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The conference was organized by J.D.S. Jones (Warwick), I. Madsen (Aarhus),
and E. Vogt (Berlin). 47 participants from Europe, the United States and
East Asia attended the conference. Among the 20 lectures there was aseries
of three lectures by John D.S: Jones on Floer homotopy theory, a homo­
topy theoretical approach to infinite dimensional Morse theory. Other topics
of interest were moduli spaces, low dimensional topology, relations between
topology, geometry and group theory, stahle and unstable homotopy theory,
and !(-theory.
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J on Berrick:

LOCALIZATION OF NON-NILPOTENT GROUPS AND SPACES

I. Historical perspective

Inspired by localization of a ring R -+ RE, and thus R-modules, seen from
different points of view, there have been various considerations of localization
in mathematics. In particular, in the 1970's the localization of z-modules
was generalized via central extensions to provide a widely used construction
of localization of nilpotent groups. Similarly, localization of nilpotent spaces A)
was defined via Postnikov decompositions. However, it was by no means ..
clear how to extend these definitions beyond the nilpotent category.

Recently, originating with a viewpoint of Adams, one calls a localiza­
tion functor an idempotent monad functor L (with natural transformation
l : I -+ L) s.t. V object X

commutes. Then cp : A -+ B is called an L-equivalence when Lcp is an
isomorphism, and X L-Iocal when LX ~ X, whereupon 'P. : Mor(B,X) -+

Mor(A, X) is an isomorphism.

11. Localization of non-nilpotent groups at a set P of primes

For any discrete group Gone now has thefollowing functors extending
localization of nllpotent groups (all of which, except CD, are localization
functors).

CD Ribenboim: tbe initiallocalization ®, ® Bousfield @ Tan*

® Berrick-Casacuberta-Frei-Tan*: the terminallocalization
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® Casacuberta-Frei-Tan*: idempotent approximation: Lp and ( ); have

the sa.me equivalences, vize G --+ H s.t. 't/i (G/riG)p ~ (H/riH)p

(!) Bousfield-Kan: P-completion.

The following fails without a finiteness condition on G.

Theorem [Berrick-Tan]*. (a) TFAE. (b) Suppose H1(G; 7l) is finitely
generated. TFAE.

(i) fcG = rc+1 (G}{:= [rcG,G)); (i) 3 c s.t. rcG = r c+1G;
(ii) 't/p EZPG is nilpotent of class < c; (ii) 't/p EZPG is nilpotent;
(iii) Yp LpG is nilpotent of class < c; (iii) 't/p LpG is nilpotent.

111. Localization with respect to a map

Dror-Farjoun has introduced the study of localization w.r.t. a map
I : A -+ B, where X is I-Ioeal iff 1* : map.(B,X) --+ map.(A,X) is
a weak homotopy equivalence. When B = pt., call this localization PA.

Theorem [Berrick-Casacuberta]*. (a) A is acyclic iff PA is Quillen's
X --+ XtJ for some perfeet N ~ 1rlX (depending on [A, .i]).

(b) 3 perfeet, locally free group F whose BF (a 2-complex) is the
minimal A giving PA as the plus-construction X --+ X+ (w.r.t. maximal
perfeet =:g 1rlX).

*: to appear

C.-F. Bödigheimer:

HOMOLOGICAL STABILITY OF MAPPING CLASS GROUPS

WITH RESPECT TO PUNCTURES

Let r;.r denote the mapping class group of an oriented surface of genus 9 ~

owith r ~ 1 boundary curves and s ~ 0 punctures; the diffeomorphisms are
orientation preserving, the identity on the boundary, and permute punctures.
There are inclusions

(1)

and (3)

p : r;,r -+ r;.r+l , (2)

3
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by gluing to a chosen boundary curve a pair of pants (1), a cylinder with
an extra puncture (2), or a torus with two boundary curves (3), resp. In
the case (1) there is a left-inverse on the group level. In the case (2) and
(3) Harer proved that (J' and 'r induce isomorphisms in H.( ; z) for * ~ 9/3,
and 9 ~ 3. (This stability range was improved by Ivanov to * ~ 9/2, and
recently by Harer again to * :$; 2g/3 for H.( ; Q), 9 ~ 3 and r ~ 1.)

We show for the case (2):

Theorem 1. u. : H.(r;,.; Z) --+ H.(r;~I;Z) is the injection of a direct el
summand in a11 degrees, for any 9 ~ 0, s ~ 0 and r ~ 1. 0

This result follows from

Theorem 2. The map Bu : Br;,r -+ Br;~l stably splits, for 9 ~ 0,
s ~ 0, r ~ 1. 0

The proof uses a model for Br;.r which is a configuration space of "parallel
slit domains" in tbe complex plane. This space is accessible to techniques
from homotopy theory, developed to achieve stable splittings of loopspaces.
We remark that actually a finite number of suspensions suffice.

Michel Boileau:

GROMOV VOLUME AND CIRCLE FOLIATIONS

(joint work with S. Druck and E. Vogt)

The question of deciding which open 3-manifolds support a circle foliation
is still widely open. The work oI E. Vogt gave a method to build circle
foliations on a number of unexpected 3-manifolds, in particular IR3. The
Ioliations built by Vogt are the simplest after Seifert fibrationns in the sense
that tbe bad set (i.e. the set of leaves with infinite holonomy) is itself a
generalized topological Seifert fibration. Call this type of foliation an Epstein
length 1 circle foliation.

Dur main result with regard to this problem is e
Theorem. Let M be a compact orientable connected 3-manifold such

tbat the manifold M obtained by capping off the boundary spheres by 3-
balls is irreducible and 8-irreducible. If Int (M) supports a circle foliation of
Epstein length at most 1, then the Gromov volume IIM,8MII = o.
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In particular, if M is sufficiently large, then M is a graph manifold.

As a corollary we obtain the following characterization of graph manifolds:

Corollary. Let M be a compact irreducible 8-irreducible orientable 3­
manifold. Then M is a 3-ball or a graph manifold iff there exists a link L in
M such that M " L supports a circle foliation of Epstein length :5 1.

Martin R. Bridson:
NON-POSITIVELY CURVED COMPLEXES AND KNOT GROUPS

We consider complete geodesic metric spaces which are non-positively
curved in the sense of A.D. Alexandrov. The universal cover of such aspace
is a CAT(O) space. .~-

If a finitely generated group r acts properly and cocompactly on a CAT(O)
space, by isometries, then:

Theorems.

1) r is finitely presented of type F Poo •

.2) r has finitely many conjugacy classes of finite subgroups. If the action
is free then r is torsion-free. There exist examples where r ia not
virtually torsion-free (Wise).

3) r has an efficient solution to the word problem (it has quadratic isoperi­
metrie inequality).

4) r has a solvable conjugacy problem. ..~

5) Every solvable subgroup of r is finitely generated and virtually abelian.

6) The centralizer Cr ("Y) of each "y E r is finitely presented. If '1 has
infinite order then 3H $ Cr(")') of finite index such that H = K x ('1)
(some I().

Remark. (6) can be used to prove the non-existence of, for example, ac·
tions of mapping class groups on CAT(O) spaces (Mess, Kapovitch-Leeb) or
Aut(Fn ) (B-Vogtmann, Gersten).

5
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Examples. (i) Davis and Janusciewicz show that for n ~ 5 there exist
closed topological manifolds with no smooth structure which have geodesie
metrics of non-positive curvat~_re. In dirn 3:

Conjecture. If a closed 3-manifold has a geodesic metric of non-positive
curvature then it has a Riemannian metric of non-positive curvature.

Remark. Positive evidence comes from results of Bridson/Mosher and
Leeb.

(ii) (Moussong) Every Coxeter group acts properly and cocompactly on a
CAT(O) space.

(iii) If r 1 and f 2 admit such aetions, so does each f 1 *z f 2 •

(iv) Non-uniform lattices in SO(n, 1) admit such actions, non-uniform lat­
tices in other rank 1 Lie groups do not (ef.5).

(v) One ean build many interestingexamples out of Euclideansquares.
(D. Wise constructs many.)

(vi) Theorem. If X is a non-positively curved 2-complex then every f.p.
subgroup of '7rlX is the fundamental group of a eompact non-positively
curved 2-eomplex.

Remark. This result is spectaeularly false in higher dimensions.

Knots. Theorem. If K ~ S3 is an alternating knot then 7t'1 (§3 " K) is
the fundamental group of a eompact non-positively curved 2-eomplex.

Remark (a)..Following this theorem one applies (vi) and (1)-(6).

Remark (b). (iii) applies to torus knot groups and (iv) takes care of
hyperbolic knots.

Octavian Cornea:
FUNCTIONS WITH FEW CRITICAL POINTS

For any finite, 2-eonneeted CW-complex X there is a smooth compact
manifold M ~ X that supports a smooth, self-indexed function maximal,
eonstant and regular on fJM with less than cat(X) + 2 critical points which

6
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are of a certain "reasonable" type. To such a critical point there corresponds,
homotopically, the attachement of a cone. Conversely to a cone attachrnent
we may associate, under certain dimensionality and conneetivity conditions,

a "reasonable" critieal point.

John Greenlees:
THE COMPLETION THEOREM, THE LOCAL COHOMOLOGY
THEOREM, AND THE MULTIPLICATIVE NORM MAP FOR
.EQUIVARIANT BORDISM

(joint work with J.P. May)

For finite groups and compact Lie groups with torus identity component
the completion theorem for tomDieck's equivariant bordism MUG(~) is true,
as made precise in the theorem below. By finding the correct algebraic
model for MU?(EG+), and first proving the loeal cohomology theorem for
calculating it, tbe structure of the proof becomes very simple. In fact, there
are only two main points:

(a) by working in the category of highly structured modules (in the sense of
Elmendorf, Kriz, Mandel & May) over MU it is easy to realise the alge­
bra geometrically, provided the augmentation ideal J = ker(MUä -+

MV-) can be replaeed hy a finitely generated ideal J'.

(h) To find a suitable ideal J' we need the existence of Thom isomorphisms
(and hence of Euler classes) and the existenee of a multiplic~.t!ve norm.

Theorem 1. For any highly structured module m over the ~~ivariant
bordism spectrum MU (such as an equivariant form of K, ku, K(n), k(n), E(n),
etc.) there are spectral sequences

and
E~. = Hj(m~(X)) => m?(EG+ 1\ X) = m.(EG+ A X).

Here Hj is loeal cohomology in the sense of Grothendieck and H! is loeal
homology in a dual sense. Under finiteness hypotheses Bj calculates the

7
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right derived funetors of the J-power torsion funetor and H! calculates the
left derived funetors of J-adic completion.

Theorem 2. There is a multiplicative norm map

where H is of index n in G. This is transitive, the identity if H G,
multiplieative, and satisfies the restrietion formula

res~ norm~(x) = II norm~n"H res;g."HC9(X)
HgKeH\G/K

Theorem 2 is proved more generally for families of eohomology theories
represented by "global 3. funetors with smash produet". This ineludes MV
by virtue of the finite Thom spaee model of its representing pre-spectrum.

Jean-Claude Hausmann:

POLYGON SPACES AND GRASSMANNIANS

(joint work with Allen Knutson)

Let m pk be the space of rn-gons in lRk up to tra.nslation and positive
homotheties. This space comes with several struetures: an action of O(k),
an action of Sm permuting the edges, and a funetion l: m pk -+ IRm taking
a polygon to the lengths of its edges. The quotients of m pIe by SO" (or Ok)
are the moduli spaces m P~ (respectively, m pIe). Fixing arefleetion in O(k)
provides an involution on m pie and m p~ whose fixed point sets are m 1'''-1 and
m pk-I. The goal of this paper is to understand the topology of these various
spaees and the geometrie structures that they naturally carry when k = 2
or 3. They are elosely related to more familiar objeets (Grassmannians,
projective spaees, Hopf bundles, etc.). The spaces m pk(a) := l-l(a) of
polygons with given side-lengths a E ]R'" are of particular interest.

The great miracle occurs when k = 3, because ]i3 is isomorphie to the e
space JlHI of pure imaginary quaternions, and the 2-sphere in ]R3 is Kähler.
The tools of sympleetic geometry can then be used. Most prominent is a
sympleetic version of the Gel'fand-MacPherson correspondenee identifying
the spaees m p3(a) as symplectic quotients of the Grassmannian of 2-planes
in cm.

8
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While this paper illustrates many phenomena in symplectic geometry, the
proofs are entirely polygon-theoretic and involve ooly classical differential
topology. Nonetheless, many of the examples are new, interesting in their
own right and· instructive for hoth fields.

Hans-Werner Renn:
COMMUTATIVE ALGEBRA OF UNSTABLE K -MODULES,
LANNES' T-FuNCTOR AND AN ApPLICATION TO H*(GL(u, zr!]); IF2)

Let p be a fixed prime and let K he an unstable algebra over the mod-p
Steenrod algebra A such that ]( is finitely generated as graded lFp-algebra.
Let Krg-lJ denote the abelian category of finitely generated K-mo.dules with
a compatible unstable A-module structure. We study various ooncepts of
commutative algebra in this setting. The röle of the prime ideai, spectrum
of a commutative ring is here taken by a category R(K) which, roughly
speaking, consists of the A-invariant prime ideals of K together with certain
"Galois information"; sheaves will correspond to functors on this category,
and the röle of the sheaf associated to a module will be taken by the compo­
nents of Lannes' T -funetor. We diseuss the notions of support, of g-torsion
modules (for an invariant ideal Q of K) and of localization away from the
Serre subeategory Tors(a) of a-torsion modules in our setting. We show
that the category Krg-lJ has enough injeetives and use these il~.jectives to
study these localizations and their derived functors; they are closely related
to the derived funetors of the a-torsion funetor Fa. Dur results are formally
analogous to Grothendieek's results in the classical situation of modules over
a noetherian commutative ring R. ';~~

Important for applications is the case !( = H* BG, the mod -p coho­
mology of a classifying space of a compact Lie group (or a suitable discrete
group), and M = HäX where X is a (suitable) G-CW-complex. In these
eases the eategory R( K) and the functor on R(K) associated to BäX can
be deseribed in terms of group theoretie and geometrie data, and our theory
yields a far-reaching generalization of a result of Jackowski and McClure
resp. of Dwyer and Wilkerson. As a conerete application of our theory
we describe the size of the kernel of the restrietion map from the unknown
mod-2 eohomology of the S-arithmetie group GL(n,Z[1/2]) to the known

eohomology of its subgroup Dn of diagonal matrices.

9
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Steven Hutt:

POINCARE SHEAVES ON TOPOLOGICAL SPACES

To anormal map (I, b) : Mn -+ Xn from a manifold to a Poincare space
Wall associated a quadratic signature q(j, b) E Ln (Z1I"1(X») whose triviality
is necessary (and for n ~ 5 sufficient) for (I, b) to be normal bordant to a
homotopy equivalence. The quadratic L groups were later interpreted by
Ranieki as cobordism groups Ln(R) of R-module chain eomplexes C with
an n-dimensional quadratic Poincare duality X : C n

-. ~ C. In particular
the quadratic signature u(j, b) of Wall may be interpreted as the eobordism
class of a certain n-dimensional algebraic quadratic Poincare complex (C, X)
associated to (/, b).

We extend these notions to define objects called Poincare sheaves on topo­
logical spaces, (generalizing a previous simplicial version of Ranieki). A
Poincare sheaf (A, 1/J) on aspace X is a complex A of R-module sheaves
on X together with a quadratic Poincare duality X : A ~ EnDA where D
is the Verdier duality operator. Poincare sheaves carry surgery invariants in
a way that allows us to loealise to open subsets. Application of the section
functor returns us to tbe algebraic Poineare eomplexes above so that the clas­
sieal theory is recovered. Furthermore, the effect of geometrie construetions
on surgery invariants cao be closely followed via. such sheaves.

Many classical surgery invariants may be sheafified, including the quadratic
invariant of anormal map, the eonstruetion of Quinn's invariant for a ho­
mology manifold and Ranicki's total surgery obstruction of a Poincare space.
Applications include a new proof of Novikov's result on the topological in­
varianee of the rational Pontrjagin classes of a. P L-manifold. This proof does
not require the Bass-Heller-Swan calculation.

Klaus Johannson:

THE EXCEPTIONAL NATURE OF THE FIGURE 8 KNOT

A Heegaard string (tunnel) in a 3-manifold M is an are t C M such that
(M - U(t») - is a handlebody. Tbe fundamental group of a 3-manifold ad­
mitting Heegaard strings is a one-relator group. So the study of Heegaard
strings mayaiso be viewed as the study of geometrie presentations of those
one-relator groups. In this talk I discussed an approach towards tbe clas-

10
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sification of Heegaard strings in Haken 3-manifolds, with special attention

payed to surface bundles over 8 1• I also discussed the special importance

- of these special 3-manifolds in the general scheme. As a result I showed

that Heegaard strings in bundles over SI can be pushed into certain normal

positions and that this reduces tbe classification of Heega.a.rd strings in those

bundles to the algebraic problem of classifying "filling elements" in surface

groups with given automorphism. Applying this classification to torus bun·

dIes yjelds tbe result that only torus bundles with monodromy conjugate to

(d~l~) can have Heega.a.rd strings &t all, and only those with monodromy

conjugate to ± (~~) give (exact1y 2 resp. 4) different Heegaard strings. Tbe

matrix (~:) is the monodromy for the figure 8 knot (and hence the title of

the talk.)
_~_

John Jones:

GAUGE THEORY AND HOMOTOPY THEORY

I FLOW CATEGORIES AND MORSE THEORY

11 FLOER HOMOTOPY THEORY AND QUANTUM COHOMOLOGY

UI FURUTA'S WORK ON THE 11/8 CONJECTURE

The theme of these three lectures is the interaction between homology

theory and tha.t pa.rt of global analysis concerned with the study of the partial

differential equations which arise in that part of mathematical physics known

as gauge theory.

The first two lectures, which were on joint work with Ralph Cohen and

Graeme Segal, were concerned with the study of the homotopy theory UD­

derlying Floer's infinite dimensionnal version of Morse theory. The first step

is to re-exarnine finite dimensional Morse theory. Let f : M -+ III be a

Morse-Smale function (i.e. a generic Morse function) on a compact Rieman­

nian manifold. The flow category CI is the category whose objects are the

criticaJ points of fand the morphisms between two critical points are the

piecewise flow lines (in the obvious sense) of the gradient flow of f joining

these critical points. Associated to any category Cis its classifying space Be.

Theorem. Bel is homeomorphic to M.

This theorem gives a new method of processing the data provided by finite

11
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dimensional Morse theory. To use these flow categories in infinite dimensions
it is necessary to introduce the notion of a framing. In the present finite
dimensional situation, given a framing A of Cj it is possible to construct a
virtual vector bundle ( = ((A) over BCj ~ M. Furthermore, by following
the usual construction it is possible to construct a chain complex C(M, /, A)
- this is tbe Morse-Smale chain complex.

Theorem. H.(C(M,j,A» ~ H*(MC)
where M' js the Thom spare of the virtual bundle (. e

This theorem is a mild generalization of the fundamental result of finite
dimensional Morse theory.

In the infinite dimensional situations studied by Floer the flow category
still makes sense. The appropriate notion of a framing gives a system of
vector bundles (0 = (a(A) indexed by the critical points of the function. If
a and bare critical points and there is a flow from a to b then (0 is a sub­
pundle cf (b. Th_is gives an inverse system of Thom spectra (BC! )-Co indexed
by the critical p~ints. There is a. chain complex C(X, /, A) which depends on
the function f : X -+ li (here X is infinite dimensional and f is a "suitable
function" which will be called a Floer function) and the framing A - this is
tbe Floer complex.

Theorem. Suppose tbe space of piecewise flows between any two critical
points is compact; then

H*(C(X, f, A» ~ colim H·(BC;CO)

This inverse system of Thom spectra BC/(o is the Floer homotopy type
associated to tbe Floer function fand the framing A.

The first example is as folIows. Let V be the vector space over IR with basis
eä, i E iZ, topologised as the direct limit of its finite dimensional subspaces.
The preceding theory can be applied to the function f : TP( V) -+ IR defined ~

by J[x] = ( E nx~)/( f x~). It yields the inverse system _
n=-oo n=-oo

1ipoo ~ (IiPOO)-'l +- (1ipOO)-2t1 +- ...

often known as IiP~oo. Here 17 is the real Hopf line bundle. Tbus the "Floer
homotopy groups" of this function are, by a deep theorem of W.H. Lin, given
by tbe 2-adic completion of the stahle homotopy groups of spheres.

12
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•

The second example is tbe area function, or symplectic action on L(cPn
),

the universal cover of the ffee Ioop space of cFn
• After compactifying this

leads to tbe inverse system

Cpoo ~ (Cpoo)-(n+l)( +- (Cpoo)-2(n+l)( +- ...

Rather remarkably the Floer cohomology groups in this example are the same
as the quantum cohomology of Cpn. This qua.ntum cohomology QH*(V) is
defined for a class of Kähler manifolds. It depends on a parameter q and if q

is set to be zero the quantum cohomology reduces to ordinary cohomology.
This relation between quantum cohomology and Floer cohomology seems to
be a general phenomenon; but as yet there are no theorems to this effect.

';.:;.::.~'

The third lecture was areport on work of Furuta.

Theorem. Let M be a closed simply cODnected smooth 4-manifold
with intersection form QM given by

QM = 2kEs EB iH .

Then l ~ 2k + l.

Here Es is the usual quadratic form with rank 8 and signature 8 and H
is given by the matrix (~~)" .

The conjecture i ~ 3k is known as the 11/8 conjecture, and is a very
important unsolved problem in the theory of 4-manifolds.

Furuta uses the Seiberg-Witten equations to show that if M exists then
there is a G-equivariant map S(V) ~ S(W) where G is the subgr-bUp of
Sp( 1) generated by the unit complex numbers and the quaternion j and V
and Ware specific representations of Gwhich depend on k and i. Now
using equivariant K -theory ](a Furuta shows that if such a.n equivariant
map exists then necesssarily i ~ 2k + 1.

Stephan Klaus:

THE OCHANINE k-INVARIANT IS A
BROWN-KERVAIRE INVARIANT

For closed (Sm + 2)-dimensional spin manifolds one has on the one hand
the Brown-Kervaire invariants and on the other hand Ochanine k-invariant.

13
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The first ones have a hcmctopy theoretic interpretation as Arf invariants of
a certain quadratic refinement of the 7l/2 intersection form and they form for
each m a finite set. The second one has an expression by KO-characteristic
numbers and bas an analytic meaning. I proved in my dissertation that the
Ochanine k-invariant ia in fact a Brown-Kervaire invariant. This result is
an analogue of Hirzebruch'8 signature theorem.

The proof uses:

1. The integral elliptic homology cf Kreck and Stolz which characterizes
in particular multiplicative invariants in I8IP2-bundles.

2. Kristensen 's theory of cochain transformations and secondary cohomol­
ogy operations which gives us a Cartan formula for such operations in
IHIP2-bundles.

Christine Lescop:

THE CASSON-WALKER INVARIANT AND THE MAPPING CLASS
GROUP

We study the following question: How does the easson-Walker invariant;\
of a rational homology 3-sphere obtained by gluing two pieces along a surface
depend on the two pieces ? Our partial answer may be stated as folIows.
For a compact oriented 3-manifold A with boundary BA, the kernel L,A cf
the map from Ht(BA; Q) to Ht(A; Q) induced by tbe inclusion is called the
Lagrangian of A. Let E be a closed oriented surface, and let A, A', Band B'
be four rational homology handlebodies such that DA, BA', -oB and -8B'
are identified via orientation-preserving homeomorphisms with E. Assume
that LA = LA' and LB = LB' inside B t (E; Q) and also assume that LA and
LB are transverse. Then we express

;\(A UE B) - A(A' UE B) - A(A UE B') + A(A' UE B')

in terms of the form induced on A3L,A by the algebraic intersection on
H2(A UE -A') paired to tbe analogous form on A3L,B via tbe intersection
form of E. The simple formula that we obtain naturally extends to tbe
extension of the Casson-Walker invariant of the author.

14
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This formula applies to generalize a result of Monta. which computes the
coboundary of some functions induced naturallyon the Torelli group by the
Casson invariant in terms of the Johnson homomorphism. Our proof leads
us to study a (tautologieal, hut interesting) extension of the Reidemeister
torsion to compact 3-manifolds with arbitrary boundary.

Wolfgang Lück:
L 2-INVARIANTS AND TOWERS OF COVERINGS

Let M be a closed Riemannian manifold with residually finite fundamental
group 1r, Le. 'Ir has a. tower 1r = r 0 ~ r 1 J r 2 :J ... consisting of normal
suhgroups r m of finite index such that nr m = {I}. Let M m --+ M. be the
covering of M associated to r m. Denote hy bp(Mm ) its p-th Betti tiüinber.
Let b~2)(M) be the p-th L2-Betti number of M which is defined as "-

b~~)(M) = dimx(1f) Hr~)(M) = l!..r~J e-i'&p(i,i)d vol
F

Here H(2)(M) is the space of harmonie L2-integrable p-forms on AI and

e- t6p(i, i) the heat kerne} of the universal covering. We discuss the proof
and applications of the following theorem which was conjectured by G~omov:

Theorem. lim bf,<.Mr j) = b(2)(M).
m-co w. m P

Mark Mahowald:

THE ELLIPTIC CURVE HOPF ALGEBROID

(joint work with M. Hopkins)

The Weierstrass form of an elliptic eurve is usually written y2 + alXY +
a3Y = x 3 + a2x2 + a4X + a6. Coordinate transformations do not change
anything, so x = x' +T, Y = y' + sx' + t give the same curve.

Let !( be a field. Then an elliptic curve over K is given by a ring ho­
momorphism Z[a.,a2,a3,a4,a6] -+ K. The automorphisms are given by
Z[at, a2, aJ, a4, a6, S, T, t]. If we inc1ude the transformation in tbe coefficients
indueed by the coordinate transformation we get the strueture maps for a
Hopf algebroid (Ravenel, Complex Cobordism and Stahle Homotopy). For
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example
a~ = al + 2s

a~ = a2 - alS +3r - s2

Let nLaj = eai and nRai = 01, then these are the structure maps to give for
R = 7l[al' ... ' 04, a6] and A = R[s, r, t]. We then have aresolution

- This resolution is then calculated by observing that it is the same as the one
constructed by letting T be the Thom complex of the natural bundle over
nSU(4). Then take the standard T resolution

T"STATETATAT ........
and apply e02·. e02· (T) ~ Rand ea:a.(T A T) ~ A and the structure maps
agree.

John Rognes:

THE FIBER OF THE LINEARIZATION MAP A(*) ~ ]{(z)
(joint work with John Klein)

Waldhausen's algebraic K-theory of spaces satisfies A(*) ~ Q(SO) x
B 2P(*) when applied to a point. Here P(*) = hocolimNDIFF(DN+lreIDN)
is t~e stahle smooth pseudoisotopy space of a. point. A(.) can be viewed as

the algebraic K -theory of the ring up to homotopy represented hy the sphere
spectrum, with underlying space Q(SO). The linearization map to path com­
ponents Q(SO) ~ z then induces a map on K-theory L : A(.) -+ K(71).

Theorem. Let p be an odd prime. After completion at p the homotopy
fiber F of the linearization map L : A(.) --+ K(z) has homotopy groups

F ~ { 7l/p if * = 2n with k(p - 1) :5 n < kp for some 1 :5 p < k,
1r• - 0 otherwise,

for * < 2p(p - 1) - 2.

This describes F in the initial range of degrees where the stahle homo­
topy groups of spheres only consist of the image of the J-homomorphism.
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The proof is an application of the cyclotomic trace map from K -theory to
topological cyclic homology, and arecent theorem of Bjtt'rn Dundas.

Corollary. There are torsion classes of order p in

1r2n-2'P(.) ~ 1r'2n_2DIFF(DN+lrelDN)

fOT N ::> n, when k(p-l) < n < kp for some 1< k < p. These classes corne
from 1r2nA(.) and map to zero under linearization to 1r2nK(71) = K 2n(71).

Stephan Stolz:

A CONJECTURE CONCERNING POSITIVE RICCI CURVATURE

AND THE WITTEN GENUS

We discuss evidence for the following .:.._:

Conjecture. Let M be a 4k-dimensional spin manifold (smooth and
closed) with lt(M) = o. If M admits ametrie of positive Ricci curvature,
then the Witten genus tPw(M) vanishes.

Here Pt (M) is the first Pontrjagin class of M (which for spin manifolds is
canonically divisible by 2), and tPw(M) is a collection of cbaracteristic num­
bers of M, including the ti-genus A(M). Tbe conjecture is true for complete
intersections, homogeneous spaces GIH for G compact, semi-simple, and
fiber bundles with fiber GIH (G as above) and structure group G. This
conjecture is analogous to the result of Lichnerowicz which says that the
A-genus of spin manifolds with positive scalar curvature vanishes: In fact,
the author hopes that applying Lichnerewicz' argument to a hypothetical
"Dirac" operator on tbe free Joop space of M might lead to a proof~of the
conjecture.

Peter Teichner:

NEW GOOD GROUPS FOR TOPOLOGICAL 4-MANIFOLDS

(joint work with Mike Freedman)

The classification of manifolds in dimension ~ 5 uses two main theorems,
the s-cobordism and the surgery theorems. They translate homotopy data
into actual homeomorpbism information.

In dimension 4, the basic tool in the proof of tbe above theorems (namely
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the Whitney trick) is apriori not available. In the smooth category this in
fact leads to the failure of both theorems hut the ohstructions can only be
constructed using Gauge-theory [Donaldson 81).

In the topological category, [Freedman 81] proved that the two theorems
do hold under certain restrietions on the fundamental group. ("Good groups"
are those for which the theorems hold). More preciselYt he showed that a11
elementary amenable groups are good.

Theorem. Groups of subexponential growth are good. [Freedman.-T. 94) e
It is known that an elementary amenable group has either polynomial or

exponential growth. Moreovert [Grigorchuk] constructed uncountably many
finitely generated groups of intermediate growth (Le. neither polynomial
nor exponential). Thereforet tbe ahove theorem constructs in fact new good
groups.

Reporting: ElmarVogt -(Berlin) .
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