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Asymptotische Statistik

13.12. bis 19.12.1992

Die Tagung fand unter der Leitung von F. Götze (Bielefeld)und J. Pfan­
zagl (Köln) statt. Sie beschäftigte sich in 35 Vorträgen und zahlre­
ichen Diskussionen insbesonpere mit neuesten Entwicklungen auf den
folgenden Gebieten: Schätzen von Regressionsf1Jnktionen und Dichten,
effi2;iente Verfahren für semiparametrische und·~ichtparametrischeMo-

. delle, Statistik für stochastische Prozesse, l3.gotstrap. Ein Abend war
einer Diskussion über die Zukunft der Stati.~tik gewidmet. .
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Vortragsauszüge

M. AKAHIRA

Asymptotic expansions Cor conftdence intervals

An asymptotieally unbiased eonfidence interval js constructed !rom an unbiased
test up to the third order, where the second and third order derivatives of the 10g­
likelihood function are used. And also its application to the 10eation parameter
case is described. Further, from the viewpoint of a posterior risk, the upper and •
10wer eonfidence limits are derived and, in praetice, obtained up to the second
order in case of the normal, uniform and truncated normal distributions. The
relationship between the loss funetion and a confidenee level is also diseussed.
1t is noted that the level can be determined from a shape of the 105S funetion
and is corrected to the length of a confidenee interval.

O.E. BARNDORFF-NIELSEN

Same aspects of random trees

A survey was given of same recent results concerning binary rooted trees witb
stochastic structures. More specifically, models for river networks and for disor­
dered electrical networks were considered.

The stochastic and statistical analysis of river networks has, within the last
live to ten years, grown into a very substantial and exciting subject area. This
is however not so widely known among probabilists and statisticians, because
most of the important papers have been published in Earth Sciences journals,
particularly in Water Resources Research. Much of the work relates to Horton '8

Laws, whicb are empirically determined regularities pertaining to order, length
and drainage area of stream links (ar sections). Of same special inter~t are a •
senes of recent papers that establish a connection between fractality and Horton
ratios. Other results deseribe tbe limiting bebaviour, in stochastic river networks,
of tbe main channellength, the width of the network, ete., the statements being
conditional on the number of sources or on the order of the network.

For electrical networks with random resistances one of the questions of in­
terest is to characterize the distributional properties of the total resistance R of
the network. The distribution function of R can generally not be faund explic­
iUy. However, certain specifications in terms of inverse Gaussian and reciproeal
inverse Gaussian distributions do allow an explicit solution.
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V. BENTKUS

Asymptotic expansions (or LP-norms of empirical processes

Let B be areal Banach space. Let ...Y,X},X2 , ••• E B denote a sequence of i.i.d.
r.v.'s with values in B. Denote Sn = n- t / 2 ( ..Yt + ... + .Yn ). Let 1f' : B --+ R be a
polynomial. We consider Edgeworth expansions for the distribution function of
1r(Sn), as weIl as for the derivatives of the distribution function. As an applica­
tion we get asymptotic expansions in the integral and" local limit theorems for
the general w-statistic

l

w~(q) = n,/2 [ (Fn(x) - x)'q(x)dx.

Here p = 2,4, ... , q : [0,1] -+ [0,00] is a weight function, and Fn is an empirica.l
distribution function.

P.J. BICKEL

A new appr"oach to testing goodness of fit

We study the properties cf a method of testing for goodness of fit. This methoq
can be viewed as a way of selecting the best among a family of tests correspond~

ing to test statistics {Tj J, j ~ 1, such that the tests based on Tj are "best"
against alternatives in a finite dimensional parametrie family :Fj. We suppose
Fj C Fj+1, j ~ 1. The tests we propose roughly,

(i) Ar~ powerful against low dimensional alternatives (Tj with j small).

(ii) Perfonn as weil as the best of the Tj based tests for a.lternatives ·~9it be­
Ionging to Uk.rk.

(iii) Are consistent against all alternatives.

This kind of approach is, in part, proposed hut not studied analytically in
Rayner and Best (1989).

D.M. CHIBISOV

Chi-squared tests with large number of degrees of freedom

Let XI,'." ZN be independent no~allyN(/Ji, 1) distributed r.v. '5, and Ho : J1. =
(IlI, ... , JJN) = 0 against H. : IJ =F 0, E lJi = 0 is to he tcsted. It is proved that
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the chi-squared test based on X~ = L( x i - x)2 is asymptotieally most powerful
within thc dass of symmetrie (permutation invariant) tests, as N -+ 00.

M. DENKER

Rank statistics under dependent observations and applications to ex­
perimental designs

This is joint work with E. BRUNNER. In a general model of the form

Xi(n) = (Xil(n), ... ,Xim,(n)(n»)'

with independent random veetors of (non-constant) dimension mi(n) .we prove
asymptotic normality of simple linear rank statistics under overall.' ranking.
When the score function is of class C 2 [0, 1), and very likely only in this ease,
sueh a statistic can be used in applications, Le. tbe unknown variance can be
estimated and the assumptions in the theorem be checked. Applications include
multivariate test for symmetry, Kruskal-Wallis test under repeated measure­
ments, Friedman test with overall ranking (and repeated measurements) and
many more. Tbe proof of the result follows known schemes.

D. DONORO

Minimax estimation of regression, densities, inverse problems

In tbe 1980's the theory of minimax estimation of nonparametrie regression,
densities, and in inverse problems was vigorously developed by researchers in
the Soviet Union, Europe, and the U.S. This talk will discuss very recent devel­
opments (wavelets, renormalization, infinite-dimensional nonlinear shrinkage)
whieb expose new phenomena in nonparametric estimation, and tbe implica­
tions for future research.

v. FABIAN

An optimum design far estimating the first derivative

This is a joint work with Roy E. ERICKSON and Jan MAäiK (both from East
Lansing, MI). Thc result concems an optimwn choice of step lengths in tbe
estimate of the first derivative, used in Fabian (Ann. Math. Statistics, 1967,
38, 191-200; 1968, 39, 457-466, 1327-1333). The optimum choice leads to the
minimal expected squared error of a stochastic approximation procedure. The
problem is equivalent to the minimization of r treated in the Theorem below.
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Theorem. Let m be an integer, m ~ 2,

x = {x; xE Rm , 0< Xl< -%2 < ... < (_I)m-l Xm , IIlxil = I}
i=l

and let r be defined on X by

( ) _ det[1,x3
, •.. ,x2m

-
1

]

r x - det[x,x3 , ••• ,x2m- 1]

x· = (x~,x~, ... ,x:n»). Then the minimal value of r is m and is attained a~

exactly one point x, given by

. m+l-i
Xi = (-1)'-1_2 cos( 2m + 1 1T) lori = l, ... ,m.

(xi/2 are tbe roots oE the 2nd type Chebyshev polyno~ial01 degree m.);~J...'::

M. FALK

On testing the extreme value index via the POT-method

Consider an iid sampie Y1 , ••• , Yn ofrandom variables with common distribution
function -F, whose upper tail belongs to a certain neighborhood of the upper tai!
of a generalized Pareto distribution Hp, ß E lR. We investigate the testing prob­
lemß = Po against a sequence ß = Pn of contiguous alternatives, based on th~

point processes N n of the exceedances among -Yi over a sequence of threshold~

t n. It turns out that the (random) number of exceedances r(n) over tn}s th~

central sequence for the log-likelihood ratio dl pn (Nn)/dlPo(Nn), yieldin~fit's l~

ca! asymptotic normality (LAN). 1'his result implies in particular the surprising
fact that r(n) cames asymptotically all the. information about the underlying
parameter ß, which is contained in N n • We establish sharp bounds for the rate
at which r(n) becomes asymptotically suflicient, which show however that this
is quite a poor rate. . .

S. VAN DE GEER

On the application of martingale inequalities to maximum likelihood
estimation

We consider uniform exponential probability inequalities for martingales, impos­
ing entropy conditions which are analogous to those used in empirical process
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theory. These inequalities can be applied in several maximum likelihood prob­
lems.

For examplc, let {.lVt } be a counting process with continuous compensator
{..4 r }, and suppose that dAfdJJ =·a(19o), t90 E e.~ Let

LT({), vo) = foT log(:(~:»)dN _foT(a(!?) - a(!?o»)dll

be the log-likelihood ratio and let

h}(,'J,J) = ~ [T(a 1/ 2(,'J) _ a1/2(J9»)2 dIJ- Jo
be the Hellinger process. Then one can define a function cpcr(b), expressed in •
terms cf tbe entropy with bracketing of {a( 19) : {) E e} endowed with metric
hT({J, J), such that for b. ~ <'?cr(b.) we have

P (LT(a: 190 ) ~ 0 1\ hT({), 190 ) > b. for some t9 E e)
~ Cl exp( -CQb:) +P(A(T) > 0'2).

R.D. GILL

Laslet.t's line segment problem

Joint with B. WUERS.- G. LASLETT (Biometrika 1982) considered a number
of related nonparametrie estimation problems including the following: a Poisson
line segment process is observed through a boundedwindow W, so that same
line segments are completely observed, some are 'censored' on one or both sides:

•Assuming independent line segment lengths and" orientations the object is to
estimate the length distribution F. Following LASLETT we show how the like­
lihood can be calculated. Computation of the NPMLE of F is feasible though
to derive its asymptotic properties is an open problem. We specialize to the
one-dimensional case:

...-••• '--.-.I __

~ ------ ...
ft) r::'

6

                                   
                                                                                                       ©



•

•

Here we show the NP!vILE is consistent. (vVUERS, 1992) using a general convexity
argument and the fact that after reparametrization to a length biased versio~

of F, we have a pure "nonparametrie missing data problem' in \vhich underlying
i.i.d. copies of ."(,T, where .1{ -- V {unknown) and TI.X=x -- Unif( -x~ r) are
grouped ooto lines or ioto a region or completely observed according to th~

following figure:

.......---~~t.o ~

The sharp point at the top of the (complet~ly observed' region introduces a
singularity which so far has prevented us !rom proving (root n style) asymptotics~

In fact by a result of van der Vaart root"n estimation of \i( r) is impossible. Same
modifications are proposed which are almost efficient.

L. HEINRICH

Normal approximation far mean-value estimates in absolutely regular
Voronoi tessellations .

We consider a d-dimensional Voronoi tessellation V('l1) = {Ci, i E :N} generated
by a stationary point process W = {.Y'i' i E IN}; Ci = {x E lRd

: IIx - J\dl $
IIx - XiII for j =/: i}. One of the best studied models for a random tessellation of
the space lRd is the well-known Poisson-Voronoi tessellation wmch is generated
by a homogeneous Poisson process 'lt. In order to measure the departure of
an observed tessellation !rom a Poisson VT (which often serves as a kind· of
gauge model) one has to find suitable characteristics and corresponding test
statistics with known (approximate) distribution. The question arises how. to
find such a distribution. To tackle this problem we assume that the generating
point process '11 satisfies a ß-mixing condition (absolute regularity), e.g. 'in case
of Poisson cluster and certain Gibbs processes, and show that the random closed
set aV('1I) = U,eIN aCi('1J) -'-the skel~tonof the VT - and, hence, all associated
point processes (nodes, midpoints of edges, circumcenters of facets) satisfy a
similar absolute regularity condition.

Finally, applying some results and techniques from the limit theory of
strongly mixing random fields, we obtain asymptotic normality of the proposed
intensity estimators of the associatcd point processes. Using a suitable estimate
of the asymptotic variance of these estimates (which is shown to be asymptot-
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ically unbiased and consistent) we can establish asymptotic lOO(1 - er)% confi­
dence intervals far the intcnsities under consideration. Here asymptot~cs mean
that the sampling region grows unboundedly in all directions.

R. HÖPFNER

Estimating a parameter in a birth-and-death process model

We deal with estimation of an unknown one-dimensional parameter f) ranging
over e = (-C, +(0), in a particular birth-and-death process model where the •
observed .process is either transient (case f) > +), positive-recurrent (case f) <
0), or recurrent null (case 0 ~ {J :5 1). It is known that a certaln random
observation scheme establishes local asymptotic normality at a1l points f) E e
of the model, everywhere witb same local scale I/V". We construct and discuss
different families of estimator sequences for the unknown parameter. Some of
these sequences, being regular in tbe sense of Hajek at a1l points {J E 8, fail to
be efficient in tbe sense of the convolution theorem, on different subsets of {J.

A. JANSSEN

Recent results for Kolmogorov-Smirnov tests and related tests

The first part of the talk deals with two-sample goodness of fit tests of Kol­
mogorov-Smirnov, Cramer von Mises and Anderson-Darling type when ties are
present. Two methods are presented in order to obtain valid (asymptotically) Q­

.similar tests. Also the power function is calculated in direction of non-parametric
tangent vectors.

The second part deals with the local companson of different tests. Each
non-parametric unbiased test has a principal component decomposition of the •
curvature of the power function given by a Hilbert-Schmidt operator. Thus
every non-parametric test has reasonable curvature only for a finite number of
orthogonal directions of alternatives. As application one obtains results about
the curvature of the two-sided Kolmogorov-Smirnov tests. It is shown that
these tests prefer for small a approximately tbe same direction as tbe two-
sampie median rank test. The results are analogous to earlier results of Hajek
and Sid8.k for one-sided Kolmogorov-Smimov tests. I
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P. JEGANATHAN

On the calculation of Bartlett correction in time series models

-Computing the Bartlett correction for tbe likelihood ratio statistic involves the
computation of approximate bias of the log-likelihood ratio. This may be dif­
ficult in time series models. An alternative approach to the calculation is sug­
gested. The approach is related to the one that uses a forniula for the conditional
distribution of MLE given the ancillaries in the case of transformation models.

J.L. JENSEN

On asymptotic normality of pseudo likelihood estimates Cor pairwise
interaction processes.

Due to the possibility of phase transitions it is not possible'to prove asymptotic
normality of maximum likelihood estimates ~n Gibbs point processes for all val­
ues of the parameters defining the process.The problem is to get a bound o~

the mixing coefficients of the process. Contrary to this, asymptotic normality
can be proved for the maximum pseudo likelihood estimates without using th~

mixing properties. Instead one uses ergodicity and: a property that resembles
that of a martingale difference scheme, i.e. the score function is a sum of term~
each of which has mean zero conditioned on tbe .surrouridings. The final result
says that it is possible to calculate a stochastic norming of the pseudo likelihood
estimate such that the normed estimates haye asymptoiically a st~dard normBl
distribution for a stationary Gibbs point process. The talk is based on joint worlc
with Hans R. Künsch. .

W.C.M. KALLENBERG

.' Accurate test limits with estimated parameters

Joint work with A. ALBERS and G.D. OTTEN (Enschede). - Due to measure­
ment eITors, procedures are typically forced to set test limits weil within spec­
ification limits. The methods used in practice are rather informal and usually
conservative with respect to consumer 1055, thus leading to unnecessary 10ss of
yield..We present approximations for test limits which are still relatively easy
to evaluate and morcover very accurate. In addition~ the analytical tractabil­
ity of these approximations allows extension to thc more realistic case whe~e

parameters are estimated.

9
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C.A.J. I~LAASSEN

Transformation models

A general class of semiparametric transformation models is considered. A sec­
ond order differential equation is derived for estimation of the real parameters
involved. A frailty model of Clayton and Cuzick for survival data. is studied in
some detail. It is shown that the information bounds are sharp by constructing
an estimator attaining it.

H.R. KÜNSCH

Linking blocks in the bootstrap for stationary .observations

Joint with E. CARLSTEIN, Chapel Hill. - We consider the problem of estimating
the distribution of a statistic when the underlying observations are stationary. A
truly model free procedure for this is the blockwise bootstrap which resamples
independent blocks of consecutive observations. For consistency it only requires
mixing and moment conditions. Still, for finite n the bootstrap variance has a
bias even in the case of the mean. In order to reduce this bias, we propose to link
the blocks by choosing their starting points according to a Markov chain. The
transition probabilities are determined by assuming a partially specified model

. for the observations, e.g. an ARMA- or a Markov model. The analysis of this
metbod leads to th~ study of U-statistics with kerneis depending on tbe sampIe
size.

H. LÄUTER

Bootstrapped nonlinear ~stimators

We are looking far strang LLN far bootstrapped statistics. We give conditions
for the uniform almost sure convergence for bootstrapped Dormalized weighted
sums of variables where thc coefficients depend on parameters. This result we
use for the proof of the strang LLN for the bootstrapped least squares estimator
in nonlinear distribution families. As a second proplem we use the bootstrap
distribution for the BIAS reduction ofnonlinear estimators. H con~ex parameters
are to be estimated then with this procedure we improve estimators in the sense
of the mean squared errar. '

. 10
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R.C. Llu

Geometry in non-parametrics with censoring.

In this talk, we use a geometrie approach to:

. (1) identify optimal rates of eonvergenee in estimating non-parametric func­
"tionals (such as density, hazard) with censoring

(2) construct optimal rate estimators through a geometrie quantity and
F/R/W procedure

(3) construct nearly best estimators, which are, in general, within 25% to min­
imax with censoring

simply, for unified and general set up.

Dur general too1 is a geometrie smoothness measure called "modulus of con­
tin~ty". The issued (1) and (2) were not completely answered in the literature~

and (3) was never studied before.

E. MAMMEN

Bootstrap tests for multimodality

Some results are presented for the expected number of mocles of kernel density
estimates. These results are applied for the study of test statistics for multi­
modality based on kernel density estimates. Asymptotic results are given which
suggest that bootstrap can be used for achieving critical vaIues and that these
bootstrap tests are conservative.

R. NORVAISA

Asymptotic behavior. of distributions induce~ by the empirical pro­
cesses on function spaces

Consider a (centered) L-statistic Ln given by the integral representation

ll
Fn

(I) l
Ln - Jl = . J(s)dsg(dt) =: ~ JFndg,

IR F(t) IR

where 9 is an indefinite integral, J is a score funetion and Fn is an empirical cl.f.
based on a sampie from the arbitrary d.!. F. One can consider cIJ J as a Nemytskij

11

                                   
                                                                                                       ©



operator acting hetwccn Banach function spaces. The main statement is that the
task of an asymptotic behavior of Ln reduces to the asymptotic behavior of the
empirical clJ. F n and snloothness properties of tt J. We plan to illustrate this
for the consistency a.n~ asymptotic normality questions. In this way we improve
previously known rcsults on this subject.

M. NUSSBAUM

Asymptotic equivalence oe density estimation and white noise

We consider the question of asymptotic equivalence of the density estimation •
experiment, where Yi, i = 1, ... , n are observed i.i.d. random variables with
values in [0, 1] having density f, with the white noise model. Tbe latter one is
given by observations

t E [0,1]

where dW(t) is standard Gaussian white noise, r(t) is a variance function and
f the unknown drift function. Equivalence is construed in the sense of LeCam's
deficiency distanee between experiments. We first demonstrate that j{ f varies in
a eertain shrinking neighborhood ef some density 10, then the i.i.d. experiment ia
asymptotically equivalent to a white neise model with variance funetion /0. We
then extend this loeal result to a global one by using a preliminary estimator 9ef
10, based on a {racHon of the sampie, and by introducing a eompound experiment
where the first fraction of tbe i.i.d. sampie is retained, and the second fraction is
substituted by a white noise model witb estimated variance funetion. That yields
global asymptotic equivalence if f varies in a set ~., whieh can be specified to
be genuinely global and nonparametric. This allows deducing asymptotic risk
bounds for density estimation from the white noise model.

G. PFLUG

Asymptotics of stochastic optimization problems

We consider an optimization problem of tbe fonn

{
o xEC,

(P) E(H(x, ~» + tPc{x) = min! where tPc(x) = 00 x f1. C !

and its "empirieal" version
1 n

(Pe) -LH(x.~;)+tPc(x)=min!
n i=l

12
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Let x· be the solution of (P) and .Y" be the ~olution of (P t). Set

We want to study the asymptotic distribution of T" for a suitably chosen se-
quence of regular matrices r n ~ o. .

By change o~ coordinates

n

Tr:a = argmin!'n L [H(x· + r"t, ei) - H(x·, ei)] + tPc(x· + r n t )
i=1

for !'n > 0, arbitrary. For a. variety of cases, the epi-limit in distribution of the
process

n

Z" = Un L [H(x· +r "t, eil - H(x·; eil] + tPc(x· + r n t )
;=1

may be found. Tbe limit of tPc(x· +r nt) depends on the local curvature qf the
set C near x·. Hr n is a multiple of the unit matrix, then the limiting con"straint
set is the tangent cone. H r n is different in different directions, other limiting
constraint sets may appear. The stochastic process ;

n

!'n L [H(x· + rAt, ed - H(x·, ei)]
i=1

converges typic~ly to a process of the form D(t) + Set), where D(t) is same
deterministic function and Set) is a self-similar zero mean stochastic process.
We discuss cases where Set) =t' . Y; Y ,...., N(O,1:) Cl:S weil where S(t}- is a
generalized Wi«:ner process or a generalized Poisson process. ~-~

Y. RITOV

Estimating tbe expectation of a discounted reward process

Let 19 = E1:,),'-1 R, for an unknown random process R,. We look for unbiased
estimators efficient under white noise models and show that under same model,
geometrie stopping time and equal weights yield the efficient design. Strange
things happen under other models. .

13
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L. RÜSCIIENDORF

Asymptotics of algorithms

We detcrmine the asymptotic distribution for some examples of stochastic re­
cursive algorithms. The proof based on a contraction technique consists of three
steps. First determine the stahle limiting equatioD of a normalized version of the
recursion. Secondly choose a probahility metric which leads to contraction prop­
erties of the operator describing the limiting equation. This metric has to reflect
the structure of the recursion. Thirdly decompose the normalized recursion into
one part which converges to zero and one part which approximates the limiting
eq~ation. The ex~ples discussed include sorting algorithms, trie algorithms,
search algorithms! the bootstrap estimator and iterated function systems. The •
talk is based on joint work with S.T. RACHEV.

A. SAMAROV

Nonparametrie functional estimation

In the context of nonlinear-nonparametric regression, we consider estimation
of the Pearson correlation ratio defined as TJ2 = Var(m(X))/Var(Y), where
m(X) = E(YIX). We show that, under certain conditions which include suf­
ficient smoothness of m(x), there exist n 1 / 2 -ronsistent, asymptotically normal
estimators of that functional, which are, in fact, asymptotically efficient in terms
of nonparametric information bound of Koshevnik and Levit (1976). Together .
with asymptotic properties, we address the issue of data-dependent selection
of smoothness parameter (bandwidth), and also use estimation of functionals
closely related to TJ'l for assessment of (non)linearity of regression and for mea­
suring relative importance of subsets of predictor variables.

A. SCHICK

On efllcient estimation in semiparametric regression .

The problem of constructing efficient estimates of the finite dimensional pa­
rameter in regular semiparametric regression models with unknown error and
covanate distributions is discussed. The efficient influence function is derived
and shown to depend on thc projection of characteristics of the model onto
some subspace. It is then shown how to construct an efficient estimate if ap­
propriate estimates of the regression function and the projection are available.
Special care has to be taken when estimating thc projection. An example is
presentcd in which the projection can he calculated cxplicitly and a plug-in

14
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estimate does not work under minimal conditions. It is shown that empirical
projection estimates work in this case.

I.M. SKOVGAARD

Saddlepoint and Laplace type expansions - an overview

Saddlepoint approximations are known as a highly accurate form of asymptotic
expansion of a density (DANIELS, 1954) or of a distribution function (ESSCHER,

1932, LUGANNANI & RICE, 1980). Basic results concern sums of i.i.d. random
variables, hut applications often go further.

. .
An overview of the possibilities of deriving saddlepoint expansions far vari-

ous statistics is given. This starts from the basic derivation of such an expansion,
for example for sums of non-i.i.d. random variables and continues with the pos­
sible operations leading from one such expansion to another. These operations
include conditioning, marginalization, non-linear transformations that are~;·oot
necessari1y one-to-one, and one-dimensional integration. This part of the talk
is c10se1y related to the theory of Wiener germs by H. DINGES. ..\

Applications in statistics are discussed, in particular the difficulties related
to expansions of distributions of test statistics.

H. STRASSER

Random and incident~ nuisance parameters

Consider,a model with structure parameter {) and nuisance parameter 7]. Suppose
that {) E lR, TJ E (0, 1), and that Tl is govemed by a uniform distribution... rhen
for a 1055 function W there is abound ßw such that the following holds:

If the risks of a permutation invariant estimator sequence (Sn) are asymp­
totically seldorn worse than ßw +e for all e > 0, then they are asymptotically
seldom better than ßw - e for all e >- o.

A. VAN DER VAART

Bracketing smooth functions: new Donsker classes

Let X t ,X2 , ••• be i.i.d. random elements with distribution P. A class F of mea­
surable functions is called a Donsker class if the sequence of empirical processes .
f -+ n- I

/
2 E?=t (f( ...Y'd - P f) converges in distribution to a tight Gaussian

15
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proccss in thc space of bounded functions from F to the real line. Presently
there are two types of simple sufficient conditions for a class to be Donsker: in
terms of random or uniform entropies. (applicable to VC-classes) and in terms
of L2-bracketing eritropy. For the latter one needs upper bounds on the number
of brackets that are necessary to cover F. Such bounds are classical for smooth
functions on compact subsets of Euclidean space. We derived sharp upper bounds
for classes of smooth functions on unbounded sets.

This study was motivated by problems of infinite dimensional maximum
likelihood or M estimation. M estimators can be shown to be asymptotically
normal by expanding and inverting a set of likelihood equations. This involves
two main technical problems: to show that a certain derivative operator is con-
tinuously invertible and to contral remainder terms of the expansion. Tbe latter •
can b.e accomplished by showing that certain classes of functions are, Donsker.

w. WEFELMEYER

Quasi-Iikelihood models and efficient estimation

Consider an ergodie Markov chain on the real line, with parametric models for
the conditional mean and variance of the transition distribution. Such a setting
is an instance of a quasi-likelihood model. The customary estimator for tbe
parameter is the maximum quasi-likelihood estimator. We show:

1. The maximum quasi-likelihood estimator is as good as the best estimator
that ignores the model for the conditional variance.

2. There is an estimator which is as good as the maximum quasi-likelihood
estimator if the conditional variance is correctly specified, and strictly better,
and efticient, if it is not.

3. An efficient estimator in the quasi-likelibood model is given as a weigbted
nonlinear on~tep least squares estimator, with weights involving predictors for
the third and fourth ·contered conditional moments.

J .A. WELLNER

Copula models

A parametrie copula model {C iJ : iJ E e} is a parametrie family of distribu­
tion functions on the unit square with uniform (0,1) marginal distributions:
C.,(u,l) = u, C,,(l, v) = tJ, U, v E [0,1]. Thc Archimedean copulas are of the
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form C(u, v) = t/.t- 1 (tb(u) + tb(v)) , and have an interpretation in terms of frailty
models when tfJ-I(U}= Ee-u'v is completely monotone.

Semiparametric copula models can be obtained from any particular parametrie
copula models by composition with arbitrary marginal distributions:

Modell

PI = {Pß.G : P",G has d.f. F",G(s, t) = C,,{G(s), t), f) E ~, G E Q}.

Model 2

P2 = {P".G,R : P",G,H has d.!. F".G,H(S,t) = C,,(G(s),H(t»), {) E 8, G E Q,
H e9}.

In this talk I discussed information bound theory for semiparametric cop­
ula models with emphasis on "model 2", t.b:e case of two unknown marginal
distributions. In this case the efficient score function i~ for estimation of {) is
I; = f.'8 - [ga. - f.hb. where A~ =: a., B~ =: b. are determined by the coupled
differential equations

A: - aA.(u) = --y(u) -:.l B.(v)K(u, v)dv

B~ - ßB.(v) = -6(v) - l A.(u)K(u, v)du

where
a(u) = E(~; I U = u),
ß(v) =E(iv IV =v),

')'(u) = E(i"eu I U = u)
5(v) -= E(i"ev IV = v)

••

K(u, v) = iuv(u, v)C,,(u, v),
. a,
t,,(u, v) = 8f) log e,,(u, v).

For most families CD the equations (*) do not have an explicit solution. However,
in the special case of the bivariate normal copula family

the equations (.) have an explicit solution leading to the efficient inftuence func­
tion

and the efficient information for {) is I; = (1 - {)2)-2, which is exactly the same
as for estimation of {) in the bivariate normal submodel. Thus the bivariate

17
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normal subtnodcl is least favorable. The efficient score equation 0 = IPni;
n- 1 L~ e;(Si, Ti) lead~ to the normal scores rank correlation coefficie~t

as an estimator of {), and it follows from Ruymgaart, Shorack and van Zwet
(1972) that dn is asymptotically efficient:

vn(Jn - t9) -+ dN(O, (1 - fJ2)2).

W.R. VAN ZWET

Asymptotics Cor plug-in estimators with application to· the bootstrap

Let X 1 ,X2 , ••• be i.i.d. with (unknown) common distribution P E 1'. H PN =
PN(X1 , ••• ,XN) is a sequence of ~timators of P with yalues in P, we can es­
t~mate a "parameter" sequence TN{P) by the plug-in estimators TN(PN). We
show that under a ~ety of continuity conditions on rN and convergence as­
sumptions on PN, the plug-in estimators are indeed consistent. The results are
proved in sufficient generality to be directly applicable to the bootstrap.

Berichterstatter: W. Wefelmeyer
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