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The conference was organized by J.D. Jones (Warwick),I. Madsen (Aarhus) and E.
Vogt (Berlin). 48 participants from Europe and the United States attended the confer­
ence. The topics of the 19 talks dealt with new developments in algebraic and geometrie
topology. In particular, the following areas were discussed: knots and 3-manifolds and
their connections to topological quantum field theory, algebraic K-theory with applica­
tions to group actions and differential geometry, the relationship between analysis and
topological invarian~s,homotopy theory.
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Vortragsauszüge

Christian Kassel:

Framed tangles and ribbon categories

Ribbon categories as defined by Reshetikhin-Turaev are the right kind of monoidal
categories in order to produce isotopy invariants of framed links in R3. In joint work with

. Vladimir Turaev we assoeiate a ribbon category V(C) to any monoidal category C with
(left) duals.. In some sense it is the right adjoint of the forgetful functor from ribbon •
categories to monoidal categories with left duals.

If C = A - ModJ is the monoidal category of finite dimensional representations of
a Hopf algebra A, then V(C) is isomorphie to the ribbon category V(A)(8) - ModJ of
finite dimensional representations of the universal ribbon algebra associated to Drinfeld's
quantum double V(A) of A.

Johan Dupont:

Formulas for characteristic classes for flat bundles

Let G be a complex reductive Lie group. The Cheeger-Chern-Simons classes for Hat
G-bundles give cohomology classes in H*(BGo; C/Q), where GO is the discrete underlying
group for G. We give an explicit formula for these classes in terms of the bar-complex
for the diserete group GO, given a choice of the following data: In the singular complex
with rational coefficients C. = C:ing(G; Q) choose a projection h onto a subspace of
representatives for the homology of G and a chain homotopy s : C. --+ C.+l, such that
s8 + as = id - h. In the case G = C·, the C-C-S-class is just given by z ~ 2~i log(z), and
h corresponds to the choice of 1 E C· as a basepoint, whereas h is the choice of an are a in
the formula log(z) = Ja 4;. Thus our formula is a first step in getting a "polylogarithmic"
formula for the C-C-S-classes.

Erik K. Pedersen Uoint work with G. Carlsson):

Continuously controlled algebraic K-theory

Let r be a group such that Br is finite. Suppose Er has a compactification X (Er
an open dense subset of X) such that

(i) the r -action extends to X,

(ii) X is metrizable and contractible,

(iii) compact subsets of Er become small near Y = X \ Er i.e. Vy E Y VU" C X nbd.
of y VI( C Er compact 3~ C X so that if gI( n Vy =I 0 then gK C Uy •
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Theorem: The assembly maps

(i) Br+ A KR~ ](Rr

(ii) Br+ A L -OO(R) ---. L(Rr)

(iii) Br+ A A(Y)~ A(Br x Y)

are split monomorphisms (of spectra). In (i) R is a ring, in (ii) a ring with involution and
in (iii) Y is aspace.

The proof of (i) is based on continuously controlled algebraic K-theory as developed
by Anderson, Conolly, Ferry and Pedersen. The proof of (ii) uses the L-theory ofadditive'
categories as developed by Ranicki, and (iii) uses continuously controlled A-theory as

_eveloped by Pedersen and Vogell.

Andrew Ranicki:

The algebraic theory of bands

A band is a finite CW complex X with a finitely dominated infinite cyclic cover X.
(The terminology is due to Siebenmann.) Let A be a ring with Laurent polynomial
extension A[z, Z-I].

A chain complex band is a finite f.g. free A[z, z-l]-module chain complex C which is A­
finitely dominated, i.e. is A-module chain equivalent to ci finite f.g. projective A-module
chain complex. .

Let A«z)),A«~-l)) be the completions of A[z,z-l].

Theorem: A finite f.g. free A[z, z-l]-module chain complex C is a chain complex band
if and only if

H.(A«z» ®A[z,z-l] C) = H.(A«Z-l» ®A[z,z-l] C) = 0

The theorem has applications to tbe obstruction theory ·for deciding which com­
pact manifold bands fibre over SI. In parti~ular, it can be used to relate the surgery­
theoretic Farrell-Siebenmann obstruction to the Morse-theoretic Novikov-pazhitnov ob­

_ruction.

Dietrich Notbohm (joint work with J. Aguade and C. Broto):

Some spaces with interesting cohomology and a conjecture of Cooke

We are interested in the realization and classification of the homotopy types of spaces
realizing algebras over the Steenrod algebra of tbe form Fp[x] ® E(y), where deg(x) =
2n, deg(y) = 2n + 1 and the Backstein maps x onto y. These algbras are called P E­
algebras of type (2n,2n + 1). Examples of spaces realizing P E-algebras were first con­
structed by Cooke as folIows.
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Let y~ be the homotopy fiber of the degree pk map S3 .:......... /«Z,3). The p-adic
completion Yk := Y~; carries a Z/(p - l)-action. For r dividing p - 1 and for k = 0, the
homotopy orbit EZ/r x l/r Yk realizes a PE-algebra of type (2pr,2pr + 1). For k = 1
we get a realization of a PE-algebra of type (2r,2r + 1). Cooke conjeetured that a P E­
algebra of type (2n,2n + 1) is realizable iff n divides p(p - 1). For n = pr, the action of
the Steenrod algebra A p is already determined. For nlp -1 there are two different aetions
of A p , whieh can be distinguished by the action of pI or Sq2 on the exterior generator.

Now we assume that p is an odd prime. Then the Cooke conjecture is true, but the
above constructed spaces are not the only homotopy types realizing PE-algebras.

Theorem: If the cohomology H*(X; Fp ) of a topological space X is a PE-algebra of type
(2n,2n + 1), then n divides p(p - 1).

Theorem: Let B be a fixed PE-algebra of type (2pr,2pr + 1), where r divides p - 1.

(i) For any sEN there exists a p-complete space ~ realizing B, and all of these spaces
are pairwise not homotopy equivalent.

(ii) Any p-complete space, Y realizing B, is homotopy equivalent to one of the spaces
~.

The proof of this theorem and of the Cooke conjecture involves a lot of 'Lannes­
theory'. In particuliar we have to face the problem to ealculate the cohomology of a
mapping space map(BZ/p, Y)j, where the applieation of Lannes' T-funetor does not give
an algebra which vanishes in degree 1.

Klaus Johannson:

Homotopy of Heegaard strings

Let M be a 3-manifold, orientable and eompact. M is Haken, if it is irreducible, 8­
irreducible and sufficiently large in the sense that it contains at least one incompressible
surface. M is simple if it contains no essential annulus or torus and if it is Haken. An are
t c M is a Heegaard-string, if its complement is a handlebody.

Theorem: Any two Heegaard-strings in a simple 3-manifold are homotopie iff they are
ambient isotopic.

It has been indicated how to apply this result to a calculation of the mapping class
group of a l-relator 3-manifold.

As a eorollary one also gets that it can be decided whether two given Heegaard strings
in a simple 3-manifold are ambient isotopic.

4

                                   
                                                                                                       ©



John Rognes:

Filtering the spectrum K(Z) by rank

We approximate the K -theory spectrum of the integers using a spectrum level rank
filtration. By means of a certain poset spectral sequence we explicitly compute the first
three subquotients of this filtration. Assuming a conjecture about the filtration's rate of
convergence, we conelude that K 4(Z) = 0 and Ks(Z) is a copY of Z "(the Borel summand)
plus two-torsion of order at most eight.

Michael Weiss:

Pincing and concordances

e The sphere-theorem of Rauch-Berger-Klingenberg states that a simply-conneeted com­
plete Riemannian manifold Mn whose sectional c~rvature satisfies 1/4 < sec(M) ~ 1 is
homeomorphic to sn. Question, popular to differential geometers: Is M diffeomorphic to
sn? One way to attack the question is by using concordance theory as follows.

Suppose that M is any homotopy sphere. Let WeM) be the space of Morse functions
I on M having exactly two critical points (necessarily maximum and minimum points).
Tbe map WeM) --+ Mx M\diagonal, f .-+ (min.point off, max.point of/) is a Z/2-map;
the generator of Z/2 acts by f t-+ -land (x, y) t-+ (y, x).

Passing to the quotients gives a fibre bundle

WeM) MxM\6 n

PM :~ --+ Z/2 ~ RP .

Theorem: If M has a Riemannian metric with l/~ < sec(M) ~ 1, then PM has a section.

Calculation: Assume that M (with some orientation) has even order in the group of
oriented homotopy n.spheres modulo diffeomorphism, and that M = aN where N 4k is
smooth, compact parallellized. Then PM does not have a section.

More precise results are available, relating the order of [M] to the maximal k such
that PM has a partial section over Rpk C Rpn ~ (M x M \ ß)j(Z/2).

The calculation uses: (1) The fiber of Pm is homotopy equivalent to the space of smooth
.aconcordances of the sphere sn-I;
". (2) Waldhausen's theory relating smooth concordance spaces to algebraic ·K~theory.

The calculation is based on joint work with Bruce Williams.

Jun Murakami:

A formula for the HOMFLY polynomial of satelite links

Let P be the HOMFLY polynomial of links defined by the skein relation. Let Hn •m be a
quotient by the skein relation of the semigroup ring of (n+m)-tangles whose left n-strings
(right m-strings) on the edges are oriented downwards (upwards). It is a generalization
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of the Iwahori-Hecke algebra and its simple modules are parametrized by pairs of Young
diagrams (Y, V'). For a satelite link !(L coming from a knot K in S3 and a link L in
8 2 x sI, we have P(](L) = L(Y,Y') f(y,y,)(L) p(Y,Y')(](). In this formula, f(Y,Y') is an
invariant of links in B 2 x SI coming from the character of Hn,m parametrized by (Y, V'),
and p(y,YI)(K) = P(K(y,y,)), where K(y,Y 1 ) is a linear combination of satelite links of K
corresponding to a primitive idenpotent of Hn-1,m-l parametrized by (Y, V').

Alexander L. Fel'shtyn (joint work with Richard Hili):

Reidemeister torsion, Nielsen Theory and Dynamical zeta functions

We continue to study the Reidemeister and Nielsen zeta functions. We prove ratio- e
nality and functional equations of the Reidemeister zeta function of an endomorphism of
any finite group and of a self-map of a polyhedron with finite fundamental group. The
same results are obtained for eventually commutative endomorphisms of groups , and for
eventually commutative self-maps of compact polyhedra. We connect the Reidemeister
zeta function of a group endomorphism with the Lefschetz zeta function of the Pontrya-
gin dual endomorphism, and as a consequence obtain a connection of the Reiserneister
zeta function .witb the Reidemeister torsion. We also obtain arithmetical congruences for
tbe Reidemeister and Nielsen numbers similar to those found by Dold for tbe Lefschetz
numbers.

Thomas Fiedler:

Small state sums for knots and their applications

In the first part of the talk we introduced a new invariant for knots in realline bundles
over non-simply connected surfaces hy means of a very simple state sumo This invariant
was used to calculate a relative unknotting number for. knots in certain 3-manifolds wbich
fiber over tbe circle.

In the last part of the talk tbis invariant was generalized to an isotopy invariant of
isotopies of knots. Let F2 be an oriented smootb non-simply connected surface and let
arg : F 2 X C'" -+ SI be tbe map given by the argument of the second factor.
Definition. An oriented closed smooth embedded surface T t...-+ F 2 X C'" is called a
transversal ~-dimensionalbraidif arg IT has no critical points. (For T = Si and F2 = I we e.:
obtain the usual closed braids.) We construct an isotopy invariant for 2-braids which lives

in the free Z-module generated by ordered pairs of elements from (Ht (F2
), Ht (F2 )/±1).
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Example:

Let T. = arg- l (s) n T, s E SI be the standard Z/3Z-symmetrie diagram of the trefoil
in F2 X R.

If we rotate the annulus by ~ n, n E Z, and glue it to itself we obtain a 2~imensional

braid T(n).

Theorem. T(n) is not isotopic as a 2-dimensional braid to T(m) for n =F m.

Remark. It is weIl known that ordinary closed braids are is~topie as braids iff they are
isotopie as links in the solid torus. Does the analogue statement hold for 2-dimensional
braids? If "yes" our invariant provides a new isotopy invariant for certain smooth surfaces
in certain 4-manifolds.

Oleg Viro:

Triangulations of smooth manifolds

Let X be a smooth manifold of dimension n with a smooth triangulation T. Let
u be a simplex of T of dimension p. Then the normal spare of T is equipped with a
decomposition into simplieial cones consisting of vectors directed inside to the adjacent

.4IIIIIimplices of T. A subcomplex of T is called locally eonvex, if at each point of its boundary
'.e CODes corresponding to its simplices constitute a convex cone.

Theorem 1. If E is a simplex of T with IkTE simplieially isomorphie to the boundary
of a q-dimensional simplex and StTE is loeally eonvex, then the bistellar transformation
of T eentered at E produces a triangulation smooth with respect to the same smooth
strueture of x. .

Theorem 2. If T is simplieially isomorphie to the boundary of an (n + 1)-dimensional
simplex then X is diffeomorphic to sn. .
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Corollary. Any smooth triangulation of an exotic 7-dimensional sphere can not be
transformed to a triangulation isomorphie to the _triangulation of the boundary of the
8-simplex by bistellar transformations centered at simplexes with locally convex stars.

Pierre Vogel:

The Heisenberg group of a surface and Topological Quantum Field Theory

The Witten-Reshetikhin-Turaev invariants can be modified and generalized ioto in­
variants Z", associated to every oriented closed 3-manifold M equipped with a banded
link and a Pl-structure (i.e. a null-homotopy of its first Pontrjagin class). This invariant
takes values in an algebraic extension kp of the ring Z[A, A -I] quotiented by the cyclo­
tomic polynomial 4>2p(A). It has ni~ properties with respect to surgery and change of
PI-structure or orientation and, as fUDction of the link, it satisfies tbe Kauffmann skein
relation (with the variable A).

In a complete formal way, one associates to this invariant a TQFT: for every closed
surface E (equipped with a Pr-structure) there is a kp-module Vp(E), and for every com­
pact 3-manifold M (equipped with a banded link and a PI-structure) there is a canonical
element Z,,(M) in the module Vp (8M).

One constructs a Heisenberg type group r(E) which is a central extension uf BI (E, Z/2)
by Z/4. The elements of this group are represented by certain links in E x I. By nat­
urality, this links induce endomorphisms on V2p (E) and one gets an action of the group
r(E) on this module. By looking at the characters of this group one deduces a natural
decomposition of the module lt2p (E): .

Theorem: I/ p is odd, there is a natural decomposition:

I/ p is even, there is a natural decomposition:

where the direct sum runs over all spin structures 0/ E i/pis divisible by 4 and all mod 2
cohomology class 0/ E i/p is conguent to 2 mod. 4.

The modules Vp(E, u) are new modules depending on u, and produce other TQFT f~r

spin manifolds and for manifolds equipped with a mod 2 cohomology class..

Jürgen Eichhorn:

Index theory on non-compact manifolds

Let (M''',g) be an open, completeRiemannian manifold, (C, \1) ~ M a.Clifford bundle,
D the associated generaliz~d Dirac operator.

Assume Tinj(M) > 0, lViRI ~ Ci, 1(\7()iR'I ~ Di, 0 ~ i ~ k, k > n/2.
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Denote by kc(x, y) the beat kernel of e-eD2. kc(x, y) has an asymptotic expansion

kt(x, y) ~ E t(k-n)/2t/Jk(X)

k~O

(t ~ 0+),

where tPk E O(End( ® Anr*).
Assurne additionally ( and D graded, i.e. there is an involution '7 of (, '72 = id,

( = (+ EB (_, D'7 + TJD = o. Let ID = tr('7tPn). Assume M has a so called regular
exhaustion. This exhaustion defines a .fundamental class m E (6Hn)* and Iv E 6Hß=
bounded cohomology. D is elliptic and has a weil defined Index IndD E Ko(U-oo ), U-oo =
quasilocal operators of order -00. An A E U-oo has a kernel kA • Define a trace T by
r(A) =. (tr('7kA), m) and set indoD = T(IndD).

• heorem: in~GD = indeD := (ID, m) ..

John Roe proved this for k = 00. We dropped the assumption to k > n/2.

Mel Rothenberg:

Survey of recent developments in Reidemeister torsion

Classical Reidemeister torsion associates to a manifold M and a homomorphism X :
1r = 1I"1(M) -+ O(n) an invariant T(M, X) E R+ provided an associated complex is acyclic.
This is done in two ways: A combinatorial way yielding TPL and an analytic-geometric
way yielding To •

The equivalence of the two is a famous Theorem of Cheeger and .independently of
Müller.

Modern work of Carey-Mathai, Lück-Rothenherg, Lott and Lott-Lück has extended
this construction to· certain fa.milies of infinite dimensional representations, most impor­
tant the regular representation. The invariants are closely linked to L2 invariants of M.
The invariants are closely linked to both geometry and homotopy of M, and yield for
example for hyperbolic M, the volume of M.

Peter May:

Rings and modules in stable homotopy theory

e An E"" ring spectrum is the nearest analog in stahle homotopy theory of a commutative
and associative ring. We have constructed a good category of module spectra over an Eoo

ring spectrum. The essential point is the definition of smash product modules M AR N
and function spectra modules FR(M, N). This new chapter in stahle homotopy theory
allows one to contemplate a serious translation of commutative ring theory into stahle
homotopy theory. Immediate aplications include new constructions of a variety of spectra
usually ohtained from MU by the Bass-Sullivan theory of manifolds with singularities
and new universal coefficient .and Künneth spectral sequences. One defines·

1rq(M AR N) = Tor:(M, N) and 11"-qFR(M~ N) = Ext~(M, N) .
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On specialization to Eilenberg-MacLane spectra, these ralize the classical homological al­
gebra functors, and in general there are speetral sequences starting in elassical homological
functors and having these groups as targets. The new theory has potential applications
to Quillen's algebraic K-theory of rings, Waldhausen's algebraieK-theory of spaces,
Böksted's topological Hoehschild homology, as weIl as to stable homotopy theory. Espe­
cially interesting is the relation to the recent result of Hopkins and Miller that versions of
the spectra E(n) carry Eoo ring struetures. Other examples are S, H R for a commutative
ring, kO, kU, MO, MU, KR for a commutative ring, and many others.

lan Hambleton (joint work with E.K. Pedersen):

Bounded Topology and Non-Linear Similarity

Let G be a finite group. Two finite-dimensional real G-representations are topolog­
ically similar if there exists an equivariant homeomorphism h : Vi -+ V2 between them.
When Vi, V2 are not linearly isomorphie, h is called a non-linear similarity. After choosing
aG-invariant metric,the S(Vi) inherit linear G-actions.

Observation (M. Steinberger?): VI, \J2 are topologieally similar (ltl ""'J t lt2) if and only if
S(Vi) is G - h-cobordant to S(1I2).

In the lecture I reviewed' previous work by Cappell, Shaneson, Steinberger, Wein­
berger, West, Hsinang, Pardon, Madsen, Rothenberg. The aim of the talk was to give a
constr~ction of non-linearsimilarities using bounded toplogy.

If V, Ware G-representations, S(V EB W) = S(ll) * S(W) and there is a natural map
S(V EB W) - S(W) ~ W making the diagram (of G-maps) commute:

S(V EB W) - S(W) ~ S(V) x W

"" ßroj2
W

where the last map is the second factor projection. After quotient by G, the pair (B(V) Xc
W ~ WIG) is a bounded manifold in the sense iotroduced by Ferry-Pedersen. Our main
result is:

•

Theorem: Let ltl, 112 be free representations of G. Then V1 ffi W ""t lt2 $ W, for some
G-representation W, if and ooly if (S(Vl) XG W -+ W/G) and (S(V2) Xa W ~ W/G) are

boundedly h-cobordant. .'

We: then use the bounded surgery theory of Ferry-Pedersen (as extended in our paper
in J.A.M.S. 4(1991» and relate the existence of non-linea.r similarities to the vanishing of
a transfer map:
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The upper row is the ordinary surgery exact sequence for structures on S(Yt )IG, and
the lower row is the new bounded surgery exact sequence. The bounded L-group is the
L-group of an additive category, and so has an algebraic description.

This formulation leads to new techniques for finding examples. A new collection of
non-linear similarities was given for the quaternionie groups G = Q(2kp), P odd and k ~ 4.

Bob Oliver:

Decompositions of classifying spaces: a survey

For a compact Lie group G and a prime p, there are two decompositions of BG at the"
prime p which have been very useful in recent years for studying homotopy properties of
BG: .-A. [Jackowski-McClure) Let Ap(G) be the category whose objects are s~bgroups (Z/Pt ~
E ~ G (r > 0), and where MOrAp(G)(E, E') ~ Hom(E, E') is the subset of homomor­
phisms given by inclusions and conjugation. Then

BG,==p h~ BGG(E).
E E Ap(G)

B. [Jackowski-McClure-Oliver] Let R,,(G) be the category of orbits GIP, where P is
p-toral, N(P)IP is finite, and Op(N(P)/P) = 1 (morphisms are G-maps). Then

BG ~p h~m EG XG (GIP).
GIPERp(G)

(where EG XG GIP ~ EGIP '== BP).

The second decomposition has been useful, for example, when describing maps between
classifying spaces, and (in work by Notbohm) when showing the uniqueness of classifying
spaces in many cases.

Eimer Rees:

Radon-Hurwitz revisited

- Using Clifford algebras, there is a construction of a bilinear, norm-preserving map

RP(n) x Rn ~ Rn

where p(n) = Sb + c if n = 24 m with m odd and a = 4b + c, 0 :$ c :$ 3. In 1923,
Hurwitz and Radon, independently, showed that the dimension p(n) cannot be increased.
The construction gives a p(n )-dimensional linear subspace V of Horn( R:' , Ir) such that
every naß-zero matrix in V is non-singular. In 1962, Adams, Lax and Phillips proved,
as a consequence of Adams' solution of the ~ector fields on spheres problem, that the
dimension of any such V cannot be greater than p(n). A more direct version of their
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proof is to consider the map V x ~ -+ V x ~ defined by (A,x) -+ (A,Ax). This map
induces an isomorphism nA -+ ne of vector bundles over the projective space P(V); the
result follows by a simple direct calculation using the fact that the reduced real K -theory
of P(V) is cyclic of known order 2fP(d) with A- e as a generator.

The same method can be used to estimate. the dimension of a linear subspace V of
Hom(Jl:&, Jrl) such that every non-zero matrix in V has given rank k. In this case there
is an exact sequence

o-+ F ~ nA ~ ne ~ G ~ 0

where F and G are both vector bundles of dimensionn n - k. Using this one can deduce,
when k = n - 1, that the dimension of V can be at most

p(n) when n is even
p(n - 1) n == 1 mod 4
p(n + 1) n == 3 mod 4 .

These estimates are best possible except in the last case where spaces only of dimension
p(n) - 1 can be constructed (for the two cases n = 3, 7, it can be shown that this lower
esimate is the largest possible).

There is an algebraic geometrie approach to the closely related pr~blem of estimating
the maximum dimension of linear spaces as above but with the condition that every non­
zero matrix in V has rank ~ k. The method is to study the v"ariety XI: of n x n real
~atrices of rank less than k. A linear spare V of dimension complementary to that of XI:
must intersect it if the degree of XI: is odd. In the simplest case one obtains the following
result: Let l = n - k + 1 and choose s so that l ~ 2-', < 2.l, and suppose that V is a
linear spare whose non-zero elements are n x n real matrices of rank at least k and if
n =±.l mod 2'+1 then the dimension of V is at most (J. A construction shows that, in
these cases, the estimates cannot be irnproved.

Berichterstatter: Michael Unsöld (Berlin)
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