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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e r ich t 52 I 1992

Theory and Numerical Methods for Initial-Boundary Value Problems.

6.12. bis 12.12.. 1992

Die Tagung fand unter der Leitung von H .. -0. Kreiss (Los Angeles) und J .. Lorenz (Albu­
querque) statt. Im Zentrum des Interesses stand die Theorie und die numerische Behandlung
zeitabhängiger partieller Differentialgleichungen. Es war ein Ziel der Tagung, praktische und
theoretische Aspekte zusammenzubringen. Die Anwendungen reichten von technisch wichti..
gen Strömungen bis zur Medizin. Es zeigte sich, daß die Analysis von großer Bedeutung ist
für die numerische Behandlung und für die]nterpretation von Ergebnissen.

G. Bader:

. Numerical Simulation of Laminar Flame Problems on Parallel Computea witb Distributed
Memory

We present a new data decomposition algorithm for the solution of stationary 2D-Flame
~ Models. In·particular, we discuss the efficient implementatio~of Block-ILU preconditioning
., for the iterative solution of highly unsymmetric type of linear systems. Numerical results far

the so called tlame-sheet approximation are presented. These show, both, the high efficiency
and the robustness of the approach takcn.

G. Baker:

Numerical Methods (oe Free-Surface Flows

Many free-surface flow problems (fingering in Hele-Shaw ceDs or ground water, Rayleigh..
Taylor instabilities, Kelvin-Helmholtz instabilities) are ill-posed in the sense of Hadamard.
In particular t the smallest sca1es grow the fastest unless same physical regularization is
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present. In the limit of small physical regularization, the motion can be extremely difficult
to compute numerica1ly by. standard methods. However, the analytic continuation of the
equatioras into the complex physical plane presents a new formulation that is well-posed tor
numerica1 calculation. We describe a spectral method capable of advancing the tinger in a
Hele~Shaw cell for long times and for studying the competition of fingers in a Hele-Shaw
cell with high accuracy. Our methods generalize to other free-surface flows that are ill­
posed..

eh. Bemadi:

Finite Element Discretization cf Navier-Stokes Eguations with Varying Density

In the incompressible Navier-Stokes equations, when the Boussinesq approximation is not •
valid, the variations of the density must be taken into account. We study two variational
fonnulations of a model where the density is assumed to be given but non-constant. We
compare finite discretizations which rely on these formulations. New extensions are presen~

ted.

W.-J. Beyn:

Numerical Approximation of Connecting Orbits

We consider the numerical computation of orbits which connect steady states or periodic
orbits in a parameter dependent dynamical system. Such problems typically arise when
determining the shape and speed of travelling waves in parabolic systems. Connecting orbits
satisfy a boundary value problem on the realline. We analyze the error caused by truncation
to a finite interval and by the choice of boundary conditions.·More specifically, we consider.
orbits connecting, a steady state to a periodic orbit. It will be shown that a crucial role is
played by the property of "asymptotic phase ll and by the corresponding foliations of stable
and unstable manifolds.

F. Bomemann:

Adaptive Rothe's Method for Time-Dependent PDEs

An adaptive approach for IBVPs stemming from diffusions-dominated or Schrödinger-type
equations is presented. It consists in adaptively discretizing the evolution operator in time
first and viewing the spatial discretization as aperturbation. This allows time-steps which
belong to the dynamics of the problem and gives an easy matching of time- and space­
accuracies. The use of a multigrid-type algorithm on highly non-uniform triangulations in
space provids an elliptic subproblem solver which is optimal. This allows easily a new
triangulation at each time-step. Application to the 20 and 3D simulation of the heating of
tu~ors (hyperthermia) in cancer-therapy is given.
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Y. Brenier:

Existence and Unigueness of aPressure Field for the Incornoressible Euler Eguations

We consider the motion of an ideal incornpressible fluid in a compact domain xcr, d =2
or 3. Instead of the initial value problem, we deal with the following two point boundary
value problem in time: Given T>O and a diffeomorphism h of X with Jacobian determinant
equal to I, find a time-dependent family t ~ g(t) of diffeomorphisms of X that minimizes
the "action"

T

-} f J~,g(t,x)r dx dt ,
o z Ig(O~) = x

subjeet to g(T,x) = hex)

det Dg =1

Local existence results (when h is close to the identity map in same strong Sobolev norm)
were obtained by Ebin & Marsden. In the large, uniqueness can break down (which is an
easy observation) but, more seriously, existence can fall when d = 3. (Ibis was shown by
Shnirelman in 1987). We recall some previous result (YB, 1989) showing global existence
of generalized solutions (obtained in the spirit of Young measure theory). In the present talk,
we establish the existence and uniqueness of the dual solution of the minimization problem,
which turns out to be the pressure field.

D. L. Brown:

Adaptive Composite Overlcumin& Grids for Gas Dynamics

A method under development for the numerical solution of the compressible Euler eqtiations
of gas dynamies in regions of complex geometry is presented. Regions of coinplex geometry
in two and three space dimensions are represented by the method of composite overlapping
grids, as developed by Chesshire and Henshaw (1. Comp. Physics 90, p.l). A composite
overlapping grid consists of a set of logically rectangular or hexahedral non-orthogonal
curvilinear grids that overlap where they meet and campletely cover the ~mputational

region. PDEs are solved using standard finite difference techniques, but with additional
boundary conditions that interpolate the solutions between component grids. The Adaptive
Mesh Refinement (AMR) method developed by M. Berger is combined with the overlapping
grid method to give adaptive resolution of complex stnJcture in the flows. Since the AMR
method is also based on logically rectangular grids, very few changes are required in the
algorithm in order to uSe it with overlapping grids. The Euler equations are solved on the
'grids using a class of high-order Godunov methods of the type developed by P. Colella. A
discretization for the Euler equations must have th~ basic properties that shock singularities
propagate at the crirrect speed, and that the errar committed in the shcxk is damped out
extremely rapidly as it moves away from the shock. The high-order nature ot the. Godunov
method guarantees that the smooth parts of the solution are computed accurately, and thus
the end-states for the shock and hence its speed will be correct. The upstream nature of the
method ensures that shock errors are damped out quickly. Numerical examples are presented
demohstrating the high-order Godunov method on overlapping grids.
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M. Giles:

Non-Reflecting Boundaty Conditions for the Euter Eguations

This talk discusses the variety of far-field boundary eonditions used for the solution of the
Euler equations in the context of two-dimensional flows in turbomachinery and external
aerodynamics. Starting from an assumption of linear perturbations to a uniform steady flow
it is possible to construct exact non-Iocal non-reflecting b.c. 'so These then lead to a number
of different approaches
* ID b.c. 's.: These assume waves leaving normal to the boundary. ,An improved well-posed
version assumes known non-zero angle.
* Steady-state: Taking the limit as frequency approaches zero gives spatially non-loeal
b.c. 's which are easily applied in turbomachinery. Similar b.c. 's can also be used when
there is a single known non-zero frequency.
* 20 approximate: Using the ideas cf Engquist and Majda produces approximate local oon­
reflecting b.c. 'so Using the theory of Kreiss it can be shown that the outt1ow b.c. is well­
posed but not the inflow.' A modfication to the inflow b.c. leads to it being well-posed and
fourth-order non-reflecting.

M. Goldberg:

Stable Difference Schemes for Parabolic Systems

The main purpose of this talk is to discuss the employment of generalized numerical radii in
order to investigate stability of implicit difference sehemes for the initial-value problem
associat~ with a·general, well-posed, multi-space-dimensional, parabolic system of the form

au .= E A ~ + E B~ + Cu, xpEJR, t~O,
at lsPSIls4 Pt axpOxq lsp'Ul P axp

where ~, Bp, and C are rlXed matrices.

T. Hagstrom:

Bounda;o' Conditions at Artificial Boundaries with Applications to Fluid Flow Simulations

We describe our work on the development, analysis and testing of boundary conditions at
artificial boundaries for the Navier-Stokes andEuler equations. The approach is to study in' .
detail boundary condition construction for the equations linearized about simple base flows;
and experiment numerically on the full equations. We display conditions based on the Orr­
Sommerfeld equations for parallel flows, smalt viscosity and Mach number expansions of the
exact boundary operators for linearizations about constant flows, and eonditions for the
Euler equations derived from asymptotie expansions of the Riemann ,variables. A negative
result for the long time error behavior for solutions of the two-dimensional wave equation
and standard boundary' operators is also given.

•

•

                                   
                                                                                                       ©



•

T. Y. Hou:

Stabilizing Effect of Sunace Tension and Formation of Pinching Singularities in Fluid
Interfaces

In this talk, I present our recent results on. the stabilizing effect of surface tension for
inviscid, incompressible fluid interfaces. We show that the fluid interface is linearly well­
posed when linearized around any prescribed, time-dependent smooth solution. Using this
result, we prove stability and convergence of a spectra1ly accurate boundary integral meth(xi.
We then use our spectrally accurate method to study the nonlinear stability effect of surface
tension numerically. An efficient implicit scheme is designed to relax the severe time step
constraint due to the presence of surface tension. We fouod that if surface tension is above
certain value, the interface problem has a global smooth solution. However, if surface
tension is below certain critical value, the interfaces can fonn a pinching singulari.ty in a
finite time. And the type of singularity is different from that in vortex sheets.

H. Jarausch:
,(-

... # ... .,.:.., ..

•

Computing Periodic Solutions of Parabolic Systems by Using a Singular Subspace as
"Reduced Basis"

The search for aperiodie solution is reduced to a fixed point problem for the Poincare map:
Z(u)=u. Let Z and Y be orthogonally complementary subspaces ~uilt up from singular
vectors of r(u)-I. These subspaces are mapped into the corTesponding left singular sub-

spaces Z, Y. To get back to a fixed point problem one constructs an orthogonal mapping ]

which maps Z, Y to Z, Y. By applying JT 10 O=3(u)-u this FPeq splits into two locally

decoupled FPeqs. By seeking the "right" singular subspace Z(Z> the FPeq projected onto Y
gets contravtive and the (usually small) FPeq projected on1o Z shows ~any features of the
full system. One can show that derivatives up to the 2nd order coincide with the correspon­
ding Ljapunov-Sehmidt reduction. Since in many applications the dimension of the""feduced
basis" Z is very low one has a useful technique to.:udy (branches of) periodie soluti~nswith·

and of a tiny system. The computation of Z and Z leads to a Riccati equation which can be
solved using bordering techniques which are weil known.

R. Jeltsch:

On a BoundaI)' Layer in Hypersonic Reacting Euler Flow

We consider hypersonic flow around a blunt body of a mixture of gases which are chemical­
Iy not in an equilibrium. It is shown that the chemica1 reactions induce an extremely thirt,
unphysical boundary layer. A modification of the Van. Leer flux vector splitting is presented
which is able to indicate the presence of the boundary layer. This is joint work with M. Fey,
ETH Zürich and S. Müller, RWTH Aachen.

5
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c. Johnson:

Adaptive Finite Element Methods for Conservation Laws.

We present adaptive finite element methods for systems of. conservation laws in one dimen­
sion based on aposteriori error estimates.

K. Kirchgässner:

Long-Time-Asymptotics of Perturbed Gravity Waves

This describes joint work with Mariana Haragus from Nice. It is weIl known that solitary •
waves exist under the influence of gravity on the surface of an inviscid fluid, when the
Froude number is greater than ODe. However, the description of the Jarge-time behaviqr of
local perturbations of this wave as solutions of the fuH 2d Euler equations is an open
problem. In this.lecture we discuss a method for its resolution. First it is observed that the
slowest transport happens in a four-dimensional subspace of the phase space. There we
construct a so-called Eichform via a Floquet-transforrnation. The Eichforrn isolates the given
solitary wave in a one parameter family of these waves, and it revea1s the space-asymptotics
which a local penurbation has to obey. An asymptotic Eichform is derived then, such that
the full equations contain in addition only fast decaying terms in space. These terms yield
decay of the solution which is at least 0(1/t) faster than the slowest decay, which is deter-
mined by the asymptotic Eichform. The final result then shows that the long-time behavior
is given by two modulated waves moving in oppositedirections and decaying like 0 (r3~.

C. Klingenberg:

On Two-Dimensional Hyperbolic Eguations· Stability of Difference Schemes with Shock
T@cking

When computing compressible inviscid gas flow there are cases when it is of particular
importance to preserve the identity of a surface representing a particular shock wave. An
example is thebow shock cf a reentry vehicle~ \' Te consider here the case in two space
dimensions where a curve representing a shock wave evolves for a certain time, always
separating two· smooth flow regions. In particular t we consider·a shock wave moving inta
a gas at rest. The numerical scheme we consider for computing this flow is based on a
moving underlying grid wh~re the shock position always determines one grid line. We shall
consider the linear stability of a class of finite difference schemes in the back of this shock
wave coupled with a scheme explicitely tracking this interfaces. "The main ingredient in this
work is a stability theorem for a two-dimensional initial boundary value problem using
energy methoos. This fixed boundary then becomes a moving boundary to obtain the desired
result.

tJ

•

                                   
                                                                                                       ©



P. Knabner:

EITor Estimates tOr Finite Element Approximation cf Deeenerate Parabolic Systems

We consider the following model problem for reactive solute transport in porous media, with
an adsorption reaction, either in equilibrium (k=00) or in non-equilibrium (k< 00):

ap + atv - 4" =f}
in 0 eRN, t€[O,1)

O,V = k(~(u) - v»
together with boundary and initial conditions, where kS 00, Le. for k= 00 the problem
reduces to the scalar equation a,(u+"'(u»-~u=f. The problems are degenerate, as typical

non-linearities have the form ~(u)=«uP, «>0, pE(O,l). We study errar estimates for the
semi-discrete Galerkin approximation with linear finite elements, consistent or with quadra-.
ture, and the fuHy discrete versions based on the backward Euler methode We derive error
estimates in energy norms, which partially exhibit the full approximation power of the trial
space despite of the degeneration. It turns out that regularization is a useful technical tool in
general and in case of non-degeneracy conditions, Le. if there is a minimal growth,· of the
solution away from the front asupp u, the regularization improves on the results. (Iointwork ..
with J. W. Barrett (London». ,,~,

H. C. Kuhlmann:

Hydrodynamic Instabilities in Systems Driven by Surface FQrces

The linear stability of 2-dimensional toroidal flows in a cylindrical liquid bridge driven by
. thermocapillary forces is investigated by the application of spectral methods. The 2-dimen­
si~nal basic flow and temperature fields are calculated by a Galerkin tau methode The
neutral modes giving rise to 3-dimensional instabilities are obtained by Galerkin-eollocation­
tau. Although the applieability of this method is limited to moderate Marangoni numbers, the
threshold value and the space-time structure of the neutral distumances can be obtained with
reasonable good accuracy. The instability mechanisms and the physical properties of the
supercritical flows are discussed.

• J." Lorenz:

Continuation cf Invariant Tori

We consider a dynamica1 system depending on a parameter A. Assume that for A= Ao an
invariant 2-torus Mo is known in tenns of a parametrization Wo. Under suitable assumptions,
there is a branch of invariant tori M(A) for Anear Xo, which we try to follow computational­
ly. The main idea is to use a coordinale system determined by Wo and to update the coordi­
nates as the computation proceeds. In practice. the parametrizations can -only be determined
on a grid. We give an error analysis as the gridsize tends to zero.
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G. Lube:

Stabilized Galerkin Methods for Solving the Incompressible, Nonisothermal. Nonstationary
Navier-Stokes Eguations

We consider the finite element discretization of the incompressible Navier-Stokes problem
with Boussinesq approximation. Spurious numerical solutions of the standard Galerkin finite
element methods may be caused by dominating convective tenns and/or inappropriate pairs
of velocity and pressure interpolation functions which do not pass the Babuska-Brezzi
condition. As a remedy we add least-squares formulations of the basic equations. It turns out
that the resulting Galerkinlleast-squares method stabilizes both instabilities arising from
dominating convective terms and inappropriate velocity/pressure pairs. First we analyze the
stability and convergence of the time-integration procedure. Secondly. we consider the •
stability and convergence of the method for a linearized problem arising from the simple
iteration procedure. In particular, we consider the parameter design problem for the given
method. We conclude with some numerical results.

M. Luskin:

The Dynamics of Corstalline Microstructyre and Phase Boundaries

The deformation y(x, t): a xlR: - :e.3 of solid crystals where the spatial domain 0 eR3 can be
modelled by

ya{X,t) = div 0 (Vy(x,t»

with appropriate boundary and initial conditions. Equilibrium solutions to these models often

have highly oscillatory deformation gradients when the stress tensor a(F) ;;: iJ4»(F'J/aF is

derived from a non-convex energy density ~(.F) where F ;;: Vy{x,t). We can describe these
highly oscillatory solutions by a mathematical definition of material microstructure using the
Young measure. We will present numerical methods and results for the dynamical develop­
ment of material microstructure and for the propagation of phase boundaries in the presence
of material microstructure.

Y. Maday:

Adaptivity Using Wavelets Basis for the Approximation of PDE

The aim of this work is to use the localization properties of the wavelet basis for the
simulation of PDE. This property is used in an adaptive framework in order to minimize, at
most, the number of degrees of freedorn to represent accurately the solution, especially when
one can infer that it developes locaJ singularities of sharp gradients. In opposition to other
methods that require error estimators that are added to the numerical too]s, our strategy uses
the existing discretization parameter's as error estimators. The adaptivity can then be done
at each time step resulting in a very cheap representation of the solution. Numerical and
theoretical evidences of the possibility of the method will be presented "not only for 10
problems.

•
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H. Mittelmann:

Computing Stability Sounds for the Thermocapillary Convection under Zero-Gravity

In the float-zone process of crystal growth temperature-gradient induced surface tension
gradients along the outer free surface drive convection mUs in the float-zone. These are
present even under zero-gravity. For increasing temperature differences measured by the
Marangoni number this convection becomes unstable leading to poor crystal quality. It is
thus desirable to determine bounds for the stability limit. Both energy and linear theory
results are obtairied for a model problem. In addition to the solution of the underlying
Boussinesq equations generalized large and sparse eigenvalue problems have to be solved.
The numerical approac~ is outlined andresults are cornpared to those from experiments.

e K. W. Morton:

Evolution Galerkin Methods in One and Two Dimensions

In discretizing evolutionary problems a combination of three principle ideas has proved to
be particularly useful: approximating the evolution operator; Galerkin or Petrov Galerkin
projection onto the .finite element trial space; and a recovery procedure 10 obtain higher

. order accuracy in an adaptive manner. Several examples of the firSt will be given, of which
that based on tracing the characteristics will be considered in more detail. In th~ form of
Brenier' s transport collapse operator, using ~ projection onto piecewise constants and with

. recovery by piecewise linears, it gives a family of schemes of the form UU+ 1 =PEARlP. They
are explicit, unconditionally stable, JVD or TVB and convetge t~ the entropy-satisfying
solution of a scalar conservation law. Using a Riemann-Stieltjes parametrization,· several
equivalent forms are given in ID; and the importance of certaiil corner tenns in the the 20
case are pointed out. Systems of equations are dealt with by wave decomposition to ap­
proximate the evolution operator.

N. A. Petersson:

Computing thc Oscillations of a Free Surface Jet

A numerica1 method for computing the motion of an inviscid and irrotational fluid jet issuing
from an elliptical orifice is described. The differential equation for the evolution· of the
potential on the boundary, and of the shape of the boundary is discretized by 4 'th order
accurate centered differences in space. The the resulting system of aDEs is integrated in

. time by a 4 'th order accurate four stage Runge-Kutta method.. Toevaluate the time derivati­
ves of the potential and the shape of the boundary, it is necessary to salve Laplace's equa­
tion with Dirichlet data. The probl~m is transformed onto a fiXed computational domain
where the elliptical equation is solved by a 4'th order accurate finite difference m.ethod on
a composite overlapping grid. One advantage of this approach is that the computational
domain only needs to be gridded once. Instead, the transformed Laplace equation will get
coefficients that vary both in time and space. By studying the spectrum of the discrete
linearized operator, it is found that the spatial discretization is not completely satisfactory
because one complex conjugated pair of eigenvalues of the linearized operator has a small
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posItive real part. However, numerical examples show that the equations can still' be
integrated successfully, at least until time of the order O( 1), if the initial cross-section 1S
sufficiently e10se to a circle. For initial cross-sections with large aspect ratio, the break
down time decreases when the number of grid points increases.

R. Rannacher:

On the Approximate Inertial Manifold Approach to the Navier-Stokes Eguations

The concept of "inertial manifold" was recently introduced by Foias, Sell and Temam in an
effert to reduce the study ef the long time dynamics cf the Navier-Stokes equations to that
of a finite system of ordinary differential equations. Following that Foias, Manley and •
Temam introduced the concept of "approximate inertial manifold" in an effort to make the
theory practical, ultimately for large scale computation of turbulent flow. Identifying the
targe and small scales of motion with the low and high modes of a spectral representation
they proposed a method (the If AlM") for determining approximate values of the high modes
directly as functions of the low modes, rather than as solutions ··of ~volutionary equations.
This .has subsequentIy developed into a computational scheme, the associated"nonlinear
Galerkin method" of Marion and Temam, that consists of inserting these values for the high
modes into the Galerkin equations for the approximation of the low modes. Because of the
apparent deoth of this inside, seemingly reaching to the very physics of turbulence, these
ideas have been received with a sense of exitement and followed upon in the research papers
of many authors. This lecture will contribute to the discussion about the ability of "the AlM
method to model turbulent flow and about the theoretical potential of the AIM/NGM' to
provide a computational basis for the calculation of turbulent flow.

H.-J. Reinhardt:

On Approximation Methods for Illposed Parabolic Eguations

Cauchy problems for parabolic initial value problems will be considered with the Inverse
Heat Conduction Problem (IHCP) as a model example. Such problems may be formulated,
e.g. as integral equations of the first kind. Due to ~he Ülposedness of the problems, large
errors in the approximating solutions may occur in the presence of srnall errors in the data. •
Approximation methods for such problems should therefore stabilize - or regularize - this
behaviour. For several methods, roles for stabilizing are well-known, however, a rigorous
analysis is often not available. In this contribution, a short ovelView of available approxima-
tion methods will be presented. In more detail, a sequential approximation scheme for the
IHCP will be discussed including a stability and error analysis.

P. Seifert:

Numerische Behandlung von Anfangswertaufgaben der chemischen Kinetik mit Hilfe der
Linienmethode

Eine Reihe von. chemischen AufgabensteIlungen befaßt sich mit den Reaktionen und der

1 ~ i
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gleichzeitigen Diffusion von Substanzen in Mischreaktoren. Ein typisches Beispiel dieser
Diffusions-Reaktions-~rolesse, das näher untersucht werden soll, ist die radikalische
Copolymerisation von zwei chemischen Stoffen unter Anwesenheit eines Initiators. Es
werden dabei in mehreren Teilschritten Ketten von Polymeren gebildet, während gleichzeitig
Diffusionsprozesse ablaufen. Das zugehö"rige mathematische Modell besteht aus einem
System von nichtlinearen parabolischen Differentialgleichungen mit vorgegebenen Anfangs­
werten und Neumannschen Randbedingungen. Dieses Anfangs-Randwertproblem wird mit
der numerischen Linienmethode behandelt, wobei nach der Teildiskretisierung in Orts­
richtung verschiedene bekannte nSolver" zur Lösung der entstehenden Anfangswertaufgaben
gewöhnlicher Differentialgleichungen (steife Systeme) benutzt werden. Es werden Resultate
der numerischen Rechnungen angegeben und Vergleiche der verwendeten"Anfangswen­
Solver" angestellt.

B. Sjögreen:

The Practica1"Use of Hi&h Order Difference Methods
."?.,..;'

",;1e

We consider the implementation of centered high order difference methods to solve:~e 2D
compressible Navier-Stokes equations on a curvilinear grid. To obtain a stable metl100 we
first develop a computer program to perform stability analysis according to the theOry by

Gustafsson, Kreiss, and Sundström. For the equation u, ;+ DU;c = 0 on x> 0 it ~ms out that
fourth order centered differencing with one sided fourth order differences at the boundaries
are stable. Eighth order .centered differencing with eighth order one sided boundary opera­
tors can be made stable by adding a twelfth order artificial dissipation term. We test the
method on the Mach 3 flow past a disko For the centered differences, the shock is fitted to
the grid boundary . Tbe results are compared with results from using a second order TVD
shock capturing method. The fourth order method can resolve the boundary layer on the
used grid. Tbis was not possible using a second order method due to limited computer
power. The TVD method on a coarse grid could be made to agree with the fully resolved
solution by streching the grid towards the wall, thereby producing ceHs of very hig~~~~t

ratio.

M. Slodicka:

• On a Numericai AgprQach to Nonlinear De2enerate Parabolic Problems

This contribution deals with a fully discrete linear scheme for solving nonlinear singular
parabolic problems like the S~fan problem or porous medium equations. The main idea is
the approximation of nonlinear P.~~E. by a linear elliptic equation at each tim'e step. This
is solved using piecewise linear finite elements. The numerical integration is taken into
account. Tbe convergence of the method is proved and some error estimates are derived.

11
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T. Sonar:

Adaptive Technigues in the Computati~n of Inviscid Compressible Fl~w

A finite volume scheme is used for the computation of steady and unsteady inviscid com­
pressible flow fields in complex geometries. The method worles on general conforming
triangulations and is an upwind TVD-MUSCL type of scheme. Two adaptive techniques are
used to insertlremove points in the triangulation. The finite-element residual is used as an
errof indicatof. The question of norms in which this residual can be measured is addressed.

M. Stynes:

Pointwise Error Estimates for a Streamline Diffysion Method on a Shishkin Mesh for a e
Time-Dependent Convection-Diffusion Problem .

We analyze the streamline diffusion method on a special piecewise uniform mesh for a
model time-dependent convection-diffusion problem in one space-dimension. The mesh (due
to Shishkin) is not locally quasiuniform; it resolves part but not all of the boundary layer.
Using piecewise linear finite elements, we show that our method is convergent, uniformly
in the diffusion parameter, of almost order 5/4 outside the boundary layer and almost order
3/4 inside the ·boundary layer.

A. Szepessy:

Adaptivity Md Error Contro} for Hyoerbolic Problems

The discrete kinetic Broadwell modell

1+, +1+% = 10
2

- I J-

fOl = -~W - ffJ

I-I - I-x =10
2

- IJ-
describes the evolution of the distribution (f+, fo, f-l of the three velocities (1, 0, -I). In the
fluid dynamicaJ variables p =/++4/0+/_, m=/+ -1_, Z=/+ +/_ the Broadwell model takes the _
form .,

P, + mz

m, + z%
o
o
1_«p -z)2-4(Z2 -m 2»
8

(I)

For this model, BroadweJl found explicit expressions for travelling shock waves connecting
equilibrium states satisfying the Rankine-Hugoniot condition. In this talk I presented joint
work with Zhonping Xin on asymptotic stability of Broadwell shocks. We have proved that
Broadwell shocks, which initially are locally perturbed, converge time asymptotically to a
superposition of a translated shock wave, a diffusion wave, and alinear coupled diffusion
wave (with zero mass). The sum of the diffusion wave and the linear wave solves a Navier­
Stokes type approximation of (1), with slightly modified viscosity in the shock region

I'·
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compared to the traditionaJ Navier-Slokes eaquation obtained from lhe Chapman-Enskog
expansion.

L. Tobiska:

Finite Element Methods for Solving the Boussinesg-Approximation of the Navier-Stokes
Eguations

We consider stability and convergence of finite element discretizatioris for the incompressible
Navier-Stokes equation. There are different reasons for spurious numerical oscillations of
standard Galerkin finite element methods, e.g. dominance of convective terms, inappropriate
pairs of finite elements for approximating the velocity and pressure field, etc. We propose

~ to combine the stable nonconfonning Crouzeix/Raviart element with an upstream technique
., for handling the influence of the convective terms. In order to salve the nonlinear system of

equations in eaeh time step a multigrid method is used. Finally, we give same results on
numerica1 test examples~

G. Wamecke:

Zur Entropiekonsistenz von Verfahren mit großem Zeitsehritt

Zur numerischen Approximation von Lösungen hyperbolischer Erhaltungsgleichungen gibt
es eine Kl.asse von Verfahren, bei denen die Anfangsdaten durch stückweise konstante
Funktionen ersetzt werden und dann zwischen diesen· Werten jeweils das Riemann.sche
Anfangswertproblem gelöst wird, das aus elementaren Wellen. (Stößen, Kontaktunstetigkei­
ten, Verdünnungswellen) besteht. Die resultierende Lösung verwendet man bis zu der
Courant-zahl, bei der sich benachbarte Wellen schneiden können. Zu diesem Zeitpunkt
wandelt man die Daten wieder in stückweise' konstante Funktionen um und wiederholt das
Verfahren. Man hat dann in jedem Zeitstreifen eine exakte Lösung der Erhaltungsgleichun­
gen, die der Entropiebedingung genügt. Beispiele solcher Verfahren sind das Glimm-Ver­
fahren, das Godunov-Verfahren und die MUSCL-Verfahren. Von Le Veque wurden 1983
die Verfahren mit großem Zeitschritt eingeführt, bei denen man größere Courant-Zahlen
verwendet und bei sich schneidenden b~nachbarten Wellen ihre Interaktion als linear
annimmt, um den numerischen Aufwand nicht zu erhöhen. Sowie sich diese Wellen ~chnei-

~ den, liegt in dem Zeitstreifen kein~ exakte Lösung der Erhaltungsgleichungen mehr vor.
., Trotzdem sind diese Verfahren erstaunlicherweise für beliebige Courant-zahlen stabil und

konvergent. Außer~~m erhält man die besten Approximationen für gro~, aber nicht zu
große, Zeitschritte. Der Beweis der Entropiekonsistenz dieser Verfahren, d.h. daß die
approximierenden Lösungen gegen ~xakte Lösungen konvergieren, die einer Enuopiebedin­
gung genügen, erwies si.eh als schwierig und blieb offen. In dem Vortrag werden erste
Resultate, die in Zusammenarbeit mit Wang Jinghua erzielt wurden, vorgestellt.

Berichterstatter: H. C. Kuhlmann

IJ

                                   
                                                                                                       ©



Dr. Georg Bader
Institut FUr"Angewandte Mathematik
Universität Heidelberg
Im Neuenheimer Feld 294

W-6900 Heidelberg
GERMANY

Prof.Dr. Greg Baker
Department of Mathematics
Ohio State University
231 West 18th Avenue

Prof.Cr. Vann 8renier
Analyse Num~rique~ Tour 55-65
Universit~ Pierre et Marie Curie
4, place Jussleu

F-75230 Paris Cedex 05

Dr. David L. 8rown
Los Alamos National Laboratory
Computer Research Dept.
Mail Stop B 265

Columbus
USA

OH 43210-1174 Los Alal110s
USA

NM 87545

Praf.Dr. Evangelos A. Coutsias
Dept. of Mathematics and Statistics
University of New Mexico

Prof.Dr. Christine Bernardi
Laboratoire d'Analyse Num~rique,

Tour 55-65
Universit' P. et M. turie(Paris VI)
4, Place Jussieu

F-75252 Paris Cedex 05

Albuquerque
USA

NM 87131

Prof.Dr. Wolf-Jürgen Beyn
Fakultät für Mathematlk
Universität Bielefeld
Postfach 10 01 31

W-4800 Bielefeld
GERMANY

01". Folkmar Bornemann
Konrad-Zuse-Zentrum fUr
Informationstechnik Berlin
Heilbronner Str. 10

W:-1000 Berlin 31
GERMANY

"Prof.Dr. Michael B. Giles
Numerical Arialysis Group
Computing Laboratory
Oxford University
heble Road

GB- Oxford aX1 3QD

Prof.Dr. Moshe Goldberg
Department of Mathematics
fec:hniotl
Israel Institute cf Technology

Haifa 32000
ISRAEL

                                   
                                                                                                       ©



Pref.Dr. Themas Hagstrom
Dept. of Mathematics and Statistics
Unlversity of New Mexico

Prof.Dr. Herbert B. Keller
Applied Mathematics 217-50
California Institute of Technology

Albuql4erque
USA

NM 87131 Pasadena ~ CA 91125
USA

Prof.Dr. Themas V. Hau'
Courant Institute af
Mathematical Sciences

~ew York University
~51~ Mercer Street

New Vork NY 10012-1110
USA

Dr. Helmut Jarausch
Institut für Geometrie und
Praktische Mathematik
RWTH Aachen
Templergraben 55

W-5100 Aachen
GERMANY

Prof.Dr. Ralf Jeltsch
Seminar für Angewandte Mathematik
ETH-Zentrum
Rämistr. 101

Prof.Or. Claes Johnson
Dept. of Mathematics
Chalmers University of Technology
and University of Gtit~b6rg

Sven Hultins gata 6

5-412 96 Göteborg

Prof.Dr. Klaus Kirchgässner
Mathematisches Institut A
Universität Stuttgart
Postfach 80 11 40

W-7000 Stuttgart 80
GERMANY

Dr. Christian Klingenberg
Institut fUr Angewandte Mathematik
Universität Heidelberg
Im Neuenheimer Feld 294

W-6900 Heidelberg
GERMANY

ProF.Dr. Peter E. Kloeden
Depart.of Computing & Mathematics
Deakin University

Geelcng,Victoria 3217
AUSTRALIA

Dr. Peter Knabner
Institut für Angewandte Analysis
und Stoc:hastik
Hausvogteiplatz 5-]

0-1086 Berlin
GERMANY

                                   
                                                                                                       ©



Prof.Dr. Hein: Otto Kreiss
Dept. of Mathematics.
University of California
405,Hilgard Avenue

Los Angeles
USA

CA 90024-1555

-~J

"

Prof.Dr. Mitchell B. Luskin
School of Mathematics
University Qf Minnesota

Minneapolis MN 55455
USA

Prof.Dr. Gunilla Krei~s

NADA
The Royal Institute of Technology

8-10044 8tockholm

Dr. Hendrik C. Kuhlmann
ZARM
Universität Bremen
Fachbereich 4
Postfach 330440

W-2800 Bremen 33
GERMANY

Prof.Dr. Yvon Maday
Laboratoire d'Analyse Numerique~

Tour 55-65 ~

Universit~ P. 2t M. Curie(Paris VI)~
4, Place Jl~SS i el~

F-75252 Paris Cedex 05

Prof.Dr. Hans D. Mi.ttelmantl
Department oi Mathematics
Arizona State University

Tempe ~ AZ 85:87-1804
USA

Prof.Dr. Jens Lorenz
Dept. of Mathematics and Statistics
University of New Mexico

Albuql~erque

USA
NM 87131

Prof.Dr. Keith W. Morton
Computing Laboratcry
Oxfard University
8 - 11~ Keble Road

GB- Oxford aXl 3GD

Prof.Dr. Anders Petersson
CNLS~ MS 8258
Las Alamos National Laboratory

Or. Ger t Ll~be

Insti tut fl~r Analysis,
Fakult~t fUr Mathematik
Technische Universität Magdeburg
Universitätsplatz 2~ PSF 4120

0-3040 Magdeburg
GERMANY

Los Alamos
USA

NM 87545

                                   
                                                                                                       ©



~Prof.Dr. Rolf Rannacher
Insti tut flir Aflgewandte Mathematik
Universität Heidelberg
Im Neuenheimer Feld 294

W-6900 Heidelberg
GERMANY

Prof.Dr. Hans-JUrgen Reinhardt
Fachbereich 6 Mathematik
Universität/Gesamthochschule Siegen
Hölderlinstr. 3

_-5900 Siegen
GERMANY

Dr. Wolfgang Sch~öder

MBB AG~ RTT 32
Postfach 801169

W-800D München 80
GERMANY

Dr. Peter Seifert
Institut für Numerische Mathematik"
Technische Universität Dresden
Mommsenstr. 13

0-8027 Dresden
GERMANY

e
Prof.Dr. Björn Sjögreen
Department of Scientific Computing
80>: 120

5-75104 Uppsala

I'{

Marian Slodicka
Institute of Appliea Mathematics
Comenius University
Mylinska dolina

84215 Ecratislava
CZECHOSLOVAKIA

Thomas Sonar
Dt.Versuchs- und Forschungsanstalt
fUr Luft- und Raumfahrt
- DLR -
Bunsenstr. 10

W-J400 G~ttingen"

GERMANV

Dr. Martin Stynes
Dept. of Mathematics
University College

Cerk
IRELAND

Dr. Anders Szepessy
NADA
The Royal Institute of Technology

5-10044 Stockholm

Prof.Dr. Lutz Tobiska
Institut fUr Analysis
Fakultät für Mathematik
Technische Universität Magdeburg
Universitätsplatz 2~ PSF 4120 .

0-3040 Magdeburg
GERMANY

                                   
                                                                                                       ©



Prof.Dr. Eric Van de Velde
Applied Mathematics 217-50
California Institute of Technology

Pasadena ~ CA 91125
USA

Dr. Gerald Warnecke
Mathematisches Institut A
Universität Stuttg~rt
Postfach 80 11 40

W-70DO Stuttgart 80
GERMANY

Prof.Dr. Bodo Werner
Institut fUr Angewandte Math~matik

Universität Hamburg
Bundesstr. 55

W-2000 Hamburg 13
GERMANY

IH

\.
tI'..

                                   
                                                                                                       ©


