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Numerische Methoden

der Approximationstheorie.

11. - 17. 5. 1997

The conference was organized and directed by Prof. Dr. Dietrich Braess,
Ruhr-Universität Bochum, Germany and Prof. Dr. Larry L. Schumaker, .
Vanderbilt University, Nashville, Tennessee. Many of the talks and discus
sions during this week focused on topics in the area of numerical solutions
of differential equations by refinable functions, wavelets,; and radial basis
functions, where a special field of interest were precondiÜoning techniques.
Another strong area of interest was in computer aided deJign and engineering
methods.

Despite a larger number of volunteers, only a moderate number- of talks
had been scheduled, in accordance with the management of the institute.
This was in order to leave suflicient time for discussions and joint work during
the meeting. The participants acknowlegded this opportunity and made
extensive use of it.

48 mathematicians from 9 countries attended the meeting and were gen
erously accommodated by the mathematical institute. On behalf of the par
ticipants we would like to thank the director Pro(. Dr. M. Kreck and his staff
for their friendly hospitality and help which made this conference a success.

Abstracts of Presented Talks

(In the case of multiple authors, speakers are marked with an asterisk)

Minimal Norm Extensions in Loo/ Hoo
,;"

Laurent Baratchart·, Juliette Leblond, Jonathan R. Partington

Given a proper subset K of the unit circle T and f E Lex>(K) we seek an
extension 'f/J E LOO(T - K) such that the concatenated function fv'l/; is as
close as can be to the Hardy class Hex> or to the meromorphic class Hex> +'RN,
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where 'RN is the set of rational functions with at most N poles in the disko
This problem ia in fact ill-posed in general (we discuss when) and for that
reason we further constrain 1/J to He in some ball of LOO(T - K).

Such questions arise naturally frorn certain inverse problems, like decon
volution or Dirichlet-Neumann singuIarity detection, where partial values of
a meromorphic function can be gathered on the boundary of the damain on
analyticity with some measurement errar. We then explain how the problem
can be implicitly reduced to AAK meromorphic approximation, and we shall
derive a constructive solution when the data have bounded derivative and K
consists of finitely many arcs. This will entail discussing the generic charac
ter of multiplicity 1 for Hankel singular values so as to ensure the continuity
of the implicit AAK approximation just mentioned, as weIl as estimating
the modulus of continuity of certain outer fa.ctors near their singularity. We
shall mention some open extension problems of this kind, and we shall finally
present numerical experiments.

Large Scale Computations
with Radial Basis Functions

Rick Beatson

Radial basis functions such as the thin-plate spline, the multiquadric and
the sine are popular for diverse applieations such as titanium eranioplasty,
modelling the earths magnetic field, and modelling rainfall distributions via
GCV. There used to be numerical conditioning and computer resouree dif
ficulties in using globally supported rbfs for large problems. I will present
experimental evidence that these problems are now essentially overcome. We
may not yet know the "l?est" way to compute with rbf's but "good" methods
are kno~. Namely, the combination of a good choice of basis, a fast matrix _
multiply, and a suitable iterative method enables fast stable computations of •
rbf's with many thousands of centers on modest workstations.

Large Besov Regularity for
Elliptic Boundary Value Problems

Stephan Dahlke

We shall be concerned with the regularity of solutions to boundary value
problems on Lipsehitz domains n in lRd and its relationship with adaptive and
other nonlinear methods for approximating these solutions. The smoothness
spaces which determine the efficieney of such nonlinear approximation in
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Lp(n) are the Besov spa.ces B~(LT(n)), r := (o./d + l/p)-l. Thus, the
regularity of the solution in this scale of Besov spaces is investigated with
the aim of determining the largest Q for which the solution is in B~(L'T (n».
The deepest results are obtained for boundary value problems for the Laplace
operator. Generalization to other problems will also be discussed. Especially,
we shall consider real homogeneous elliptie operators of higher order. The
proofs of the regularity theorems are combinations of recent results on the
chara.cterization of Besov spaces by wavelet expansions with concepts from
classical harmonie analysis.

Multistep Approximation Algorithms:
Improved Convergence Rates through
Postconditioning with Smoothing Kerneis

Greg Fasshauer*, Joe Jerome

First we show how certain widely used multistep approximation algori thms
can be interpreted as instances of an approximate Newton method. It was
shown in [1] that the convergence rates of approximate Newton methods (in
the context of the numerical solution of PDEs) suffer from a "lOBS of deriva
tives", and that the subsequent linear rate of convergenee can be improved
to be superlinear using an adaptation of Nash-Moser iteration for numerical
analysis purposes; the essence of the adaptation being a splitting of the in
version and the smoothing into two separate steps. In our talk we will show
how these ideas apply to scattered data approximation, and we will show
that radial basis functions serve as viable tools for the inversion, 88 weH as
for the smoothing operations. As a consequence we conclude that the rate
of convergence of multistep algorithms such 8S the one presented in [2] can
be improverl by employing smoothing steps during the iteration. Numerical
results are also supplied.

[1] Jeromet J. W., An adaptive Newton algorithm based on numerical
inversion: regularization 8S postconditioner, Numer. Math. 47, 1985, 123
138.

[2] Floater t M., and Iske t A. t Multistep scattered data interpolation using
compact1y supported radial basis functions, preprint.

Refinable Subspaces of Refinable Spaces

Thomas A. Hogan

Refinable spaces are very important in the construction of wavelets. Sev-
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eral properties are necessary for the refinable functions to give rise to use
ful wavelets. Among these, are smoothness, approximation order, stability.
Other desir"able properties might be orthonormality and symmetry. It is
easy enough to generate refinable spaces with high approximation order t or
thonormality and symmetry, if one is willing to sacrifice continuity (e. g., take
sufficiently many truncated powers restricted to the unit interval, and run
Gram-Schmidt on them). If one were to then take the space generated by
these functions and intersect it with the space of continuous (or smoother)
functions, it would still be refinable (and would provide the same approxima
tion order). It would be great if a set of generators for this new space could
be fouod, say with the same properties as the original set (orthonormality
and symmetry). This is the basic idea behind my talk.

N umerical Computation of Smoothness
of Multivariate Refinable FUnctions

Rong-Qing Jia

We are interested in multivariate refinable functions, which are solutions of
refinement equations of the form

rP = L a(o)rjJ(M· - 0),
oEZ·

where ais a finitely supported sequence on zs, called the refinement mask,
and M is an s x s integer matrix such that limn _ oo M-n = 0, called a di
lation matrix. Multivariate wavelets are generated horn the corresponding
refinable functions.

In this talk we will discuss efficient numerical algorithms to compute
smoothness of multivariate refinable functions in Sobolev spaces. Our alge>
rithms are based on a study of the subdivision operator and the transition
operator associated to the refinement equation.

Simultaneous Polynomial Approximation
in L p , 0 < p ~ 00

Kirill Kopotun

Some problems in the area of simultaneous approximation of a function and
its derivatives in the Lp-metric (0 < p ~ (0) will be discilssed.
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Bivariate Spline Method
for N avier-Stokes Equations

Ming-Jun Lai

Let D be a polygon and Q be a quadrangulation of D which consisting of
convex quadrilaters. Adding the two diagonals of each quadrilateraJ of Q, we
obtain a triangulation. Such a quadrangula.tion may be obtained by first tri
angulating D and then connecting tbe center of eacb triangle to the midpoint
of its three edges. We consider the bivariate spline spare S of smoothness r
and degree 3r over such a triangulation T. We show the approximatin prop
erties of this spline space S. Then we consider the Navier-Stokes' equations
in stream function fomulation and apply the bivariate spline fun~tions to
solve those equations. We give a convergence analysis of the bivaria.te spline
method. Some numerical experiments are shown.

Linking Discrete Orthogonality with
Dilation and Translation far Incomplete
Sigma-Pi Neural Networks of Hopfield-Type

Burkhard Lenze

In this talk, we show how to extend well-knoWD discrete orthogonality .re
sults for complete sigma-pi neural networks on bipolar coded information
in presence of dilation and translation of tbe signals. The approach leads
to a whole family of functions being able to implement any given~~boolean

function. Unfortunately, the complexity of such complete higher order neu
ral network realizations increases exponentially with tbe dimension of tbe
signal space. Therefore, in practise one often only considers incomplete sit
uations accepting that not all hut hopefully the most relevant information
or boolean functions can be realized. At this point, tbe introduced dila
tion and translation parameters play an essential röle because they can be
tuned appropriately in order to fit the concrete representation problem 8S

best 8S possible without any significant increase of complexity. In detail, we
explain our approach in context of Hopfield-type neural networks including
tbe presentation of a new learning algorithm for such generalized networks.
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On the V Condition N umber of the
Multivariate Triangular Bernstein-Bezier Basis

Tom Lyche·, Karl Scherer

In this talk we give bounds for the V' condition number

~J>(lRS)=supllcllp/11 Lcan;>.all supll LCa n;>.all /llcllp
c lal=n a. LP(E) c#) lal=n a. LP(E)

of tbe triangular Bernstein basis (n!.Aa / a!) of degree n, witb respeet to a sim
plex E in ]Rs. This basis has gained increasing popularity through work in
Computer Aided Geometrie Design. In two space variables we give an upper
bound which grows like 3n when the degree n tends to infinity. Similar esti
mates for univariate B-splines has been given earlier by de Boor, Ciesielski,
and the first author, and reeently by Shadrin and the second author. This is
a continuation of previous work by the authors for the Loo ease.

On Discrete Tension Splines

Paolo Costantini, Boris 1. Kvasov, Carla M anni·

Let the data (Xi, fi), i = 0, ... , N + 1, be given, with a = Xo < Xl <
... ,XN+l = b. The elassical continuous tension splines, widely studied dur
ing last years for their tension properties, are obtained as solution of a fourth
order multipoint boundary problem involving same nonnegative tension pa
rameters Pi :

S(4) - (~.)2s(2) = 0, . ( )'Cfi 1n Xi, Xi+l ,

S E C2
[a, b], S(Xi) = fi

with specified end eonstrains.
For practieal purposes it is often more interesting to know the values of the

solution over a given tabulation of [a, b] than its global analytic expression.
Here we study a natural discretization of the previous problem. We prove

that the discretized problem has a unique solution, called mesh solution, and
we study its properties. Of course it turns out that the mesh solution is not
a tabulation of s but it can be extended on [a, b] to a function, U, with prop
erties very similar to those of s and which approaches s as the discretization
step goes to zero. In particular it turns out that U can be computed via a
tridiagonal system involving its second divided differenees at the knots Xi.
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In addition, 8S the tension parameters take the value 0, u reduces to the
discrete interpolating cubic splines already studied in literature.

Due to these properties we will refer to u as discrete tension spline in
terpolating the data.

Recursive Techniques in the Wavelet Theory

Laum B. Montefusco

The notion of recursive matrix, introduced in [1], has revealed to be a pow
erful tool for a unified study of combinatorial problems related to double
recurrences and, recently, it has been shown in [2] that it can be fruitfully
used to represent and easily handle some linear operators t~~~ are widely
used in filter theory and related fields. A natural setting for;the applicar
tion of recursive techniques seems to he the context of wavelet analysis.
Indeed, the shift invariant property of wavelet analysis is closed reisted to
the essence of the notion of recursive matrix, suggesting to undertake a sys
tematic approach to general wavelet theory via recursive matrix techniques.
In this talk we present some preliminary results of the forthcoming paper [3],
where an elementary construction and characterization of general compactly
supported wavelets is given, handling with equal ease the orthogonal and
non-orthogonal case.

[1] Barnabei, M. and Brini, A. and Nicoletti, G., Recursive matrices
and umbral calculus, J. Algebra, 75, pp.546-573, (1982). [2] Barnabei, M

and Montefusco, L. B., Recursive Properties of Toeplitz and Hurwitz Matri
ces, submitted to Linear Algebra and its Applications (1996). [~] Barnabei,

M. and Guerrini, C. and Montefusco, L.B.", Umbra! Methods for General
Wavelet Construction in progress.

An Infinite Dimensional Extension
of the Singer-Yamabe Theorem

Bernd Mulansky

Let X, Y be two linear topological spaces, A E L(X, Y) a continuous linear
map from X into Y, C c X, B c X a convex set dense in C, and d E A[G]
an admissible data point. The Singer-Yamabe theorem states that B n A-ld
is dense in C n A-1d, assuming G = X and Y is finite dimensional. This
result has been generalized by Mulansky and Neamtu to arbitrary sets G,
provided d E int(A[C]) is an interior data point. In the talk we discuss an
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extension of the Singer-Yamabe theorem to the case of an infinite dimensional
range space Y. Some applications to problems of shape preserving infinite
interpolation, e.g., monotone extension of boundary data, are described.

Convergence of Subdivision Schemes

Mike Neamtu

Under the assumption that a given two-scale refinement equation possesses a
continuous solution, necessary and sufficient conditions are derived for con
vergence of the corresponding univariate stationary subdivision scheme with
a finitely supported fiask. These conditions are expressed using the fac
torization of the subdivision IDask and do not require the computation of
a spectral radius of matrices or solving an eigenvalue problem. The main
result is that the existence of a continuous solution of the refinement equa
tion essentially implies convergence of subdivision. Namely, the solution can
always be generated by employing a convergent subdivision corresponding to
an appropriately chosen mask. .

High Dimensional N umerical Integration

Erich Novak

High dimensional problems are difficult, there exists a curse of dimension. It
was believed that only Monte Carlo methods or number theoretic methods
can be used if the dimension dis large, say d = 10 (for many of the standard
test examples)'or d = 360 (in some recent applications from finance) or even
d = 00 (path integrals).

We prove (theoretical results) and demonstrate (hy numerical examples)
that a suitable method (based on polynomial interpolation using the con- ..
struction of Smolyak) can be used with excellent results if the integrand is •
sufficiently smooth.

Our method is almost optimal (Le., up to logarithmic factors) simul
tanously for each class

c~ = {f : [0, l]d -+ R 111/(0)1100 ~ 1, 101 = k}

and also for each class

F3 = {f: [0, l]d -+ R 111/(0)1100 ~ 1, 01 = ... = Gd = k}.

Our method (see Numer. Math. Vol 75 and further preprints) is also almost
optimal with respect to its polynomial exactness.

8
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Most work was done together with Klaus Ritter from Erlangen. I include
remarlcs about tractability (Le. behavior of the error bounds for a finite
number of knots; not just the order of convergenee). This part is based on
joint work with lan Sloan (Sidney) and Henry Woiniakowski (New York and
Warsaw).

Regularity of Multivariate Refinable Functions
with Infinite Masks: Computation and Applications

Rudy Lorentz, Peter Oswald·

Optimal multiscale algorithms for operator equations require th~ .c:onstruc
tion of hierarchieaI Riesz bases in Sobolev spaces. The efficiencyEöf associ
ated multilevel solvers depends on Riesz bounds (eondition numbers, itera.
tion count) and the sparsity of diseretization and intergrid transfer matrices
(arithmetieal complexity per iteration).

In the setting of a dyadic MRA 00 ]Rd, the second requirement makes
it plausible to investigate ad hoc choices of potential multiscale bases with
small masks for scaling functions 4J and prewavelet functions "pA. To cheek
the Riesz basis property of such systems, the essential step is to determine
the exact regularity of the dual scaling function ~ which is often of 000

eompact support. We discuss methods to efficiently compute such quantities,
and present comparisons for box spline examples (mostly for the linear ease
which is closely connected to multilevel finite element preeonditioners).

Validated Computations in Approximation Theory

Knut Petras

Tools for validated computation, such as interval arithmetie and automatie
differentiation, allow the exact error estimation for many algorithms in nu
merieal analysis and particularly in approximation theory. Usually one might
thiok that the necessity to ealculate guaranteed bounds implies that much
more effort is necessary to solve the problem. However there are situations,
in which it can be proved that the additionally eollected information reduces
the cast for calculating the approximation drastically. I give examples from
quadrature theory and from uniform approximation of differentiable func
tions with unknown singularities 8S weIl as of piecewise' analytic functions.
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Rotational and Helical Surface Approximation
for Reverse Engineering

Helmut Pottmann ., Thomas Randrup

We deal with a problem that arises in the context of reverse engineering
of geometrie models. Given a surface in 3-space or scattered points from
a surface, we investigate the problem of deciding whether the.data may be
fit tOO weH by a surface of revolution or a helieal surface. F'urthermore, we
show how to compute an approximating surface and put special emphasis on
basic shapes used in computer aided design. The algorithms apply methods
of line geometriy to the set of surface normals in combination with techniques
of numerical approximation.

Polynomial Frames and Bases

H. N. Mhaskar, J. Prestin·

In this talk we investigate localization properties of polynomial frames and
bases of wavelet type. Starting with trigonometrie and Chebyshev polyno-
mials we summarize how to find translation invariant bases and how one can
construct corresponding wavelets.

For general orthogonal polynomials we eonsider Christoffel-Darboux ker
nels and some smoothOO versions of it (with some weight function g(k)).
By taking suitable differences of these kerneis we obtain the wavelets. De
pending on the smoothness function g we compute Riesz and frame bounds.
FUrthermore, for the Jacobi polynomial setting we study how these frame
coefficients can be used to detect singularities of given functiollS. In particu
lar, for truncatOO power functions exact asymptotic bonnels for the decay of
the frame coefficients are presented.

Finally, for some special cases we diseuss whether these Riesz bases are
also Schauder bases for the space of continuous functions.

Orthogonality of B-Splines and Applications

Ulrich Reif

We show that the cardinal B-Splines B;,n,j E Z, of order n are an orthonor
mal system with respect to the weighted Sobolev norm

(

n-l ) 1/2

11/11:= ~Wl' 1181'/CtWdt
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if and only if the weights wp are chosen such that

n-l

Ijsinc2n (y/2) = Lwp (n)y2P+ Q(y2n) .
~

Spline a.pproximation P : ll"-I(IR) 1-+ span; B;,n witb respect to this norm
is a quasi-interpolant of maximal order. Compared with tbe standard L2_
approximation, the evaluation of P is significantly cheaper since Da linear
system has to be solved. Compared with standard quasi interpolants, P
provides a best approximation with respect to a reasonable norm measuring
the deviation of function values and certain derivatives. If approximation ia
subject to a. set of linear constraints, then the solution is readiJ~ obtained
by projecting the solution of tbe unconstraihed problem on the feasible set.
When applied to spline conversion problems, P yields explicit ~chemes for
knot removal and degree reduction.

The L2-Regularity of Refinable Functions

Amos Ron

The problem of finding the L2-smoothness of a refinable function, or, more
generally, a refinable vector of functions, from intrinsie properties of the cor
responding mask is one of the cornerstones of wavelet theory, and is also of
crucial significance in the analysis of uniform subdivision schemes. Tens of
papers were written on the subject, and important advanc~mentshad been
made. Nonetheless, even in the very special case of a singleton scaling func
tion in one variable which is dyadically refinable, and has compaet support, a
complete characterization of the L2-regularity problem was yet to be fouod.
The most recent results on the matter are due to Reimenschneider and Shen,
to Jia, and to Cahen, Gröchenig and Villemoes. In essence, all these authors
provide lower bünnds on the smoothness of a singleton compactly supported
refinable function whose mask is finite (many varia.bles, and general dila
tion matrices), and some of them show that under a. sta.bility assumption on
the shifts of the refinable function, these lower bounds estimates are sharp.
Alas, simple examples cau be made to show that without such astability
assumption the above-mentioned lower bounds can be abysmal.

As of now, we finally know how to chara.cterize completely tbe ~-smooth

ness of refinable functions in terms of their corresponding transfer operator,
or equivalently, in terms of the subdivision operator. The chara.cterization is
valid in any number of dimensions, for a singleton or vector-valued scaling
function (and even for distributions), it does not assume any factoriza.tion of

11
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the mask, does not require any stability or related conditions of the under
lying shifts, and applies to any dilation matrix. Stronger assertions can be
made if one assumes the scaling functions to be compactly supported, hut
even these improvements do not require the mask to be finite. The charac
terization allows one to find separately the sharp smoothness class of each of
scaling function in the vector.

The results that are alluded to above appear in an article joint with .,
Zouwei Shen, from the National University of Singapore. ..

Vector Subdivision

Thomas Sauer

In contrast to the "elassical" sealar subdivision schemes, vector subdivsion
generates curves by iterating finitely supported bi-infinite vectors of N x N
matrices on bi-infinite vectors of N vectors. The talk is concerned with the
question of convergence of these schemes in Lp , 1 ~ P ~ 00, and with criteria
for the regularity of the associated limit functions.

Radial Basis Function Approximations
to Solutions of Partial Differential Equations

Roberl Schaback

The first part of the talk reports on recent work giving asolid theoretical
foundation to methods using Radial Basis F\mctions (RBFs) to solve PDEs.
Together with C. Franke, collocation techniques were investigated, resulting
in useful error baunds. For Rayieigh-Ritz techniques H. Wendland proved
errar bounds, while techniques based on homogenization (called dual reci-
procity methods) are still in a preliminary stage. All of these approaches _
have the advantage of being meshless and easy to implement, but they still .-
require too much regularity and cause quite a large numerical complexity,
because they are nonstationary.

Thus the second part of the talk considers stationary techniques and
compares RBF methods with the usual FEM techniques. On one side, FEM
methods and thin plate spline RBFs allow a nice error analysis by application
of Strang/Fix or Bramble/Hilbert techniques, while they have the problem of
reducing computational complexity. On the other side, compa.ct1y supported
RBFs have easy access to reduction of complexity, if used in a stationary set
ting, but they have problems to produce good error bounds. The techniques
to overcome these are described: approximate approximation and multilevel
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methods. Tbe latter differs from the multilevel preconditioning used in PDE
contexts, and the differences are worked out in sorne detail.

Operator Algebra Techniques
for the Study of Wavelet Bases and Frames

Joachim Stöckler

Affine frarnes in ~(R) are families of functions, which are eomplete and
whicb are generated from a finite set of functions {'l/Ji; 1::; i ::; n} by dilation
and shift. First we deal with tbe csse wbere the functions 'l/Ji are related
to a refinable function f/J. The algebraic structure of tbe associated frame
operators is investigated, and a representation in terms of generalized LaUrent
operators is found. The numerical computation of these operators acting
on sequences in i 2 (Z x z)n is performed by convolution and upsampling
operations 8S in Mallat's pyramidal algorithm. A simple representation for

. the so-called lifting scheme is obtained in this way. Secondly, techniques from
operator algebras, which were introduced for orthonormal wavelet bases by
X. Dai and D. Larson [1], are generalized. This gives a characterization of all .
wavelet bases and affine frames by means of the Ioeal commutant with respect
to dilation and translation by integers. It leads to a result, which states that
under certain conditions on the Fourier transform of 'l/J the corresponding
affine fraine is already a Riesz basis.

[1] Dai, X. and D. Larson, Wandering veetors for unitary systems and
orthogonal wavelets, to appear in Memoirs Amer. Math. Soe. -~'~

[2] Stöckler, J., Multivariate affine Frames, Habilitationsschrift, Univer
sity of Duisburg, 1995.

Smoothing Spline ANOVA for 0-1 Data,
and the Randomized GACV
for Choosing the Smoothing Parameters

DOTJ.g Xiang, Grace Wahba·

Let x E [0, l]d, Y E {O, I}, and p(x) =probability y = 1 given x. Data
{Yi' x(i), i = 1, ... n} are observed and it is desired to estimate p(x). Practi
cal examples incIude risk factor estimation in demographie medical studies,
for example x = (Xl, X2) = (blood pressure, cholesterol) and Yi = 1 or 0 ac
cording as the ith patient in a study with given x(i) at the start had a heart
attack before the end of the study or not. Let f(x) = logp(x)/[1 - p(x)].
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f(x) is assumed to be an element of a reproducing kerne} Hilbert space
which is the tensor product of d univariate rk spaces, with ANOVA de-
cornposition f(x) = J.L + L,afo{xo) + Eo<ß!oß(xa,xß) +"', correspond- 1

1

ing to the expansion of I = I1~=l[Ea + (I - &a)) where [,a is an averaging 1

operator in tbe oth univariate rk spa.ce. f is fitted es the minimizer of
L(Y, f) +La AQJa(!a) + EO<ß AaßJaß(!a{J) + .. " where r,(y, f) i~ the nega-
tive log likelihood of Y = (Yh"', Yn) given /, the Ja, Jaß"" are seminorms
in the subspaces corresponding to the above decompositions and the surn _
is terminated in some mannet. Tbe randomized trace GACV method for .,
choosing the smoothing parameters >..0, >..aß'" is discussed in conjunction
with approximate methods for solving tbe variational problem given very
large data sets.

Related papers may be found in http://wwv .stat .visc . edu/-vahba

Multilevel Interpolation and Approximation

F. J. Narcowieh, R. Sehaback and J. D. Ward·

Interpolation by translates of a given radial basis function (RBF) has become
a well-recognized means of fitting functions sampled at scattered sites in
Hf. A major drawback of these methods is their inability to interpolate
very large data sets in a numerically stahle way while maintaining a good
fit. To circumvent this problem, a multileyel interpolation (ML) method for
scattered data was presented by Floater and lske. Their approach involves m
levels of interpolation where at the jth level, the residual of the previous level
is interpolated. On each level, the RBF is scaled to match tbe data density. In
this talk, we will discuss some theoretical underpinnings to the ML method by
establishing rates of approximation for a technique that deviates somewhat
from the Floater-lske setting. The final goal of the ML method will be to
provide a numerically stable method for interpolating several thousand points ..
rapidly. ..
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