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The confer~nce was organized by D. ai~s (Bochum), Ph. Ciarlet (Paris)
and E. Ste~n (Hannover)·.·The parti~ipants carne from numerical engineering,
mechaniCs t and from numericaL or applied analysis. The following interacting

.... tOPlcs wer~ discussed from various theoretical and applied points of view.
The"'~ymptotic properties of two dimensional plate models were one of the

main topics of the conference. Vatious derivations started from a three dimen-
. sional model and led to new (e.g. geometrically exaet) plate models or to the

von Karman equations;. In addition,. existence, regularity and asymptotics of
the solutions of shells and membranes were discussed as weil as related aspects
of their numericalapproximati0!1' The Reissner-Mindlin plate. model gave rise
to tbe discussion of mixed finite element methods arid thc problem of locking.
Appropriate (e.g. stabilizedr'element formulations as weil asrobust multigrid
or preconditioning methods were presented for the solution of the discrete linear
system of equations: The.number of iteration steps i5 small and independent of
same crucial pa"rameter (e.g. the thickness of the plate). .

The second important topic of the conference was the development an<.! ap­
plication of adaptive methods which admit an easy computation of solutions
with possible singularities. Their algorithrnic aspects - mainly conccrning the
numerical treatment of the disc'rete equations (e.g. via a multigrid rnethod) ­
as weil as their theoretical foundation were discussed. In particular, thc corn­
parability of different error indicators in tlte case of a structured meshes and its
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relation to superconvergence phenomenons became important. Adaptive meth­
ods were presented not only for linear elliptic problems but applied also Lo ftow
problems, nonlinear shell buckling, localization in plasto mechanics, obstacle
problems, and in dimensional adaptivity.

D.N. ARNOLD:
p2_ pi Stokes Elements
We .investigate the finite element approximation of the Stokes equations us­
ing eontinuous pieeewise quadratie elements for the veloeity and discontinuous
piecewise linear elements for the pressure, both computationally and theoret­
ieally. This seemingly simple choiee of elements exhibits a surprisingly rieh
variety of stability and convergence behavior depending on the mesb configura­
tion. Aecording to the mesh family there may or may not exist loeal spurious
pressure modes (usually associated with singular vertiees) and/or global spuri­
ous pressure modes. Of course such pressure modes cause tbe method to faH the
inf-sup condition and in this sense to be unstable. When tbe pressure modes
are removcd from the finite element space, a filtering process which leaves tbe
velocity unchanged, the resulti.ng reduced system may or may not be stable.
For a number of irregular and regular. mesh families we sh,ow it is stable, while
for a number of other families, including the simplest uniform triangular mesh

.generated by three lines, it is not. However the evidente seerns to indicate that
the unstable situations are quite special and not very robust and this element
delivers optimal order velocity approximation in most cases. We conjecture that
the velocity a~proximation is at worst one order suboptimal in any ease.

E. BÄNSCH:
, Algorithmic Aspects of Selfadaptive FE-Techniques far Instationary

Problems .
Adaptive strategies for instationary problems are presented. These strategies
apply to a quite general dass of problems. Our emphasis is on 3D problems.
The following points are outlined: local grid refinement/eoarsening, criteria for
grid modification, interpolation between different grids, overall strategies.
Numerical examples are presented:
• Transient ftow simulation in 3D
• Solidification in undercooled media/dendrite growth in 2D and 3D.

J. BEY:
Adaptive Multigrid Methods with Local Smaothers rar 3D Elliptic
Problems
W~ consider the solution of convection diffusion equations in three spaee di­
mensions. These are discretised by a finite volume method applied to a nested
sequence of tetrahedral meshes. Upwinding is used to stabilize the discretization
in the case of dominating convection. The resulting linear system is solved using
an adaptive multigrid algorithm with a loeal Gauss-Seidel smoother. Therefore
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the order of unknowns of each level is properly aligned to the direction of con­
vective ftux. This ordering turns out t6 be essential in order to guarantee gool!
convergence rates independent of the proportion of diffusion 'and conveclion
terms.

H. BLUM:

Finite Element Error Analysis 00 Structured Meshes
The consistency error of finite element discretizations allows for a more detailed
analysis and for better estimates on structured meshes composed of uniformly
refined blocks than on -arbitrary regular meshes. These results provide .the basis
for the derivation of various superconvergence properties which cannot hold true
in general. Further, the accuracy can be improved by means of defect correction
techniques. Using certain naturallocal filtering and smoothing procedures, these ­
teehniques carry over to mixed and nonconformirig sehemes.

F. BOURAUIN:

SubstructuringMethods Car Fluid·Strncture Interaction :>-

We consider the' problem of elastoacoustic vibrations of a ftuid-structure sys:.
tern in the vicinity of an equilibrium state. The puredisplacement variation~al .
formulation ex.hibit~ a small parameter,ratio of the fluid density to the density
of the solid body. The asymptotic expansion of tl)e solutions with respect ~~~
{ is proved to be rigorous in Sanchez-Hubert and Sanchez Palencia, and leaos
to a natural substructuring algorithm that allows us to compute -the elastic
eigenmodes as simple statie perturbations of the cavity modes in vacua and of
the acoustic modes in the rigid cavity. This algorithnl can take advantage of a
hybrid diplacement-pressure-diplacement potential fornlulation and requires a
fast procedure to compute the forced response of a linear system.

D. BRAESS:

O~ Finite E~ements far Mindlin Plates
When locking free elements for Mindlin-Reissner plates are developed, it ~is~

appropriate to consider this plate model as aperturbation or the Kirchhoff.!....
model. Some folklc;>re onsaddle point problems (mixed problems). with penalty
is misleading. A regular perturbation is always stabilizing while asingular one
is only ir the qu~dratic form for the" variational functional is elliptic on the
whole space. The H~lmholtz decomposition usedby Brezzi and Fortin ad~nits
a splitting such that the singular part refers to a subspace with this property.
We show that the. MITC-elements(or more generally ele~ents which satisfy
the axioms'of Brezzi, Bathe, Fortin) admit a discrete Helmholtz decomposition.
Ta this end a discrete version of the cud operator is defined as a tlistribtitional
derivative with test functions from the finite element space for the strain. With
this, almost optimal error estimates can be derived.
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S.C. BRENNER:

~Iulitigrid Methods {or Parameter Dependent Problems
~Iultigrid methods for parameter dependent problems will be 'discussed. The
contraction numbers of the algorithm are bounded away from one, independent
of the parameter and the mesh levels. Examples include the pure displace­
ment and pure traction boundary value problems in planar linear elasticity, the
Timoshenko beam problem, and the Reissner-Mindlin plate problem.

C. CARSTENSEN:

On Adaptive DEM and BEM/FEM Coupling.
\Ve state same aposteriori euor estimates for Symm's integral equation, for
an integral equation with the hypersingular operator, for same transmission
problem and the symmetrie coupling of boundary elements and finite elements.
\\'e sketch the main idea for a proof of these estimates following the approach
for finite elements due to Erikson and Johnson. Then we present an adaptive
feedback algorithm and discuss some illustrating numerical examples.

H. CRAMER:

Adaptive Analysis of Elastic Structures Using Recursive Substruc­
turing
In this lecture an adaptive treatment of problems in plane elasticity using recur­
sille substructuring is described. The applied proeedures in tbe different steps
of the adaptive process are discussed. In the first part some frequently used
error indicators and estimators are considered. Their performance is illustrated
by the results of a model problem. This will be followed by a section dealing
with mesh refinement, where the h-process of remeshing is shortly presented.
Finally the solution of tbe algebraic equations using direct solvers is considered.
It is poiDted out thai recursive substructuring is a very w~1l suited solution tech­
nique for an adaptive process. Possibilities of parallelization of tbe calculation
are discussed.

R.S. FALK:

Derivation, Asymptotic Properties and Numerical Approximation of
same Two Dimensional Plate Models
Two dimensional plate models derived from Galerkin approximations to two
fonns of the Hellinger-Reissner mixed variational principle are considered.
These include the family of minimum energy models, Reissner's model, and
a new family of models, similar to Reissner's model, which may also be viewed
as complementary energy models. Comparisons are made regarding the bound­
ary layer behavior and regularity of the solutions of these models as a function
of the plate thickness t. Uniform in terror estimates are presented for a finite
element approximation seheme for the lowest order minimum energy model.
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M. FORTIN:

Finite Element Methods, Stabilized Formulations and Error Estima·
tion·
Errorestimation and adaptivity are essential for advanced computation, spe­
cially for Computational Fluid Dynamics. We are considering a strategy in
which a stabilized formulatian, such as a Galer~in least squares method, can
provide some form of errar estimation.

R. KORNHUBER:

On Adaptive Multilevel-Methods Cor Elliptic Problems
We will give a brief int~oduction to the basic eoncepts for .ffiultilevel precondi­
tioning and aposteriori error estimates which are then applied to same elliptie
problems. In particular we will consider the BPX preconditioner in three spaee
dimensions. Using active set strategies, the' solution of obstade problems .can
be reduced to the Sol~tion ofa sequenc~ of reduced linear sub-proble~~t{:.1t
turns out that the basic concepts of multilevel methods can be extended to' tbe
preconditioning of these redueed problems. To allow for loeal mesh refinement
we derive semi-Ioeal and local·a posterori errar estimates, praviding lower ~nd

upper bounds; for the global error. The theoretical results areillustrated· by­
numerical camputations.

A. MIELKE:

A Derivation of a Geometrically Exact Plate Model
Weconsider an infiriitely extended thick plate and show that all solutions having
uniformly small strains cao be deseribed by a two-dimensional PDE. It consists
of 9 scalars associated to each fiber. Tbe method is based on a Fourier decompo­
sition of the linearized problem. This shows th~t at least a 9-director"'--ffiodel is
needed. The nonlinear problem iä treated by a gener'alized LyapuDOV=-Schmidt
reduction. In' particular, the deformation"energy f~nctional of the plate can be
deduced rigorously from the energy functional of the thre~dimensionalcontin­
uum:

E~ SANCHEZ PALENCIA:

.Membrane Approximation for Thin Hyperbolic Shells
Membrane approximation is the limit behavior of shells as the thickness tends
to zero provided that the surface, along with the kinetic. boundary conditions
is geometrically rigid, i.e.. displacements with 1aJJ =0 (-raß= variation of the
coefficients of the first fundamental- form of the surface produ.ced by the" dis­
placement u) are ooly trivial displacements. In this case,' the membrane energy
form d~fines a norm on the sp~ce of displacements and we may construct the
spaee V of displacements with finite membrane energy. Functions of this space
are not smoo~ht their non-smoothness depentling highlyon the geometry of
the surface. 'fhe asymptotic curves of the slirfac.e are the characteristics of
the system of the membrane approximation. and singularities may propagate
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along them. The corresponding space V ia an anisotropie space of functions
not having traces along the characteristics curves. It is possible Lo eliminate the
normal eomponent of the displacement to get a closer form of the. spaee in terms
of the tangential components. It turns out that the membrane approximation
in the hyperbolie case is such that the strain-stress relation is positive but not
definite-positive: the corresponding energy vanishes for shear (eovaria~t shear
eorresponding to the directions of the asymptotie curves. The corresponding
behavior is rather of a net than of a membrane, but the net is holded by the
boundary conditions.

J .-C. PAUMIER:

On the Locking Phenomenon Cor a Linearly Elastic Clamped Plate
1. A Finite Element method is applied to tbe variational displacement formula­
tion of a three dimensional clamped plate. The purpose of this talk ia to study
tbe locking phenomenon which might oceur when the thickness approaches zero.
In this phenomenon, the error in the approximation is not necessarily small and
ean become very large if the thiekness decreases. In tbis talk we give conditions
on tbe Finite Element Method to avoid this diffieulty. Over these c~nditions it
is shown that the convergence of the approximation is uniform as the thiekness
diminishes to zero.
2. To sum up tbe above results in an abstract formulation: u( E V;
~ao(u(,v) + at(u f , v) = b(v) for all v E V, we give a sufficient condition to
have an appr9ximate solution u~ which eonverges, uniformly in !, as h - O.
This is a condition on the limit problem: Uo E G; at(uo t w) = b(w), for aH
wEG wbere G is the kernel of ao (not reduee to {O}).
3. As an applieation of our main result we consider the validity of models like
ttMindlin-Reissner"where the displacement u is a polynomial in the variable

. %3. We give a candition to get models wbich are It asymp~otic-canvergentn(as
the thickness goes to zero the solution converges to the Kirchhoff-Love solution).
This candition consists in taking displacement like polynomial in %3, degree one
for horizontal eomponents and degree two for vertical component.

J. PITKÄRANTA:

Asymptotics Vs. Numerics in Shell Problems
The main characteristics of shell asymptotics are 1) strong dependence of the
geometry of the shell (elliptic/parabolic/hyperbolic) and 2) (in fixed geometry)
strang dependence of kinematical constraints imposed, in same cases even of
the type of loading. Another eharacteristic feature of thin shell problems is
the presence of very different length scales, e.g. in boundary layers. If the
largest scale is chosen as the length unit, and t= thickness of the shell, then
lengt~ scales like t, Vi and even \/i are to be expected in boundary layers. In
standard finite element approximations, the error in the energy norm for p-th
degree elements of size h behaves typieally like lIu - uh'Pll/llu!I ~ G(t)(h/ L)P
where L ia the length scale to be resolved. In favorable cases G(l) is bounded!
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but often C(l) - 00 as t - O. In the warst cases G(t) - ,-I. To have error
< tal thus requires that h < (to/)l/1' LI(G(t»I/1'. If C(t) is large, this suggests
the use of high-order methods~ ,

E. RANK:
A Hierarchical HP-Version
Recently a 'variant of the hp-version as a combination of a high order approx­
imation with a domain decom'position method .has been suggested. The .basic
idea can be explained as folIows. In" a ·first step of the analysis a pure p-\'ersion
approximation is performed on a coarse finite element mesh. The coarse mesh is
then covered partially by a geometrically independent fine mesh .. On' the second
'mesh a lower order approximation is performed and the global 'api>roximat~on
is defined as the hierarchical sum of the p-approximation on the coarsemesh
and the h-ap'proximation on the fine mesh. Global continuity of the finite el­
ement solution can be guaranteed' by imposing homogeneous conditions att~e_ .,-. ',_
fine mesh boundary. The' hieiarchical nature of the approximation also reflect'i;:"
in the structure of the arising linear equation system and can be used in an effi· ,'[<'

cient solution algorithm. The paper discusses algorithmic details and shows ho\y..~
the hierarchical approach offers tbe possibility ora consistent modeling of local- ':.•
global solution behavior. In ~umeric~l exarnples the efficiency' and accuracy is .
demonstrated.. . .~.. .

RAa BOPENG:

M~guerre • von Karman Equations and "Membrane Model
As shown by Ciarlet-Paumier (1986), the Marguerre von Kcirman Equations ar~

a good approximation of a nonlinear shallow shell model. These equations are
characterized by the spedfic nonlinear terms of derivatives of order. two. " ,-

In this work, we first give a:general existence result and same smoothness
results. Next, in the esse of pure traction , we. study the behavior'of the shell.
We show that the solutions of the sha]low shell converge to the solution of the
membranemoderas.t~eintensity of the traction ~onverges .to infinity. ,:}.ü

A. RAOULT:

Asymptotic Derivation of Plate Models ..
1) Asymptotic derivation when tbe thickness goes to zero of both the linear
plate model and the von Karman model has lang been known. Although widely
used, these models are restricted to the small c.lisplacement range. Moreover ,
they are not frame indifferent.
By applying an asymptotic pracedure to the fuUy non linear system of :JD­
elasticity for large loads. we exhibit the nonlinear membrane equations a.s a
limit problem. The energy depends only in the first fundamental form' of the
deformed mid-surface. In this approach, the constitutiye law is a result. The
proper coefficients are not stated apriori. When the orders of rna~nitllde of
the loads are decreased and for a zero· leading resulLant. we ohtain a hending
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problem. The energy depends only on the second fundamental fornl. If we go
on with the process, we recover the previous results concerning the von Karman
and the linear model.
2) When using the classical way of deriving the Mindlin-Reissner model by pro­
jection on the space of displacements whose horizontal components are affine
with respect to z. and whose vertical component is independent of Z., one has
to modify apriori tbe constitutive coefficients. By comparing tbis (1,1,0) so­
lution with the exact solution in a special case, Babuska and Schwah find two
optimal values for k depending on the comparison criterion. We make the fol­
lowing remark: if an approximation of U(f) is chosen to be w = UO + f2 u 2 in
the case where u2 cao be computed (specific houndary conditions), then the re­
striction to the mid-surface of the vertical component W3 or its mean-value lead
by comparison to the Mindlin-Reissner model to the same optimal values. The
coefficient u 2 is a polynomial of degree 2 in Zz. This is an indication that the
Mindlin~Reissnermodel draws information from such an approximation space
(see the talk by R. Falk).

E. STEIN:

Dimensional Adaptivity in Linear Elasticity
The goal is the including of disturbed solutions in subdomains of beams, plates
and shells - such as at boundary layers, jumps of thickness or areas of con­
centrated' loading. - ioto an integrated h-d-adaptive finite element analysis in
order to get an overall reliable and efficient approximation process. Different
strategi_es are investigated, such as an expansion method 2D to 3D subdomains
and a reduction method using h-p-adaptivity in the whole 3D domains with
reduction ta 2D subdomains where the kinematic hypothesis are valid. Up to
now, the h-d- and the h-pt-d-adaptjvity is realized where tbe latter descrihes
2!D refinements with: p-adaptivity in the thickness direction. Crucial problems
are a flexible ID-2D-3D mesh generator as weIl as the apriori and aposteriori
error indicators. D-adaptivity' is initialized if the regularity check in 20 - using
residual errar indicatots - and the apriori estimated decay length~ of perturba­
tions hoth become active.
Some investigated problems like a plate on simple columns show the properties
and the efficiency.

A.-M. SÄNDIG:

CalculatioD of 2D and 3D-Singularities Cor Inclusions with Conical
Points
Let O2 be a two- or three-dimensional domain with an indusion {ll in the
interior. The domain 0 1 is polygonal in the two-dimensional case or has a
rotational symmetrie conical boundary point in the three-dimensional case. It
follows from the general theory that the solutions of elliptic differential equations
in ni , i = 1,2, which satisfy eertain transmission conditions on the common
boundary 80., have an asymptotic expansion consisting of singular and 'regular
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terms. The method, how to cal~ulate the singular terms is demonstrated for
different examples, namely for 2D Poissoo equations, biharmonic equations and
for the '20 and 3D Lame equation and for the 2D and 3D Larne equation systems.
The singular terms cao have the following form: T

Q
SieD, tP,t7), i = 1.2, where

(r, D, 11), are the spherical coordinates and r is the distaneeto a eonical point.
The real parts of the expa~ents determioe the regularity of the solutions. They
are calculated numerically for same materials for all openings of the conical
points and the eorresponding graphs show I when oscillating singularities «(\'
iscomplex) and when instabilities in the asymptotics appear (branehing and
crossing points).

B. SEI'FERT:

Mesh-Adaptation in the Nonlinear Finite-Ele'ment-Analysis oi SheUs,
Especially Buckling
h-Adaptivity with a-posterioti errar indieators for incremental stress states..~~
weil as boun-ds for tbe iocremental geometrical non-lioearity provides reliab.ie
and effective non-linear equilibrium patbs for shells with moderate .or ~ven fi­
nite rotations. The computation of bifurcation points and braneh-switching is
realized by error contro!. Adaptive refinement into buckle states is necessary
and reali.zed. at branch switching points. ..... "

.."".-.
P. STEINMANN:

Localization Problems in Plasto Mechanies
Tbe accumulation of ioelaStic deformations ioto "ncirrow failure bands is a fre­
quently obse~ved 'phenomenon in many different materials. Within c"lassical
continuum theory localization is described as a loeal bifurcation problem at
the constitutive level. Thereby diseontinuity surfaces across which the (spa~
tial) velocity gradientobeys a jump are assumed. The statical adrnissibility
requirement renders the localization condition in' terms of the acoustic tensor .

. Investigations of the acoustic tenso~ in the large strain regime are presented a~d
tbe implications of the aeoustic tensor analysis for the nUlnerical computaqqv.­

·,of BVP are highlighted. To this end, h-adaptive studies of a plane tension
problem are presented. FinallYt a regularisation method invoking a micropolar
continuum approach is sketched.

R. STENBERG:

On same Dilinear Fiuite Elements for Reissner-Mindlin Plates
We consider three methods using quadrila"teral bilinear approximations for "t.he
deftection and the solution vector: a c1assical method in which the skew energy
is computed inexactly withthe one point integration rule {reduced integration},
the n MITC4" -element (M ixed Interpolated Tensorial Components) by Bathe
and Dvorkin and a new ,. stabilized" modification of the MITC4. or the three
methods only the last ODe cao be shown to he uniforrnly optimal accuratc with
respect to the plate thickness. In our calculations we try to numerically \'erify

                                   
                                                                                                       ©



the results or the theoretical error analysis. For regular rectangular meshes the
expected 1085 of accuracy of the unstable method cannot be seen. However, if we
disturb the mesh, the instabilties show up. It is most clearly seen in the shear
force which for the unstable method can be extremely inaccurate (the errar ean
be greater than 100% !). For the stahle method, the mesh distribution have no
significant inftuenee on the accuraey.

R. VERFÜRTH:

APosteriori Error Estimates
There are various ways to obtain reliable aposteriori error estimates for finite
element approximations of elliptie pdes: There are in particular three variants
which are most popular:
1: evaluate the residual of the finite element solution with respect to the strong
form of the pde (originally proposed by Babuska) 2: salve loeal problems of the
same type wit~ Dirichlet boundary conditions (originally proposed by Babuska
and Rheinboldt) 3: salve loeal problemsofthe same'type with Neumann bound­
ary conditions (originally proposed by Bank and Weiser). We prove that all
these estimators are equivalent in the sense that they yield - up to multiplica­
tive constants which only depend on the polynomial degree of the finite element
functions and on the shape regularity of the mesh - the same global upper and
locallower bounds on the error of the finite element solution.

W.L. WENDLAND, U. GönNER, G. WARNECKE:

Adaptive Finite Element Methods Cor Transonic. Flows
By using elliptic type error indicators, a mesh refinement with h-adaption is
driven for the Glowinski conjugate gradient method for solving the Neumann
problem of the transO~c fuH potential equation for two-dimensional compress­
ihle ftows. These we based on localized residuals and ftux jumps across the finite
element edges. Numerical experiments showed satisfactory performance excep t.

at shocks. Based on the condition for selecting the physicaHy correct solution,
an additionalshock indicator is used for moving the Dodes in order to improve
the alignment of the mesh with shock curves. It can be shown that this shock
indicator is ooly active if theshock is within the element or the next neighbor.
Furthermore, for a piecewise smooth solution, optimal order convergence for
the velocity and the family of adapted refinements can be shown. The lecture
presents results of U. Göhner~s PhD thesis, a joint paper by U. Gähner and G.
Warnecke and a joint paper of the three authors.
References; 1. U. Göhner: Adaptive Finite-Element-Methoden für transsoni­
sche Strömungen. Dissertation, Universität Stuttgart 1991.
2. U. Gähner aod G. Warnecke; A shock indicator for adaptive transonic flow
computations. Preprint 92-9~ Math. lost. A, University Stuttgart.
3. U. Gähner. G. \Varnecke and W. Wendland: Error indicators for adaptive
transonic ftow cOInputations; in preparation.
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N.-E. WIBERG:

Patch Recovery Based on Superconv~rgentDerivatives aud Equilib­
rium
In this paper a postprocessing technique is developed for deterrnining first order
derivatives (fluxes, stresses) at nodal p'oints based ond.erivatives in superconver­
gent points. lt is an extension of tbe superconvergent patch recovery technique
presented by Zienkiewicz.. and Zhu. In contradiction to th-at technique alt flux
or stress cornponents are interpolated at the same time, eoupled by equilibrium
equations at tbe superconvergent points. The equilibrium equations and use
of ODe order higber degree of the interpolation polynomials of stresses give a
dr~matic decrease" of tbe error of recovered derivatives even at boundaries.

G. WITTUM:

Adaptivity and ~obustness

Robust solvers are crucial for the fast and efficient solution of ·singularlyp~.~.;:,

turbed problems. On the other hand, singularly perturged problems typica1!Y-.
show loeal phenomena like boundary tayers. Thus they require adaptive loc~(

refinement. In the present leeture we discuss a concept how to combine robusr;7­
ness and adaptivity in multi-grid methods and show the success of this concep""f"
applied to special problems. Further we discuss a diffusion problem madelling' ­
the drug diffusion tbrough skin and show robustn~ of thelocal mg salver. ";).-

Berichterstatter: C. Carstensen
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