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11. bis 17.07.1993

This conference was the third in aseries being held in Obenvolfach and was organized by Professors
M. Ablowitz (Boulder), B. FUchssteiner (Paderborn), M. Kruskal (Princeton) and V. Matveev (St.
Petersburg) .

. The participants presented their most recent work in the meeting. This and. the marvelous sur­
rounding again created a lively scientific atmosphere with very many stimulating discussions which

. certainly 'will inftuence future directions and will.contribute to further progress in the field.

The lecture program covered a broad range of topics such as integrability in multidimensions,
inverse problems, continuous and discrete systems, partic1e and quantum systems, algebraic. an<!
geometrical aspects of nonlinear evolution equations as weil as computational and algorithmic as­
pects~ Painleve analysis ~nd Darboux transformations, Solitons and Positons, Surreal Numbers,
soliton equations in relativity and differential geometry and various fields of applieations from the
study of water waves over symplectic jntegration to numerical chaos. Furthermore, in' two sessions
the computer algebra packag~ 'rvhtPAD' was expertly rlemonstrated by Dr. Waldemar Wiwianka.

To our rleepest regret we have to inform the conference participants that Dr. Wiwianka tragically
died in a traffie accident shortly after the meeting.
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VORTRAGSAUSZÜGE

M. Ablowitz:

Numerical Chaos, Roundoff Errors and Homoclinic Manifolds

The Nonlinear Schrödinger equation (NLS) is computed using various numerkal algorithms. De­
pending on a parameter in the initial conditions we find two aspects of chaos~ The chaos in the
first case, tising a "standard" numerical" algorithm is due to inadequate giid refinement, anel in this
case good spatial temporal chaos is observed. The chaos disapppears as the mesh is refined. In this
parameter regime, if we use a numerical scheme suggested by the inverse transform (t'integra.
discrete NLS") numerical chaos is not seen. In the other parameter regime, another - and perha.
more troubling - situation occurs. Here temporal chaos is generated by mioiscule errors~ such as
those due to roundoff. The development of this temporal chaos occurs for both "integrable discrete:'
as weil as higher order Fourier split-step methods. The fundamental analytical features inherent in
this problem will be discussed. Other equations possess simiIar characteristics. These observations
apply equally weH. to them as weil.

R. Beutler

Positon Solutions of the Continuous and the Discrete Sinh-Gordon Equation

It has been shown for several integrable equations that they have solutions with very interesting
properties, the sc>-called positon solutions, which are slowly decuying and oscillaÜng at iofi nity in
contrast to solitons with an exponential decay. After their mutual interaction positons reCl>ver

their original shape without suffering any phase shifts. Solitons pass through positons withollt he­
ing shifted too, while the positons get changed by the solitons in a predictable way. The derivation
of positon solutions is sketched for the ease of the Sinh-Gordqn equation and a discrete version of
it. Their properties are discussed in detail. For the discrete ease the positons are non-singular.
which i5 in contrast to the positon solutions discovered so fa~ for other nonlinear equations. It is
shown that in the 'continuum limit the results of the discrete Sinh·Gordon equation reducp. t.o those
of the continuous case.

A. Bobenko:

Surfaces in Terms of 2 by 2 l\tIatrices: Old and New Integrable Cases _i
Surfaces in a :3-dimensional Euclidean space a.re considered. The moving frame for a general surfa" I

i5 described in terms of quaternions 1/J E H•. This description characterizes the spin str\1ctllrr~ of
the immersion. The spin structllre of the minimal surt"aces is given in t.erms or the W(~i{~rstraß

representation. Integrable (~nses ami their defomlation families a.re presente<l. Some uf th~se ea..,;es
are weil known, some are not weil known anrl some are possibly new. It i5 shown, in partk\1lctr~

that the surfaces with harmonie inverse mean eurvnture

L
iJzUz(fj) = 0

a.re integrable. Here Z is a conformal variable of the lirst fundamental form. We show also t.hat
for all integrnble ea.•ws considered th(~ irnnlP.rsion fnnctloTl is givp.n hy 1!J- l -!lx'I;, when! A is t.lw cor­
responding spect ral parameter. " .'
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then

M. Boiti

A new approach to the initial value ·problem of the Kadomtsev-Petviashvili I equ3tion

It is shown that the theory of the Inverse Spectral Transform can be founded on a new mathemat­
ical object, called resolvcnt. In the specific example of the Kadomtsev-Petvinshvili I equation it is
shown that all the relevant quantities in the theory, the Jost and the advanced/retarded solutions
together with the Spectral Data, ean be obtained as a particular reduetion of the resolvent. The
resolvent satisfies a Hilbert-like identity, that can be used to derive the orthogonality aod the ana­
lytic properties of the .Jost solutions, the charaeterization equations for the Spectral Oata and ean
also be used to solve the inverse problem. .e (Joint work with F. Pempinelli; A. Pogrebkov, Steklov Mathematical Institute, Moscow, R.F.)

L. Bordag:
Qualitative Investigations of the Three Phase Solutions of the Sine-Laplace Equation

We give a complete description of aH real three phase solutions of the sine-Laplace (SL)"equation.
We get smooth real solutions and singular solutions expressed through 3 dimensional O-funetions.
All singularities of the solutions are vortices (with topological charge 81i") and anti-vortices (with
topologieal charge -81f). The points, where the solutions are singular. form chains a~d these chains
build up an almost periodic structure. We found one- and two-periodic solutions.
We developed a computer program for clirect computation of the parameters of the Riemann surfaces
and give graphieal representations for all types of solutions. This program can be used not ooly for
hyperelliptic surfaces, but for surfaces with genus> 3 too.
The real solutions of the SL equation are of interest in eonnection with superconductivity and
superfluidity, as weIl 3S in geometrical applicatioos;
(Joint work with M.V. Bahieh, Steklov ivlathematical Institute, St. Petersburg, R.F.)

M. ·Bordemann:

2-dimensional nonlinear sigma models: Zero curvature and Poisson structures

Nonlinear sigma models are solutions of the action funetional

8[4>1 = ~ I dt dx rfv hij (4)) 81'4>' FM';

Le. psendo harmonie maps 4> : rn.1, 1 - (M, h) wherc ;vl is a homogeneous Riemann maoifold
(M = G/H).
1. Define the current w.r.t. the isometry gronp G by

jJj{</JHe) = -hij(</J)81!4i (f.Al)i(t/J)

.)

LI! = 1 ~ >.2 (jJ& + )..(*j),J

gives a zero eurvature represehtation Le. (dL)~v + IL,,, Lvi = 0 if and only if j\1 is a Riemannian
symmetrie space (iden goes bock to Pohlmeyer (Hl76), prouf uy Giden-Forger (1979) and ext~nded

version by MB, Forger, Laartz, Schiper).
2. Using the symplectic strl1cture of the initial eonditiotls, there is a Lax represp.ntation:

D(x, A) := Üz + L·,(x. A),
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11'1'

Le.
iJ -= (D, Lai

and a classical r-matrix:

2J1. J.LC a(cP(x)).
d12 (X, Yj Al Jt) = --2 (-\- + --\-) 6(x - y)

1 - J1. '" - J.L l - AJ.l

(C denoting the Casimir in g 0 g for semisimple g, a(lj>(x)) denoting .4.d(g(x))a.4d(g(:c)-l) where
a is the involutive automorphism of g fixing the subalgebra and 4>(x) is represented by g(x) E G)

such that ­W' -
The computation of higher Poisson brackets of the d's and D's yields a closed algebra in spite of
~he field dependenee of d. The r-matrix d does not satisfy the classical Yang-Ba.xter equatioo l but

[d 12(X, y;'\, J1.), d13 (X, z;'\, 11)] + [d 12(X, Yi'\, J1.), d23(y, z; JL: 11)] - [d I 3(X: z; A, v), d~2(Z,Y; V l JL)!

2J1. 2~= [-1--2 C120(X - y) + -1--2 C130(X - z), d13(X, z; A, v)]
-lL - J.L

211 2v
-[ 1 _ v2 C130(X - z) + 1 _ 112 C230(y - z), d l 2(X l Y; A, Jt)].

R .. K. Bullough

Quantum Groups, q-Bosons and Quantum and Classical Integrable Lattice Models

Tbe "quantum groups" arise as natural algebraic structures underlying both the quantum anel
classical integrable dynamical systems. So far their role is llnderstood in this context only in
one space and one time (1 + 1) dimensions. In simplest form they arise as defornlations ("'}­
deformations~') of simple Lie algebras. Thus q-deformed 8u(2) (or sl(2)) is, for generators 8-r.
S-, SZ (corresponding to Cartan-\Veyl basis e! f~ h), the universal enveloping algebra deformation
Uq (sn(2)) with generators satisfying s1tq (2)

(1)

where 'box' x, namely [xl, is

Evidently when q 1, [xl - :l~, and the suq(2) al,:;ebra (1) is 8u(2). "Dual" to this is t.he
q-deformed monodromy matrix T which satisfies Irrl ,:y T2 = T2 0 Tl Rund R is the quantum
R-matrix (and labels 1, 2 label spaces). The elements of T form a quantum group und ttwre is a
'co-lnultiplication' ~T == T(?JT or (6.T)ij = Lk ~k0Tk.i (where (~is now !co-multiplication') which
is isomorphie to the quantum grollp formcd by the Tij . Likewise S1Lq (2) has a co-mllitiplicatioll
isomorphie ta the deformed algebra .-.uq (2) and both the Tij an<! the algebra 81Lq (2) an"! Hopt"

algebras, co-algebras with antipodes (l(:tin~ like, hut different froru, inverse elements. The T;;
remain c<ralgebras (with c:o-rnultiplication) when sp~~trn.1 pararnet.ers A~ /L E Q~ are int.rochw('(l:
T - T(A) and RT1 0 T2 = T2 c~ Tl R - R(>",Jt)T(A)~) T(Jt) = T(Jt) (~'r(A) R(A, Jt). This can t)(~

seen as a. quantum integrahility eondition since the matrix trilcc is ILi(A), Li(Jt) I = 0 whp.rp 4i('\)
(and lnLi('\)) are generators of qllantllul integrable Hanliltonians i/ conlInutin~ with thn Li{A).

·1
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The q-bosons arise Lhrongh 'group contr~ctionl of the large dimensional representations of stL'7(2):
three independent elements a, a+ I N = IN+ satisfy -

(3)

and this is evidently the appropriate q-deformation of the Heisenberg-Weyl algebra. To avoid
eomplieation we ehoose q = e"', i E IR. On the Hilben spaee 1{ spanned by the ln( n = 0, 1,2, ... :
where .1Vln(= nlnL, oneproves for algebra (3) that a+a = (LV], aa+ = [N +-1) nsing the 'box'
notation (so [NJ depends on q!). Then on 1{: aa+ - q-la+a = qN also, i. e. for fixed q (3)
becomes invariant under q -+ q-l. This algebra extends to a lattice of M points nnder periodic
boundary eonditions M + n = n, e. g. an, a"j;,"Nn = Nt satisfy (3) for each n and elementse commute ror different m, n. By canonical transfonnation Bn '= q-'-!Nfta", B;; '= (Bn )+

(4)

(5)

J "

and on 11M : [Bn',B~] = l-QB"/;Bn, Q= 1_q-2 with lVn = -!,",/-lln(l-QBnB"/;). All elements
commute on differeJ?,t sites.
We have eonstructed a .number of quantum iattices whieh are quantum integrabl.e. A fundamental
Olle, whieh uses q-bosons eqn.(3) as dynamical variables, has a loeal Hamiltonian which however
involves interactions on 4 sites n, n + 1, n +2, n + '3. But a simpler one derivable from this is the
q-boson 'hopping model' .

.... ' _ 1 M . +
Ho - -? L {(Bn- 1Bn + h.c.) - 2Nn }.

- n=l

We bave solved this quantum lattice model ,(N., _B. it iso bilinear in the q-bosons (4) aod becomes
nonlinear to all orders' in terms of ordinary canorIically quantised bosons) - solved it in detail for
eigenstates and eigenenergies by the so-called 'algebraic Bethe ansatz' and we have calculated its
free-energy in thermodynamic limit.
By canonicaL transformation to the algebra (4) taken on 1tM

: Ho ~ fIt = ~~ I:~=l {(Bn-1B% +
h.c) - lln(l -.:. QB;tBti]} and the solution of Ho solves also 1ft • The semi-cla~~ica1 limit of the

~ .
algebra (4) on 1{M is

• l"_.~.r-'I.

{Cn,N\~" = )C, I {C\IN,} = -)C" {C"C,} = )[00 - EiC,C,J"
00 -

N, =. - EI'I\[oo - e,C,c,l; (6)

(7)

[·,·1 are parentheSes aod {... } is the Poisson bracket. The 'q-bosot)s' (6) are now classical q-bosons.
The equatio'ns of·motion derived from the semi-clnssical limit of H1 is then

·8
-2z ßt Cn = (Cn - 1 + Cn +d(l.- 2,G'~Cn) - 2C~Cn

which is the classical integrable Ablowitz-Ladik lattice. All of the quantum models· become the
quantum Nonlinear Schrödinger model in approprintc continuum limit :ind 'Y > 0 is the repulsive
ense. By combining a classical non-integrahle term (lCt:C~ (or Cl. quantum non-integrable term
oB;tB~ in the quantum case) with the c1assical ur quant.llIn Ablowitz-Ladik Hamiltonians it he­
comes possible to investigate classicnl or <1uantum ehnos and the breakdown or integrability in these
terms.- classical or quantl~m KAtvl theory for J\-1 dcgrces of frcedom inc1uding M -+ 00 in therm~

dynamic limit. The quantum Inttices in terms of the q-hosons- are strongly cOllpled ordinary bo8on
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systems for targe enough 111 becoming weakly coupled for smnlll')'l > O. Their correlation functions
have been calculated by conformal field theoretical rnethods and (for the repulsive cases) show a.
zero temperature tphase transition t of super-fluid type Le.· correlation functions asymptotically
algebraic ~ asymptotic exponential decay for small T (temperature) > U.
(Joint work with N.~1. Bogolinkovt Steklov Nlathematical [nstitute~ St. Petersburg; G.D. Pang; .1.
Timonen, Dept. of Physics, University of Jyväskylät Finland)

F. Calogero

Solvable Dynamical Systems (Classical, Nonrelativistic "Many-Body Problems") in
Multidimensions e
An extension to multidimensions of (a generalized nation of) Lagrangian interpolation is llSed to
introduce finite-dimensional matrix representations of the (partial) differential operators. It is thus
possible to extend to a multidimensional environment various results which were obtained in the L
past by exploiting such a representation in a one-dimensional context. These applications include
the construction of remarkable matrices, convenient techniques to solve nllmerically eigenvnlue
problems and partial differential equations of evolution in rnultidimensions, and the manufacture
of (completely or partially) solvable dynamical systems~ including same that look like (classical.
nonrelativistic) "many-body problems~' in multidimensions:

These "Newtonian" equations of motion are generally rotation-invariant and possibly also translation­
invariant, in lV-dimensional space. Cases with iV = 1 and iV = :1. and with n = 3 and n = .:I
("few-body problems") have been exhibited t together with their complete solutions. The ~~forces:~

Fj are appropriately-chosen~time-independent~ functions of the '~particle coordinates" ~ anel of
their velocities ~j.

Bibliography:

(1) F. Calogero: "Interpolation in ffillltidimensions. a convenient finite-dimensional matrix rep­
resentation of the (partial) differential operator~, and same applications.~' .J.Nlath.Phys. (in
press).

[2J F. Calogero, J. Xiaoda: "Solvable (nonrelativistic, classical) n-body problems in mllitidimen-
sions 1." J.Phys.A:lIIath.Gen.(subrnitted tn, June 1993). _

[31 F. Calogero, J. Xiaoda: "Solvable (nonrelativistic, classical) n-body problems on thf~ Une 1.1
'

J.Math.Phys. (submitted to..lune 199:1).

H. W. Capel

Integrable quantum mappings

A review is given of a (nonultraloeal) Yang-ßaxter structure associated with integrable quantnnl·
mappings. The quantum mappin~s are generatc<.l by unitary operators which preserve the fnnda.
mental commlltation relations und which provide the canonkal transformation associated wit.h tlu~

discrete-time evolution. The integrability is established by finding a sutficient number of qnantllrn .
operators which are invariant unrler the mappin~. As examplPos of the Yang-Baxter strHctllrc~ W(~

present the intcgrable mappings associated with the lattice ~nalogues of the I{orteweg~leVrips anti
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,~

modified Korteweg-de Vries equation together with their quantum invnriants.

P. A. Clarkson

Nonclassical Symmetry Reductions and Exact Solutions of Nonlinear Partial Differ­
ential "Equations

In this lecture I discuss nonclassical symmetry reductions and exact solutions of nonlinear partial
differential equations. These are calculated using an adaption of the technique first introduced by
Bluman aod Cole [J. Math. Mech., 18 (1969) 10251 in their stu9Y of symmetry reductions of the
linear heat equation~ The associated determining equations for the infinitesimals are an overde­
termined nonlinear system of partial differential equations whi~h are solved using the method of
differential Gröbner Bases: The examples considered are:
(i) the nonlinear heat equation

.'.~-.~~'

.;:f~""
Utt + 'Uxz +OtLxUxt +ßtLtUxx - tLx%Xx = 0

Ut = U xz + 1(11.),

for which several new symmetry reductions are presented for /(u) a cubic and classified in tenns
of -the roots of the cubic; and
(ii) aBoussinesq-type equation

.~.

where a and ß are arbitrary constants, for which a ;'twO-soliton17 solution is generated from a oon­
classical symmetry in the case when er = ß, even though the equation appears to be non-integrable
for all choices of a and ,B except the linear case when er = ß == O.
(Joint work with Liz Mansfield (BollIder & Exeter))

A. P. Fordy

Hamiltonian Flows on Stationary Manifolds

We consider the relationship between the Hamiltonian structures of a bi- (or multi-) ,Hamiltonian
system of PDEs and those of thejr stationary ftows. For simplicity, the lecture is presented in the
context of the KdV hierarchy. . - .
In" the usual Jormtilation (Bogoyavlenski and Novikov) the first Hamiltonian stn~c~ure of the KdV
hierarchy gives rise to a Lagrangian formulation of the stntionary flow. This reqtiires the writing
of the kernel of the Hamiltonian operator as the variational derivative of some.local functional~

which is not possible for the second Hamiltonian structure. G·iven the Lagrangian formulation, a.
(generalized) Legendre transformation gives fonnulae for canonical variables aod the Hamiltonian.
The first integrals obtained from the 'fluxes' q are the usual I<dV integrals, but written- in terms of
the canonical variables. The second Hamiltonian structure is constructed by means.of the Miura
map and its differential consequences, when restricted to the finite dimensional stationary manifold
(Antonowicz, Fordy, Wojciechowski). With this construction there is not apparent relatioriship
between the Hamiltonian stnlctures of the KdV hierarchy and those of their stationary flows. An
alternative construction involves,reversing the role of x and t, so that we treat x as the evolution pa­
rameter (Fllchssteiner and Oevel; Antonowicz and Dlaszak). In this case the Hamiltonian structure

. i8 a square matrix whose size equals the x-order of the particular flow (3 x 3 for the KdV equation).
Whereas the n8ual phase space is just the jet spacc generated by u and its x-derivatives, now we
us~ t.he jet space genernted by any set of coordinates on the stntionary manifold ((~.g. the canonical
coordinates) and their t-derivatives. The resultiog Haßliltonian structures reduce ta exactly these
or the stationary equations, when we take t-derivatives to be zero.

7
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This whole procedure is clarificd and systematized by considering the speetral problem zero­
curvature representation of the given equation, when written in terms of these new coordinates and
when the x or t roles are reverse<l (Fordy and Harris). The resulting spectral problem is polyno­
mial in the spectral parameter, and a highly reduced form of the general case. It is then not so
straightforward to use aH the standard constructions, but they enn he done.

B. Fuchssteiner

The Camassa-Holm and similar equations

R.ecently, for the description of bores as well as for solitons, Roberto Camassa and Daryl Holme
derived from first principles of water wave theory the equation

Vt - Vxxt = -3vvx + 2vxxv + VrIxV .

They gave the Lax pair for that equation, proved its integrability and bihamiltonian structure. In
the present lecture it is shown that the Camassa-Holm equation is related to a factorization with
respect to terms obtained from a rescaled KdV-recursion operator. Ta be precise: The Bäcklund­
transformation

relates the CH-equatioD to
Ut = (f)1(U)<p2"1 (u)ux

where ept(u) aod cP2(U) are the following sums of the KdV-recursion operator

<1>1 = (DuD- 1 + u), and ~2 ~ (D2 - I)

The same method applied to Gardner's equation yields the modified CH-equation as weIl as other
generalizations.
Further application of this method gives the bihamiltonian :jtructure of the new equation, as weIl as
its Lax pair, the action angle map and, by hodograph link, a. transformation to the KdV-hierarchy.
The hodograph link provides additional information about the master symmetries ·and the (2+ 1)­
dimensional generalizations.

C.H.Gu
Integrable systems and solitons in space-time IRß + 1

Integrable systems in IRR +1 of the form

8<t>
öt = V( P, ..\14> (L)

are considered, where q>, ·.Ii, P, V are LV x lV matrices. N[oreover, Ji 's are diagonal eonstant
matrices, P is off-diagonal and V{ P, ..\1 is a differential polynomial of P and a polynomial of thp
spectral parameter A of rn-th degrre.
From the integrability condition of thp systmn (1), we construct the (~xplidt p.xprp.ssions for VI p! ..\1
anti obtain nonlinear evolution p.<1uations [ur P.
lt is proved that the Darboux transformation for obtuiriing explicit solutions to the AKNS syst(~m

in IR 1+1 is valid for system (1). FOf the ca.se of u(N), single and rnultisolitons are constructed. It is
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proved that the interaction of solitons is elastic if we consider the amplitude or the complex-valued
solutions.

B. Herbst

Symplectic integration of finite dimensional Harniltonian systems and numerically in­
duced chaos

Since symplectic integrators are designed to preserve the character of Hamiltonian ftows they tend
to be very efficient numerically. However, they are in general nonintegrable and spurious numer­
ical chaos may oceur in the vicinity of homoclinic orbits. Analytical arguments, based on the
Melinkov function, as weIl as direct numerieal measurements show that the width of the chaotic re­
gion decreases exponentially fast in the discretization parameter. This implies, aod is coofinned by
numerical studies, that the qualitative behaviour (suitably defined) of symplectic integrators does
not depend on their order of aceuracy. Tbis is not the case for general (nonsymplectic) integrators.

J. Hoppe .~~

The Dynamics of Relativistic Membranes and Higher Dimensional Int~g;~bility

1. I would like to explain how to increase (by one or two) the continuous (space tl~~j dimensions
of almost aoy dass of (integrable) systems whose dynamics can be written in terms of lV x N
matrices.
2. The light cone gauge description of a relativistic membrane moying in Minkowski space ean
be greatly simplified by performing a field dependent change 01' variables which allows the explicit
solution of all constraints aod a Hamiltonian reduction to an 80(3,1) invariant 2 +1 dimensional
theory of isentropie gas-dynamics.
(Joint work with M. Bordemann)

·.-1

H.Hu

Darboux transformation in differential Geometry

The c~nstructionof harmonie maps R i •1 ~ S3 with single soliton or multi-soliton·P.p~~pertyis con­
sidered. Tbe solution of Sinh-Gordon equation and the con~tructionof time-like surl~ of constant
menn curvature in R2•1 are discussed. These results are obtained by using Darboux transformation
methods together with some other techniques.

B. Konopelchenko

ä-dressing in multidimensions: algebraic curves and nontrivial background

Recent new results obtained by the 8-dressing method are reviewed. 2 + I-dimensional aod three­
dimensional nonlinear integrable systems are discussed. Generalization of the ä-d~essing method
associated with the nonlocal ä-problem on algebraic cu~es of nonzero genus is considered. An
integrable nonlinear system on the torus and a 2 + l"-dimensional integrable generalisation of the
Landau-Lifshitz equation are presented. The embe<lding of the Harry Dym equation into the
8-dressing scheme which allows to bypass the probl(~m with the essential singnlarity of the eigen­
function is discussed. The extension of the iJ-dressin~ t(x~hniC1\1e which covers the case of nontrivial
backgrounds in presented. The KP, mKP, DS, Ishirnori and the 2 + l-dilnensionaJ integrable gen­
eralisation of the Sine-Gordon equation arc considered as examples.
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The Darboux-Zakharov-Manakov three-dimensional system is diseussed. This system has impor- .
tant applications in the differential geometry of surfaces~ .hydrodynamics and other fields. The
ß-dressing method provides a wide dass of exact solutions of the DZM system on the background
of the wen~known 1 + I-dimensional principal chiral field model equations. In the sealar case such
solutions of the DZM system provide infinite and rieh c1asses of systems of three surfaces with
eonjugate coordinate lines (old important problem of the theory of surfaces - Darboux ... ) and
infinite dass of hydrodynamical Hamiltonian one-dimensionalsystems introduced by Dnbrovin and
Novikov.

M. Kruskal

Surreal Numbers

The surrest numbers are a vast generaJization of the real numbers and also of the ordinal numbers
(with their commutative Hessenburg arithmetic), yet also markedly simpler to define and prove
properties of. Tbey were diseovered by John H. Conway (as described in his book "On Numbers
and Games") as certain special combinatorial games, but received their name from Donald Knllth
(in his short mathematical noveI "Surreal Numbers~' ).
A surreal number can most simply be constructed as consisting of arrows. T or L arranged in
a sequence with the order type of some ordinal number (i. e. a well ordered sequence, finite or
infinite). They are ordered in size lexicographieally (so TT l<TT<TTT1, for example, because 1 is
less than blank, which is less than T). They also have a quite distinct partial ordering we caH
"earliness": x is earlier than y (written x < y) if x is a proper initial segment of y (where '~proper;~

permits x to be null but not equal to V).
Addition is defined by transfinite recursion to have, at every stage, the earHest value consistent with
the surn being a monotone-increasing function of each argument~ with respect to the sums of a11
earlier pairs of arguments. Multiplication and other arithmetic fllnctions have simiIar definitions;
and turn out to have all properties that could reasonably be hoped for, as weH as some entirely new
ones (involving earliness). It is striking that these properties, even three expressing equalities (such
as the commutative, associative and distributive laws of addition and multiplication), follow from
such adefinition based on inequalities (such as monotonicity) when combined with the ··earliest"
requirement.
The surrest numbers include the usual real numbers (0 is the null sequen~e, 1 i5 T, -1 is 1, 2 is TT 1 ~
is TL j is T!T1Tl ' ..), infinite numbers (the earHest positive one~ called w, is TlT .. '), infinitesimal
numbers (the esrliest positive one is T111 "'), and (literally) innumberable combinations aIA
extensions of these. Earliness leads to a lot tnore strl1cture than is familiar to uso ­
An elaborate theory of surreal functions can be developed; the one serious missing ingredient at
present is integration and related concepts. Ir that can be remedied, there should be impnrtant
applications to conventional mathematics~ in particular to a rigorous treatment of "asymptotics
beyond a11 ordersu

, the attempt to interpret asymptotic expansions with terms beyond the first
infinitely many (such as exponentially small terms after infinitely many powers); this is already a
growing field with contributions by R. B. Dingle, M. Berry, .1. Ecalle, H. Segur and many others.

J. LeoD J..

Aigebraic Propertiel of the d-Operator and General Integrable Systems

(t is shown that a quite general space anel t.ime dependence of the spectral transform generically
leads to a true (that is polynomial in the spectral variable) nonlinear evolution equation..The
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method makes nse of same simple algebraic properties of the 7J operator a.nd its inverse. The re­
sult is applied to physically interesting applications including the solution of initial-bonndary value
problems for coupled wave equations.

D. Levi

Levi-Civita theory for irrotational water waves in a one-dimensional channel and the
Korteweg-de Vries equation

We review Levi-Civita theory far water waves that reduces the theory of irrotational water waves in
a one dimensional channel with fiat bottom to the study of tbe solution of a nonlinear differential-
functional partial differential equation for the complex velocity function. .
We show how, by considering small perturbations in a shallow water chaonel, the ditrerential­
funetional-partial differential equation ean be reduced to a system of eoupled Korteweg-de Vries
equations in 2 + 1 dimensions for the horizontal and vertieal components of the velocity vector. Sy
requiring that the vertical eomponent of the velocity vector is smaH compared to the horizontal
on~ the obtained system reduces to the standard Korteweg-de Vries equation.

s. De Lillo

Forced C-integrable equations: The nonlinear difFusion-convection case

A nonlinear diffusion-eonvection equation is eonsidered, where the forcing is introduced through
a time dependent boundary condition at the origin. This model, also known as Rosen-Fokas­
Yortsos equation descr~bes a twö phase flow in a porous, semi-infinite· m.edium. \Ve solve the
initial/boundary value problem witb a general initial datum and a boundary condition at the ori­
gin representing a time dependent flux. The problem is redueed to a linear integral equation of
Volterra type in one independent variable; in same cases _of applieative interest this equation ean
be solved by quadratures.
(Joint work with F. Calogero)

L. Mason

Global solutions of the self-duality equations in signature (2,2) and the inverse scat­
tering transform

First, a programme is revie\ved that (1) attempts to classify integrable systems in one and t.wo
dimensions as symmetry reductions of the self-dual Yang-l\rlills equation and (2) attempts to derive
the theory of these equations from the Ward constrllction for solutions of the self-duality equations
from holomorphic vector-bundles on twistor space.
In order to address the second part of the programme, solutions of the self-dual Yang-Mills equations
on S2 x S2 in signature (2,2) are studied as the 4-dimensional analogue of the rapidly decreasing
boundary conditions for nonlinear evolution equations in 2 + L dimensions.
The general solution is shown to give rise to a holotnorphic vector bundle on CIP3 together with a
t\visted analogue of a map from lRIP3

-+ GeIC; (G is thc gauge group). The first part of the data
projects out an instanton and genp.ralizes the 'discrete spf'Ctrllm' of the IST and the second part
gencralizes the scattering data (or reffecUon co(~fficient). This data determines the original solution
anel provides a paradigm in 2 + 2 dimensions of tlw inverse scattering transform.

LI
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V. B. Matveev

Supertransparency and related Nonlinear phenomenae

There are two spectral mirac1es which are not widely known to the people working on solitons and
spectral theory. One is the possibility to have in a linear problem a trivial scattering operator, Le.
S = I for a nontrivial potential. Everybody knows that this ,miraclc never occurs for the dass of
smooth rapidly decreasing potentials. The other exotic miracle is connected with the occurence of
discrete eigenvalues embedded in the continuous spectrum of linear operators. The last phenomenon
als~ eannot be realised for the dass of rapidly decreasing potentials. In the case of the difference
Schrödinger operator aod in many other cases it is pOssible to eonstruct a multiparametric family of
potentials leading to coexistence of the aCore mentioned miracles. The associated initial data for the .
integrable nonlinear evolution equations generate the remarkable explicit solutions called Positoe
for the reason of their eonnection with positive eigenvalues in the continuum in the. Schrödinger
case. In a collision with a soliton, the position aquires two phase shifts but the soliton remains
unchanged.
A brief summary of the results concerning positons and their properties in discrete and continu­
ous systems is presented. FUrther details are describect in the talks of R. Beutler and A. Stahlhofen.

G. Neugebauer and R. Meinel

The Einsteinian Gravitational Field of the Rigidly Rotating Disk of Dust

The gravitational field of a uniformly rotating stationary and axisymmetric disk consisting of dust
particles i8 presented as a rigorous global solution to the Einstein equations. The problem is formu­
lated as a boundary value problem of the Ernst equation and solved by means of inverse methods.
The solution is given in terms of linear integral equations and depends on two parameters: the
angular velocity n and the relative redshift z from the center of the disko The Newtonian limit
z « 1 represents the Maclaurin solution of a· rotating fluid in the disk limit. For z - 00 the
'exterior' solution is given by the extreme Kerr solution. This proves a conjecture of Bardeen and
Wagoner (1969, 1971).
(Ta appear in 'The Astrophysical .Journal Letters ')

F. W. Nijhoff

Integrable Lattice Systems and Discrete Painleve Equations

In this talk I give a status report on discrete Painleve equatios. Two approaches are exploited: tlA
method of similarity reduction on the lattice, and the de-alltonomitations of integrable mapping~
In the similarity reduction approach one considers an integrable lattice equation, for instance the
lattice (potential) modified KdV equation

P(Vn •m Vn.m+l - Vn+l.m vn+l.m+d = q(v~,m 'lJn+l,m - vn,m+l 'lJn+l.m+d, (1)

and one imposes on this equation a compatible! nonautonomous similarity constraint

n Vn+l.m - Vn-l.m + 'In Vn.m+l - Vn.m-l = 0.
Vn+l,m +tJn-l.m lJn ,m+l +1Jn ,m-l

(1)

The system consisting or lattice eqnation (I) and similarity constraint (2) carries an isomonodrnmic
deformation problem. In the full continuum lirnit this systp.m goes over into the potent.ial rnodifip<t

KdV equation and a linear similarity constraint, leading to a roollcion to the Painleve 11 equation. ;4'
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As such~ the system (l)+(2) can he considered to be a lattice version of the Painleve II equation.
even though one cannot salve explicitly for a similarity variable from the nonlinear constraint (2).
However~ a partial continuum limit gives a reduction to a discrete version of the PU efluation (for
special parameter value).
Other discrete Painleve 'equations have been derived using various methods, but not in aJl eases
an isomonodromic deformation problem was given. I present a method that has yielded in same
cases such isomonodromic deformation problems starting from integrable mappings. They are
called ,ude-autonomized" versions of reductions of a lattice GePfand-Dikii hierarchy. A particll]arJy
interesting example is a new isomonodromic deformation problem of a q-difference equation, the
compatibility of which yields the discrete Painleve 111 equation.
Finally, a q-deformed version of the discrete Painleve I equation w~ presented.

W.Oevel

Darboux Transformations as Gauge Transformation

A framework for a systematic interpretation of Darboux transformations as gauge (dressing) trans­
formations is suggested. In terms of the pseudo-differential symbol a- I linear problems of the form
tPt = M<j> are left invariant by the transformation M --+ M = (TlvlT.... 1 ) + T tT- 1 = (TA1T- 1)+,
~here T is a suitable pseudo-differential operator satisfying the dressing equation .....

( 1)

I,

Here, the subscripts ± denote the projectioD to the positive/negative differential orders of the op­
erator. The operator equation (1) admits the following solutions:

Darboux transformation: T = </>. a. </>-1 ,
adjoint Darboux transformation: T = 1/J-IT • a- 1 . t/JT ~

binary Darboux transformation: T == 1 -l/>/f2('l/J, 4J) . a- 1 . 'l/)T.

Her~ 0, defined by nx("p~ </1) = 7./JT cl> and a suitable compatible time-derivative, is a bi-linear potential
integrating the "squared eigenfunction" t/lT cl> withan eigenfunction 4> and an adjoint eigenfunction
1/J (Le. rl>t = M<j> and "pt = -M·1/J). These simple transformations ean be iterated with several
(adjoint) eigenfunctions and giye rise to more complicated gauge operators, which are typically
parametrized. in terms of Wronskian determinants. A "squared eigenfunction:' symmetry of the
scattering problem is shown to genernte a ftow, which provides the binary Darboux transformation.
(Joint work with W. Schief)

G.D. Pang
On the quantum analogues of classical (2 + l}-dimensional integrable systems

We briefty review same of our recent works on the quantum analogs of classical (2 + l)-dimensional
integrable systems. These works include: (1) Exact solutions ta the eigenvalue problem of the
quantized Davey-Stewartson I (DSI) system (2) Conservation laws of the quantized DSI system (3)
Thermodynamics and correlation functions of the C}uantized OSI system.
(Joint work with F.C. Pu, Institute of Physics, Chinese Academy of Science, Beijing, P.R.China.
and B.H. Zhao, Graduate School, Chinese AcndClny uf Sdenc(~, Beijing, P.R.China)
wlain References:

[11 G.D.Pang, F.C.Pu, B.B. Zhao: Phys.Rev.Lett.65(lD90)3227.
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[21 G.D.Pang, F.C.Pu, B.H. Zhao: J.Phys.A25(1992)L525.

(3) M.L.Yan, B.H. Zhao: Phys.Lett.A168(1992)25.

[41 G.D.Pnng, B.H. Zhao: J.Math.Phys.34(1993)1063.

[5J G.D.Pang, B.H. Zhao: Addendum to (4), preprint, Univ. of Paderborn (1993).

[6J G.D. Pang: Correlation Functions of the Quantized Davey-Stewartson I system in the ease
of weak coupling, preprint, University of Paderborn (1993).

F. Pempinelli

Soliton solutions of the Davey-Stewartson equations

It is shown that the Oavey-Stewartson III (DSIII) equation, in addition to the so called DSI and
DSII equations, is S-integrable and admits localized soliton solutions with properties similar to
those of the OSI equation. Ivloreover, by introducing" generalized Bäcklund gauge transformations~

soliton wave-soutions are found for the Hamiltonian OSI equation.

o. Ragnisco.

Recent results on discrete integrablesystems

The lecture consists of tbree points.
In the first part, a few results are recalled concerning the relation between Painleve equations
(continuous and discrete) and non-isospectral flows of soliton equations. In particular, it is shown
that the discrete versions of Painleve I and Painleve II are stationary versions of suitable oon­
isospectral flows of the Volterra and the discrete mI<dV hierarchy respectively.
In the second part, a method for constructing integrable maps is briefty described: it amounts t.o

pick-up stationary fiows of integrable evolution equations on lattices with "'self-consistent sourees" :
as an example, a discrete version of the Neumann system is presented and its integrability is
discussed: a Lax representation is provided, and a sutficient number of independent invariants in
involution is exhibited.
Finally, a model of integrable evolution equations on a one-dimensional lattice, the so-called "''1\1­
lattice" , is briefly described. Tbe associated hierarcby is bi-hamiltonian, and the first hamiltonian
strueture is the canonical one; the usual rational R-matrix exists. n.1oreover: the model admia
a vector generalisation and ean be considered as an integrable diserete version of the vector NLW
hierarchy, to which it reduces in a suitable continuum limit.

c. Rogers, W. Schief

On a Novel Class of 2 + i-Dimensional Systems

This survey describes developments emanating from areinterpretation and generalisation of a dass
of infinitesimal Bäcklund transformations introduced by Loewner in 1952 is a gasdynamics setting."
A novel class of integrable 2 + l-dimensional CQuations is constructed which encorporatps, in parw

ticular, 2 + I-dimensional versions of the principal chiral fields model, Toda Lattice and notably
the sine Gordon equation. The general class is conveniently parametrise<.lin terms of four matrices..
An auto-ßä.cklund transformation is constructed for the :1 + l-dimensional sine Gordon equation,
the so-called KR equation, via aversion of Moutnrd 's theorem. The auto-Bäcklund tr~nsformati()n
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itself eonstitutcs a new integrable 2 + L-dimensional system incorporntingin a one-dimensional
reduetion an SIT ~ystcm.

[t is noted that the Znkharov-Mnnakov system and it5 sealar version~ the Darboux system of cla.c;sical
differential geometry, sit naturally within the Loewner system. The observation that the scaJar
Zakharov-Manakov system represents a squared eigenfunction symmetry of the 2 + I-dimensional
AI(NS system leads to a more general result wherein two important subcases of the Loewner system
may be regarded as squared eigenfunetion symmetries of the broad multi-component KP and mKP
hierarchies of 8ato Theory.
Finally, the celebrated HKX transformation of general relativity is set in tbe eontext of the Loewner
formalism. This Ulustrates the fact that tbe linear infinitesimal Bäcklund transformations origi­
nated by Loewner may be seen as infinitesimal Darboux transformations.
(Joint work with B. I(onopelchenko and W. Oevel) .

s. Ruijsenaars

Sine-Gordon solitons VB. relativistic Calogero-Moser par~icles .~~

Tbe behaviour of the N-soliton solution to the classical sine-Gordon (sC) equatiqll,'<p'1 - <p = sin CI'
is reminiscent of an interaction between N relativistic point particles such that the set of momenta
is invariant under a eollision and such that the scattering phase shift is factorized in terms of the
2-particle shirt. At the classical level this intuition ean be concretized in terms of (a specialization
of) so-ealled relativistic ,Calogero-Moser (CM(rel» systems, a new dass of integrable lV-partic1e
systems, diseovered in collaboration with H. Schneider (1985).
After recalling tbe main features of these systems and the classical sG solitonjCM(rel) particle
correspondence, we described how the systems eanbe quantized such that integrability is preserved.
The commuting quantum Hamiltonians are buHt up from products of multiplication operators and
shifts along the imaginary axis. Thus, the problem of explicit joint diagonalization reduces to the
searcb f9r appropriate solutions to systems of anaJytic difference equations.
We presented explicit solutions to this problem for the 2-particle case. All of these solutions and
same fllrther tests are in agreement with the mathematicnlly heuristic, hut widely accepted lore
concerning the quantum sG field theory. In particular, the scattering anel bound'~state spectrum
ussociated with the quantized particle systems agrees with that of the sG theory, in' agreement with
the expected physical equivalenee' of the particle theory and the field thoory at the quantum level.
The existence of unitarizing joint eigenfunctions for general N and general coupling eonstants with
the expected Harish-Candra type asymptotics has not yet been prova!, though.

P.C. Sabatier

Nonlinear equations satisfied by solutions of a linear equation

We start from n linear integral equation E and deduce by elementary linear algebra non-linear
evolution equations that are satisfied by the solt1tions of E when a given linear evolution is imposed
to its kernel. The solutions 4> which are considered are N x N matrix valued funetioDs und depend
on lH variables, these figures beiog arbitrnry integers. Specifically, E has the form:

11 d17()...A) r

~ -= 1 + -k ~ A f(A, '\:11) cf>(;\, 11) (E)

where (1), 1, T are N x lV matrices, k E C t thc intc~ration is on C2 , where (/0 is a measnre of
compa.ct support. A first stndy shows what linear operators L a.nd what linear evolution uf T are
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cornpatible and lead to the equali ty

L~ = / / _~~ A T(L<p)

for which we assume that the only solution is Lif> = 0 (Le. we shall consider only the da and T such
that this is true). It is shown that both the order of Land the linear evolution of T ean be chosen
with much arbitrariness and L can then be constructed algorithmically. The coefficients of L ean
depend on x, t, and even on functionals of~, so that LCI» = 0 is already a non-linear relation. From
several relations of this type, it is possible to find non-linear equations independent of k for the
asymptotic value of k(if> - I) as k ~ 00. Almost a11 known integrable equations ean be obtained
in this way. Their matrix generalization (with constraints in most cases) are obtained on the sam_ t
foot and without additional work. Algorithms could work on a computer. .

P.M. Santini

An ele~-:ntary geometrie charaeterization of the integrable motions of a curve

We show that the following elementary geometrie properties of the motion of a curve select hierar­
chies of integrable dynamics:
(i) The curve moves in an N-dimensional sphere of radius R;
(ii) The motion of the curve is nonstretching;
(iii) The dynamics is independent of the radius of the sphere.
For lV = 2 we obtain the mKdV hierarchy, for N = 3 we obtain the NLS hierarchy and for !V > ;~

we obtain integrable multicomponent generalizations of the above hierarchies.
(Joint work with A. DoIiwa, Institute of Theoretical Physics, \Varsaw University, Poland)

P.M. Santini

Cellular automata in multidimensions

We develop a general rnethod to construct nonlinear cellular automata in arbitrary space dimen­
sions frorn the compatibility of pairs of linear operators, giving exarnples in 1 + 1, 2 +- 1 and :3 + 1
dimensions. These cellular automata possess a lot of constants of motion and exhibit a vast array
of coherent structures, hoth particle-like (Le., localized in space) and wave-like (not localized).
(.Joint work with M. Bruschi, Dipartimen~odi Fisica, Universita ~'La Sapienza", Roma, Italy) •J. Satsuma

On diserete soliton systems

There are many types of discrete systems: semi-discrete, fully-discrete, quasi-diserete and ultimate­
discrete. Some of our recent resl1lt.s on such <liscrete systenls are given in my talk.
(1) Trilinear form
[t is weil knwon that the most important ~oliton systems are written in terms of bilinear form. W{~

would claim that some soliton systems are natl1rally expresse<.l by trilinear form. A typical exarnple
is the Broer-Kaup system~ for which we can show the exist.ence uf solutions p.xhibitin~ fusion and
fission of solitons by means of the trilinear form. ~:Iorc()ver. for some discrete soliton systems, in
particular nonautonomous systems. trilinear is quite essential. An example is the nonautonomOHS
discrete KdV equation which arises in a discussion uf t.he (;omplete integrability of fully-discrete
systems by the siogularity confinement Inethad.
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(2) q-difference Toda eql1ution
\Vp. propose a q-dirference version of the 2D Toda lattiee equation. Through a suitable reduction,
it reduces to the q-cliffcrence version of the cylindrieal Toda lattiee equation. We show that the
reduced equntion admits solutions expressed by the q-Bessel function.
(3) Soliton cellular a.utomaton
A soliton cellular automaton, which Takahashi and myself proposed three years ago, is considered
to be the simplest soliton system at present. The system eonsists only of solitons and possesses
infinitely many time invariants. Recently we fouod that the existence of time invariants enn be
explained by using eombinatorics. The procedure is discussed in the last of my talk.

W.Scherer

A. Nonlinear Schrödinger Equation for Quantum Mechanies and Some of its Solutions

Recently. a family of nonlinear Schrödinger equations deseribing the time evolution of a quantum
mechanical system has been derived by Doebner and Goldin. Various nonstationary solutions of
this family of equati~ns are pr~ented. These solutions include quasiclassical ~aves which dis­
play damping and energy dissipation (wbere the energy is defined as (E) := (T/J I Ho'l/J), where
Ho .= - ::ß + V is the linear part of the nonJinear Schrödinger equation). Th'e solutions also
include solitary waves displaying the behaviour of free particles.
(J~intwork with P. Nattermann and A.G. Ushreridze)

A. Seeger

Bäcklund Transformations are Alive and Kicking!

The main message of the contribution is that notwithstanding the recent emphasis on the inverse
scattering technique, the Bäcklund transformation approac~.cOQtinues to be· extremely useful for
the treatment of "practical" problems in the theory of integrable systems. This is"'iUustrated by a
recent treatment of the perturbed breather solution of the Enneper (sin~Gordon)c;:~uationl>y E.
Nfoser (?). . ~~

In a historical s~rvey the appearance of the Enneper equation. ;.~~

;Jlu alt' .
8x2 - fJt2 = 51n l' (1)

in physies is traced. It goes back to an attempt· by L. Prandtl (1913) to derive a model for
iIIiperfections in crystals. (The sine-term nccounts for the spatial periodicity of crystals). It waS!
however, not published in a journal nntH 1928 a.nd (independently) rediscovered by U. Dehlinger
1928/29. The model is essentially the same as that discussed Iater by .J. Frenkel (7) and T.
Kontereno (?) (1938/39) who included time t explicitly without, however, searching for dynamic

. solutions. _An important contribution to the physical significance of the model was made in 1940
by U. Dehlinger and A. Kocbendörfer (1). .
In 1948 U. Dehlinger asked the present speaker to look into the p05sibility 'whether the model
could be extendcd to inclllde tLolltside perturbations". I renlizcd that mueh eould be gained by
"~continuization" of the spatial ??? variable. Using Cl Lagrangian approach, eq.' (1) was derived.
To the best of my knowledge this was the first t.ilne that LI{J. (1) was written down in a physicai
context.
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8p(}q .= sln u (2)

in his theory of surfaces of constant negative curvature. [suspect that. U. Dini (?) was aware of (2)
even before or least simultaneously with Enneper, but in his very extensive writings on differential
geometry of the late 1860ies I could not find an explicit statement of (1) or (2). In 1881 L. Bianchi
discovered, by entirely geometrie reasoning, what was later called the "Bianchi transform" , a special
case of the transformation discovered by V. Bäcklund in 1883. The decisive discovery in the field~

in my mind, is the formula by Bianchi giving explicitly solutions in terms of two different Bäcklund
transfonns of a common starting solution of (1). For Bianchi this was a "side produc"t" of his pro_
(1892) of his '~heoremo di permutabilite ", but actually it meant that (1) is completely inr.egrable.
I discovered the significance of the results of Bäcklund, Bianchi and Darboux for physics during my
Ph.D. werk (1949/50), which was mainly concemed with working out aperturbation theory based
on tbe kink solution of (1) and the extension of the results obtained on (1) to tbe so-called Peierls
(1) model (in which a non,..linear integrt>differential equation takes the place of (1».
In subsequent work together with H. Dortb (?), who did his Diplomarbeit on the subject~ the con­
sequences of the "superposition principle" for (1) were workerl out ful1y. We cal1ed the persistent
solutions of (1) "Eigenbewegungen" as an extension of ';Eigenschwingungen" ("characteristic
vibrations"). We distinguished between .ttranslatorische Eigenbewegungen" ('"solitons:') and ~;os­

dIlatorische Eigenbewegungen" ("finite-amplitude waves"). Fbr the latter I [ound both the moving
and standing varieties. The Bäcklund transform for the moving finite wave were publishro, those
for the standing wave (work with Z. Wesolovski) are unpublished.
For the t'translatorische Eigenbewegungen l1 we found the N-soliton solution (including the breather:
which was studied in detail) and the collision laws. The analogy to elastic particle collisions was
recognized, also the suitability of the theory for ??? problems in statistical mechanics (work which
has continued up to the present).
The perturbation theory mentioned at the beginning makes intensive use of a linearization of
the Bäcklund transformation which allows us to solve both the initial-value and the perturbation
problem even if the homogeneous perturbation equation is not separable. By this approach E.
Moser (?) has recently given a complete solution of the perturbed-breather problem. It revealed a

number of surprising features as weH as the inadequacy of the scrcolled "adiabatic approximation.
Literature:

In a search of the first appearance of (1) anywhere I found that Enneper (1870) wrote the eqllation
in the form

• A.Seeger in ~'Continuum Models of Discrete Systems (ed. by E. Kröner (?) and K.-HA
Anthony), University of WaterlooPress.-

• E. Moser, to be published.

(As the handw~tingwas difficult to rend, some words might be wrongly guessed and therefore are
indicated by a ?, G. Oevel)

H. Segur

The Kadomtsev-Petviashvili equation and water waves

The nonlinear partial differential t~\lation duc tu KadonltSp.v and Petviashvili (KP) generalizes the
famous KorteweF;-<.le Vries equation to Lwo spatial dilnensions plus time. It is completely integrable, .
and it also descrihes approximately the evolution uf waves of rnoelernte amplitude in shallow water.
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This talk snrveys work done in n joint theoretical-experimental program to llse cxact KP solutions
to describe wnves in shallow water. The survey includes detailed comparisons among cxact solu­
tionsof the KP N:}uation. laborntory <fata of waves in shallow water, and field ohservations.
(.Joint worl< with .1. Hamrnack t D. IvlcCallister anel N. Scheffner)

W.M. Seiler

Formal Theory of Partial Differential Equations: Applications to Symmetry Theory

The problem of dctermining the number of arbitrary functions (and the number of their argu­
ments) in the general solution of an involutive-system of partial differential equations is treated. A
necessary criterion for the existence of an algebraic representation of the general solution is given.
As appIications normal systems and gauge. systems are considered. For normal systems the loss
of generality in a symmetry reduction is determined~ for gauge systems the number of physically
distinguishable arbitrary functions in the general solution is computed.

A. Stahlhofen _ _~?

Supertransparency and Related Nonlinear Phenomena 111: The modifii4..Korteweg-de
Vries equation . .... ~:~

The mI<dV -equation provides again a simple example that the miracles mention_EXI in the talk by
V. B. wratveev hold also for continuous linear. matrix operators.
The positon solutions of this equation exhibit in principle the same characteristic features as those
mentioned in tbe two talks before leading now to positive eigenvalues embedded in the continuum
of the Dirac operator. When extending the Darboux Transformations underlying this construction
to higher orders, one obtains again positon solutions of a more complicated structure -having the
same properties as before or exotic solutions like Negatons representing ~ loosely speaking - soliton
componnds of mKdV. The properties of these solutions aS weIl as thEür internctio~ behaviour are
discl.1ssed. -

H. Steudel

Relation~ between integrable systems by Darboux pairing

[t is showo that a "Darboux pair" with respect to the Sturm-Liouville problem - Le., two solutions
connected by a Darboux transformation -.. is equivalent to une solution to a Zakharov-Shahat
problem (with r = q). In a.n analogous way we found that a Darboux pai~ \vith· respect to the
AKNS-problem is equivalent to one solution for some rnore general spectral problem which we call
a :~'V-problem~'.

The extension of this concept to I.inear systems with t~o independent variables leads tu a method to
generate new integrable nonlinear equations (ar systems of such equations) by "Bäcklnnd pairing1'.
Snrprisingly many examples wef(~ fOllnd, physically applicable integrable equations are connected
in t.his way. Two new integrable equations of MKdV aud nonlinear Schrödinger types are derived
by this procedure.
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Y.B. Suris

General quadratic Poisson brackets on Lie groups and bi-Hamiltonian structure of
Toda and relativistic Toda lattices

\Ve introduce a general quadratic Poisson bracket on the Lie group. With the help of this hracket
we obtain the interpretation of the Toda, discrete time Toda, and relativistic Toda lattices aoS the
restrietions of one and the same bi-Hamiltonian system to two different low-dimensional manifolds~

whieh are Poisson submanifolds with respect to two brackets simultaneously.

M. Wadati

Integrable particle systems with long-range interactions

We consider quantum integrable particle systems with long-range interactions.
1. For the quantum Calogero-Moser model, .

we construct a set of conserved operators [1] and another set of operators, named boast operators.
from its Lax operator. We prove that each conserved operator satisfies both the Lax equation
and aremarkable relation named additional relation. Sy using thern, we show that ehe conserved
operators are involutive [2, 31. Moreover, the conserved operators and the boost operators constitute
the U(l) current algebra {2, 3].
2. Spin -~ particle systems with lang-range interactions' are considered in one dimensionalspace.
Conditions for the integrability of the systems are shown through the quantum inverse scattering
method {4]. Among the solutions, integrable spin particle systems, which we eall the XXZ-type
model and the Ising-type model, are newly fouod. A set of conserved operators is obtained from the
Lax operator. Further, the ground state is shown to be the solution of a Knizhnik-Zamolodehikov­
like equation [5). For the SU('Y) Calogero-Moser spin system~ we obtain aseries of new conserved
operators from the Lax operator. These operators realize ehe su(/) Kac-Moody algebra. The
coexistence of U(l) and SU(,) currents corresponds to the charge-density separation in thp- modpl
[61·'
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