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Complex Geometry: Topological and Transcendental Aspects
04.08. bis 10.08.96

Die Tagung fand unter der Leitung von A. Beauville (ENS), F. Catanese
(Pisa) and Ch. Okonek (Ziirich) statt. Die Vortrége bezogen sich auf

wichtige klassische komplex-geometrische Themen (Riemannsche Flachen,
Brill-Noether loci, Hilbert Schemata, Klassifikation von Flachen, Linearsys-
teme, Untermannigfaltigkeiten von Abelschen Mannigfaltigkeiten, Deforma-
tionstheorie, Modulraume von Vektorbiindeln, Shafarevich Vermutung, Fun-
damentalgruppen von Kahlerschen Mannigfaltigkeiten) oder auf die neuen
Theorien (Gromov-Witten Theorie, Donaldson und Seiberg-Witten Theo-
rie, Mirror-Symmetrie), die Probleme aus anderen Gebieten (Differential- &
.} Symplektische Geometrie, Topologie und Physik) mit komplex-geometrischen

: Methoden behandeln.
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L. EIN
Singularities of theta divisors and birational geometry of irregular
varieties

In joint work with Rob Lazarsfeld, we prove a conjecture of Kollar, which
says that if X is a subvariety of an abelian variety and X is of general type,
then x(wg) > 0, when X is a desingularization of X. As an application,
we show that if (A4,©) is a principally polarized abelian variety and © is
reducible, then © has at most rational singularities. Using the generic van-
ishing theorem of Green and Lazarsfeld, we give a new simple proof of the
fact that Albanese map of a variety of Kodaira dimension zero is always sur-
jective with connected fibers.

A. TELEMAN
The coupling principle and Seiberg-Witten theory

(joint work with Ch. Okonek) Many important problems (e.g. the com-
putation of Donaldson invariants of a projective surface, Verlinde formulas,
the computation of Gromov-Witten invariants of a projective manifold) re-
duce to the computation of ”correlation functions” on a GIT-quotient. Let
G — GL(A) be a a linear representation of a complex reductive group
in a finite dimensional vector space, and Q4 := P(A)**//G. Coupling to
a new GIT-problem G — GL(B) means to study the Master space Q :=.
P(A®B)*//G as a C*-space. The coupling principle asserts that (under suit-
able assumptions) the computation of the correlation functions on the initial
GIT-quotient @4 can be reduced to a computation on the new GIT-quotient
Qg and a computation on the space of reductions R := (Q \ (QaU@g))%".
We construct the Master space associated to the coupling of Gieseker stabil-
ity for torsion free sheaves to morphisms into a fixed reference sheaf (joint
result with Ch. Okonek and A. Schmitt). We indicate possible applica-
tions and gauge theoretical analoga (in the differentiable category, e.g. in .
Seiberg-Witten theory) of these constructions and ideas. As a consequence
of a differential geometric version of the coupling principle we show that the
computation of the Donaldson invariants reduces to a computation on the
Seiberg-Witten moduli spaces.
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R. HAIN
Locally symmetric families of Jacobians

Let Ay be the moduli space of principally polarized abelian varieties of
dimension g. The period map realizes the moduli space of smooth curves of
genus g, My, as a (not closed) subvariety of A;. Denote its Zariski closure
in Ay by M,. Motivated by a question by Franz Oort, which was in turn
motivated by by a conjecture of Robert Coleman, we consider the following
problem:

Problem: Are there locally symmetric (i.e. totally geodesic) subvarieties X
of A, that lie in M and which intersect M, non trivially ?

Oort believes that there are no Shimura varieties contained in M,(except
points, of course).

In this talk we presented the following results which bear on Oort’s ques-
tion:

Theorem 1: Let T'y be the mapping class group. IfT is a discrete group and
I' — Ty is a homomorphism such that H(T',V(A3)) = 0, where V(X3) is the

3 fundamental representation of Spy(R)), then the morphism H*(Spy(Z),R) —

HX(T',R) is trivial. Here V(X3) is regarded as a T-module via T — Ty —
Spy(Z).

Corollary Suppose that G is an almost simple Q-group such that ( 1)G C
Spe(Q) (2) tkoG > 2 (8) G(R)/K 1is Hermitian symmetric. IfT is an-arith-
metic subgroup of g and I' — I’y is a homomorphism, then the image of
I' — Spy(Z) is finte.

Theorem 2: If X = I\G(R)/K is a locally symmetric subvariety of A,,

XC M and X N M, # 0, then either XN{hyperelliptic curves} has.a-com-
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ponent of codzmenszon 1in X orrkeG < 2.

L. KATZARKOV
Non-abelian Hodge theory and the Shafarevich conjecture

We prove the following theorem:
Theorem: Let X be a smooth projective variety/C, Y C X a divisor in
X with many components Y = UY; and p a representation of m(X) in
GL(n,C). Then, if ply(v;) is finite, pla(y) s finite as well.

As a consequence we get that
Theorem: Let X be a smooth projective surface with m,(X) linear. Then X
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s holomorphically conver.
The above statement is a partial case of the well known Shafarevich con-
jecture.

L. Li
Algebraic and symplectic geometry of Gromov-Witten invariants

(joint work with G. Tian.) Let X be a smooth projective variety, a €
Hy(X,Z) and n, g integers. Let Mg 4, be the moduli space of stable mor- ‘
phisms F': D C C — X, where D C C denotes an n-marked genus g¢
curve. There is a tautological topological class h : H*(X)*™ x H*(M,,) —
H*(Magn). Let v :=vir.dim.Magn. In case v = dim Mg, the Gromov-
Witten invariant is the function ®o,gn : H*(X)**x H*(Mgn) — H*(Magy)
defined by ®q,4,1(E) = deg(h(Z)[Ma,g,n])o, where [M 4] is the fundamental
class of Mg gn. In case v # dim Mg g, we have found a purely dimensional
virtual cycle [Mo,gn]"" € Ay(Ma,gn) 50 that the Gromov-Witten invariants
are given by ®n0(X) = deg(h(X)[(Maggn]"")o. The construction of this
cycle cycle has the following important property: if My g, — Z is a mor-
phism and y C Z is a regular embedding, then there is a canonically defined
virtual cycle [Mq gn Xz Y]"" such that n'[Mgg.]"" = Mogn xz Y. An
application of this is a new proof of the associativity law of Gromov-Witten
invariants, which implies the existence of quantum cohomology of X.

There is an analytic way to define the virtual moduli cycle Magnltir. €
H,(Magn) as follows: Let Woyn be the space of all smooth maps f :
D c C — X, where d C C is as before. Let V be an infinite-rank
vector bundle whose fiber over f is T'(Q% (f*(TX))). There is an obvi-
ous section £ : Wagn — V that sends f to df. At each f € Wagn
the derivative dé(f) : TfWagn — V; is Fredholm, whose index is the
expected real dimension of Mg .. Using the Fredholm property one can
perturb £, obtaining say &, so that locally the perturbation is always along
finite direction, and £-!(0) is smooth of the expected dimension. Thus .
Magnliir. = [E71(0)] € H.(Wag.s). Once we have such perturbation, we
put C¥ = Jim tT'¢, which is a cone current in V|u,, .., and

Magnlhom = [E7(0)] = [E7'(Te)] = [EHCY)] € Ho(Wagn) -
The last expression is the image under "refined Gysin map” of [CY] € H.(V)
in H,(Wa,gn). This formula should lead to the proof of the
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Conjecture: The algebraic and symplectic definitions of the Gromov- Witten
invariants do coincide.

J. LE POTIER
Strange duality, on P?

Let K (P?) be the Grothendieck algebra of coherent sheaves on the pro-
' jective plane; this algebra is isomorphic to Z?; an isomorphism is given by

(r,¢1,x), the rank, the Chern class and the Euler-Poincaré characteristic.
We have a non-degenerate quadratic form on K (P?) given by ¢ — x(c?). Let
¢ € K(P?) be an element of rank r > 0, and M, the moduli space of semi-
stable sheaves of Grothendieck class ¢. By a result of Drezet, the canonical
morphism A : ¢t — Pic(M,) gwen by the determinant of the cohomiology
is surjective. The subgroup of ¢t of elements of rank 0 is a cyclic group; the
line bundle D = A\.(—u) associated to the generator u with fundamental class
[u] > 0 is called the Donaldson determinant line bundle. The problem is to
describe the SL(3)—representation H°(M,, D®¢).
Theorem: Let u € ¢t be a Grothendieck class of dzmenszon 1, and D
Ac(—u). For ¢ > 0 and deg[u] > —3r, we have HI(M,,D,) =
This implies that A%(M,, D®) is a polynomial, and in the case of 7T = 2 the
coefficient of the term of highest degree is related to the Donaldson numbers.

Let u € K(P?) be a Grothendieck class of dimension 1, and fondamental
class [u] > 0. Consider the moduli space M, of semi-stable sheaves of di-
mension 1, and Grothendieck class u. We have also a (surjective) morphism
Ac : ut — Pic(M,), and for ¢ € u' we can define the line bundle D, on M,
by D. = Au(—c).
Theorem: Suppose that the rank r of ¢ is > 0, and that the Chern class C2

" of c is big enough; then, for ¢ > 0 we have HY(M,,D.) =
Let ¢ and u as above and such that (¢, u) = 0. On M,x M, we have a canonical
section of D, x| D, and then a linear map D, : H%(M,,D.)* — H°(M,, D)
. Conjecture: Let d be the degree of [u]. If M, is not empty, the linear map

D, is an isomorphism for d < 2, and surjective for d > 3.

It is not difficult to verify the conjecture in the case where the rank r is 1,
i.e. for the sections of the powers of Donaldson determinant on the Hilbert
scheme Hilb™(P?). With G. Danila we have proved this conjecture for the sec-
tions of the Donaldson determinant on the moduli M,, of semi-stables sheaves
of rank 2 and Chern classes ¢; = 0, and ¢; = n, for n < 11; that gives a par-
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tial answer to a question of A. Beauville. In that case, M, is the projective
dual plane, and D,y is induced by the map v : M, — P(H%((P?)*, O(n)))
which associates to a semi-stable sheaf the curve of jumping lines; it is known
that v*(O(1)) = D.

For the sections D®9, the conjecture is also true for n < 3 and d < 3. For
n = 3, the result comes from the computation of Danila of the Poincaré serie

118
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H. KNORRER
Riemann surfaces of infinite genus

(joint work with J. Feldman, E. Trubowitz) Let I = (0, 27)Z & (w;,w?)Z
be a lattice in R? and let ¢ € L>(R?/T). The heat curve of g is defined as

Hy = {(&,&) € C* x C*| there exists a nontrivial sol. of
(2 - & +4(z,9)) Uz,y) =0 satisfying
U(z +wy,y+w) =6¥(z,y), ¥(z,y+27)=56Y9(z,y)}

For general g this is a Riemann surface of infinite genus embedded in
C* x C*. It has zero ideal boundary in the sense of Nevanlinna-Ahlfors.
Many results of the classical theory of compact Riemann surfaces can be
generalized to heat curves and Riemann surfaces "similar” to heat curves.
Among these results are:

. convergence of the theta functions on a suitable Banach space.
. Riemann’s Vanishing Theorem.
. Torelli’s Theorem.

Heat curves are spectral curves for the Kadomcev-Petriashvilii (KP) equa-
tion will spatially periodic initial data. The analysis of heat curves is used
to give a solution to the initial value problem of (KP) in terms of theta func-
tions and thus to prove that the solution is almost periodic in time.

R. MIRANDA
4 to 1 Covers in Algebraic Geometry

Given a variety Y, a d-to-1 cover of Y is a flat finite map 7 : X — Y of
degree d. How to systematically construct such covers is the topic at hand.
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Well-known is the case of double covers (d = 2), where 7 is detrmined by a
line bundle L on Y and a section of L®? (determining the branch locus). For
d = 3, it was worked out about ten years ago: = is given by a rank 2 sheaf
E on Y and a section of S®E* ® A2E. Following recent work of Casnati,
Ekedahl, and Hahn, I describe the situation for quadruple covers (d = 4).

E. LOOIJENGA
A Lie algebra attached to a projective variety

(report on a joint work with V. Lunts) One of the basic facts of Hodge
theory is one that the choice of a Kihler class x on a compact complex man-
ifold X gives its complex cohomology the structure of a s{(2) representation
with (g (1)) — €x, ((1) _01) — h, ((1) g) — f«, where e, is the cupping
with &, h is the multiplication by | — dime X in degree [ and fi is uniquely
determined by the condition that is of degree -2 and- [ex, f<] = h. This rep-
resentation leaves infinitesimally invariant the modified Poincaré pairing on
H*(X) defined by (a, 8) = (-D)I=*F [y a A B, a € H'(X,C). This form is
(~1)9™X_symmetric and nondegenerate.

Another choice of a Kéhler class «’ defines a different si(2)-module struc-
ture. We always have [e,, €] = 0, but in general [f,, fi] # 0. Ifa ¢ H*(X,C)
is a subspace containing a Kahler class, and e : a — gl(H'(X))2 is the ob-
vious map, then there is a rational map f : a— — gl(H .(X))-2 such that
[ex, fx] = R on the domain of f. Let g(K, X) C gl(H (X) denote the graded
Lie subalgebra generated by the images of e and f.

Proposition: If a ¢ H*(X,C) is a Hodge substructure, then g(a,X) is
semisimple.

Three cases of particular interest to which this proposition applies are
a= H*X,C), a= H"(X,C), a= NS(X)®C (assuming X projective). In
these cases we write gio{X), gx(X), gns(X) for g(a, X). These Lie algebras
can be hard to compute in practice. Here is a sample result:
Proposition:If X = G/B is the flag space of a simple complex algebraic
group, then gns(X) is mazimal, namely equal to the Lie algebra of infinites-
imal automorphisms of (H (X),{,))- '

Of special interest are the cases when the f.’s commute. Then it follows that
a(a, X) has just 3 graded pieces (in degrees -2,0,2) and we are then dealing
with the theory of Jordan algebras. In particular, such graded Lie alge-
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bras have been classified. The classical cases all appear (as gsot(X), gc(X),
ans(X) of a complex torus or a hyperkahler manifold). It is not known
whether the exceptional case (of type E7) occurs. To make the challenge
specific: Let X be a Kahler 3-fold and restrict to H®” only. Assume that
as%(X) is of simple Jordan type. Then either H*” is as an algebra isomor-
phic to H® of a torus or H® is an irreducible representation (of dimension
56) of g%, (X) with g% (X) is of type Ey. Question: Does this last case occur?
(It can be realized in the C*®-category.)

L. GOTTSCHE
Modular forms and the structure of Donaldson invariants for b, =1

(joint work with Don Zagier) The Donaldson invariants ‘I>;Y,;,g of a 4-
manifold with b, = 1 depend by definition on the choice of a Riemann
metric on X. It turns out (Kotschick-Morgan) that they depend only on
the chamber of the period point w(g) in the positive cone Hx := {H €
H?*(X,R)| H? > 0}/R*. We extend the definition of the invariants to the
"boundary” Sx = {F € H*(X,Q)} F? = 0}/Q". We show that for period
points F' on the boundary structure theorems similar to those of Kronheimer
and Mrowka in the by > 1 case hold.

Theorem:Let z € Ho(X,Z), p € Ho(X,Z) the class of a point and ¢ €
H%(X,Z). Let F,G € Sx and put m := max{W?\W € H*(X,Z) character-
istic, (W - F)(W - G) < 0}. Then .

(1) q)g(,F (ezz(p2 - 4)(m-a(z))/8) _ q)::‘(,G (ezz(pZ — 4)(m—a(z))/8) =0, i.e the
difference of the invariants are of higher order simpler type.

(2) There is a precise formula for ®X¥ — ®XC in terms of modular forms
depending on a set of "basic classes” which are related to Seiberg- Witten in-
variants.

(3) If X is a rational algebraic surface, then the results apply to <I>f‘F itself
instead of the difference.

In a previous paper of mine I determined a formula for the wall-crossing
of the Donaldson invariants in terms of modular forms. Using this we show
that ®XF — ®X.C can be described in terms of theta functions 85 for indef-
inite lattices which we define and study. Based on this we can express the
difference ®XF — ®XC in terms of the poles of certain modular forms for a
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group I', C SL,(Z) at the cusps of the corresponding modular curve H/T,.

C. VOISIN
Mirror symmetry conjecture for complete intersections (after Given-
tal) (C. Voisin)

In this talk, we describe the main ideas in the proof by Givental of the
mirror symmetry conjecture for Calabi-Yau complete intersections of dimen-
sion 3. This conjecture says that the ”quantum periods” of X, which are the
components of 1 € H%(X) in a V-flat basis of the trivial bundle with fibre
H*(X) on H2(X), are exactly the normalized periods of the mirror fam-
ily X; near A = co. Here V is the quantum connection constructed- using
the quantum product given by the cubic derivatives of the Gromov-Witten
potential.

The normalization of the periods means the existence of a canonical triv-
ialization of the bundle H*°, and of a canonical coordinate g centered at
infinity. In this statement, g is identified with e’, where ¢ is the coordinate
on H%(X) given by the generator P = c;(Ox(1)) of H*(X).

J. P. LI
Higher rank stable vector bundles over rational surfaces

Let X be I, or P?, and H an ample divisor on X. We are interested in
the birational geometry of My(r, ¢;, c2)-the moduli space of H-stable rank-r
vector bundles V with ¢;(V) = ¢; and (V) = c3. -

Let H = ao + bf, where o is a section of F, — P! with ¢ = —e and
f is a fiber of #. Then we can show that if b/a > 0, ¢, - f # 0 mod. T,
then the moduli space is empty; if b/a > 0, ¢, - f = 0 mod r, the moduli
space is not empty (c; > 7 + ¢ - f), is irreducible and unirational. Next
we consider variations of moduli spaces according to different ample divisors
H. For rank-3 case, we are able to show that that the moduli spaces are
birational if they are not empty.

Using the method of elementary transformations, we are able to show
that M(P?,3,1,c) is rational for ¢ > 2. Using the fact that a generic stable
bundle in M(F?,3,0,c) can be written as extension of a line bundle by a
rank-2 stable vector bundle, we can show that M(P?%,3,0,c¢) is rational for

9
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¢ = 1/2(3n% + 4n + 4), where n is an odd positive integer.

H. CLEMENS
Normal differential operators and deformation theory

Higher derivatives of normal functions and Abel-Jacobi mappings have
a potentially important role to play in many geometric problems related to
Hodge theory, such as the problem of rigidity of rational curves on Calabi-Yau
threefolds. .
With Paul Burchard we develop a sheaf D of "normal differential opera- .
tors” to a submanifold ¥, of Zj in a moving family of ambient manifolds Z,/,
1’ € a parameter space X’. D is supported on Y. The notion of an ”almost
multiplicative ” map ¢ : Dxo — Dy, y € Y, is defined. It is a map which
is an enveloping algebra module homomorphism with respect to some (non-
unique) 2Ay:-module structure on D,, where 2x- is the envelopping algebra
of vector fields on X'.
Theorem:2y:-module structures on D, are in one-to-one correspondence
with local foliations of Z = Upex: Zy transverse to Yy. Formal deformations
of Y parametrized by X' are in a natural one-to-one correspondence with
almost multiplicative maps

B 772 DX',O — HO(D) .

C. CILIBERTO
Linear systems of plane curves

(joint work in progress with R. Miranda) Let z,p,...,p, be general
points in the plane and let L(d, mg,m,, ..., m,) be the linear system of plane
curves of degree d having multiplicity mo at z and m; at p;, i = 1,...,n. In
this talk [ address the question of computing the dimension D(d, m,,...,m,) .
of the above linear system. For simplicity I will consider the case m; = ... =
my = m, writing L(d, mo,m,n) etc. instead of L(d, mg,my,...,m,). One
can consider the virtual dimension :
dd+3) (mo+1) _n(m-i-l)

N(d,mp,my,...,my) = 5 9 9

10
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of the system and the expected dimension
E(d, mo,my,...,my) :=max{—1,N(d, mo,m,...,my), } .

Of course D(d, mg,m,,...,mp) > E(d,mg,my,...,my,) and the system is

called regular if the equality holds. I will set up a recursion technique based

on a degeneration argument in order to prove regularity of the above linear
. systems, under certain numerical assumptions.

B. FANTECHI
Intrinsic normal cone and virtual fundamental classes

This is a report on a joint work with Kai Behrend.

Let X be a moduli space of expected dimension d. We want to cofistruct
a virtual fundamental class [X] € Ag(X) satisfying suitable assumptions; [X]
can then be used to define numerical invariants.

Let X be any Deligne Mumford (DM) stack of finite type over a field k.
If X — W is a closed embedding in a smooth DM stack, define the intrinsic
normal cone C'x to be the stack quotient of Cxyw by the natural action of
Tw|x; the intrinsic normal sheaf N y is the same with N x/w instead of Cxw .

We prove that Cx and Ny do not depend on the chosen embedding; in
fact, they can be defined even for a DM stack X which does not admit a
global embedding in a smooth stack. There is a natural map Cy — Ny
which is a closed embedding of Artin stacks; Cy has pure dimension zero.

Let E* be an object in D~(Ox); we will always assume that hi(E*) is
zero if 4 > 0 and coherent if i = 0, —1. Then locally 7>_; E* is isomorphic to
E~! — E° where E' is coherent and E° is locally free. We prove that we can
associate to E* an Artin stack £ over X, which locally is the stack quotient
of SpecSym E~! by the natural action of Spec Sym E°. This construction is
functorial, that is a morphism E* — F* in the derived category induces a
r . morphism F — E. In particular N is the stack associated to the cotangent

complex LY of X.

We define an obstruction theory for X to be a morphism E* — L% in
D~(Ox) such that the induced morphism Ny — E is a closed embedding.
This is equivalent to requiring that E* is “as good as” L} when studying
infinitesimal deformations of morphisms with X as a target. In particular
most moduli spaces carry a natural obstruction theory.
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We define the obstruction theory E* to be perfect if it is locally isomorphic
to a complex E~! — E° of locally free, coherent sheaves. If the isomorphism
is global we call it a global resolution.

If E* is a perfect obstruction theory admitting a global resolution, we
define the virtual fundamental class [X, E*] € Apxpo_rkg-1(X) to be 0'([C]),
where 0 : X — E; = SpecSymE~! is the zero section and C is the fibre
product Cx x g Ey. We prove that [X, E*] does not depend on the resolution
chosen. :

This construction can be repeated in a relative context, and it enjoys sev-
eral nice properties with respect to, e.g., products and base change. As an
application, Behrend has completed the program of Kontsevich, developed
by Kontsevich-Manin and Behrend—Manin, to construct Gromov Witten in-
variants for arbitrary smooth projective varieties over a field.

K. ZUO
Kodaira dimension of the Shafarevich maps

Let X be a smooth projective variety over C and let Sh: X — Sh(X)
be the Shafarevich map on X, which is a surjective morphism with con-
nected fibres and has the following property: if V C X is a subvariety, then
lim(m (V) — m(X))| < oo if and only if V is contained in some fibres
of Sh. Kollar conjectures that that if 7;(X) is large (i.e. Sh is birational)
then the Kodaira dimension of X is non negative. In this talk we prove the
following: .

Theorem:Let G C GL,(C) be an almost simple algebraic group. If p :
mi(X) — G s a Zariski dense, large representation, then X is of general
type.

Corollary:Suppose x(X) = 0. If p: m(X) — GL,(C) is reductive, then
p = @; I-dim. representation, after passing to a finite étale cover of X.

D. NAIE
Numerical Campedelli surfaces cannot have o3 as the algebraic fun-
damental group (work in progress)

Let X be a smooth, minimal, projective surface of general type with
K? = 2 and p, = 0 (called a numerical Campedelli surface). It is known
that its algebraic fundamental group is of order < 9. M. Reid has pointed
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out that the dihedral group of order 8 cannot occur, and constructed an ex-
ample for the quaternionic group. Therefore the result would show that the
quaternionic group is the only non-abelian algebraic fundamental group in
this range.
Idea of proof: to study the existence or the non-existence of a surface with
given invariants and finite algebraic fundamental group, one considers the Ga-
lois cover associated to the fundamental group and then studies the canonical
. image of this cover. In our case we notice that the image of the canonical
. map is a surface, that | Kx| has no base points and finally we eliminate, case
by case, all the possibilities for the degree of the canonical map.
Remark: I hven't eleiminated yet completely the case degyjx,| = 1.

I. BAUER
Irrational pencils on non-compact algebraic varieties

We consider the following situation: let X be a quasiprojective manifold
and let X be a smooth compactfication of X such that Y := X\ X is a
divisor with normal crossings.

We prove the following result:

Theorem: Every mazimal real isotropic subspace V. C H'(X,C) of dim. > 2
determines a logarithmic irrational pencil, i.e. a surjective holomorphic map
f: X — C with connected fibres from X to a quasiprojective smooth. curve
C with log. genus > 2. _

The genus g of a smooth compactification C of C equals to %(dimV n
HY(X,C)). C is complete iff V C H'(X,C); in this case dimV = g. If g is
non-complete, then V = f*HY(C,C), sodimV =g + g°.

In this way we have established (in the case where V ¢ HY(X,C)) a
1-1 correspondence between the set of maximal real isotropic subspaces of
HY(X,C) of dim. (3 and the set of log. irrational pencils with first Betti
number 8.

‘ Consequence:If X admits or not a fibration over a Riemann surface of log.
genus > 2 is a cohomological property.

Results in this direction were proved by Siu, beauville, Gromov, Catanese,
Green-Lazarsfeld.

From the above theorem we deduce:

Theorem: Assume that m (X ) admits a surjective homomorphism m(X) —
G := {(a,....an|R1,...,Rm), n —m > 3. Then there is an integer 8 >

13

DFG Deutsche
Forschungsgemeinschaft




UFG

Deutsche

(n—m), a smooth Rieman surface C with first Betti number 8 and a fibra-
tion f.: X — C.

F. CATANESE
An 8-dimensional family of 1-connected Godeaux surfaces (infor-
mal talk)

We describe the construction of a family of minimal surfaces S with
m(S)=0,p,=q=0,K2=1

This family has an 8-dimensional image in the moduli space, thus it has
the expected dimension and should be a component of the moduli space.

A 4-dimensional family had been constructed by R. Barlow in 1982-1983,
thus giving a counterexample to a question raised by Severi. These surfaces
are interesting yet for
A) Bloch’s conjecture: Ag(S) =Z if p, = 0.

B) The classification of C* (symplectic) 4-manifolds with 7w, = 0, b* = 1.
C) as a cornerstone of surface classification.

We also discussed an approach to show that, if |Kg| does not have a
double base point, there exists only our family.

Geometrically, S is the normalization of Y C P* x P! (under @3 x ¢y,
; being the i-th canonical map) which is a c.i. of type (2,1) (3,3) with 3
singular curves, for A € P, A =0, 1, oo, being 3 irreducible twisted cubics.
The above correspond to the 3 hyperelliptic curves in [2Kg].

We have shown that the case ”|2Kg| contains no hyperelliptic curve” is
impossible.

G. ELLINGSRUD
Action of Heisenberg algebras on the cohomology of the Hibert
scheme of surfaces

Let S be a smooth projective surface and let S denote the Hilbert
scheme parametrising finite subschemes of S of length n. Nakajama and Gro-
jnowski have defined an action of a certain Heisenberg algebra on @, H*(S™)
depending on the sequence of integers (c,) given by ¢, = lf l (M) - [Ma(p)],

S n|

where M, C S consists of the subschemes supported in one point, and
M(p) C S consists of those supported at the point p € S. We prove by
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induction that lf] [My] - [Ma(p)] = (—-1)""'n
sﬂ

C. FABER
Intersection theory on the moduli spaces of curves

Let M, be the moduli space of smooth curves of genus g > 2 and let
C, = My, be the universal curve, with natural morphism m : C; — M,.
Denote by K the first Chern class of the relative dualizing sheaf w,. Define
the tautological classes &; as m.(K*'); x; € CH'(M,), the codimension i
Chow group with Q-coefficients.
Theorem: x4_5 # 0 in CHI"2(M,). ,
Denote by E the Hodge bundle 7.(w,) of rank g on M, and let A; denote its
i-th Chern class. Mumford defined the Chow ring of M, and showed that
#; and \; can be defined naturally as classes-in this ring. The proof of the
theorem starts with the observation that Ag)A,_, vanishes on the boundary
M, \ M, of the Deligne-Mumford compactification. This follows easily from
cho(E) = 0, for all k£ > 1. These identities in turn were derived by Mumford
by applying G-R-R to 7 and w,. Also chyy_(E) is a non-zero multiple of
AgAg—1, and by applying Mumford’s result one obtains a formula for the
number K,_2AgA,-; in terms of intersection numbers of basic line bundles
on moduli spaces My . All such numbers can be computed recursively
from the so-called Witten conjecture, which was proven by Kontsevich. In
this way 1 was able to conclude the proof of the theorem. Together with
Looijenga’s recent result, this says that the tautological ring (the subring
generated by the &;) of M, is one-dimensional in degree g — 2 and vanishes
in higher degrees. This provides considerable evidence towards the author’s
conjecture giving a very precise description of the tautological ring, saying
among other things that it should be Gorenstein with socle in degree g — 2.
This conjecture is now established for all g < 15.

G. DASKALOPQULOS
On the Brill-Noether problem for vector bundles

On an arbitrary compact Riemann surface, necessary and sufficient con-
ditions are found for the existence of semistable (stable) vector bundles with
slope between 0 and 1 and a prescribed number of linearly independent holo-
morphic sections. Existence is achieved by minimizing the Yang-Mills-Higgs
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B. SIEBERT
Gromov-Witten invariants for general symplectic manifolds

We present a new approach to GW-invariants which takes singular do-
mains into account from the very formulation. This removes the positivity
condition that so far had to be imposed on the symplectic manifolds studied.
The method describes the relevant moduli spaces of J-pseudo holomorphic
curves as zero sets of a Fredholm section of a Banach bundle over a Banach
orbifold and uses a theory of localized Euler classes for these. Similar results
have been obtained independently by K. Fukaya/ K. Ono, J. Li/ G. Tian
and H. Hofer/D. Salamon with different methods.

0. KUCHLE
Bounds for Seshadri-constants

(joint work with A. Steffens) We present a new approach to the bound-
edness of Seshadri constants of ample line bundles at very general points of
an arbitrary projective variety X over C. The Seshadri constant of the line

| bundle L at z € X is a measure for the local positivity of L at z and can be
‘ defined by
e(L,z) = g;tx{L - C/mult,C}

where the infinimum is taken over all integral curves C containing z. Our
approach is based on the study of deformations of linear systems whose mem-
bers are highly singular; the method of differentiation in parameter direction
is used. The main result of this technique is the following

Theorem:Let X be a smooth projective variety over C of dimension n, L an
ample line bundle on X with L > a" >0, and0=b < by < ... < b, < @
rational numbers. Let z € X be a very general point and suppose that for
all k > 0 there is no divisor D € |kL| with an isolated singularity at z of
order > k(o — b,). Then there is a subvariety V C X of codimension c # n

containing T with deg,V = L"°-V < =20,

Berichterstatter: A. Teleman
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