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Tagungsber cht 43/1992

Darstellungstheorie e~dlicher Gruppen

2.7.09. bis 03.10.1992

The conference 'Yas organized by Bertram Huppert (Fachbereich Mathematik, Universität
Mainz, Saarstraße 21,6500 Mainz, Germany) and Gerhard O. MichJer (Institute for Expe­
rimental Mathematics, Ellernstraße 29, 4300 Essen 12, Germany). It was atte.nded by 48
mathematicians, 2~ of whom eame from abroad: Australia (1), Denmark(l), Great Britain
(3), France (1), Israel (2), Japan (2), Russia (2), and-the USA (11). 30 lectures were given
on recent developments in representation theory.

The main topics of the meeting were:

1. Reductions bf Brauer's and Alperin's conjeetures in modl.llar representation theory.
. ,"

2. The representation theory o~ groups of Lie type and their. Hecke algebras.

3. Isotypies,. Morita equivalences and other co~espondencesb~tween blocks, especially
principal blocks of finite groups with abeliari Sylow p-subgroups.

4. Th~ symmetrie group, especially d~ompositionmatrices·of spin blocks and related
developments .in combinatorics.

A special lecture was organized on the Thursday evening in which the participants could
prcsent some important open problems arising in their research.·
The participants did not onIy benefit from the original and interesting lectures, but also
fraln the intensive private discussions arnong cach other during the whole week. Especially
thc young mathematicians from E~t .Germany Wp.re able to meet and learn in the subject
from famotIs experts thcy hau ncvcr heen able to talk to before. The meeting proved again
t.hat. the representation theory of finite grollps iso an old and difficult area of research in
al,c;ebra which is still very active.
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Abstracts of tlle talks

E.C.. Dade: Counting Character"s in Blocks of Finite Groups

If B is a p-block of a finite group G, it is conjectured that the number k(B) of ordinary
irreducible characters of ß with a fixed defect d, lying over a fixed linear eharaeter <.p' of
Op(G) (assumed to be central in G) is a SUffi of the form

(1) keß) = E (_l)ICI+l
CeRtG '
ICI>o

E k(b)
bG:B

bEBlk(Na/(C»

\vhere RJG is a family of representatives for the G-eonjugacy classes of radieal p-chains
of G. This formula holds only when pd(B) > IOp(G)I. We can sho\v that, under the same
assumptions (Op(G) ~ Z(G) and pd(B) > IOp(G) 1), this is equivalent to the conjecture that

(2) keß) = E (_l)lcl+I
CeR/G
IGI>O

E kw(b)
bG:B

bEBlk(NG(C»

where kw(B) counts the number of ordinary irreducible characterst/J of b \vith fixed defect
d, lying over t.p and satisfying d( t/J) = d(~), for any ~ E Irr(PI) lying under 1j;. Here C : Po =
Op(C) < PI <... < Pn •

G. R. Robinson: A Note on Alperin's Conjecture

In this talk, I will discuss a "Möbius Inversion Formula" for the ~~Lefschetz Conjugation
Module" introduced by R. !(nörr and myself in our work on Alperin 's Conjeeture.
This is an equation in the Green ring which shows that the Lefschetz Conjugation Module
of a block B is closely related to the module EBSEB HomF(S, peS)~ \vhere S runs through
simple modules over B.
It gives an equality of virtual modules which in a sense generalizes the statement of Alpe­
rin '5 Conjecture.

M. Weidner: The 3rd Loewy Layer of PI (G)

Let p denote a prime, G a p-solvab'le group, FG the groupring over the field with p eleInents,
./ the radical of IFG and !Pt thc projective cover of thc trivial G-module.
Then (vV. Gaschütz (1977» Pt)/ J2 is the dircct surn of the complemented p chief factors
of a chief series of G. We show: !p.J2/J3 is a <.1irect slun of ~ome (non c:omplemented) ]J

chief factors and the head of cU} acccssihic module IV.
A consequcnce of this dcscription is: If c.lim PI = pU then dirn J,V S; n(n + 1}/2 2::
diln PI}2/ J3. If I. is the composition lcn~th of PI.!/./2, then t.he hcad of \11 has composition
length at least 1.(/. - 1)/2.
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D. ChilIag: Characters, Classes and Eigenvalues of Regular Representations of
Semi Simple Algebras

Analog results on conjugacy classes and characters·(ordinary and Brauer characters) can be
proved tlsing the fact that the values of characters (ordinary, Brauer and central characters)
are cigenvalues of the regular representation of a corresponding algebra.

U. Stammbach: Vertices of certain indecomposable modules

Let S be a p-Sylow subgroup of G, and let k be a field of characteristic p. We consider the
exact sequence

o --+ R -+ kG ®s k -+ k -+ O.

Let R = EB Ci with Ci indecomposable. For e~ Ci we choose a vertex group ~ ~ s.
Then, for A a kG-module and n ~ 0, the following sequence is exact

(*) 0 --+ Hn(G, A) -+ Hn(S, A) -+ EB Hn(l't, A)/(Hn(Vi, AnNG(V,).

This result was motivated by the result of Robinson, that {(Vi, NG(Vi»)} U (S, iVaS) is a
weak conjugation family. An applieation of (*) yields a simple proof of the following'result
of.Benson, Carlson, Robinson: If H is a weakly p-embedded subgroup of G, and if M is a
modulein the principal block of kG, then Hn(G, M)-=+Hn(H, M), n ~ O. .

R. Gow: The Steinberg Character.of a Group of Lie Type

Let G be a group of Lie typ~ (finite). A scaled version of the 'Killing form d~fineS a
non-degenerated symmetrie or alternating bilinear fonn on L /Z x L / Z 1 where L is the
adjoint module of G ~d Z its centre. Using the associated geometry on L/Z,"we abtain
a generalized eharaeter of Gwhich, when slightly modified, gives theSteinberg.:character.
Irreducibility of the charaeter is proved by re~provingSteinberg's theorem that tli~ number
of unipotent elements is the square of the order of the Sylow p-subgroup.

C. W. Curtis: On the Decomposition of Gelfand-Graev Representations of
Reductive Groups over Finite Fields .

Let G be a connected, reductive algebraic group, defined over a finite fieId Fq , with Fro­
benius map F, assumed to be of split type in this abstract. Let Uo denote.the unipotent
radical of an F-stable Borel subgroup Bo, containing a maximal F-stable -torus To. Let ~.

be the root system of G with respect to Ta, 4)+ the set of positive roots corresponding
to Bo, and II the set of simple roots in 4)+. A linear represeniation t/J 'of ut is called
nondegenerate provided that its restrietion to a positive root subgroup U: is nontrivi­
a.1 if and only if Q E n. The Gelfand-Graev representations of the finite group CF are
thc induced representations 1/JGF, for the nondcgcnerate .linear representations t/J of Ut'.
In (:a..o.;(~ the c:enter Z(G) is connected, there is only one Gelfand-Graev representation (up

3

                                   
                                                                                                       ©



to equivalence). and the irreducible components of its character r were constructed by
Delig~e and Lusztig"as linear combinations of the virtual characters RT/J. In general, the

. nondegenerate characters tP, and the Gelfand-Graev characters associated \vith them. are
parametrized by the elements z E H 1(F, Z(G)), and are denoted by V':: and TZ, respecti\"ely.
Each Gelfand-Graev representation IZ is known to be multiplicity free, so its Hecke alge­
bra, or endomorphism algebra Ilz = ezKGF ez is commutative. Here !( is an algebraically
closed field of charactenstic zero, and ez is the primitive"idempotent in !{ut corresponding
to VJz.
The first resulr asserts that for each Gelfand-Graev character r:n and each pair (T. 0)
consisting of a maximal F-stable torus T and an irreducihle character () of T F , there exists
a unique irredueible character XT,8,z of GF.such that (XT,O,z, r z) i= 0 and (XT,8.=, RT!o) i=- O. •
The irreducible tepresentations of Hz correspond to the irreducible components {XT,8.=} of
r~, and are denoted by {/T,8,z}'
Let z E Hl (F, Z(G)), and let (T,8) be a pair as above. The main result ean be" stated as
follows. There exists a unique homomorphism of algebras fT,z : !fz ......,.. !(TF, independent
of 8, with the property that each homomorphism fT,8,z can be factored, fT,9,z = Ö0 fT.=,
where Ö: ](TF ~ ]( is the representation of the group algebra !(TF extending O. Explicit
formulas are obtained for the values {fT,z(Ci)} on the set of standard basis elements {Ci}
of Hz. These are given in terms of the Green functions {QfG(T)O} for semisimple elements
t E'GF , and the values of the character "pz. In case G = SL2 , these formulas were obtained
by Gelfand and Graev in 1962, and.were called Bessel functions Qver finite fields.

R. Dipper: Harish-Chandra Series of Irreducible Representations of Finite
General 'Linear Groups

As in characteristic zero the irreducible representations of finite groups of Lie type in oon­
desctibing characteristic are divided into Harish-Chandra series. This was first proved by
Hiss in terms of charact.er theory. Those series are given by so-called semisimple Harish­
Chandra vertices and sourees, a generalisation of Green's vertex theory.
For finite general linear groups we determine the semisimple Harish-Chandra vertices for
the irreducible representations in non-describing characteristic. They are given by l-p­
adicdecomposition of weights. The proof involves a ~ersion of Steinberg's tensor product
theorem in non-describing characteristic.

P. Fleischmann: On Conjugacy Classe~ of Chevalley Groups

This is joint work with 1. Janiszczak.
Rccently we were ahle to finish the computations of generic class numbers for adjoint
exceptional Chevalley groups of type E6 , E1 and Es. In case Eö our result is an independent
check (with same corrections) of earlier work of Mizllno.
We llse Luszti~:s Jordan decomposition of charactcrs, and dctcnnine thc numbcrs of ::;f~­

luisimple class~s in the (simply connccted) dual grotlp. This mcthod can b~ gencrali~ed

to groups of c1assical type. It involvcs comhinations of sllbs'ystcms of ronts anu Mochills
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functions of partition lattices. As an application of our results we obtained (togcther with

\V. Lcmpken) a th~rcm on centralizers.of finite groups .G: If p IIGI then there is 9 E G
such that 9p E CG(g)\Cc(g)'. The proof uses classification of finite ~imple groups.

J. F. Carlson: Quotient Categories oe Modules

The lecture is areport on joint work with Pe~er Donovan and Wayne Wheeler. Let G
be a finite group and k a field of characteristic p > O. Let Stmod - kG be the stahle
category of finitely generated kG-modules modulo projectives. For any integer c ~ 0, let
.'\A e denote the ruH subcategory of modules of complexity at most c. If r is the p-rank of
G then Stmod - kG = J\1". Each ..Me is a thick sub.category of M" and so the quotients

...·\!t c!J\lf c- 1 are· triangulated. Let Qc = }Ae!Me-I. ~ general the objects of Qe do not
satisfy a Krull-Schmidt theorem. For objects M and-N in Me, the .group of morphisms in
Qe from M to N can be described as the zero grading of the localization of E~ka(M,N)
at a multipli~ative set SM,N of H*(G, k) ~ ExtkG(k, k) determined by a conditi9n on the
intersection of varieties. In particular, Homq,,(k, k) is a direct sum of llocal ~iigs where
I is the number 'of components of the maximal ideal spectrum of H* (G, k) ~f:"maximaf
dimension. Th~ lecture will attempt to make cl~ the :representation theoretic nature of
theseresults.

B. Külshammer: Finiteness Questions in Representation Theory

Donovan's conjecture says that, for a given prime number p and a given finite P':group D,
there are ooly finitely many Morita equivalence classes .of p-blocks with d~fect group·D. Our
aim is a reduciion theorem for this conjecture. Using Dade's theory of block extensions,
we show that any p-block with defect group D is Morita equivalent to a crossed. product
Y = Ea.rEX ~ satisfying the following conditio~s:

1. X is a finite p'-group with lXI ~ IOut(D)12 ;

2. The identity componentYi of Y is a basic subalgebra of a p-block With defect group
D in a finite group H generated by the conjugates of D.

aSince, for a given D, ~here are only finitely ·many possibilities for X, this leads to the que­
.stion whether there are, for a given finite p'-group G and a given finite-dimensional algebra

R over an algebraically closed field F of characteristic p, only fini tely many isomorphism
types of crossed products A = EagEG Ag with Al ~R. We sho~ that this is indeed the
case, using the following result proved independently by T.A. Springer and S. Donkin. For
a ~iven finit~ p'-group G and a linear algebraic group H over F, there are onIy finitely
many equivalence classes of representations of G in H. I had stated this result in fonn ­
of a ql1estion before and proved a number of special cases. Thus we have now reduced
Donovan's conjecture to blocks with defect group D in groups generated by conjugates of
J). For stronger versions of this reduction one would like to have a stronger form of thc
rc:snlt by Springer and ponkin above.
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s. Koshitani: Projective Modules of Finite Groups in Characteristic 3

Let G be any finite group with elementary abelian Sylow 3-subgroups of order 9, and let F
be any field of characteristic 3. Then the Loewy length of the projective cover of the trivial
FG-module is at least 5, where FG is the associated group algebra. This lower bound is
the best possible (e.g. take just G an elementary abelian group of order !J).

M. Broue: Isotypies between blocks of finite groups

The notion of type of blocks was introduced by R. Brauer in 1970. Inspired by the analysis
of the Deligne-Lusztig operations and the study of blocks of finite reductive groups~ a
modification-precision of the definition was given by the author in 1988. An "isotypie" •
between two blocks must be understood as a composible collection of perfect isometries
defined at all the locallevels of the groups. Since a perfect is~metrymust in turn be vie\ved
as the "shadow" (at the characters level) of a derived equivalence, w'e shall try to present
a reasonable guess for a module-theoretic explanation of what an isotypie may come from.
We conjecture that any block with abelian defect group is isotypic to its Brauer correspon-
dent. We list the known results in this direction.

P. Fong: Isotypies of Principal Blocks

Broue's conjecture that the I-blocks of G and H are isotypic, where G is a finite group
with an abelian Sylow p-subgroup D and H = Na(D), can be reduced to the question of
whethei "compatible" isometries exist between the I-blocks of ..)( and Y = NG(D n X),
where X runs over the componentsofG. In particular, this is the case for p = 2.

G. Malle: "Generic Blocks of Finite Reductive Groups

Gemeinsame Arbeit mit M. Braue und J. Michel.
Ausgehend von einer generischen Sylowtheorie .endlicher Gruppen vom Lie-Typ wird eine
generische Theorie der unipotenten Charaktere entwickelt. Hauptergebnisist die Beschrei-
bung der Zerlegung des Lusztig-Funktors R~ durch Induktion" in relativen Weylgruppen.
Dies führt zu einer Verallgemeinertulg der Harish-Chandra-Theorie, erlaubt die Blockein­
teilung und den Nachweis der Existenz perfekter Isometrien und damit den Beweis der •
Alperin-Vennutung in gewissen Fällen.

P. H. Tiep: The Automorphism Groups of Some Integral Euclidean Lattices

In this talk we will consider some integral Euclidean lattices satisfying certain 'hypotheses
of J. G. Thompson and B. H. Gross.
.1. G. Thompson suggested the study a11 pairs (C, A), wherc G is a finite group and A is Cl

torsion-free ZG-module of finite rank with thc following pr~perty: A/pA is an irreducible
IFp G-tnodulc for all primes p.
Therc are known only a few cxamples of such a pair.
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1. (I·V( Es), E~), (Es is the root lattice);
2. (2C 0 •• A·H), (1\'14 is thc Leech lattice);
3. (F3 , ':\2-1S). (1\248 is the Thompson-Smith lattice);
4. Some exarnples related to the basic spin representations of 2An and '2Sn and dis­

covered by R. Gow.

B. H. Gross introduced the following generalization of this. situation. Let V be a QG­
module, A full ZG-module in V, !( = Endc(V) = {cp E EnciQ(V)IVg E G,<pg = grp}. V is
said to be glob8.1 irreducible, if

• V 0Q lR is irreducible (~ K is a division ring);

• Let R be a maximal order in K. Then u/pA is an irreducible (F/pR)G-module for
all maximal two-sided ideal p of R.

Examples.

5. G = SP2n(P), V is irreducible of tbe Weil representation; ':1~ ..

6. G = PSU3 ( q), V is related to the irreducible complex representation of G of mini­
mal degree.

As it is shown by Gross, the two last examples anse a.I.so as Mordell-Weillattices of some
elliptic curves considered by N. Elkies. Here we compute the automorphism groups of
lattices A arising in· cases 4-6. We demonstrate also a connection between these lattices
and well-known lattices such as the Todd-Coxeter lattice.K12, the Leech lattice, A24 , and
the Barnes-Walilattices BW2d. . - .

Another subject of this talk is to realize same exceptions in the Cohen-Liebeck-Saxl-Seitz
list 'of maximal subgroups for exceptional finite groups of Lie type as the automorphism
groups of Euclidean lattices in corresponding Lie algebras.
In all cases the gro~p Aut(A) is a maximal finite subgroup of GLn(Q), n = di~~.

J. L. Alperin: Partial Steinberg Repr~sentations

(Joint work with Geoffrey Mason)

•
Let G be a universal Chevalley-group over a field with q =pe elements of type A, D, or E.
A necessary and sufficient condition, in terms of determinants, is given for a subgroup of
a root subgroup to be free on- a simple module V for G.

A. Kerber: SYMMETRICA, a computer algebra system ror finite- symmetrie
groups and for related classes of groups .

In particluar, the following items will be discussed:

• The data: Orbits, double cosets, matrices with prescribed row and column sums,
tableaux, bi-determinants and their relatiollship.

7
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• Frobenius' Isometry which allows to formulate everything (in ordinary theory) in
terms of multivariate polynomials.

• Schubert,polynomials, an important generalization of Schur polynomials.

• Matrix representations, an important advantage of SYMMETRICA, and their use for
applications: symmetry adapted hases.

B. Srinivasan: A Geometrical Approach to the Littlewood-Richardson Formula .

The Littlewood-Richardson formula gives a rule for computing induced characters from
characters of Young subgroups of symmetrie groups. It is a complicated formula and the
existing proofs are, in the opinion of the author, difficult to understand coneeptually..An
alternative fOrnlula and a combinatorial proof of it were given by Remmel and "Vhitney
in 1984. We give an interpretation of this new formula in terms of unipotent classes in
GL(n, q), and a conceptual proof using a theorem of Steinb~rg.

c. Bessenrodt: Decomposition Matrices of Spin Blocks of Symmetrie Groups

In re·cent joint work with Morris and 01sson, we proved a counterpart to a theorem of
James resp. Farahat-Müller-Peel on linear representations of the symmetrie groups Sn,
namely that also in the case of spin representations at characteristic p = 3 the upper part
of the decomposition matrix is "essentially" a lower triangular matrix (i.e. disregarding the
complications arising from associate characters) with respect to a suitable ordering of the
characters. Crucial combinatorial ingredients in the proof were a partition identity due to
Schur and the new notion of ladders in the jj-residue diagram. The partitions labelling the
(double-) columns in the decomposition matrix are obtained by a "top node" algorithm on
the p..residue diagram. For p = 5, an internal description of these partitions and a crucial
partition identity, which turned out to be equivalent to a conjecture by Andrews from
1974, were recently proved in a. joint paper with Andrews and DIsson. With this at hand,
a result on the shape of the decomposition matrix at characteristic p = 5 of the type above
was then obtained by a more delicate consideration of ladders in the 5-residue diagram.

G. Pazderski: On the Chief Factors of Solvable Linear Groups

Let G be a solvable irreducible linear group of degree n over a field. As is weH known the
maximum r(G) among the ranks of all chief factors of G, the so called chief rank of G,
satisfies r(G) :5 n. We are interested in the groups G with r(G) = n. In this case n is even
and each chief factor of rank n is a 2·group. If G is primitive then the only possible values
of n are 2 and 4. Groups of this kind are treated in more detail. They admit an explicit
description to a great extent.Finally some gcncralizations of two results hy R. ßacr a.re
given c:oncerning the chief rank.

8
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G. Riß: Modular represent~tionsof Unitary .Groups

Let G = GUn(q) d~note the finite unitary group, and let I be a prime not dividing q. In the
first part of my talk I shall give a summary on the recent results obtained in joint work with
~·l. Geck and G. !\Ialle on the I-modular Harish·Chandra series of G. The modular Steinberg
character is introduced and thase primes I are characterized for which it is cuspidal. 1 shall
sk~tch a praof of this result. .
Let d denote the order of -q modulo I. For even d and I > n the I-modular Harish-Chandra
series are described. These results lead to a complete description of the- decomposition
matrices for even d. I > n, n ::5 10.
If d is odd~ the situation is much more complicated. The smallest unsolved case occurs for
n = 3, llq + 1. The second part of my talk reports on joint work with M. Geck arid B.

•

H. Matzat. It is shown how this problem in the representati~n theory of GU3(q) can be
transfonned first ioto a combinatorial problemand then into a question on the function
field of the Fermat curve.

-fit
M. Geck: Cuspidal Uriipotent Characters and Hecke Algebras ,~..

There is an i-modular version of the usual Harish-Chandra theory for finite groups of Lie
type CF where I i= defining chara.cteristic of G. Among others, the following two problems
~i~: .

1. 15 it true that the I-modular reduction of a cuspidaL unipotent character. of GF is
irreducible as a Brauer character?

2. Study characters and decomposition maps for Hecke algebras.

In a joint work with G. Hiß and G. Malle we proved that 1) has an affirmative answerfor
the finite unitary groups Un (q2). This is based on results about Harish-Chandra induction
of generalized Gelfand~Gr~v representations. .
As a contribution to 2), in a joint work with G. Pfeiffer we introduced the concept of the
character table of a generic Hecke algebra H associated with a finite Weyl graup W with
index parameters u s, sES.
As an application, we computed the character tables of Hecke algebras of type F4 , Ea, Er,
and determined the number of irreducible characters of corresponding specialized algebras.

W. Kimmerle: On a Conjecture of Zassenhaus for ZG

Zassenhaus conjectured that group bases of ZG are conjugate by a unit of QG (G denotes
a finite group). The talk deals with this conjecture ·and certain variations of it (which
still imply a positive answer to the isomorphism problem of integral group rings) for the
following types of .finite groups.

1. Simple groups

2. Groups with abelian Sylow subgroup
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The method used with respect to 1. is the use of Brauer trees, with respeet to 2. properties
of conjugacy elass preserving group automorphisms.

A. Turull: Brauer Equivalence of G-Algebras

The study of Schur indices for characters of finite groups H that have some distinguished
subgroup N with H / N = G abelian leads to the study of certain G-algebras over num­
her fields in charaetenstic zero. I introduce a notion of central simple G-algebra and of
Brauer equivalence of such G-algebras, and I eharacterize the resulting equivalence classes
in certain cases. These results should help in the effective computation of the Schur indices
for certain classical groups. e
w. Plesken: Finite Rational Matrix Groups

One of the more interesting and also difficult aspeets of the ela.ssification of irreducible
maximal finite subgroups of GLn(Q) for n ::; 23 with G. Nebe turned out to be the inter­
relation of these groups by common subgroups fixing the same quadratie forms. A result
helping to prove the non-existence of such subgroups is this:
Let G ::; GLn(Z) be finite unifonn fixing the primitive integral symmetrie bilinear form
represented by A E znxn. If a prime p divides det(A), then pilGI.
This result is wrong for non-uniform groups to the extent that any such A has prime
divisors for its determinant not dividing IGI.
Often it is even more instructive to investigate common irreducible subgroups having bigger
spaces of invariant forms. Examples of three-parametric Bravais groups are given follo\ving
the classification of irreducible Bravais groups of degree 8 by B. Souvignier.

K. Erdmann: Symmetrie Groups and Schur Algebras

Let Er be the symmetrie group, and let I< be a field of characteristic p. E is a fixed n­

dimensional vector spaee. Then E0r is a permutation module for [(Er where Er acts on
the right (hy plaee permutations). Then the Schur algphra may be taken as S = S(n, r) =
End(E~Er)' There is a canonieal ring homomorphism p : [(Er -t End(sE0r ); it has been _
proved that this is surjeetive. Let A+(n, r) = {..\ }- r : A has ~ n parts}. The main result ..
is:
Theorem. Suppose all A in 1\+(n, r) are p-regular. Then [{Er/I(er p is a quasi-hereditary
algebra, Morita equivalent to the "Ringel dual" of S where the Specht modules S>.. are
the "Weyl objects", and the Young modules y>.. are the indecomposable summands of t.hc
canonical (tilting) module.
There is also a block version.
This can be used to obtain infonnation on decomposition numbers for Er und also on
modules with Specht filtration.
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K. Uno: Auslander-Reiten Sequences and Clifford Theory

-Let LV ue a nornlal subgroup of a finite group G, and VaG-invariant kN-module (k a field).
·Then E == Endkc(V G

) is a G/N-graded algebra over EI = EndkN(V). The stable Clifford
theory' gives us an equivalence of categories between Mod(kGIV) (kG-modules whose re­
strictions to lV are direct summaIlCis of V m for some m) andMod(EIEt ) (E-modules whose
restrietions to E1 are"projective EI-modules). Suppose that V is indecomposable and k is
algebraically closed and let E = E/(radE1)E1• Then E is a twisted group algebra over k.
\Ve. define a certain category C(G) by using Auslander-Reiten sequences and prove that
there is an equivalence between C(C) and Mod( E). This equiyalence has interesting pro­
perties on compoundings of modules in the Auslander-Reiten quiver. 'rhis is in part joint
\vork with T. Okuvama.e .
M. Herzog: A Graph Related to Conjugacy Classes in Groups

If G is a finite group or an infinite FC-group, we define the following·graph r ~',r(G): its
vertices are the non-central conjugacy classes of G andtwo vertices are connect'~ if their
cardinalities are not co-prime. The properties of the ~aphwill be described, an<fihe proof
of the fact that the diameter of r is less· than or equal to 3-Wi_U be s~eiched. '.- .

D. Gluck: Sharper Character Value Estimates ror Groups of Lie Type

Let G be a group of Lie type .over the field of q elements. Let X be a nonlinear irreducible
character of G and let 'x-be a noncentral element of G. Except when x is a transvection

. in an odd characteristic symplectic gro~p, we obtain O(lfq) bounds for IX(x)/X(l)1 which
give nontrivial information for al1 q ~ 7. For all q, q, x, and x, we show that IX(x)/X(l)1 ~

19/20.. For unipotent x, we show that Ix(x)/x(l)1 ~ l/(y'q-l). The last bound is achieved
in SL(2, q), q == l(Mod 4). .

This report was written by: Michael Weller
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