01 di/­

ferenti.al systems

During the last few years I have been working on an extension of Phillip Griffith's

work. I generalized the study ofvariational problem for multiple integrals in a large

framework which allows the consideration C?f mixed boundary conditions using

extenor differential systems defined on Coo-manifolds. The purpose of Il1y recent

work is to complete this study proving the Noether's theorem and byestablishing

an a4equate reduction procedure togeneralize the work of Weinstein and Marsden.

The version of the Noether's theorem for multiple integrals shows that there ex- _

ists a closed form defined on integral mailifolds of the Euler-Lagrange differential •

system with infinitesimal symmetries.

Th.e reduction procedure permits to find the integral manifol~s of the E~er­

Lagrange system through lifts of the integral manifolds of a reduced system defined

on reduced manifolds. The procedure ia based upon the properties of a Lie-group's

action on 0 00 manifolds.

10
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Gerhard Huisken: An evolution equation lor hypersurfaces 01 constant mean

cunJature

Let Fo : Mn ~ NfI,+1 be. a smooth immersion of a closed hypersurface in some

compact Riemannian manifold NfI,+l. Then we consider the evolution equation

:xF(p, t) = (h - H)v(P, t),p E Mn I t >0

with F(p,O) = Fo(P), where V is the unit normal and H the .mean curvature o~

the hyperS~ace. Also, h is the average of the mean curvature, h := f H dp.. This

flow is decreasing the area of the moving hypersurf~ while keeping the enclosed

wlume constant it is the gradient flow of isoperimetric problem. It is shown that

the solution Mt of this problem remains regular and converges in subsequences

to constant mean curvature surfaces', provided the initial hypersurfaee is small

. and convex, depending on the geometry of N. In joint work with S.T. Yau (Har­

vard) this technique was also applied to construct regular foliations by constant

mean curvature spheres near infinity in asymptotically flat 3-manifolds of positive

mass. These manifolds model isolated gravitating systems in general relativity and

the so constructed(JIDique) foliations by constant me,an curvature surfaces can be

interpreted aB the centre of mars for the inlinitely fax observer.

John E. Hutchinson: The nOil~Water.:.Surfactant" Problem

Suppose oil (0), water (W), and surfactant (S) (Le. soap or detergent)"are thor­

"oughly mixed in a container n. Then S fOlms an oriented surface which" can be

written in the form S = 51 U st U S2 where SI = 80 and st U 82 is a belayer of

two'oppositely oriented sheets.

From physical chemical considerations' the energy

E(S) =Ja(H - HO)2 - ßK,
s

where Ho is the prefered IJ;lean curvature, Q > 0, 0 < ß < Q, H is the mean

curvature, and K is the Gauss curvature (under these conditions on Q and ß, the

integrand is symmetrie and positive definite in the prineipal curvatures).

The problem can be naturally modelled in the setting of oriented integral curvature

varifolds (Hutchinson, Ind. Journal of Math. 1986). Thus

11
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.(.

(i) n c JR3

(il) 0 is a set of. bounded parameters .with spt 0 C n.

(iii) .S is an oriented 2-varifold with JIAI2 < 00" where IÄI2 ia the squar~_of

the second fundamental form taken in the approximate ~eak sense.

(iv) BO = c(S), where c(S) is the current associated to S (by "cancellation").

(v) M(S), Ml(O)are prescribed.

We discuss various existence and regularity results for minimizers as well as for

the class of competing surfaces.

N orbert Jakobowsky: A- perturbation result conceming a second solution to the

dirichlet problem (DP) for the equation 0/ prescribed mean

cUnJature

(DP) :Find X : Bl(O) -+]R3 such th"at

{
!::i.X = 2H(X)Xu A Xfj in BI(O)
X = Z on BBI(O)

Well known results (Struwe, Brezis-Coron, Steifen, .Wente) state the existence of

a second solution to (DP) for constant (curvature) H i= 0 and a class of (non­

constant) boundary data Z.

In 1989, Struwe extended bis results to (a dense s~t of) non constant curvature

functions near a constant i= O.

The purpose of this talk is to give a related statement: Assume Z E W I ,2 n
CO(B1(O», Z #; constant, IIZII"" < 1, Ho E)- 1, 1[\{O}. Then, there exists some. e
er > 0 such that D P) admits at least two solutions whenever H E Cl (JR3 , lR),

VB E Coo, sup {(I + IXI)IH(X) - Hol + IQ(X) - HoXI} < Ct, where
xeR3

J
I 2 .

EH(X) = 2"IVXI2 + aQ(X)Xu A Xvdudv, .

B

Xl

Q(X) = (J H(s,X2,X3 )ds,--,--).
o

12
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AB an essential tool convergence in Wl~:(Bl(O)\{ql"'.'qN}) of a subsequence of

{Xu } C {Z} + WJt2(B1(O)) is derived if IIXu 1l 1,2 :5 M < 00 and

sup 1I~1I1~rdEH(Xn)~1 -+ 0;
o~~ew~.2ncClO ' 0

moreover strong convergence in W 1,2(B1(O)), if°liminf I IVX,,12dudv < J.t(H)
tl-OO Bp(w)

for all w E B1(O) with P =p(w).

Jürge~ Jost

Michael Struwe: Minimal Bur/aces 0/ varying topological type

A global parametric approach to the Plateau problem for oriented IIlinit:Dal surfaces

spanning a given set of smooth Jordan curves r
o

= (r1 , ... , r m) is presented.

By considering parametrisatiolls of Teichmüller space in terms of Fenchel-Nielson

coordinates the Plateau problem for genus 9 surfaces may be phrased as a varia­

tional problem for a. smooth functional E on a convex set Mg of a suitable Banach

·space. A partial completion of Mg is achieved by allowing certain geodesics on the

model surface G ~o shrink and ~y allowing degenerations of the boundary maps
under the action of the conformal group on the boundary maps, giving rise to discs

splitting off at the boundary. The augmented space Mg constructed in this way is

stratmed into surfaces of varying genus.

Moreover, E and its partial derivatives continuily extend to Mg and respect the

stratmcation in the sense that a pseudo gradient vector field may be constructed

which is tangent to the strata. Travelling along the corresponding pseudo gradient

flow we may enter strata of lower genus hut the topological complexity is never

increased.

Finally a Palais Smale condition holds if we suitahly factor out the modular group

and the conformal group action on the disco Thus the problem is amenable to

Ljusternik-Schnirelman and Morse-Conley theory. As an application we obtain

Morse inequalities for embedded surfaces and various new results for stable and

unstahle minimal surfa.ces.

Recently, the first author extended the theory to the non-ori~ntable case. As

an application, an exainple of a configuration of two disjoint ares in exhibited

spanning infinitely many (oriented or non-orientable) minimal surfaces.

13
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Bernhard Kawohl: New results on an old nonconvex variational problem

More than 300 years aga Isaac Newton developed a model to predict the resistance

of a body which moves through a. rare medium. His model used Newtonian partide

mechanics. He found the resistance of a ball to be half as large as that of a

cylinder of same diameter and length and "reckoned that this proposition will not

be without applications in the building of ships" .

. To find a body of minimal resistance, one has to minimize a functional of type

J. 1
R(u) = 1 + IVul2dx

{1

over a suitable dass of admissible functions. Newton's contemporaries had used a

different but equivalent fonnulation for rotational bodies.

In the lecture I derive the functional and discuSs various aspects of the problem:

What is the right dass of admissible functions? How about existence, uniqueness,

symmetry etc.? One aspect are interesting compa.ctness results in function sp~es.

Another aspect is the validity of the Euler equations, which are of mixed (ellptic­

hyperbolic) type and which seem to caU for entropy-type coIl:d.itio~.

Most of the results were obtained in jomt work with G. Buttazzo (Pisa), but some

also.with V. Ferone (Napoli).

Ralf Klötzler: The multiplier rule for multiple integralS and inequality COn­

stroints

This paper deals with the problem: in which sense ean we generalize Pontrya­

gin's maximum principle for problems of optimal control with multiple integr~

on a domain S1? Under certain goodness eonditions it will be shown that this 1ciD.d

of Lagrange mul~iplier rule ean be obtained at least in approximate sense as en

e-maximum principle in integrated form. From this we get in m~y cases a cor­

rect maximum condition with multipliers in Loo (S1). In comparison of the d.eposit

problem (P) and its dual transportation ftow problem (D) ia illustrated, that each

optimal solution of (P) satisfies a such rule with multipliers which are optimal far

(D), elements of L~(n) but not always belang to LI(n).
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Yaroslav Kurylev: On same inverse boundary value problems for elliptic opera­

tors on a Riemannian manifold

Let 0 be an n-dimensional.(n ;::: 2) ~mpact smooth Riemannian manifold with non

empty border r =80. We denote by -ß its Laplace-Beltrami operator, by -t1N

the operator -ß with Neumann boundary condition, by -~ + q the Schrödinger

operator on n with· potential q, by (-t1 +q)1' the Schrödinger operator on n with

boundary condition of the 3rd type: al/v' - 1'ulr = o.

Definition: The set (r, {All:}, {CPllqr}),k = 1,2, .... is called boundary spectral

data (BSD).of -t1N (resp. (-t1 + q)-y) ij'. (Ak) .is the spectrum of -ßN (resp.

(-ß + q)..,) and {CPAqr} the traces on r of the corresponding eigenfunctions of

.-ßN (resp. (-ß + q)1')'

Th~orem: (Belishev-Kurylev 91): Given a BSD of -ßN the ßjem~anman­

ifold {l may be recovered uniquely.

Theorem: (Kurylev 92): Given BSD of (-ß + q)"Y the Riemannian manifold

{l, the potential q and the impedance l' may be recovered uniquely. Both the­

orems take place under some conditions on O(q,1') formulated iri terms of the

corresponding wave operator.

Let {l ~ ]Rn and M<a> an operator of the form

where 81/ is the normal derivative in the .metric associated to· {ai;}. Denoting

({Ak}' {cpklr}) the spectrum and traces of eigenfunctions of M<o.> aB BSD we
have

Theorem: (Kurylev 92): Given BSD, M<o.> may be covered uniquely modulus

the group of unimodular diffeomorphism of {l, identical on r.

Ernst Kuwert: Exterior domain problems for the minimal surfa.ce eQuation

div ( Du ) = o.
Jl+IDuI2

We consider boundary value problems for the nonparametrlc minimal surface equ~

tion on the exterlor of a uniformly convex, bounded se~ K. We show 'that" the~e is
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a unique variational solution with a given normal at ~ty and (varying) eontact

angle aIong BK. In eontrast we give two-dimensional example of non~existencefor

the Dirichlet pro1?lem and prove that ~y possible solution with given normal at

infinity must satisfy an oscillation bound on BK.

Joachim Lohkamp: Metrics 0/ negative Ricci curtJature

The relation between etUvature and topology of a Riemannian manifold is a elas-

sical problem in Riemannian geometry. Hadamard-Cartan, resp. Preissman theo- e
relns (for instanee) imply that sn and T" eannot earry a negative sectional eurva-

ture metrie. On the other hand results due to Aasn, Bland and Kalka imply that

e~ manifold admits a complete metrie of (constant) negativ scalar eurvature.

Hence the eJ4Stence of negative Rieci eurvature metrics on nianifolds, a problem

taking f6rmally position between those above, was an open problem for a long

time.

The author proved that each manifold Mn, n ~ 3 admits a complete metrie with

negative Rie~ curva.ture, indeed with -a(n) < r(g) < -b(n) for some constants

a(n) > b(n) > 0 depending only on ~. Furthermore there are results concerning

the so called " Gromov h-principle".

Stephan Luckhaus: An explic~t Hamack type estimate for almost minimizers of

the area in half space

The Harnack inequality for harmonie funetions eRD· be easily ~ed to get an esti­

mate for the defect of the Dirichlet integral

d.6(V) =! IVVI2
- ! IVV" 1

2 where
Bi Bi

ß V" = 0 in B1 , V" - VI8Bl = 0

The estimate can be stated as follows:

. There are explicit constants c(n), e(n) such that

! 'U > c6, 'U ~ 0 in B

Bl \S!
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implies: d~(v) ~ e6 I [~- v]+.
B;

This estimate can be.carried over to the ar~a functional on sets M of finite perime­

ter in halfspa.ce, X M denoting their characteristic functions.

Proposition: Let Me BI X[-00,6] ~ Rn with I IVXMI < 00,6 ~ 1,

d"AM) = f IVXMI - inf { flVXIIX - {O,l}, X - XMI8B, xlll == O}.
BIXlll BIXR

There exist explicit constants Cl (n), E2(n) such that:

.1- X M < 6,'Y~",'Yn = 2 - 3n~2 implies da.r(M) ~ C26 I x M •

(B 1 \B;)X[O,6] B; x[&,6]

Th~ proof uses Harnack's principle for the Laplacian and the explicit ~xces~ decay

estimate for minimal surfaces. It is important to have 'Yn < 2. As an application

one has the followirig estimate for the parametrie capillarity problem.

Lemma: Let, Mo CE Rn, oMo E CI,a, IßI < 1. Suppose X E {JMo', MeMo

minimizer for I IVXMI + ß I XM with prescribed volume. Then there exist
Mo 8Mo

EI(n,ß),c2(n,ß) and po(Mo,n,ß) such that for p < Po

f ·XM = Oor f X M > E:2p..-l.

Be,p(zo) B p(zo)n8 M o

Erich Miersemann: On an old problem 0/ B. Taylor in capillarity

We will discuss two asymptotic expansions for capillaJy problems:'

1. it is shown that there exists an asymptotic expansion of the height rise of

the surface in a wedge when a + "y < 1f/2 where 20: ia the corner angle and

o~ 'Y < 1f/2 the contact angle between the surface and th~ container wau.

The asymptotic does not depend on the particular solution considered.

2. It is shown the asymptotic correctness of a formal exp~sion given by

Laplaee in 1806 of the rise height öf a fluid in a circular capillary tube.

It is of special interest that the expansion is uniform with respect to the

boundary contact angle although the governing quasilinear elliptic equation

beeOmes singular on the boundary if the contact angle tends to zero. The

reason for this uniform behaviour is the special nonlinearity of the problem.
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The proofs are eompletely based on the eomparison principle of Concus and Finn

whieh applies to the particular nonlinearity of the problem.

. Luciano Modica: Non-uniquenes8 in the non-parometric Plateau problem in

the disk

Consider the weak form of the Cartesian Plateau problem on the disk B = {x E

]R2 : lxi< 1}: min [J V1 + IVvl2 + J Iv - <pld1i1] where <pE L1(aB) is the
vEBV(B) B 8B ..

given boundary value. If <p has at least one continuity point in aB, then the •

solution ia uni~ue.

In a recent paper in collab~ration with S. Baldes we have constructed an example of

a. '" E LI (aB) nowhere continuous such that the corresponding Cart~sian Plateau

problem has ~nfinit~Jy many solutions. The.i~ea is to have 1'1'1 == 1 on aB, but

cp ia so rapidly oscillatin:g between -1 and +1 that the eorresponding solution u

"prefers" to oscillate between -a and a with a < 1. Then u + Ais a minimizer for

every A E (a, 1).

John ~itt8: A,pplications 0/ variational methods in the large

We diseuss new eonstructions for obtainirig compact embedded minimal surfaces in

Riemannian 3-manifolds by variational methods in the large. These constructions

augment the basic approach which involves saddle point meth~ds (level~p~ jointly

with ·Prof. Byam Rubinstein of Melbourne University. As an application, we sketch

a ~roof ~f th~ 'exist~~ce' of a new family of 'minimal surfaces ~ 83(= {x Eur :
lxi =1}). 'Here is a aequence Mt, M2 , ••• , ofthese minima1surfaces such that !im

11:-+00

genus (M.) = 00 and the sequence converges (as varifolds) to a totally geodesie e
2-sphere with multiplicity two.

Friedrich Sauvigny: A variational problem with partially free singular boundary

We take ~ singtil~ support surface aSa, consisting of two halfplanes which meet

in a singular line L with an angle 1T + 21r, where a E (-1, 1) holds true and a

Jordan are r emanating from aSa. Solving an adequate variational problem we
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obtain a minimal surface far this configuration {r, aSa} with a regular behaviour

near L. For special arcs r we prove that the.configuration {r, aSa} bounds only

one stable minimal surface. These results have been achieved iIi my joint wark

with ProfeSsor Stefan Hildebrandt.

Friedrich Tomi: Nonexistence and instability in the exterior Dirichlet problem

for the minimal surface equation in the plane

Far a bounded domain !1 ~ Ii2 it is well known that convexity of n is both

necessary and sufficient far the unrestricted solvability of the Dirichlet problem

for the minimal surface equation. The situation for exterior domains was unclear

until very recently when E. Kuwert constructed examples of boundary data which

do not extend as minimal graphs to the exterior domain. These boundary data are

smooth but have large oscillation. In ajoint work N. Kutev and the present author

were able to sharpen this result considerably by showing that even the smallness of

the COtQ-Hölder norm 0'< a < ~,is not sufficient for the solvability of the Dirichlet

problem. Similarly, we can also show the instability of arbitrary solutions with

respect to small perturbati~ns on the boundary data in the CO'~-noim.

N .8. Trudinger: On the regularity of tJiscosity solutions oifully nonlinear el­

liptic equations 01 quasilinear type

In this talk, we are concemed with regularity, gradient estimates and ~que­

ness for Lipschitz solutions of fully noiilinear elliptic equations, satisfying stroctur

conditions modelled on uniformly elliptic -quasilinear equations. In particular,

Lipschitz viscosity solutionshave Bölder continuous first derivatives and the cor­

responding estimates for classical solutions extend _ta the viscosity solutions. Our

techniques involve careful examination of the semiconvex regularizations of sub-.

solutions, due to Jensen and Lions, Sougani~s, as funciions of the associated

parameters. Prospects for approximation using s~cond ord~r .flows, such as mean
curvature floware also discussed. .
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Henry C. Wente: Exact .solutions to some capillarity problems

The el8Bs of eonstant mean eurvature immersions of Joachimsthal type (one set of

eurvature lines planar) on Enneper type (one ~et spherieal) yield niee solutions to

eertain eapillarity problems: 1) Fluid in a infinite trough (as studied by Thomas

Vogel) and 2) Immersed eIDe annuli inside a sphere which meet the walls of the

sphere at a eonstant angle. We deseribe the solutions.

Brian White: The Bridge principle tor minimal sur/aces

In this ta.lk I described a method for proving that are ean join minimal surfaces

by suitable thin bri.dges. The method applies, for instanee; to' arbitrary smooth

strietly stable surfaces with boundary, in arbitrary dimension and eodimension.

A~ extensio~ to the.method aJIows one to also eonnect unstable-surfaces of ~ullity
o.

_ _ • • _ ~ r p

tl~g those metho~, ~n~ can prove,_for ~~ple, tbat the~e is a simple elosed
curve q in l}B3 such th~t C. is ~mootb except to are point and. such that C

has tbe foll~~g property: For every real number a ~eater than some A E lR

(~ depending on C) and every pair of. nonnegative integers / and i, there exist

uncountably (continuous) ~any embedded minimal surfaces, each of which has

boundary C, area a, genus 9, and index i. This doesnot s~em to follow from other

bridge theorem (Meeks ~ Yau, AJmgren, Smale).

Rugang Ye: Finite time blow-up for solutions 0/ the hQ.rTnonicmap heat

flow

It is a de1icate issue to determine whether finite time blow-up ean occur along the

beat flow for harmonie maps w~en the domain dimension is two. 'On the other

hand, in higher dimensions~ finite time blow-ups are caused by a kind ~f eon­

fliet between topological obstru~tion and analytie convergence. We demonstrate

examples of finite time blow-up's in dimension two~

Berichterstatter: Mouss.a Kourouma
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