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Positivity in Lie Theory

08.12 - 14.12. 1996

The meeting has been organized by Joachim Hilgert (Clausthai), Jim
mie D. Lawson (Baton Rouge) and Ernest B. Vinberg (Moscow). The
topics treated can be collected into the following groups:

- Harmonic Analysis
- Repr~sentation Theory
- Structure Theory of Lie Semigroups
- Geometrie Control Theory

Structure Theory of Reductive Algebraic Groups
- Invariant Complex Analysis .
- ProbabilIty Theory

The common feature in the various contributions was the use of SOIne

concept of positivity. This could be for instance

- subsemigroups of Lie groups
- semigroups occurring as closures of Lie groups
- partial orders on (homogeneous) manifolds
- (homoge.ne9Y.s) convex cones

A particuiarly active field of research in recent years have been the
applications of positivity concepts in the geometrie eonstruction of Hilbert
spaces of holomorphic functions on which one obtains natural unitary
representations. Other remarkable results deal with invariant domains
of holomorphy in non-compact complex manifolds, the description of the
control set structure of certain model systems on Hag manifolds, or a
generalization of total positivity to general real reduetive groups.

The meeting eonsisted of 14 morning lectures and several infornlal
topical afternoon sessions with' short presentations designed to start up
discussions.
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VORTRAGSAUSZÜGE (in chronologischer Ordnung)

Monday, Dec. 9:

W. BERTRAM: Jordan Algebras - an Introduetion

M. Koeeher and E.B. Vinberg have established a bijective eorrespon
denee between Euelidean Jordan algebras and a class of geometrie objeets
called symmetrie cones. We raise the question wether there is a eorrespon
denee between all Jordan algebras and some bigger class of geometrie ob
jects - similar to the eorrespondence of Lie algebras and with Lie groups.
The main topic of the lecture is to deseribe this elass of geometrie ob
jects: they are prehomogeneous symmetrie spaees having some additional
property (cf. artiele "Jordan algebras and Conformal geometry" in th~
problem-eollection to this conference). This set-up is very convenient t~
describe some features of basic structure theory of Jordan algebras such
as quadratic representation, Jordan inverse, strueture group, eonformal ~

group, Cartan-subspaces and Jordan determinant.

J. FARAUT: Riesz Integrals on Ordered Symmetrie Spaees

We construct a causa! elementary solution of an hyperbolie invariant
differential operator on an ordered symmetrie spaee by using Riesz in
tegrals. An ordered symmetrie spaee is a semi-simple symmetrie space
M = G/ H equipped with an invariant global causal struetre. Let n be a
symmetrie eone in a Euelidean Jordan algebra V, H = G(n) the group
of linear automorphisms of n, G = Aut(To) the group of holomorphie
automorphisms of the tube To = V + in. Then M = GI H is an ordered
symmetrie space 01 Cayley type. Let ~ be the Jordan determinant of V.
The set {(x, y) E V x VI ~(x - y) i= O} ean be seen as a dense open set in
M. The operator

1+ n 8 8 1 nD=6(x-y) -;~(-)6(-)ß(x-y)--;
8x 8y

(n = dirn V, r = rankV) is invariant and hyperbolie. Following Riesz'
method one defines the Riesz integral [0 f of a funetion f. It eonverges for
Re er large enough and has an analytie continuation as an entire function
of er. For a = 1, [0 is a causal elementary solution of the hyperbolic
invariant differential operator D.
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J.-L. CLERC: Unitary Highest Weight Modules

For G/ K a Hermitian symmetrie spaee, Harish Chandra introdueed a
family of holomorphic representations defined on holomorphic seetions of
bundles of G/K. Using the invariant measure on G/K, it is possible to
define a unitary structure, and the action of G is unitary and irreducible
on the L 2 -sections. One obtains the holomorphic discrete series. Ho\v
ever, there might be no L2-holomorphie seetionsj then one looks for other
Hilbert space struetures invariant under the G-action. These representa
tions (=unitary highest weight modules) were classified (by Jakobsen /
Enright-Howe-Wallach '83), mostly using algebraic arguments.

For tube type domains, we present a different approach to this problem.
Because the Hilbert spaces eonsist of holomorphic funetions, they adnüt
reproducing kerneis, and these kerneIs are apriori determined by their in
variance properties w.r.t. G. One has to check their positive-definiteness.

Using extension of a unitary highest weight representation to holomor
phic semigroups (a result due to G. Olshanski), we are able to show that
the unitarity is equivalent to the existence of an (operator valued) measure
in the closure of the cone f!, satisfying certain invariance conditions to

gether with a Laplaee transform type condition. This leads to a realization
of the corresponding Hilbert space.

It is also possible, at least in some 'cases, to answer the existence
question of such a measure (further results have been obtained by J.Hilgert
and K.H. Neeb).

Topical Session HARMONIe ANALYSIS AND JORDAN ALGEBRAS
with contributions by P. GRACZYK, M. CHADLI, F. BETTE~ anti 11.
PEVSNER --

Tuesday, Dec. 10:

B. 0RSTED: Unitary Highest Weight Representations

In this lecture we gave in detail some of the background for the
formulation of the problem of finding the unitary highest weight modules
for a real simple Lie algebra. In particular we discussed the approach by
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Harish-Chandra (1955) who first constructed global representations in this
class, namely the holomorphic discrete series over a Hermitian symmetrie
space. We also gave the dual infinitesimal analogue as simple quotients
in Verma modules and formulated the problem as that of positivity of the
eanonical Hermitian form here. We indieated the qualitative aspects of
the answer (as also reported on in the lecture by J .L. eIere) and finished
by the recent results of J. Hilgert and K.H. Neeb, who have given an
analytical reformulation of the problem in terms of an operator-valued
gamma function, and have solved this problem for a certain class of lowest
K-types.

J. HILGERT: Compression Semigroups

Let G be a group and M a set on whieh G aets. To any set n c M
one assoeiates a group G(n) = {g E ct 9 . n = n} and a semigroup
S (n) = {g E GI 9 . n c n}. This semigroup is ealled the compression
semigroup 0/ n. Such semigroups show up in the study of holomorphie
extensions of unitary highest weight representations, harmonie analysis
on eausal symmetrie spaces, and in control theory. Combining methods
from representation theory (projeetive embeddings) and control theory
(invariant control sets) one ean show that for causal symmetrie spaces
G / Hand open H -orbits in a naturally assoeiated maximäl parabolic
subgroup üf G the corresponding compression semigroup is a maximal
semigroup.

Z.J. JUREK: Semigroup Methods in ProbabiIity

For a Banach space E let P(E) denote the space ofprobability measures
on E. Für ft E P(E) we define its decomposability semigroup lI)(ft) :a
{A E End(E) : 3VA E P(E) : p. = Aj..t * VA}. (Here: * = convolution •
measures, Ap. = p.A-1 = image of measure J.l under mapping operator A.)
The semigroup JI))(J.L) contains the group of units whieh is exactly equal to
A(J.L) = {A E lO(J.L) : 3a E E : J.l = AJ.L * aal where aa is the point-mass
measure at point a. For J-L on lR d such that supp,u ~ (d - 1)-hyperplane,
A(p) is a compaet subgroup of Aut(lRd). We show that each compact
subgroup of GI(R, d) is isomorphie to A(J.L) for a fuH measure J.l on IR d2

.

4

                                   
                                                                                                       ©



(M. Meersehaert and J.A. Veeh after E. Bedford and J. Dadok).
Introdueing in S := P(E) x End(E) an operation "0" by the formula

(Jl, A)o (v, B) := (Jl * Av, AB) and taking weak topology on P(E) anti
operator norm topology on End(E), we get a topological semigroup \vith
a unit (&0, I). Each one-parameter semigroup T(t) in S is of the form

(1) T(t) =.c( ( esQdY(s,w),etQ ), t ~ 0,
1(01'I t]

where .c(.) denotes the probability distributions of random integral with
respeet to Levy proeess Y.

As open problems we state the following:
(a) Is any eompact subsemigroup in End(IR d ) isomorphie to the deeom

posability semigroup JIlI(J.L), for some probability measure Jl?
(h) Characterize all pairs of measures PI and P2 (for instance on the

real line) such that

(2)

Topical Session LIE SEMIGROUPS AND PROBABILITY with eon
tributions by W. RUPPERT, E.B. VINBERG, V. GICHEV and W. JA
WORSKI,

Wednesday, Dec. 11:

K.H. HOFMANN: A Survey on the Structure of the Exponential
Function

For" areal Liegroup G, the exponential function exp : g -+ G fails in
general to be surjective. It is perhaps surprising that after more than 100
years of research on Lie groups, general necessary and sufficient conditions
for the surjectivity of the exponential function appear to be lacking. The
status of the problem is surveyed. Same statements in the literature
require reconsideration, the early history of the structure of exp is the
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first part of the survey. The second concerns a description of Lie groups
G for which exp g == G. This situation is quite weIl understood. The
discussion here requires a refocusing on Cartan subgroups of G (of course
in the absence of semisimplicity, at the level of generality we require).
We call those groups which satisfy exp g = G exponential and collect
those pieces of information available on them today. A section on the
complete characterization of (reduced) subsemigroups 5 c G satisfying
exp(!(S)} == S concludes the survey.

v. JURDJEVIC: Kovalevska Integral on Lie Groups

There is a elose connection between the study of Euler in 1765 con
cerning the solutions of ~ ± ~ = 0, where P is a general fourth

yP(x) yP(y)

degree polynomial, and the integration technique used by Kowalevska in
1889 in the resolution of Hamiltonian equations concerning the motions of
the heavy top. A proper interpretation of a Theorem of Kirchhof! of 1885
concerning the equilibria configurations of an elastic rod leads to a class of
variational problems on the group of motions of]R3 and its non-Euclidean
neighbors S04(lR) and 50(3,1) resulting in the Hamiltonian function H
resembling the Hamiltonian of the heavy top, i.e.

For each of these groups, the remarkable relation Cl

Kowalewska leads to an extra integral of motion

e'

where k = 0,1, -1 corresponds to the curvature of the underlying sym
metrie space lR3 , 53 and H 3 (Minkowski hyperboloid).

The integration procedure leads to Kowalevska relations e
R2(x,y) + (x - y)2 RI = P(x}P(y)

for two forms Rand R I of degree four, P a fourth degree p·olynomial
such that R(x, x) == P(x). Apart from the resolution of the Hamiltonian
equations on Abelian varieties, the above formula mayaiso be used to
recover Euler's results of 1765 mentioned earlier, and by extension also
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provide proofs for A. Weil's addition formulas (1954) for the groups Cu r
with C = {(x, u) : u2 = P(x)} and r == {(~, 1]) : 77 2 == 4~3 - g2~ - 93} \vith
92 and 93 the invariants of C, i.e. 92 == AE - BD + 3C2

, 93 == ACE +
2BCD-AD2 -B2E-C3 whenever P == 44+4Bx+6Cx2 +4Dx3 +Ex4

.

K.-H. NEEB: Domains oE Holomorphy via Representation Theory

Given a group G acting by holomorphic maps on aStein manifold,
the fundamental questions in complex analysis are to characterize G
invariant domains of holomorphy (Stein subdomains) and the G-invariant
plurisubharmonic functions .. In this lecture we explain how these problems
can be approached via representation theoretic methods. The manifolds
we consider are of the type G· exp(iW) C Ge, where G is areal Lie group,
Ge its complexification, and W C Lie(G) an open invariant cone'-consisting
of elliptic elements. For a domain D == G . exp( iDh) in such a -~'~migroup,

which is G-biinvariant, i.e. invariant under left and right multiplication,
one can show that D is Stein iff D h is convex, and that biinvariant
plurisubharmonic functions on D correspond to invariant convex functions
on Dh. Even though the proof of these results draws heavily from
representation theory, these results can be used to get a complete abstract
description of all biinvariant Hilbert subspaces of O(D) on which G x G
acts unitarily as direct integrals of highest weight representations.

Thursday, Dec. 12:

W. KLIEMANN: On the Spectrum of Contral Systems

The Lyapunov spectrum of a control system plays a major rale in the
robust design of systems, in the construction of stabilizing feedbacks, in the
persistence analysis of dynamical systems, etc. The main message of this
presentation is that the complex Lyaponov spectrum of bilinear systems
on vector bundles can be expressed (almost always!) via the Floquet
spectrum of the associated semigroup. Let x = Xo(x) +E~l Ui(t)Xi(x)
be a smooth bilinear control system on a vector bundle 1r : F -t M,
where M is (compact), Coo, Riemannian. Over each main control set
DeM of the base flow, let IFDi be the main contral sets in the projective

7

                                   
                                                                                                       ©



bundle Irrr : IrF -+ M. Define EF1(IrDi) as the Floquet spectruIU of
the inner pairs in the lift IPVi C U x IrF, where U is the set of control
functions with values in the compact, convex control range U C IRm with
oE intU. The inner pair condition is the proper nonlinear generalization
of the requirement that the associated semigroup have nonvoid interior
in the systems group. Then EF1(X, U) = UDismcsin M UPD. ClFF EF1(IP Di)
consists of bounded intervals and agrees with the Floquet spectrum of
the system semigroups (its inner elements). Obviously, EF1(X, U) is
an inner approximation of the Lyaponov spectrum ELy(X, U). Next we
contruct an outer approximation via the chain recurrent components of
the contral flow and th~ projective flow (i.e. on the chain control sets
in M and and lFF). This leads to the Morse spectrum via limits of
finite time controlled chains and their chain exponents. One obtains
that EMo(X,U) = UEisccsinM UIPE;CIPF EMo(lP'E;) consists of bounded e
intervals and contains the Lyapunov spectrum. Now embed the control
system inta a family by considering varying control ranges U P = P 0 U,
p 2:: O. Under a slightly stronger inner pair condition on the chain recurrent
components on U x lPF one obtains that cIEFI(lPDf) = EMo(cllPDf)
for all p except for at most countably many exceptional points. Hence
cIEF1(X, UP) = ELy(X, UP) = EMo(X, UP) at the p-continuity points,
and cIEF/(X, UP) is determined by the systems semigroup.

L.A.B. SAN MARTIN: Homogeneous Spaces Admitting Transitive
Semigroups

Let G be a semi-simple Lie group with finite center, LeG a
subsemigroup with intS i= 0. The problem is to decide whether S is
transitive on GIL, that is, whether

Sx:={gx: gES}=G/L

for all x E G/ L. This problem is approached through the action of S
on the Hag manifolds of G, which are homogeneous spaces G/P with p_
a parabolic subgroup. Associated with S there is a special Hag manifold.
denoted B(S). In the Hag there is a subset C c B(S) which is S-invariant
(invariant control set), and such that h"(C) converges to a point as k ~ 00.

Here h E int(S) is a regular real element. It is proved that the following
conditions are necessary in order that S is transitive on GIL:

a) The action of I on B(S) is minimal.
b) L admits a contractive sequence with respect to B(S).
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These conditions are also sufficient in case S is assumed to be the

compression semigroup of C (i.e., S = {g E G : gC c C}). A connected

subgroup L satisfies these conditions ooly if it is reductive and (exactly)

transitive on B(5). Moreover its semi-simple component, say E, is also

transitive on B(S), which turns out to be a flag manifold of E. Also,

it is shown that L is discrete if GIL is compact and admits a transit,ive

semigroup.

M. PUTCHA: Reductive Monoids

A reductive monoid M is an irreducible affine variety with a polynomi

ally defined associative multiplication and a reductive unit group G. Such

monoids are obtained as Zariski closures of reductive groups. W~ will dis

cuss various decompositions of a reductive monoid. We begin by~4iscussing

the G x G-orbits (J-classes), leading to the concept of a cross-;e'ction lat

tice. Next we consider the B x B-orbits, Renner monoid and th~ analogue

of the ~ruhat-Cheval1eyorder. Finally we will consider a decomposition

of M related to the conjugacy classes of M. This leads to a decomposition

of the nilpotent variety of M into its irreducible components.

Topical Session REPRESENTATION THEORY with contributions by

B. KRÖTZ, M. NAZAROV, V. MOLCHANOV and W. LISIECKI

Topical Session CONTROL THEORY I with contributions by F.

COLONIUS, D. MITTENHUBER, M. ZELlKIN and V. GICHEV

Friday, Dec. 13:

G. LUSZTIG: Total Positivity in Lie Groups

Let G be the group of real points of a semisimple, simply connected

algebraic group over <C with a fixed real split structure. We fix Chevalley

generators ei, fi, hi (i E I) for the Lie algebra of G. We define G?o

9
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I

L

to be the submonoid of G generated by exp(aed, exp(afd (a E R>o,
i E I) and by the identity component of the real torus T corresponding-to
L:i IRh i . Then G~o is a closed subset of Gwhich equals the closure of its
interior G>o (which is again a semigroup). For Sln, these semigroups are
classically known as "totally positive matrices". The open semigroup G>o
is a connected component of the intersection of two big double cosets with
respect to to opposed Borel subgroups. If 8 is the real flag manifold of G,
one can define a closed subset 8>0 as follows. We choose a Borel subgroup
B containing T and define 8>0 a~ the closure of {gBg-II 9 E G>o}; this set
is independent of the choice-of B. It is equal to the closure orits interior
B>o. For any 9 E G, the set {B E B>ol 9 E B} is non-empty (and probably
contractible). The proofs of these r;sults rely on the positivity properties
of canonical hases in envoloping algebras, hence are non-elementary since .
they involve the decomposition theorem for perverse sheaves. ..

Topical Session ALGEBRAIC GROUPS with contributions by K.
RIETSCH, M. NAZAROV, L. RENNER and D. HURDE

Topical Session CONTROL THEORY II with contributions by O. DO
ROCIO and A. GUTS

Y. NERETIN: Compression oE Angles in Symmetrie Spaces

Consider the space Ip,q = U(p, q)/(U(p) x U(q)), i.e. the space of p x q

matrices Z such that IIZII < 1. Let Z, U E Ip1q ' Then the complex distance
..\1 2: ..\2 2: ..\3 2: ... is the set of singular values of the matrix

(1 - Z· Z)-1/2(1 - Z·U)(1 - U·U)-1/2.

Krein-Schmullian's genemlized Jmctional linear map is a map having thee
form

T: Z ~ K +LZ(1 - NZ)-I M,

where S = (~ ~) is a (p + s) x (q + r)-matrix such that

IISII s 1, IIKII < 1, IINII < 1.
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The formula (*) defines the map Ir,s ~ I p1q '

Theorem. Let r be a generalized fractional-linear map. Let Al ~

A2 ~ A3 ~ ... be the complex distance between Zl and Z2, and let
J1.1 ~ J1.2 ~ J1.3 ~ •.• be the complex distance between r(Zl) and r(Z2)'
Then

Topical Session COMPLEX ANALYSIS with contributions by G. FELS
and R. BREMIGAN

Berichterstatter: W. Bertram und J. Hilgert
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Aehab; D.
Berg; Ch.,
Bertram; W.
Betten; F.
Bremigan; R.
Burde; D.
Chadli; M.
Clere; J.L.
Colonius; F.
DoRoeio; O.
Faraut; J.
Fels; G.
Giehev; V.M.
Gloeekner; H.
Graezyk; P.
Graeff; R.
Guts; A.
Heyer; H.
Hilgert; J.
Hofmann; K.R.
Jaworski; W.
J urdjevie; V.
Jurek; Z.
Kelly-Lyth; D.
Kliemann; W.
Kroetz; B.
Lawson; J.D.
Lisiecki; W.
Lusztig; G.
MeCrudden; M.
Mittenhuher; D.
Molchanov; V.F.
Neeb; K.-H.
Neretin; Yuri
0rstecl; B.
Pevsner; M.
Poguntke; D.
Puteha; M.
Renner; L.
Rietseh; K.
Ruppert; W.A.F.
San Martin; L.

achab@math.jussieu.fr
berg@math.ku.dk

mawh@math.tu-clauflthal.de
betten@cfgauss.uni-math.gwdg.de

bremigan@math.bsu.edu
dietrich@math.uni-duesseldorf.de

chadli@mathp6.jussieu.fr
J ean-Louis. Clerc@iecn.u-naney.fr

Fritz.Colonius@Math.uni-augsburg.de
rocio@gauss.clma.uem.br
faraut@mathp6.jussieu.fr

gfels@cplx.ruhr-uni-bochum.de
gichev@univer.omsk.su

gloeckne@mi.uni-erlangen.de
graczyk@univ-angers.fr

graeff@mathematik.th-darmstadt.de
guts@univer.omsk.su

herbert.heyer@uni-tuebingen.de
hilgert@math.tu-clausthal.de

hofmann@mathematik. th-darmstadt. de
jaworski@cs.dal.ca

jurdj@math.toronto.edu
zjjurek@math.uni.wroe.pI

D.Kelly-Lyth@kcl.ac.uk
kliemann@iastate.edu

kroetz@mi. uni-erlangen. de
lawson@marais.math.lsu.edu

lisiecki@fuw.edu. pI
gyuri@math.mit.edu
mick@ma.man.ae.uk

mittenhuber@mathematik. th-darmstadt. de
molchanov@math-univ.tambov.su

neeb@mi. uni-erlangen. de
baksan@adoni.s.iasnet.ru

orsted@imada.ou.dk
pevsner@math.jussieu.fr

poguntke@Mathematik.Uni-Bielefeld.de
put cha@math.ncsu.edu

lex@uwovax.uwo.ca
rietsch@math.mit.edu

ruppert@edv1.boku.ac.at
smartin@ime.unicamp.br
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Stanton; R.
Unterberger; J.
Vinberg; E.B.
Zelikin; M.
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stanton@lnath.ohio-state.edu
unterber@clipper.ens.fr

vinberg@ebv.pvt.msu.su
zelikin@nw.math.msu.su
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