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The meeting has been organized by Willi Freeden (Geomathematics Group, Kaiserslau­
tern) and Erik W. Grafarend (Geodetic Department, Stuttgart). It brought together
researchers from mathematics and geodesy. The main purpose was' to find appropriate
means of assimilating, assessing and redudng to comprehensible form the readily increas­
ing flow of data from terrestrial and satellite sources .and providing an objective basis for
scientific interpretation, classification, testing of concepts, and solution of geoproblems.
The talks that were delivered reflected weH the multiple interest in the audience. There
have been lectures on geodetic boundary value problems, inverse problems, differential ge­
ometry, statistics, multivariate approximation theory. The themes addressed were given
as a block. series of talks (indicated below by seperating lines). The taiks have been
followed by lively discussions and a usefnl exchange of ideas has taken place.
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VORTRAGSAUSZÜGE

G. Anger:

The Efficiency of a Mathematical Model in Natural Sciences and Medicine

Most mathematical problems in science, technology and medicine are inverse problems.
In order to solve an inverse problem the following points have to be studied:

• Mastery of the special process both experimentally and theoretically

• Possibility of mathema.tical modeling of the process

• Mastery of the direct problem both theoretically and numerically

• Studying of the information content of the inverse problem, i. e. , to find out which
interna! parameters of a system inaccessihle to measurement can he determined in
astahle and unique manner

• Development of algorithms for the numerical solution of an inverse problem

In general, the solution of the direct can be represented by using integrals (compact op­
erator). If AI = 9, R(A) infinite dimensional, is a one-to-one mapping, then A-l is
discontinuous (F. Riesz 1918). In order to study the efficiency of a mathematical model.
We have to include its measurements. In this talk we presented basic principles of inverse
theory using different models, especially those which are of interest in geodesy.

M. Bertero:

Linear and Nonlinear Methods for Linear Inverse Problems

Linear inverse problems are, in general, ill-posed and, as a consequence, the corresponding
discretized problems are ill-conditioned and affected by numerical instability. Since the
solutions (or generalized solutions) of the discretized problems are deprived of physica~~
meaning, one roust look for approximate solutions satisfying some apriori conditions."
This explains the variety of the methods which have been developed for solving this kind
of problems. We review linear regularization and filtering methods, linear and non linear
iterative methods, constrained iterative methods and probabilistic methods such as max­
imum likelihood and Wiener filtering. These methods are illustrated with applications to
image restoration, seismology and tomography with few data.
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c. Jekeli:

Methods to Reduee Aliasing in Spherieal Harmonie Analysis
ol Gravity Anomalies

Despite the sophistieation in the eonstruetion of todays detailed models of the Earth 's
gravity field using high-degree spherieal harmonie expansions, they generally still process
a global set of mean gravity anomalies available (or estimated) on a regular grid of lati­
tude and longitude lines. This transform of diserete data into harmoni~ eoeffieients (tbe
speetrum) is a numerical approximation of an integral; and, even if the data themselves
have no error, it usually introduces a discretization error, or in the parlance of speetral
analysis, an aliasing error - the estimated eoeflieients are aliased by higher degree gravity
field components that cannot be seperated because of the granularity of the data.
The methods of analysis using simple quadratures, least-squares eollocation, ()ther mod­
ified quadratures, least-squares adjustment, and the newer proposals using;·planar 2D
discrete Fourier transforms all share the same basic structure. For example, for efficient
computation, most place considerable restrietions on the allowable statistical error dis­
tribution of the data. However, there is significant variation in the aliasing errors of the
methods. This paper derives a rigorous formula for the aliasing error in each ease, thus
yielding a lucid· model comparison and indieating ways to ameliorate the error through
data smoothing.
Typically, data smoothing is the result of uniformly weighted averaging of gravity anoma­
lies over blocks defined by latitude and longitude lines. The aliasing error formulas
clearly show how this proeedure fails to attenuate apart of the high-degree ·spectrum
that then aliases the estimated spectrum. Averages over constant spherical caps, though
spoiled at higher latitudes by the increasing correlation between neighbours on the lat­
itude/longitude grid, are more definitive in filtering out the high-degree components.
Special weighting functions (such as the Gaussian function) Can further reduce the alias­
ing that remains due to the ringing of the uniformly weighted average.

L. E. Sjöberg:

On the Error of Downward Continuation in Physical Geodesy

Analytical continuation of free-air gravity anomalies combined with Stokes's formula is
compared with the classical method for geoid determination by Helmert 's seeond conden­
sation method. Assuming that the density distribution of the terrain is correctly known
Helmert's method can be regarded as correct, while we show· that the analytical contin­
uatio~ method yields an error in geoidal heights that may reach several metres in high
mountains. In a similar way we show that a spherical harmonie determination of the geoid
based on external gravity data is an error which again, may reach metres over continental
areas.
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N. Sneeuw:

Speetral Analysis of Single Component Gradiometry

The technieal implementation of gravity gradiometry in the form of differential aceelerom­
etry over a fixed baseline results inherently in measuring (one or more) single components
of the gravity gradient tensor. .It is therefore interesting to investigate how the gravity
field can be determined from single gradiometry components, and to deseribe the er-
ror characteristics of the field obtained. As has been demonstra.ted by simula.tions foe
the STEP-mission (cross-track in-line component), tbe resulting spherical harmonie error
spectra may be inhomogeneous.
Here tbe spectral characteristics of single components of tbe gradient tensor, expressed
in a loeal frame, will be analyzed. The type of representation of error simulation results
will be discussed. Moreover optimal gradiometry configurations are proposed in order to
obtain homogeneous and isotropie error characteristics.

F. Schneider:

The Solution of Linear Problems in Satellite Geodesy by Means of
Spherical Spline Approximation

We consider a certain class of geodetic linear inverse problems AF = G, F: gravita­
tionalpotential at the surface of the earth and G for example the first radial derivative
of the gravitational potential at satellite altitude (linearized satellite-to-satellite tracking)
or the second radial derivative of the gravitational potential at satellite altitude (satellite
gradiometry). The regularization is done by a refinement of the topologies by considering
the inverse problem in a reproducing kernel Hilbert space setting in order to obtain a
bounded generalized inverse operator At. For a numerical realization we assurne G to be
given at a finite number of discrete points to which we employ a spherical spline inter­
polation method adapted to the Hilbert spaces. By applying At to the obtained spli~ >

interpolant we get an approximation of the solution F at the surface of the earth. F~
0&11y, some eonvergence results are formulated if the measurements at satellite altitude
inerease, where it is irnportant that neither the earth figure nor the shape of the orbit
underly severe geometrical restrietions.

4

                                   
                                                                                                       ©



P. Maaß:

Wavelet Transforms on Spheres

The aim of this talk is to describe some recent results concerning wavelet transforms
on spheres. These transforms are constructed in order to analyze local structures and to
efliciently represent functions on spheres.
Motivated by the well established wavelet transform for functions f E .c2(lR) one seeks a
transform of the type

L",f{",a) =< f,t/J",o. >, '1 E 52, a E (0,00),

where'1 denotes a translation parameter and a refers to scaling tbe wavelet t/J. Different
approaches are discussed:

• the discrete method by W. Sweldens, based on hierarchically subdividini~the·sphere
inta triangles, ..-

• the analytic approach by B. Rubin, which starts from analytic continuation method
for approximate convolution identities and

• an algebraic approach (S. Dahlke, P. Maaß) based on group representations acting
on functions on the tangent bundle of 5 n - 1 .

U. Windheuser:

Spherical Wavelet Transform and Its Discretization

A continuous version of spherical multiresolution is described, starting from continuous
wavelet transform on the sphere. Scale discretization enables us to construct spherical
counterparts of wavelet packets and scale discrete Daubechies' wavelets. It is shown that
singular integral operators forming a semigroup of contraction operators of class (Co)
(like Abel-Poisson or Gauß-Weierstraß operators) lead in canonical way to pyramidal al­
gorithms. Fully discretized (scale and space discrete) wavelet transforms are obtained via
approximate integration mIes. Shannon's sampling theorem on the sphere is mentioned
and exact space discrete wavelet transforms are discussed for band-limited wavelets. Fi­
nally applications to geodetic reality are given in more detail.
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M. D. Buhmann:

Old and New Results on Radial Functions with Compact Support

In this work, radial basis functions that have compact support and give rise to posi­
tive definite interpolation matrices {cf>(IIXj - xkIl2)}j,k are considered. Here, cf> is the radial
basis function, 11 . 112 is the Euclidean norm on Rn and Xj E Rn are prescribed, distinct
centres. The aim of the interpolation method is to approximate given data {f(xj)}j by

where the Aj are to be defined through the interpolation conditions s(Xj) = f(xj).for all
j. If the number of data is very large, it can be advantageous to have a t/> of compact
support. Several earlier approaches are reviewed in this talk and a new class of radial
function is introduced and analyzed. Moreover, the differences to the well-established
globally supported ones are discussed, including their approximational behaviour.

M. Schreiner:

Radial Basis Functions on the Sphere

Radial basis functions on the sphere are an appropriate tool for many approximation
methods on the sphere (splines, finite elements, wavelets) and play an important role also
for non-spherical approximation. Besides their structural simplicity the main advantage
in the use of these functions is that they are strongly related to invariant pseudodiffer­
ential operators on the sphere. Thus, they are likely to play an essential role in future
geodetic applications. .
After a general introduction in radial basis functions on the sphere the talk concentrates
on new results concerning locally supported spherieal radial basis functions. By using
these funetions, the numerical eifort of any of the mentioned approximation techniques
ean be significantly reduced. e-----------------------
w. R. Madyeh:

Recovery of Band Limited Functions via Generalized Splines

It is known that univariate band limited functions can be recovered from their values
on certain discrete subsets, {xn}, as the limits of piecewise polynomial spline interpolants
wben the order of tbe splines goes to infinity. See (1) Scboenberg, J. Analyse Math. ,
XXVII (1974), 205-229 for the ease when {Xn} is tbe integer lattice and (2) Lyubarskii
and Madych, Jour. Funet. Anal. , Vol. 125, No. 1, Oct 1994, 201-222 for the significantly
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more general case when {xn} is such that the collection of functions in e{e-izn(} is a
Riesz basis for .c2([-1l', 1T)), among other examples this includes the integer lattice and
any sufficiently sroall perturbation. The goal of this talk is to indicate that the methods
introduced in (2) can be modified to obtain meaningful extensions:

• Replace piecewise polynomial splines by more general families of interpolators of
the form Exn Cn"Pk( x - zn) and still have the same recovery result as k -+ 00. For
example, our results include the cases "Pk(Z) = 1/(k2 + x 2) and "Pk =Daubechies
scaling function with scaling filter of length 2k and maximum sampling moments
convolved with its symmetry.

• Recovery results for multivariate band limited functions from their values of irregu­
larIy distributed sampling sets using polyharmonic splines and selected interpolation
methods.

Q. Kouncbev:

Splines which are Piecewise Solutions of Elliptic Equations on Manifolds

It is our purpose to establish a new paradigm in the area of smoothing of multivariate
scattered data, which provides a natural generalization of the univariate spline theory.
So far the results obtained for multivariate polynomial splines and in the theQry of radial
basis functions have not succeeded to establish a satisfactory paradigm in the multivariate
world, in the sense of natural extension of the beautiful spline theory in one dimension.

K. -R. Koch:

Bayesian Statistics with Applications

Starting from Bayes' theorem the essence of the Bayesian approach is outlined. The
choices of prior probability density functions are discussed starting from noninformative
prior densities. Prior densities based on maximum entropy are introduced. It leads to the
normal distribution in case of a given expected value and a vanance. Conjugate priors
are mentioned which are used in linear models. The posterior density of the unknown pa~

rameters resulting from Bayes' theorem contains all the information needed for statistical
inference. For the point estimation the expected value or the value for which tbe posterior
density becomes maximal are taken. Confidence regions are obtained by highest posterior
(HPD) regions. Hypothesis tests are solved by confidence regions or simply by computing
posterior odds. The results of the parameter estimation in linear models using noninfor­
mative or informative density functions are given. Finally a.s an extension of Bayesian
statistics Bayes nets for reasoning under uncertainty are presented. The computation of
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the joint and the marginal density funetions and the propagation of probabilities in these
nets are outlined.
As examples for the application of Bayesian statistics two procedures of ~n automatie
interpretation of digital images are presented. Both methods introduce labels for the ob­
jeets to be identified. In the first procedure tbe labels are defined as randorn variables of
a Markov random field atid in the second one as random variables of the nodes of a Bayes
net. The labels are estimated by maximizing their density functions.

W.-D. Schuh:

Computational Geodesy as a Tool for Solving Problems within
Satellite Gravity Field Missions

In spite of new developments in computer design, the standard least squares procedure
for the estimation of spherical harmonie coefficients of the gravitational potential from
orbit and satellite gravity gradiometer data for high degree gravitational fields exeeeds
present capabilities. Therefore, special techniques have to be developed to accomplish
this task. With simulated satellite gravity gradiometry (SGG) and satellite-to-satellite
tracking (SST) data sets the numerical behaviour of the normal equiations Me analyzed.
A white noise stochastic model but also band-limited and coloured noise models are em­
ployed. With the help of orthogonality considerations and special numbering sehemes
tailored iterative procedures are developed. Special investigations allow to use parallel
resources and also robust statistical methods within these iterative procedures. Tailored
pre-conditioning strategies improve the convergence rate and decrease the number of it­
erations drastically.

w. Pachelski:

Barycentrie Coordinates: an Introduction to Geodetie Applications

Apart from global reference frarnes geodesy requires also local reference frarnes to locally
deseribe detailed structure of the Earth surface, monitor local geodynamic phenomena,
fulfill functions of a Land Information System, a.s weIl as to perforin corresponding geode­
tic operations. Presumably, such frarnes should be as much as possible autonomous, i.
e. onee they are properly defined they should refer as little as possible to any external
reference frame.
As a possible tool for such frarnes there are considered Moebiu8 barycentric coordinates,
which can be defined through any simplex in an n-dimensional space, e. g. by means of
triangular or tetrahedral bases in 2-D or 3-D, respeetively. Their theoretical background
is reviewed, as well a.s their relation to oblique coordinates and use in sorne geodetic
applications such a.s the Ansermet '8 resection problem, a photogrammetric positioning
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problem, and shape functions in the method of finite elements.
Main properties of barycentric coordinates consist in their invariance with respect to lin­
ear transformations, as weIl as in a seperation of nonmetric and metric relations between
geometrie constructs.

L. Meister:

Estimation of Rotating Body Attitude by Quaternion Filter

A problem of optimal estimation of a rotating body attitude with both differential equa­
tion of motion and observation of stars is considered. The problem is formulated as a
conditional extremum problem and using the language of quaternions an analytic solu­
tion to the problem is obtained. It is shown that the mutual position of the observed stars
influences on the number of possiblesolutions, and the optimal estimation ofthe attitude
has to be selected from the different classes of functions. The case of only one observed
star serves to illustrate the feasibility of the presented method.

U. C. Herzfeld:

Geostatistical Methods for Interpolation and Classification
of Remote-Sensing Data

Along three examples, geostatistical methods for interpolation and classification of remote­
sensing data are developed and demonstrated.
Tbe first method is kriging, a family of interpolation and extrapolation techniques math­
ematically related to least-squares prediction. Applieation of ordinary kriging to satellite
radar altimeter data from Lambert Glacier/ Amery Ice Shelf, Antarctiea, yields maps/grids
with a 3km resolution. Construetion of a time series of such grids from altimeter data
of SEASAT (1978), GEOSAT GM (1985-1986), GEOSAT ERM (1987-1989), and ERS-l

. (sinee 1992) facilitates analyses of changes in the Antarctic ice stream/ice shelf system,
such aB elevation changes and changes in the position of tbe grounding line.
While interpolation utilizes the primary information in the data, a newly developed geo­
statistical elassification method is geared at deriving secondary information from elevation
data or baekscatter data. Based on statistieal properties, elements of surface structures
are used for automated geologie/geomorphologie mapping. This is applied in a geologie
segmentation of the western Mid-Atlantic Ridge flank near 26 deg North.
A combination of high-resolution and low-resolution teehniques is attempted in a study
of the 1993-1995 surge of Bering Glacier, Chugaeh Mountains, Alaska. GPS-Iocated video
data eolleeted from small aireraft are used in combination with ERS-1 SAR images to (a)
help understand the relationships between iee velocity, surface stress patterns, crevassing
and iceberg ealving during the surge, and (b) provide a technique for surface classification
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based on SAR data in general.

L. Svensson:

Quality of Methods in Physical Geodesy

Different aspects of the problems of physical geodesyare obtained from the point of..
view of functional analysis and from the point of view of the corresponding discretized.
problems, i. e. regarding tbe problems of determining, e. g. by least squares methods, a
finite number of coefficients from a finite number of observations. Tbe first point of the
present talJe is that functional analysis results are the asymptotic versions of results for
corresponding discretized problems when the net of observations is successively refined ad
infinitum. .
The second point is that it is essential, in dealing with the discretized problems, to make
a proper discussion of the errors, seperating systematic errors, which also include the
approximation errors, from random errors and their propagation from observations to
results (gross errors being neglected here).
The third point is the derivation of asymptotic formulae for propagated errors in some
important cases, including problems of heterogeneous sets of data such as the altimetry­
gravimetry problem. Methods of integral formulae, collocation, least squares and Galerkin
type solutions are discussed. Explicit formulae are given in some idealized cases, still suf­
ficiently general to be useful a.s rules of thumb.

J.Otero:

The Simple Problem of Molodensky

The simple problem of Molodensky is the following: given a function 9 dejined in w,
find a function u such that. e

ßu = 0 in 0, < Vu, x > +2u = 9 on w, u(x) ~ 0 as x -+ 00 (1)

where w is a closed surface in JR3, and n is the domain exterior to w. This boundary
problem appears several times in Geodesy with u being the dirturbing potential, w being
a telluroid and 9 being related to observed quantities like the gravity. By inversion relative
to a sphere and Kelvin transform, this problem is equivalent to

~v = 0 in 0', <Vv,x>-v=g'onw'. (2)

Thls boundary problem (2) also arises in the gravity space approach to the vectorial Molo­
densky problem.
In the first part of this talk, we shall present some open problems about the uniqueness
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and existence of solutions of tbe general linear (vectorial and scalar) Molodensky prob­
lems. We shall also take advantage of this atmosphere to present a uniqueness theorem
for a Robin boundary value problem arising in the elassical gravimetrie determination of
tbe Geoid.
In the seeond part, we shall show how the solution of the linearized veetorial Molodensky
problem may be redueed to a sequenee of simple problems of Molodensky. At this point it
will be neeessary to give some uniqueness, existenee and regularity of solutions theorems
for the simple problem of Molodensky.
Summing up, we sbatl try to make elear the important role that boundary problems like
(1) and (2) play in Physieal Geodesy.

E. Groten:

Quasigeoid Heights and Defleetions of the Vertieal for Germany:
A New Solution at IPGD

Utilizing new gravity material for Europe and mainly for East part of Germany it was
possible to evaluate a new quasigeoid model for Germany, based on a remote zone model,
using Rapp's OSU 91A and IGM-3, and a superimposed terrestrial (point values) set of
6g whieh is extremely dense in Eastern Germany, enabling to model the geoid in steps of
3'. The terrestrial set is supplemented by a reasonable (5 by 5 km) terrain model in order
to get the various refining eorreetions to eonventional spherieal approximations. Belikov's
weH known "sealing" approach (non-harmonie supplement) gives way to a representation
whieh basieally eorresponds, in weIl surveyed areas such as East Germany, to a spheri­
eal harmonics expansion of truneation degree n = 3600. Even though a more detailed
terrain model of 20 by 20 meters will soon be available a substantial improvement for
geoid heights eannat be expeeted. The defteetion of the vertical given by us may take
more profit out of such more detailed terrain models but the use of preeise defleetions is
decreasing in modern geodesy so our approximation appear~ adequate. The aceuracy of
the geoid was found to be of the order of a few centimeter.

M. Belikov:

Loeal Geoid Determination with Very High Resolution

The loeal gravity field modelling is considered in the framework of Cauehy-Kowalevskaya
problem. The iterative regional harmonie analysis is applied in order to stabilize the so­
lution. The high resolution of tbe solution is provided by the implementation of pseudo­
harmonies associated with solid spherieal funetions and sealed harmonie analysis teeh­
nique. In the elaborated method the original data distribution is used without need to
transform data to a regular grid. This method has been applied for determination of
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gravimetrie geoid for Germany. The resolution of the regional geoid is shown to be 5km
with the aeeuraey of several em over some hundred km, in comparison with GPS and
levelling.

W. Light:

Variational Approaches to Approximation on Spheres

Radial Basis Functions on IRd can be viewed as coming from a variational theory. Ite
is now well-known that such a theory is possible on spheres 8d- 1 • Such a theory leads to
approximations of the form

m

v(x) =E Aä4J(XOä) +n(x)
i=l

where at, ... , am are fixed points in Sd-l, ..\i E fit. and n is a spherieal harmonie poly­
nomial (for practical purposes having low degree). Tbe aim is to solve the interpolation
problem v(ai) = ci, j = 1, ... ,m. Again, this theory (and its applications to geodesy) is
weIl understood. We will elaborate on the known results and in particular provide error
estimates.

R. Haagmans:

Accurate Radon Domain Based Interpolation for Satellite Tracks (ARTIST):
A Solution for interpolation of Traee and Missing Trace Data?

ARTIST has been developed for interpolation of densely measured data along more or
less parallel, but widely spaced traces. One can think of satellite altimeter data, ma-
rine gravity data, aero-magnetie or aero-gravity data, and seismie data. Now, if a small
scale lineament is supported by several neighbouring traces, most "standard" interpola-e
tion techniques used within geodesy fail to interpolate this structure. The Radon domain, e

being the mapping of the integral along a line onto one point, allows us to detect signifi­
cant line-like structures, and subsequently to interpolate one-dimensionally the structure
along the corresponding lines in space domain. These interpolated "control" points are
merged with the original set, and are finally two-dimensionally interpolated with min­
imum curvature splines. The procedure is applied to a synthetic gravity data set and
real-life a.ero-magnetic data. The interpolated results are superior to the "classical" re­
sults, sbowing a redueed bias and a 32% improvement in the rms of tbe differenee in
case of ~he synthetic set. Next, the procedure is applied to a synthetic seismie data set
for interpolation of missing traces. Also here a significant improvement over elassieal
procedures is obtained. The goal is to extend the procedure for more general data like
from satellite altimetry. Therefore, the detection procedure is to be improved by means
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of nonstationary filtering with wavelets, and an iterative search in the Radon domain.

J. D. Ward:

Nonstationary Wa.velets on thc m-Sphere, Localization and Uncertainty

We discuss classes of nonstationary wavelets generated by spherical basis functions, which
comprise a subclass of Schoenberg's positive definite functions on the rn-sphere. The
wavelets are intrinsically defined on the m-sphere, are independent of the choice of co­
ordinate system and may be easily orthogonalized. Decomposition, reconstruction and
localization for these wavelets will be discussed. In the special case of the 2-sphere, we
derive an uncertainty principle that expresses the trade-off between localization and tbe
presence of high harmonics - or high frequencies - in expansions in spherical harmonics.
We discuss the application of this prineiple to the wa.velets that we construct.

F. N. Narcovich;

Spherical Basis Functions, Hermite Interpolation, and Intrinsic Wavelets on thc Sphere

We discussed interpolating data generated via integrating a distribution against a Coo
function on a closed, compact Riemannian manifold IMlm via Coo strictly po~itive def­
inite kerneis on IMlm. We gave a number of examples of such kerneis for the rn-sphere
and the rn-torus. Spherical basis functions (n spherical splines) are special cases of such
kerneis on sm; they have the form

G(jj . q),

where Pt{m + 1; t) is the [th degree Legendre polynomial in m + 1 dimensions.
Define the convolution as "star" product via

00 W
m

__

G *H = La,b,d-P,(m + 1; P . q),
1=0 m.1

where G is as above, and H has a similar expansion with the coeflicients in tbe expansion
than being the b,'s. We construct sampling spaces of the form

V = span{G(p . ~),G(P . ~), ... ,G(p. ~;)},

and show that the inner product

< f, 9 >= I f(P)g(P) dw(P),1sm
where f == L fjG(p . ~),g =L9/cG(P . {;);has the form

< f, 9 >= g* A.[,
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T - -where L = (/1 /2 ... IN) and 9...T = (9192··· 9N); the matrix A. has entries G *G(~j . ~k).
This matrix is always strictly positive definite, and may be explicitly computed in many
cases. Similar results apply for the case of IMlm.

A. De Santis:

New Regional Models for Geodesy

In the last ten years, same new techniques have been introduced and developed for mod­
elling the magnetic field in restricted regions (the so-called regional magnetic fields). This
note will deseribe the basis of the spherieal eap models as: Spherieal Cap Harmonie Analy­
sis (SCHA), Translated Origin Spherical Cap Analysis (TOSCA), ~d Adjusted Spherical
Harmonie Analysis (ASHA).
Above methods are exact (except ASHA which is an approximation of SCHAl solutions
of Laplace's equation in a cap-like region.
After showing the main charaeteristies of the spherieal eap methods in the frame of geo­
magnetism, it is given also an example of applieation for Ioeal gravity field representation.
The expressions of: disturbing field potential, anomaly gravity, geoid undulations and de­
fleetion of the vertical are shown.

B. Heck:

Integral Equation Methods in Physieal Geodesy

Starting from one and the same geodetie boundary value problem several forms of integral
equations can be constructed, based on various representations of the potential function.
We applied single and double layer as weIl as Brovar's generalized single layer and volume
potentials to construct integral equations with strongly different types of singularities; as
an example the "simple" Molodensky problem is chosen. The properties of the bound­
ary integral operators can easily be studied in the case of the corresponding spherical
integral equations, which are expanded in series with respect to a shrinking parameter €.

Finally the numerical properties of the integrals related to Boundary Element Methods
are studied. It is shown that the strong singular integrals ean be transformed into weak
singular and regular ones; the numerical effort for evaluating these integrals is estimated.
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R. Klees:

A Wavelet Galerkin Approach to Gravity Field Determination

We treat equivalent integral equation formulations of Geodetic Boundary Value Prob­
lems which aim at recovering the Earth's gravitational field from functionals given on the
Earth 's surface. The corresponding integral operators are linear bounded operators from
Hr -+ Hr-T with integer orders T E {-1, 0, I}. Galerkin methods and finite elements on
the boundary lead to dense linear spectras of algebraic equations with ,..." 105 unknowns.
We show how compactly supported wavelets can be used to approximate the dense matrix
by a sparse one. We discuss how the compression rate depends on the order of the integral
operator and the number of vanishing moments of the wavelet basis functions. Finally we
point out some numerical problems which still have to be solved befote the method can
successfully applied to global gravity field determination.

P. Holota:

Coerciveness of the Linear Gravimetrie Boundary-Value Problem
and a Geometrical Interpretation

In this paper the linear gravimetrie boundary-value problem is discussed inthe sense of
the so--called weak solution. For this purpose a Sobolev-weight space was constructed for
an unbounded domain representing the exterior of the Earth and quantitative estimates
were deduced for the trace theorem and equivalent norms. In the generalized formulation
of the problem a special d~eomposition of the Laplace operator was used to express the
oblique derivative in the boundary condition which has to be met by the solution. The
relation to the classical formulation was also shown. The main result concerns the coer­
civeness (ellipticity) of a bÜinear form associated with the problem under consideration.
The Lax-Milgram theorem was used to decide about the existence, uniqueness and sta­
bility of the weak solution of the problem. Finally, a clear geometrical interpretation was
found for a constant in tbe coerciveness inequality and the convergence of approximation
solutions constructed by means of the Galerkin method was proved.

F. Saeerdote:

Stochastic BVP in Physical Geodesy

Many fundamental problems of physieal geodesy are form~lated as BVP's; the input data
however are measurements affected by observational noise. Therefore the problem arises
on how this noise propagates to the solutions; this calls first of all for an understanding of
wbat is a solution witb noise at the boundary, i. e. what is a solut~on of a stochastic BVP.
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In literature such problems have been studied by a number of mathematicians, among
which we mention Rozanov and its Russian school. Yet their theoretical results do not
cover the simplest but most important case; namely when the boundary noise is a white
noise. This case has been recently attached and some new significant results are obtained.

w. Keller:

Applications of Overdetermined Problems

The problem of overdetermined problems in function-spaces was considered. In order
to estimate a solution the weIl known BLUE-estimation principle was generalized.
The generalized BLUE principle was applied to satellite gradiometry leading to inversion­
free solution algorithms.

P. J. G. Teunissen:

Integer Least Squares Processing of GPS Phase Observations; Theory and Results

One of the major problems in processing GPS phase observations is estimating the double­
difference (DD) ambiguities as integers. Based on carrier phase data only, short observa­
tional time spans result in strongly correlated ambiguities and in veryelongated ambiguity
confidence ellipsoids. As a result the estimation of the integer least·squares ambiguities
becomes an extremely time consuming task, when traditional search-methods are applied.
In this contribution, it will be shown both analytically as weIl a.s numerically, that this can
be explained by the distinctive discontinuity that is present in the spectrum of conditional
variances of tbe DD-ambiguities. The least-squares Ambiguity Decorrelation Adjustment _
method allows an efficient estimation of the integer ambiguities over short observational ,.
time spans. This method removes the discontinuity from the spectrum, thereby returning
transformed ambiguities that are rouch less correlated and that show a dramatic improve-
ment in·precision. In this contribution the theory en performance of the method will be
discussed.

H. van Gysen:

Estimability Analysis of Satellite Altimetry

An estimability analysis is undertaken for the standard estimation problems of satel-
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,

b

lite altimetry, i. e. for the collinear, and local and global crossover adjustment problems.
For each problem we consider the estimability of mean sea surfa.ce heights, residual ra­
dial orbit error and residual tidal signals, and present explicit characterisations of the
nullspace of the estimation problem and develop a variety of partial minimum-norm scr

lutions. Analytical solutions are given (on the assumption that the data are in the form
exact repeats of the altimeter measurement cycle, with no missing data). We look also at
the mixed-mission crossover adjustment problem involving two (or more) altimeter satel­
lites, and at various augmentations of the basic estimation problem (e. g. , a.llowing for
the simultaneous evaluation of empirical sea state bias parameters). The analysis makes
use of generalised inverses of partitioned matrices, and of Kronecker matrix products.
Finally, we point to ways in which the analysis procedure we do here can be applied to
other geodetic estimation problems.

A. Dermanis:

The non-linear and space-time geodetic problem:

An attempt is made to generalize the geometrie theory of generalized inverses of linear
operators to the non-linear finite dimensional case by replacing quotient spaces gener­
ated by linear subspaces with fiberings. The geodetic datum problem arising from the
use of coordinates as unknowns while observations are invariant under rigid or similai"ity
transformations (injectivity defect) is investigated without resorting to linearization. The
non-linear Baarda transformation is derived which maps a given solution into the one of
the same solution subspace (fiber) closest to a fixed element. The differential geometry
of the solution fibers is investigated. <sr

The space-time geodetic datum problem, where continuous (adjusted) observations are
available for a time interval, is investigated by studying the geometry of the space-time
solution manifold. Several solutions (called motions) are presented in the form of a trans­
formation from a given reference motion into one with prescribed optimality or selection
criteria. In particular motions which are everywhere orthogonal to the local single epoch
fiber are introduced as generalizations of Meissl 's inner solution and the differential equa­
tions of inner constrains are derived. It is proved that in the case where the observations
are invariant under rigid transformations the orthogonal motions are geodesics and fur­
thermore the ones of shortest length among all those joining the two boundary fibers
corresponding to the initial and final observation epoches.

D. Lelgemann:

On the Generation of the Geodetic Datum of Terrestrial Land Surveying Systems

The concepts of geodetic analysis techniques are governed by the problem to investi-
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