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• Nichtkommutative Algebra und Darstellungstheorie

15.08. bis 21.08.1993

Die Tagung wurde organisiert von G.Michler (Essen) und L.Small (San Die
go). Teilgenommen haben 50 Mathematikerinnen und ~Iathematiker aus ·10
.ländern (Belgien, Deutschland, Frankreich, Großbritannien, Israel, Mexiko,
Norwegen, Rußland, USA und Weißrußland).

Die behandelten Themen waren ungewöhnlich breit gefächert und regten
intensive Diskussionen und vielfältige Zusammenarbeit an.

Die (insgesamt 32) Vorträge (die weiter· unten genauer dokumentiert sind)
und die informellen Ankündigungen beschäftigten sich mit Ringtheorie, end
lich-dimensionalen Algebren und ihrer Darstellungstheorie, endlichen und
unendlichen Gruppen, Lie-Algebren und dem neuen und sehr aktuellen Ge
biet der Quantengruppen, vor allem aber auch mit Zusammenhängen zwi
schen diesen Gebieten und Anwendungen von Ergebnissen· aus einem die
ser Gebiete auf Fragestellungen eines a.nderen Gebiets. Gerade die Quanten
gruppen wurden unter sehr verschiedenen Fragestellung~n und Sichtweisen
betrachtet und d~r bisherige Stand dieser Theorie wurde kritisch diskutiert.
Die eingesetzten Methoden entstammten neben den genannten Gebieten vor
allem der Kombinatorik, der algebraischen Geometrie und der TheOrie der
quadratischen Formen.
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Vortragsauszüge

J. Alev: . Rigidity of finite group actions on U(g), 9 semisimple

Let A 'be aC-algebra aod G a finite group of C- automorphisms of A. We say
that A does not admit Galois embeddings into itself if AG is not isomorphie
to A for any G. The classical theorem of Chevalley-Shephard-Todd asserts
t~at C[)(l"" ,.Y',,] (polynomial algebra)admits Galois embeddings ioto itself •
(when G is generated by pseudo-reflections). A result by Dicks and Formanek
shows that the tensor algebra of a finite dimensional space V does not admit
Galois embeddings into itself. We show the same result for the Weyl a.lgebra
A.n(C) (algebra of differential operators on affine space An) and for U(g), the
enveloping algebra of a semi-simple Lie algebra g.

s. A. Amitsur: Applieations of polynomial identities to group
representations (joint work with L. Small)

Let k be a field and G = < 91, ' ,. ,9r > be a. finitely generated group (not
necessarily finite), The study of the finite dimensional representations of G
is 'reduc~d to the study of maximal ideals of PI-images of the group ring kG,
and finiteness problems of affi~e PI-rings.

Consequences of thi~ approach yield general results like Weil's theorem on
the finite number of representations of groups with eompletely reducible re
presentation (Fark~) .and, the g~n~ra1ization of Vinberg's theorem on the
field of representations of a group.

Spin representations of symmetrie groups atc. Bessenrodt:
eharacteristic 2

Let Sn be a double eover of the symmetrie group Sn, Le. Sn has a eentral
involution z such that Sn/<z> ~ Sn. An irreducible charaeter of Sn is called
ordinary or spin aceording to whether it has z in its kernel or not. The asso
date elasses of spin characters of Sn are labelIed canonically by the partitions
of n into distinct parts. For an odd prime p, Morris conjectured a combina-
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torial a.lgurithnl Oll the labels giving t.he distribution or ttwse chclraclers inl.o
p--hlocks which was provcd hy Hunlphreys and Cabaues; then t.he flurnher or
spin anJ Inodular spin characters was computed hy DIsson. alld for p = :1
and p = .) results on the shape of the decomposition matrix werc ohtaineu
in work of Bessenrodt, Morris and Olsson resp. Andrews. Bessenrodt a~d

DIsson.

In recent joint wo~k with Olsson, such results were now also obtained f~r the
case p = 2, where the previous methods could not be applied. A"n explicit
formula for the number of spin characters in a given 2-block was presen
ted. Using this, we proved a coojecture of Knörr and DIsson, describing the
2-block distribution of spin characters combinatorially. Based 00 this, we

obtained an analogue of James' result" for, the decomposition matrix or-Snj~"

generalizing also a theorem of Benson; in particular, the position and vaJue"
of the least (w.r.t. lexicographical ordering of the column labels) non-zero
entry in each row was determined.

A. Boldt: Characteristic polynomials of Coxeter matrices

If a path algebra with relations is b~ilt up from two subalgebras in a certain
natural fashion, there is an easy relation between the involved Coxeter p'o~

lynomials. This le~ds (especially in the "hereditary case) to several formulas
for those polynomials and also to efficient ways to compute them.

To be more precise, the main result is as folIows: If k is a field, if r 1 and r 2 are
quivers having exactly ODe common point r, r := r 1 U r 2, and I C kf iS'~~n

ideal generated by relations which do not involve any paths properly passing
through r, then we have (using the notations A := kf/ I, Ai := I~rh, Äi :=

I~~~~t{~\), and XA for the characteristic polynomial of the Coxeter matrix of
an algebra A )

XA = XA 1 XÄ, + XÄ 1 XA, - (T + l)XÄtXÄ,

provided tbe Cartan matrices of the algebras Aland 1\2 are nonsingular.

3
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A. Braun: Localization, completion and the AR property

:')'

The relations between the properties mentioned above are investigated pri
marily in the context of Noetherian P.1. rings.

R. Cannings: Differential operators on curves (joint work with
M. P. Holland)

Suppose R is the coordinate ring of an affine curve singularity aver C. Let
R, R+ be the integral and unramified closures of R respectivelyand let R- be
the conductor of n+ into R.· We construct invariants of the curves as folIows:

•
(1) the subspace system:

Deformations of group algebras of low dimen-

where the R- (mi) are the primary components of R- in R;+.

(2) the finite dimensional factor of the ring of differential operators on R,
D(R)jminideal ~ End(9t).

Main Theorem: Fix R, m ~ 1 and A a ~ite dimensional algebra then there
exists R such that

T. Dana-Picard:
sion

According to Maschke's theorem, if G is a finite group and K a field of •
characteristic p not dividing IGI, th~ group algebra /(G is semi-simple. In
1974, Donald and Flanigan conjectured that if pilGI, then KG deCarrns to a
semi-simple algebra, and proved it (or abelian G.

In our talk, we recall the results obtained since then (Schaps 1989, Michler
1990, Gerstenhaber-Schaps 1992, Erdmann-Schaps 1992, Meir-Schaps 1993)
in various cases. Then we give explicit examples of semi-simple deformations
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für G = :\" antI (l = (C3 x (::d ><J (~'1, the latest with 1 different actions ur
C·l ·

Finally wc expose a possible strateg)' for searehing answe~s to the Donald &
Flanigan problem, using the knowledge on Ioeal subgrollps of G.

R. Dipper: Representations of Hecke algebras of type Bn. and
D n (joint work with G. James and G. Murphy)

The simple modules for ·Hecke algebras 1iQ,q of type Bn were constructed,
under certain restrietions on Q and q, in a previous paper by G. James
and myself. Using new ideas~ introduced ~y G. Murphy for the type A~c~e,

we now remove these restrietions. We present a collection of modules, of
which the nonzero ones form a complete set of pairwise nonisomorphie simple
modules. A conjecture is formulated as to which of these mo~ules are nonzero,
and is proved in many special cases.

Further results: 1) If f{,Q,q is semisimple, a complete set of primitive ortho
gonal idempotents is calculated and Young's seminormal form (Hoefsmith's
thesis) is derived.
2) The decomposition matrix of 1lQ ,q "is unitriangular.
3) (Conjecture) Block structure of 'H.Q,q.
Similar methods apply to Hecke algebras of type Dn • Here one mayaiso use
an embed~ing of 'H.q(Dn } into 1i1,q(B".).

P. Dräxler: On tameness of not "locally support finite k-categories

Let A be a finite dimensional algebra over an algebraically closed field k a:ld
P an indecomposable.projective A-module satisfying dim/cEndA(P) = 1.
We refer to two previous results of ours. Firstly tarne representation ty
pe of A can be characterized by the tameness of the subspace category
U(I(, HomA(P, -» where K denotes the full subcategory of A - mod gi
yen by all V such that Ext~(V, facP) = O. Secondly under suitable as
sumptions about P the vectorspace category (K, HomA(P, -») decomposes
into two parts. These parts are equivalent to (A" - mod, R- ®A. -) resp.
(A' - mod, HomA.(R+, -)) where A", A" are proper subalgebras of A depen-
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ding on P.'

We explain and i llustrate on examples how these results can be applied to
prove the tameness of not locally support finite k-categories. Categories of
this kind occur frequently as coverings of finite dimensional k-algebras.

D. Farkas: Ring theory in symplectic geometry •

A project undertaken with 'G. Letzt~r is described which looks at algebraic
constructions in classical and noncommutative symplectic geometry. A 'bi
furcation' t,heorem for Poisson algebras is proved and results about various
types of derivations for rings of differential operators are presented. As an
illustration, a 'symplectic argument' is used to show that if B is a regular
affine domain then 1 E {grB,grB}.

·K. Goodearl: Is it time to define algebraic quantum groups?

I discuss the current lack of any axiomatic definition of algebraic quantum
groups (i.e., quantum coordinate rings of algebraic groups) and related pro
blems, illustrated by the case of compact quantum groups, for which an
axiomatic definition is known.

J". Gräter: Bezout orders in semisimpJe' Artinian rings

An order R in a semisimple Artinian ,ring Q is called valuation order or order
of higher rank if R is Bezout and R/J(R) (semisimple) Artinian. These orders
generalize many other types of valuation orders defined before, e.g. R is a
total valuation ring if Q and R/J(R) are division rings and R is a Dubrovin •
valuation ring if Q and R/J(R) are simple Artinian. The results obtained so
rar deal with localizations of orders of higher rank, the connection between
the overrings and semiprime. ideals, arid the decomposition of these orders. H
Q is finitely generated over its centre then a precise description of valuation
orders in terms of their centres can be given.

6
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E. L. Green: Quantum algebras

•
We present Cl. constr~ction or a Hopf algebra structure on certain path alge
bras. We show that ie A is a finite dimensional Hopf algebra over a fidd' l{
such that A/rad(A) ~ K x ... x K then there is a path algebra and ideal I
such that A ~ [(r/ land there is a Hopf algebra structure on l{r ,given by
the construction such that I is a Hopf ideal and the Hopf structure on l\-r/ I
induced by A ~ !(f/ I is the 'same' as' the construction up to first order error
terms.

D. Rappel: Piecewise hereditary algebras

i
I
I ~

I

Let A be an artin algebra over a cotnmutative ring R. Let modA b-e':"the
category of finitely generated feft A-modules. For an. abelian category,::;,A we
denote by Db(A) the bounded derived category of A. We call A piecewise
hereditary ifthere exists a hereditary abelian category 11. such that Db(modA)
and Db(1t) are equivalent as triangulated categories.

We will present certain restrietions both on A and 11. in this situation. For
example 11. has almost split sequences and its Grothendieck group is free of
finite rank. And Ais of finite "global dimension and representation-di~ected
if it is representation-finite. '

Let 'H. now be in one of the rollowing classes of examples. Either 1t is the
module category of a hereditary artin algebra H,or is the category of co
hereut sheaves associated to a weighted projective curve in the sel);~e, of
Geigle/Lenzing. The main theorem ~se~ts that a piecewise hereditary al
gebra A is. tilting-cotilting equivalent to a quasi-tilted algebra. Recall that
an artin algebra A is ca.lled a quasi-tilted algebra if it is the endomorphism
algebra of a tilting object in 'H. Thisgeneralizes previous results by Rap
pel/Rickard/Schofield and Assem/Skowronski.

.....;
·... 1"

T. J. Hodges: Multi-parameter quantum groups

Let G be a simply connected, conne~ted, semi-simple complex algebraic
group. For each cocycle p on the,integral weight lattice P and for each q E CX

;

                                   
                                                                                                       ©



we define a multi-parameter quantum group <Cq'P[G]. Assume q is not a root
'of unity. The group of one-dimensional representations of Cq.p[G] iso isomor
phie to the maximal torus H.The H-orbits in Prim Cq,p[G] are indexed by
the double Weyl group W x w.

H.-J. von Höhne: Bipartite posets of finite prinjective type •
(joint work with D. Simson)

Let k be a field and (/,~) a finite partially ordered set equipped with a
bipartition I = 11 U 12 such that the incidence algebra kI has the form
kl := (~~) ~here A = kI1 and B = kI2 • Then prin kl denotes the category

of finite dimensional prinjective right kl-modules X that is where X (:)

is projective aver A and X (:) is injective aver B. Our main result is the
following:

Theorem: The following conditions are equivalent:
i) The category prin kI has only finitely many indeeomposable objeets (np
to isomorphism). .
ii) The quadratic form qI : 2;1 ~ Z

q/(x) := Ex~+
iEl

E
i<i

"i EIl or ijE12

XiXj - L XiXj

1I3i<je12

is weakly positive, that is qI(x) > 0 for all 0 ~ x E NI .
. iii) The poset I does not eontain as a full bipartite subposet a critical bipartite
poset (which are described completely).

Let C be an n x n symmetrie integer-valued matrix conveniently realized
in the form {(0, ß) }erJJe,.- : 'Ir C ~•. If (er, er) E 2N+ for all a E; 'Ir then the
Kac-Moody Lie algebra 9c is defined. I.M.Gelfand has asked if one may
construct a quantum deformation Uq(gc) of U(gc) as for the integrable case
(2(0, ß)/(er, er) E N-, Ver :F ß) considered by Drinfeld and Jimbo.

Consider the a5sociative algebra on generators Xer, Y-{1 : er, ß E 1T' with relati-

A. Joseph: Encoding the Cartan matrix .'
8
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•

r:

ans
XnY-iJ - q-(o,ß)Y_ßXQ = 6o .iJ •

The subalgebra {j- (resp. Ü+) generated by the Y-a (resp. xe-) : a E if', is
a free algebra graded by -N1T (resp. N1f). Define a skew derivation 6_0 on
Ü+ by XII ...... XIIY-{J - q-(II.P)Y_I3XII. Then Y-Q ...... fJ- o extends to an algebra
homomorphism of fj- into End(Ü+) and l/- is defined to be its image.
Similarly U+ is defined. This leads to a non-degenerate bilinear form<,' on
u- x U.+. From this one shows that U± admit spezializations to enveloping
algebras U( n±) and that 9 := n- tB ~ EI) n+ ~ gc. Combining c.p with the
Drinfeld-Rosso construction gives a Hopf algebra Uq(g) specializing to U(g).
On joint work with G. Letzter the Shapovalev determinants of Uq(g) were
shown to factor and their factars almost completely determined. Their Jiner
analysis should settle j{ 9 ~ gc. Conversely this hypothesis is sho~ri~' to
remove the ambiguities in the above factors. .

s. König: Exact Borel subalgebras of quasi-hereditary algebras

•

Exact Borel subalg~bras of quasi-hereditary algebras are designed to playa"
role analogous to thatof Borel subalgebras and Borel subgroups in Lie theory.

.The defining properties are in analogy to solvability and Poincare-Birkhoff
Witt theorem. Strong exact Borel subalgebras moreover encode character
theory.

Strong exact Borel subalgebras are shown to exist for .the algebras to bi9~~S"
of category 0 of a semisimple complex Lie algebra and for generalized Schur
algebras to semisimple algebraic groups.
The proo! goes in three steps: Firstly, necessary and sufficient conditions are
proved for a subalgebra to be an exact Borel subalgebra of a given quasi-

. hereditary algebra. Secondly, explicit constructions of exact Borel subalge
bras are giyen for the algebras mentioned above (for generalized Schur. alge
bras this construction is due to Leonard Scott). The third step is a general
construction having an exact Borel subalgebra as input and astrang exact
Borel subalgebra as output.

Kazhdan-Lusztig conjecture and Lusztig conjecture are reformulated as state
ments about the structure of these subalgebras. This is an application of

9
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abstract Kazhdan-Lusztig theory of Cline, Parshall and Scott.

H. Lenzing: Wild canonical algebras and automorphic forms

Let k be a field, 21 a fuH subcategory of modules over a k-algebra A. For each
k-linear endofunctor F : 21 -.. 21 and object X E 21

00

A( F; X) = ffi Hom{X, F" X)
,,=0

is a Z+-graded algebra with multiplication u" . Um := (F"'un ) 0 Um.

Theorem 1. Let k = C and ß be a Dynkin diagram, G a corresponding. binary "
polyhedral group, A a path algebra of an extended Dynkin quiver Li, TA
the inverse Auslander-Reiten translation for A-modules, X a projective A------module of defect -1. Then the completion A.(TA, X) is the surface singularity
of type ß, describing the singularity of C2/G in the origin. Also A(Ti , ..:r) ~
C[X,y]G.

.'
Theorem 2. Let k = C and A be a canonical algebra (sense of C. M. Ringel)
attached to a weight sequence (Pt,." . . ,Pt) E Nt and a sequence Al, ... ,At of
pairwise distinct members from lPt (k). Assume A is wild.
Let G be a Fuchsian group of the first type with data Pt, ... ,pt, At, ... , At,
i.e. G is a discrete subgroup of the automorphism group of 14 = {i E C I
Im(z) > O}, f4/G == 1E\(k), there are exactlyt orbits At, , ~t E Pt(k) with
non-trivial stabilizer group that are all cyclic-of order" Pt,. ,Pt respectively.
Let F = TA be the Auslander-Reiten translation for A and X a rank one
module over A (s.t. T

n X :/: 0 for n 2: 0). Then
A(T, X) = algebra of entire G-automorphic forms on 1H4.

Inparticular, A(r, X) is commutative, finitely generated over k and Goren- _
stein of Krull dimension 2. •

E. S. Letzter: Prime ideals in quantum matrices at pt" roots of
unity

When q is a primitive teh root of unity over a field k there is a copy of

10
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•
O(A'fn(k)). the classical coordinate ring of 11 X n matrices. cmbedded within
the center of Oq(J\1,,(k)), the quantum coordinate ring of n x 11 tnatrices.
Letting t = p be an odd prime number, we study the resulting surjection from
spec Oq(AJn(k)) ooto spec O(.M,,(k)) , proving that the fibers are exactly the
orbits of the (Zp)" x (Zp)" action on specOq(Mn(k» 'arising from ~ow and
column multiplication of the variables by powers of q. The same conclusion
holds for Oq(GLn(k» .

G. Letzter: What bilinear forms tell you about quantum groups
. (joint with A. Joseph) : ':~~$~

Let Uq(g) be the quantized enveloping algebra associated to the Kac-M~(j·~y
algebra g and indeterminate q. We discuss two bilinear forms on Uq(g): Ros
50'S form and Shapovalev's form. Using these forms, we factor the.shapovalev
determinant and then prove the following conjecture of Drinfeld: simple Uq(g)
modules of highest weight q>' specialize to simple U(g) modules of highest
weight ..\ for all ..\ E ~Q'

M. Lorenz: Grothendieck groups of invariant rings (joint w~rk
with K. A. Brown)

Let S == k[Xl~ .••, zn] be the polynomial algebra over the field k and let G:})e
a finite subgroup of GLn(k). Then G acts on S via linear transformationsh>f

the space of variables V = EkXi' and we'let R = Sa denote the algebra
;=1

of G-invariants in S. Our main result is a description of the Grothendieck
group Go( R) nnder the hypothesis th~t char k 11 GI:

Theorem. Go(R) == Go(kG)j L lncfk (H)(OH • G*(H)).
li:H~G G

Here, G·(H) =< [M] E Go(kfVG(H)) I MB = (0) >z ~ Go(kNG(H» and
O:H = L( -l)i[Ai V(H)] E Go(kNa(H)) where V(H) =< v - v" I v E V, h E
H >k ~ V. We discuss some applications and special cases of this result.

11
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J. Moody: Braid representations

Indecomposable coalgebras and pointed Hopf

Let Li be a Bi-equivariant local system on Xi = C \ {I, 2, ... , n}, with all
compatibly nested LI C L2 C L3 C ....

Let e = number of values of i such that Li defines an effective interseetion
theory for curves in Xi, 10 = number of values of i such that Bi acts faithfully
on a fibre of Li, 1 = number of values of i such that Bi acts faithfully on
H:(Xi , Li). Then e ~ / :5 e +2/0 • So, when the fibre actions aren't already _
faithful, e determines f to within a finite range. •.

The case of abelian monodromy has 10 = 1. Details of the generalization to
nonabelian monodromy can be found in an upcoming paper of D.Jong.

s. Montgomery:
algebras

For any coalgebra C, we construct a graph fc as follows:
a) vertices are the simple subcoalgebras of C
b) edges SI ~ 82 if Ll-1(C ® SI +82 ® C) ;f; SI +S2
C is link-indecomposable if reis connected.

Theorem: C = ~ Ca, where the Ca are link-:-indecomposable.

Corollary: C is i~decomposable if and only if C is link-indecomposable. Thus
any C is a direct surn of indecomposable coalgebras.

Theorem: Let H be a pointed Hopf algebra with G = G(H), the group
like elements. Let' N· = {x E (j I x E H(l), the indecomposable com
ponent of H containing I}. Then N <J G, H(l) is a subHopfalgebra, and
H ~ H(l)#f7k(G/N). .
This theorem can be applied to the pointed Hopf algebra Uq(g).
The results generalize classical work of Cartier-Gabriel and Kostant when H •
(and C) are cocommutative.

12
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M. L. Nazarov: Young's symmetrizers ror projective represen-
tations of the symmetrie group

As early as in 1911 Issai Schur discovered a non-trivial central Z-z-extension
T", of tbe symmetrie group Sn.. That is, the group Sn. posesses projective re-
"presentations which cannot be reduced to linear ODes. However, no explicit
construction of the irreducibles had been known until the recent time. The
analogue of Young's orthogonal form was produced in [~L L. Nazarov, J.
London Math. Soc. 42 (1990) 437-451]. The analogue of Young's symmetri
zers has been still unknown.
As recently as in 1986 Ivan Cherednik {aund an alternative deseription of

"Young's symmetrizers based on the repres"entation theory of the affine Hecke
algebra of the series A. This a.pproach provides new multiplicative expressi
ons for the symmetrizers. The same approach allows to find their projective
counterparts. But instead of the group Tn one should consider a central"'~x

tension of the hyperoctahedral group Sn t><Z2, and construet an appropriate
version of the affine Hecke algebra.

F. van Oystaeyen: Schematic algebras: Grothendieck topologies
and quantum sections (joint work with L. Willaert)

Hoping to provide a first answer to a question of M. Artin we define a class
of noncommutative graded algebras having a geometrie theory of Proj. Most
algebras recently studied in quantUID"-ring theory are in this elass, e.g. Weyl
algebras, rings of differential operators on varieties, enveloping algebr~~.~_of

Lie algebras, colour Lie super algebras, certain gauge algebras and Wift~n

gauge algebras, innocent quantum spaces and gauge algebras iterated from it,
twisted homogeneous coordinate rings ... . The covering property in terms
of Ore sets defining schematie algebras allows to obtain a structure sheaf
on a Grothendieck topalogy defined on the set of 'wards' in Ore sets where
ST = {3t, SES, tE T} for Ore sets Sand T. This topology is ·'n~n

commutative' because the exa.ct funetor on R - mod, QT Q5(:= QST) is in
general different from Qs QT and QSVT where Sv T is the Ore set generated
by Sand T. For a word w we have Q'AH for w' < w wehave a ring (or module)
morphism Qw,(R or M) -+ Qw(R or M). The section theorem then states
Qk+(R or M) = limQw{R or M) and Qw(R or M) limQww,(R or M)

- -w'

13
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expressing t,he fact that we da have a sheaf on the Grothendieck topology
and a correspondence ~coherent sheaves on this site' +-+ Proj (R).

The topology is 'quantum-eommutative' because for quantum-sections:
(QsQT(R or M))" = Q~vTq(R or M) > (QTQs(R or M»".
The sheaf of quantum sections on the site is easily defined and it is a (nega
tively) fil tered sheaf wi th a coherent ideal in degree -1 such that modulo this
coherent ideal we get the projective structure sheaf of the associated graded
ring. Since properties of being schematic, or of being an Auslander regular .'
ring, lift from the graded ring G(R) to the Rees rings R, it is clear that the
class of schematic algebras and the subclass of regular schematic algebras are
probably the desired classes of non-commutative 'geometrie' rings.

c. M. Ringel: The Hall algebra approach to quantum groups

Let ß be the Cartan matrix of a Lie algebra of type An, II)n, ~, 1&:1, Es. The
isomorphism

Uq(n+(6» ~ H.(~)

(here, ~ is obtained from 6 by choosing"an orientation, and H.(6) denotes
the corresponding twisted generic Hall algebra) is used in order to derive

properties of Uq(n+(.~). By definition, H.(~)has a. free Z[v,v-1]-basis con

sisting of the isomQ~hism·classes of finite length k~-modules (where k is
same fixed field), thus we abtain in this way a basis of Uq(11+(ß)}which.turns
out to be a PBW-basis. These basis elements are iterated v-commutators,
starting from the simple modules. In the case of A3 , we deal with the problem
of describing Lusztig's canonical basis explicitely. In particular, the tight mo
nomials can be related to certain tilting sets in the stable module category
of the preprojective algebra of type A3 •

J. C. Robson: Hidden matrix rings üoint work with L. S. Levy
and J. T. Stafford)

We investigate subrings of an n x n-matrix ring which, despite appearing
otherwise, are themselves fuH rings of n x n-matrices; that is, are hidden

14
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luatriccs. In general, this problem is subtle, but wc give rairly conlpiete results
in a number of situations. For exampie. we prove:
Theorem A. Let /( be an ideal of a ring R. let T = (Rij ) he a tiled subring of
!\Jn(R) containing LW",( K), let Rii =Rij for all i and j and Rii / I{ ~ N[",( D)
for some ring D. Then T ~ ftlln(S) for some specific ring S.
The subtleties are illustrated by:
Theorem B. Let JH[ be the ring of integer quaternions. p be an odd prime and
R = IHI + !\-f2 (plHI) ~ lW'2(1HI). Then R ~ L\12 (5) for some rin'g S if and onIy if
p == l(mod 4).

K. W. Roggenkamp: On the global structure of regular orders
of dimension two (joint work with Y. A. Drozd)

Let 0 be a regular domain of dimension two with field of fractions K" and
A an O-order in a separable K -algebra A. A is said to be endo-regular
(semi-endo-regular) if gldim End,,(M),= 2 for every finitely generated (in
decomposable) Cohen Macaulay module M. These conditions are inherited
by localizations and completions at max(0). For endo-regular orders the
converse also holds, and we give a complete description of them. In case 0 is
loeal we also describe tbe semi~ndo regular orders. Globally we give examp
les, based on algebraic geometry, which show that the converse implica~ions,

are not true.

M. Schaps: Hecke algebras and liftable deformations of group
algebras üoint work with M. Gerstenhaber) .

Let k be a unitary commutative ring (e.g. Z) ~d kn = k[q, q-l][[2];;1, ..., [n];;l].
We give a simplified approach to tbe q-Scbur decomposition of Vt8)n, V =
< Xl,'" ,Xtl. >, by constructing an orthogonal basis (with invertible square
norms) for v~n which is compatible with the action of the q-Hecke algebra
'H. and of Uq(s[d(kn )), thus proving that 1-l is semisimple'over a11 of Spec(kn ),

without the need to construct idempotents and matrix units explicitely. Eit
her approach demonstrates that the· Hecke ,algebra is a global solution of the
Donald Flanigan problem for Sn, i.e. adeformation of kSn which is semisim
pIe at the generic point of the fiber over each prime. Sy contrast, for Dn ,
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there is agiobai 0 F-deformation, but it is a nontrivial deformation of the
Hecke algebra.

A. Schofield: Moduli spaces of representations of quivers

Let Q be a quiver; 0 an indivisible Schur root,' < 0, 0> < o. Then there are
smooth projective moduli spaces of representations of dimension Q. Work
in progress suggests that these have tilting bundles. Thus we realize the e
diagonal D. : M --+ M x M as the degeneracy terms of a map between
tensor-decomposable bundles on M x M; from this we construct aresolution
of ß by tensor decomposable bundles. It remains to calculate suitable Ext
groups ..This reduces to a calculation of Ioeal cohomology in the unstable
locus which has to be completed.

s. O. Smal,,: Quasi~ilted algebras

A finite dimensional algebra A is called almosthereditary if it satisfies the
following properties, (i) gldim A ~ 2, (ii) for each finitely generated indecom
posable A-module X, either pdAx :5 1 or idAx :5 1. This talk gives different
characterizations of these algebras both in homological and also in nonho
mological terms tying them to tilting theory in locally finite dimensional
hereditary abelian k-categories for a field k, and thereby identifying them
with the class of quasitilted algebras. Results showing that this class of alge
bras is stahle under skew group constructions and by forming endomorphism
rings of projective modules, are also given.

s. P. Smith: The center of the 3-dimensional and 4-dimensional •
Sklyanin algebra üoint work with J. Tate)

Let d E {3,4}, let E be an elliptic curve over a fixed algebraically closed
fieldk, fix an identity 0 E (E, +), and let TEE be such that dT =1= o.
Let A = Ad( E, T) be the d-dimensional Sklyanin algebra associated to this
data. Let Z(A) denote the center of A. Then A is a finite Z(A)-module
if and only if T is of finite order. Suppose that T is of finite order, n say.
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Define S = Proj Z(A), let A be the quasi-coherent sheaf of O.s-algchras
determined by .4, let Z denote the center of A and let SpecZ denote the
projeetive seheme determined by glueiog the loeal sections of Z. 'vVe describe
Z(A), SpecZ and the Azumaya loeus of A on specZ. For example, if d = 3,
SpecZ :::: p2 and the non-Azumaya loeus ·is isomorphie to the isogenotts
curve EI < T >. When d =4, SpecZ is a singular, normaL rational 3-fold.
We deseribe Sing(SpecZ). which is also the. non-Azumaya locus of A.

J. T. Stafford: Graded rings of Gelfand-Kirillov dimension 2
(joint work with M. Artin)

..~;.):_~

Let R = EB R; be a graded domain with dimlcRt < 00 where k is' an alge-
i>O .

braieally elosed field write gr Q(R) for the graded quotient ring of R; thus.
gr Q(R) ~ D[ZZ-l U ] for a. division ring D.
Theorem 1. If R is as above and fini tely generated as a k-algebra, wi th
2 :5 GK dimR ~ 2 + E (f = ?4 will dQ) then D is the function field o.,~ a

_(commutative projective nonsingular) curve X.
Moreover GK dimR :5 2; indeed for same constant c. dimR; S ci Vi. In a
manner analogous to Serre's Theorem in the commutative case one can d~s-

, cribe R geometrically. For example: " .::', ...
Theorem 2. Let R be as in Theorem 1. If Ro = k and R is generated by"~R1 ,

then R is a 'twisted homogeneous coordinate ring': .
R ~ (B,,>o HO(y,.c ® ... ® "c(Jn-l) up to a finite dimensional vector ·space.
Here Y is a curve birational to X and .c is an invertible sheaf over X. .--

L~ Unger: The simplicial complex of tilting modules

Let A be a finite dimensional algebra over a field k and modA the category
of finitely generated A-Ieft-modules. .
T E modA is called a tilting module if the projective dimension of T is
finite, if Ext~(T, T) = 0 for all i > 0 and if th~re is an· exact sequence
o ~ AA -+ Tl -+ ... -+ Ti -+ 0 with Ti in the additive closure of T.
The set of tilting modules forms a simplicial complex E, and we rep~rt on
properties of E such as shellability, connectedness, structure of links and
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constructability of L. We also mention the relation between tilting modules
and functorially finite subcategories of modA and answer Lwo questions of
Auslander and Reiten.

A. Zalesskii: Group rings of locally finite groups and represen-
tation theory

Let GI C G2 C ... be an infinite sequence of finite groups and F a field.
Let FG denote the group algebra of G over F. If M is an FG-module then
we write Irr(M) for the collection of all regular constituents of M (not
counting the multiplicities) and we write Irr(FG) for M = FG, the regular
FG-module. Let Si C Irr(FGi) be a subset. We.say that {Si}i=I,2, ... is a.n
inductive system if S, = {Irr(p IGi) : p E 5i+1 for all i = 1,2... (p IGi
denotes the restrietion of p to Gi). Several results are presented which assert .
(under various assumptions on Gi) that Si is either IGi or Irr(FG i ) for all
i (we call such systems trivial). Inductive systems are of some interest !rom
-the point of view of the representation theory. Another motivation to study
them is the connection with ideals of group algebras of locally finite groups.
Put G =Lim Gi (the direct limit).
Theorem. There' exists a natural 1 - 1 correspondence hetween tw<rsided
ideals I of FG with FG/ I semisiInple and the inductive systems.

B. Zinunermann-Huisgen: Affine varieties 'oC uniserial modules
over finite dimensional algebras

Given an infinite field K, the finite dimensional path algebras modulo rela·
tions, A = Kr / I, allowing only finitely many isomorphism types of uniserial
modules are characterized. The problem arose in connection with approxi·
mations of modules hy modules of a simpler structure. The question is not
new, however, hut has been raised by Auslander on many occasions, the first
time (so he told me) at the AMS winter meeting in 1975.
T.he crucial preparatory result if of a general nature: For any algebra A =
Kr/ I, it assigns to each path p e Kr\] an affine algebraic variety V(p),
together with a natural surjection
• : V(P) - {iso types of uniserials U in A - mod with pU # 0 and length (R)

18
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=length (p) + l}.
which~ in many cases is a bijection. Conversely, each \rariety \./ oc.curs in this
fashion~ and its geometry strongly impinges on the structure of the corre
sponding family of uniserial modules.
The description of those algebras A for which a) each of these varieties \l(p)
is either empty or consists of a single point, or b) there are only finitely many
isomorphism types of uniserials, includes explicit structural descriptions of
the uniserial modules arising in these cases.

Berichterstatter: Steffen König
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