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Computational Group Theory
1.6 - 7.6.1997

This meeting was the third on Computational Group Tbeory held at tbe Mathematisches Forschungsin
stitut Oberwolfach. The meeting was attended by 49 participants from 11 countries.

A considerable number cf presentations were related to the continuing matrix group recognition project.
This project was initiated by the question raised by J. Neubüser, at tbe first meeting on Computational
Group Theory held at MFO in 1988, of how to recognise special linear. groups giving generating matrices. .
From this starting point the project has now reached a stage where, for significantly large degrees over
reasonable sized fields, not only can the special linear group be recognised, but also a composition series
can be computed for any matrix group over a finite field. An informal session was organized on Thesday
afternoon for the people working in this area to coordinate their future activities.

Other topics covered incIuded more traditionaI topics in the study of linear representations of groups,
methods for studying finitely presented groups and their applications, new methods for studying groups
given by polycyclic presentations and improvements for methods for studying permutation groups. FUr
thermore methods and developments in Lie algebras, groups and combinatorics, semigroups or monstrous
moonshine were reported. Some of the talks included status reports on software packages, e.g. ELIAS,
CARAT, GRAPE, SYMMETRICA, MONOID, CHEVIE and GAP.

A particular stimulus for computational group theory has always been its application to special, seemingly
intractable problems. Some highlights in this area presented duringrthe conference were the completion
of the character table of tbe Iwahori-Hecke algebra of type Es and the explicit construction of generators
for the Monster group. The Monster had been tbe only sporadie simple group for wbich 00 computer
constructioD was known. Now explicit calculations with certain elements are possible.

In order to allow adequate time for informal discussion (sometimes at computer terminals to access im
plementations of algorithms), the 'formal' program included, as well as tbe traditional invited and offered
talks, botb 'posters' (in tbe form of extended abstracts of DO more than four pages) and 'five-minute'
talks. Both methods proved to be effective and the people who used them deserve special commendation
for the care they put inta their presentations.

Beside the talks there was a lot of discussion on possible new algorithms and implemEmtations and on
ways of improving existing algorithms and implementations.

The meeting showed there has been considerable progress since the last meeting and gave the feeling
that the field is in a lively stage and good progress can be expected. We were particularly pleased tbat a
significant number of younger mathematicians could take part in the meeting and become more closely
integrated ioto a wider group of colleagues in the field.

/'

Organisers:
M.F. Newman, Canberra
H. Pahlings, Aachen
This report was compiled by B. Eick
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Charles R. Leedham-Green
Recognising matrix groups

We now have a first version of the eomplete matrix group recognition algorithm. Let G ~ GL(4, q). A
famous theorem of Aschbacher implies that G lies in at least one of nine categories. (Two of these we
sub-divide, so the number of categories is now eleven.) One of these eleven categories eonsists of the
unipotent groups, one eonsists of classieal groups in their natural representations, and one (Cq ) eonsists
of other almost simple groups (modulo sealars). These three categories are terminal. H G lies in any
other eategory, there is a natural homomorphism of G onto a non-trivial group H, where H is either
given as a subgroup of GL(d',q') where d > d' or d = d' and q > q', or H is given as a subgroup of the
symmetrie group of degree n for some n :5 d, or H is eyclic.
The first step in the project was to reeognise an Aschbacher category in which G lies, and to construet
the eorresponding homomorphism, if the eategory is not terminal. This step has now been eompleted,
exeept that tbe symplectic ~group case is still in an unsatisfactory state, and some other eases have 00

eomplexity analysis and may faH, through lack of resourees, in bad cases. Generally speaking we hope
to sueeeed for d, q :5 100, and may sueeeed in much larger cases. For example tbe Niemeyer - Piirer
non-constructive classical groups recognition algorithm runs in MAGMA for SL(5000, 2) in a few
The seeond step is to use our ability to determine Aschbacher eategories to analyse an arbitrary subg
G = (X) of GL(d,q), given X. We use a binary tree strueture, generalizing tbe eoncept of a composition
series. The leaves L in the tree correspond to classical groups, Cq-groups, p-groups, subgroups of permu
tation groups of modest degree, and eyelic groups. We have two fundamental problems:
FPl; given any gEL and generating set Y ~ L, write gas word in Y.
FP2; produee a presentation for L on Y.
If we ean solve FPI for each leaf of tbe tree we have a Monte-Carlo algorithm to eonstruct tbe tree.
H we ean solve FP2 for each leaf of tbe tree we ean verify the result, tbus making the whole algorithm
Las Vegas. .
Dur fundamental data strueture is in effeet used also for permutation graups. Tbe hope is that this will
lead to a merging of the matrix and permutation group projects.
This is a joint work with many people. My student Anthony Pye bas produced a first version of the
complete algorithm. CeIler, Holt, Niemeyer, O'Bnen, Praeger and Pye are responsible (with myself) for
most of the major ingredients. Known permutation representations of large sporadie groups, R. Wilson's
standard generators, and the exciting work reported on at this conference on black box reeognition of
classieal groups need to be added to our package. .

Robert Beals
On black-box methods ror matrix groups

In this talk we sketched several ideas from the theory of black-box group algoritbms which may bave
praetical significanee in Charles Leedham-Green's recognition project. Tbe task of finding elements of
proper Dormalsubgroups is of partieular importanee, both in theory and in practice. We gave two methods
to help acbieve tbis goal.
Tbe first is a nonnal still. We show bow to distill a list of group elements, with tbe property that at least
one lies in anormal subgroup, down to a single element which lies in a proper normal subgroup.s
uses a small number of group operations per element of tbe list: typically constant, and log IGI .e
worst case.
Tbe seeond is a very general metbod for finding elements of a proper normal subgroup. If we bave gone
to the effort of verifying that a black-box group G is not isomorphie to a partieular group T, then a small
amount of bookkeeping suffices to produce an element of a proper normal Bubgroup if T is a homomorpbic
image of G. Tbe list of T for which good isomorphism tests exist incIudes An and Sn [Beals & Babai'93,
Beals & Seress, Leedham-Green & Niemeyer & Praeger], as weIl as all classical groups over small fields
[Cooperman & Finkelstein & Linton, Bratus, Kantor & Seress).
We hope that these ideas will prove useful in matrix group eomputations.
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Gene Cooperman
Reduction oe Center and Other Problems to Matrix Recognition or Matrix Group Order

This talk is motivated by a recent challenge problem of Peter Neumann. A result was recently announced
that reduces the problem of finding the kernel of a matrix group homomorphism to any of: matrix group
recognitiont group order, or certain other decision problems [1]. Eight years earlier a result was announced
reducing center, centralizer of anormal subgr9uP (a key ingredient in many soele algorithms) and certain
other problems to that of finding a kernel [2]. Tbe ongoing matrix recognition project promises matrix
recognitioD t matrix group order, and certain other decision problems [3]. The compositioD of these results
yields surprising conclusions about tbe ease of doing center, soele and other problems for matrix groups.
I acknowledge discussions with Eugene Luks that contributed to these ideas.
[1] R. Bealst "Towards Polynomial-Time Algorithms for Matrix Groups" t Proc. oE DIMACS Workshop
on Groups and Computation 11 28, DIMACS Series in Discrete Mathematics and Theoretica1 Compu
ter Science, L. Finke1stein and W.M. Kantor (eds.)t AMS, Providence, Rl, 1997. [2] G. Coopermant
L. Finkelstein, and E. Luks, "Reduction of Group Constructions to Point Stabilizers" t Proc. of 1989
International Symposium on Symbolic and Algebraic Computation, ACM Press, 1989, pp. 351-356. [3]
talks by F. Cellert C. Leedham-Green t E. Q'Brien et al.

Alice Niemeyer
Recognizing the full symmetrie group as a black box group /-f'

Let G = (X) be a finite group given as a black box group. We deseribe an algorithm which determines
whether or not Gis isomorphie to Sn. for a given integer n. This algorithm works in two steps. In the
first step we attempt to construct a homomorphism from Sn. ioto G by finding appropriate images for the
generators (1,2) and (l t 2, ... ,n). We seek suitable elements of G for these images by random selection.
To do this we first determine for such elements defining properties which can be checked in a black
box group G. We also design procedures for finding such elements and checkiog these properties. (For
example as the proportion of transpositions in G ~ Sn. is small we construct a transposition from a
"pretranspositionn in G which we define as an element / of order 2t with t > 1 and t odd, such that
h = /t has the property that o(hhZ

) E {I, 2, 3} for all x E G.) We give complexity analyses of these
procedures: since they depend on random selection, our analyses depend on the proportions of elements
of Sn. with relevant properties. We give estimates of these proportionst and thereby give and estimate for
the probability that the algorithm will faH to identify, for a black box group G ~ Sn., that G really is Sn..
In a' seeond step we decide whether the homomorphism is onto by construeting preimages for each
generator x E X. This method also relies on random selection and again we can estimate the probability
of failure if G is isomorphie to Sn.. .

Peter Neumann
On tensor eactorisation problems

There are several contexts in which a tensor product makes good sense: for example
(1) the tensor product of modules;

(2) the Kronecker product of matrices;

(3) if x(t), y(t) are manie polynomials then (x ® y)(t) may be defined to be n(t - {i'1j) where
x(t) = rr(t - {i) and y(t) = rr(t - '1;);

(4) if x, y are multisets from an abelian group (or even a commutative semigroup) Athen we may
define x ®y:= {XiY; 11 :5 i:5 r, 1:5 j :5 s}, where x = {Xjt •.• t xr} and y ={gI, ... t Y.};

(5) if r, ß are G-sets for a given group G then r x ß is the ordinary cartesian product.

SimilarlYt there are exterior square constructions in each of these contexts.
Each tensor product has an algorithmic "Tensor Factorisation Problemn associated with it; each exterior
square has an associated "Exterior Square Raot Problem". The problems are connected (though in some
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cases quite loosely). To tensor factorise a GwIDodule it. helps to he ahle to factorise matrices; to factorise
a matrix it helps to be ahle to factorise its characteristic polynomial; to factorise a polynomial it helps
to be ahle to factorise the multiset of its roots; factorising the multiset of its roots can be assisted by
considering G-sets where G is the Galois group.
In this lecture the algorithmic problems were posed and what little I know about attempts to solve
them was surveyed: the module decomposition problem has been tackled with some success for smallish
dimensions or smallish groups by Leedham-Green & 0 'Brien [1997]; the exterior-square root problem for
multisets and matrices has been treated by Catherine Greenbill in her Oxford D.Phil. dissertation [1996];
the "exterior square root problem" for G-sets (though that is perhaps not a good name in this context)
has been tackled by Graham Sharp [1997] and his preprint will form part of his Oxford D.Phil. thesis;
work in progress by Cheryl Praeger and me gives a very promising approach to the tensor factorisation
problem for multisets~ with applications to polynomials, to matrices and to modules. The final part of
the lecture contained a sketch of our ideas.

Eamonn A. O'Brien
Implementing matrix group algorithms .-

Tbe matrix group recognition project seeks to recognise matrix groups defined over finite fields. In my
lecture, I reported on the contents of a new share package for the GAP system, which seeks to provide
comprehensive and integrated access to implementations cf algorithms developed as part of the project.
I then discussed tbe SMASH algorithm, which decides whether a given matrix group preserves certain
decompositions of the underlyjng vector space with respect to anormal subgroup, and discussed finding
elements of anormal subgroup.
I described the Product Replacement algorithm for constructing random elements of a group.
Finally I presented two algorithms for constructing "Iarge" p-Iocal subgroups of a matrix group.

Jon F. Carlson
Homologieal Algebra and Computers

Tbis lecture is a survey of some of the efIorts to construct module theory applications of computer
technology for finite dimensional algebras. The main problems that must be solved in any such system are
tbe lifting of homomorphisms from projective modules and the creation of the kernel of a homomorphism.
Earlier work on these problems was aimed at the calculation of the mod-p cohomology of p-groups. The
methods have now been extended to work on more generallocal algebras.
It sooms possible that the same techniques can be adapted to work on any algebra which is expressed
as a basic algebra. The main idea is that such an algebra should be expressed as the collection of
its nonisomorphic projective modules. Each projective module should come equiped with a tree which
associates a basis for the module with monomials in the generators of the radical. That is, an algorithm
for the solution to the homomorphism lifting problem should be encoded in the definition of the algebra.
Tbe package for handling the algebras needs only a function for reading the troo. This technique would
provide a matrix theoretic implementation which would be alternative to the noncommutative Groebner
basis approach that has been suggested by others.

Jean Michel
Application oe the CHEVIE package of GAP:

Determination' of the character table of the Heeke-Iwahori algebra oe type Es

(Joint work with M. Geck)

The determination of the character table of tbe Iwahori-Hecke algebra of type Es (an algebra of dimension
696729600) was considered an untractable problem. In the talk I explained how this problem was solved
using some theoretica1 advances prompted by experimentation using the GAP package CHEVIE (Co
authored by M. Geck, G. Hiss, F. Lübeck, G. Malle, G. Pfeiffer and myself) .
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The main new tool is a property of elements of minimal length in a conjugacy dass, lifted to the braid
group. Let W be a Coxeter group, let B be the corresponding Artin-Tits beaid group. The natural
projection p : B ~ W has a section B:ed. consisting of those elements of the hraid monoid which have

same length as their image in W. For w E W let w be its lift in Bied; let S be the Coxeter generating
set of W and (ar I C S let W/ be the corresponding parabolic subgroup of W, and let Wr be the longest
element of W/ (in particular we denote by Ws the longest element of W). Then

Theorem. In an" conjugacy class C 01 W, there exists an element w 01 minimal length in C such that
the equality w d = w7.· ... w7: holds in B, where disthe order 01 w, where ni are even natural integers
and where 11 :> ... :::> I" is a stricUy decreasing sequence 01 subsets 01 S.
As a corollary, when w is of minimal length in its dass, we can compute the absolute value of the
eigenvaJues of the basis element Tw of the Hecke algebra H (W, q) in any irreducible representatioD;
these absolute values turn out to be fractional powers of q, which answers a long-standing conjecture in
the particular case of elements of minimal length in their dass. Using this, we reduce the problem of
computing character values to that of solving a system of linear equations. To get enough equations so
that the system becomes detennined, we need to appeal to quite a few properties of Hecke a1gebras, in
particular to the work of M.Geck on modular representations of Hecke algebras.

Frank Lübeck
Parameterization oe semisimple conjugacy classes in finite groups oe Lie)ype

This talk addressed apart of a bigger project of computing generic character tables for series of finite
groups of Lie type. Examples for such series are sets of groups like {GL4 (q)} or {Er(q).c},- where q runs
over a11 prime powers.
Clearly the first steps are to find parameterizations of the conjugacy classes and the irreducible characters.
For both there is a Jordan decomposition which divides the problem inta two parts: First find the classes of
semisimple elements of the group, respectively dual group, and then parameterize the e1asses of unipotent
elements, respectively the unipotent characters, of the centralizers of semisimple elements. It turns out
that finding the semisimple conjugacy e1asses is a computationally challenging part of the project.
This talk wanted to give an idea how this problem can be reformulated in a combinatorial setting using
the root datum describing a connected reductive algebraic group, the associated Weyl group and the
operation of a Frobenius morphism on these structures. In this reformulation it can be solved by computer
programs. It was pointed out that general algorithms for permutation groups are a very useful tool in
these programs.
An implementation of the algorithm and some examples were mentioned.

Klaus Lux
Group Aigebras and Morita Equivalence

Let F be a 6eld and let A be a finite-dimensional F-algebra. If e E A is a nontrivial idempotent, then
multiplication by einduces a functor from the module category of right A-modules RMod(A) to the
category RMod(eAe). This functor defines a categorical equivalence also called a Morita equivalence
if and only if Se is nonzero for all simple A-modules S. The functor can be used for reducing certain
properties of a module V in RMod(A) to the corresponding properties of Ve. For example, it preserves
the property of a module being projective, simple etc., and hence can be used to determine the soe1e
series of a projective indecomposable A-module.
Even though it is dülicult to find a suitable idempotent for a given algebra A, in case of the group algebra
FG of a finite group G we can proceed as follows. Let H be a subgroup of G whose order is coprime to
the characteristic of F, then eH = Ihr LhEH h is a nontrivial idempotent.
For the sporaclic simple groups of order at most 109 and small primes p, I have determined a suitable
subgroup H of largest order such that the principal blocks of FpG and eHFpGeH are Morita equivalent.
This has been achieved using a character theoretic refonnulation of the condition above and the computer
algebra system GAP, especially its library of tables of marks for simple groups.
For most of the cases above I have also determined a generating system for the algebra eHFpGeH. As
a consequence one can now use the above functor explicitly in studying modules in the principal block
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of FG. For example, in ease of the sporadie simple group J3 and p = 3 it was possible to determine
the soele series of all projeetive indecomposable modules in the principal block, the largest module
being of dimension 67554. Furthermore, a student in Aachen, S. Weiss, has applied the funetor in order
to determine a presentation of the basic algebra of the principal block as a quotient of a quiver with
relations for some sporadic simple groupa.
It is weIl known that there ia an even more general funetorial relationship between algebras whieh
runs as follows. H M ia an A-module then we ean define the functor Hom(M, -): RMod(A) -4

RMod(EndA (M» which takes V E RMod(A) to HOffiA (M, V). Setting M to be eA we can in prin
ciple recover the above situation. Given a aubgroup H :5 G and the transitive ZG-permutation module
(LhEH h)ZG, we ean explicitly determine the action ofthe elements IHlpeHgeH E EndzG«LhEH h)ZG)
on HomzG«LhEH h)ZG, V) for a given ZG-permutation module V. The reduction modulo p of these
elements then contains at least tbe ideal of tbe projective endomorphisms of tbe FpG-permutation module
(EhEH h)FpG. This ean be used to find explicit Morita equivalences for nonprincipal blocks of FpG even
in the case where the order of H is divisible by p.

Wilhelm Plesken
Algorithms ror crystallographic grOUp8

Together with J. Opgenorth and T. Schulz I am setting up a package handling erystallographic groups
of degrees ~ 6. The system is called CARAT and eontains implementations of various algorithms and a
library of Bravais groups. There are three basic algorithms: computing sublattices, automorphism groups
of lattices with quadratic forms, and extension groups. The talk concentrates on Opgenorth's normalizer
algorithm which is based on the Voronoi algorithm for perfeet quadratic fonns. With the machinery
available one can decide conjugacy of finite unimodular groups in GLn((P) and GLn(Z), can split (]J.
classes in ~classes, compute isomorphism classes of space groups, and perform various related tasks.

Gabriele Nebe
Same arithmetic in definite quaternion algebras

Let G be a finite group. Then (]JG = eD?i xni is a direct sum of simple etl-algebras. One might ask
which division algebras D := Di da occur. Clearly Z(D) =: K is the character field of the corresponding
character henee an abelian numberfield. H the character is real, then tbe involution {]JG --+ {]JG 9 ..-+ g-1
for all 9 E Ginduces an involution - on D that is the identity on K wbence one has the
Theorem (Brauer,Speiser) H K ia totally real then eitber D =K or D is a quaternion algebra over K.
I determined the totally definite quaternion algebras D with Dnxn I qp for same finite group G and
[K : ~n ~ 10 by classifying the absolutely irreducible maximal finite subgroups G of GLn(D). The
representation theoretic methods to build up the groups are the same as for fields, though one has to
build up fairly large groups before one may calculate the maximal finite supergroups as automorphism
groups of invariant lattices, because one does not know D in advanee. The groups yield many interesting
rationallattices up to dimension 40. E.g. I found 11 structures of the Leech lattice as a Hermitian lattice
over a maximal order of a definite quaternion algebra. The key problem to find tbe isomorphism das..
of G-invariant lattices is to find all conjugacy classes of maximal orders in D. Tbere are some trickw
get enough maximal orders and one has a mass formula to check completeness. The conjugacy test can
be perfonned very efficiently using the normform N : D --+ K, x ....... xx, which is a totally positive definite
quadratic form over K. Two maximal orders M, M' in D are conjugate, if and only if the lattices (M, N)
and (M', N) are isometrie.

George Havas
Integral Gaussian elimination

Gaussian elimination is the basis for dassical algorithms for computing canonical forms of integer ma
trices. Experimental results have shown that integer Gaussian elimination may lead to rapid growth of
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intennediate entries. On the other hand various polynomial time a1gorithms do exist for such computa
tions, but these algorithms are relatively complicated 10 describe and understand. Gaussian elimination
provides the simplest descriptions of a1gorithms for this purpose. These algorithms have a nice polynomial
number of steps, but the steps deal with long operands. We prove that there is an exponential length
lower bound on the operands for a well-defined variant of Gaussian elimination when applied to Smith and
Hermite normal form calculation. We present explicit matrices for which tOO variant produces exponen
tiallength entries. Thus, Gaussian elimination has worst-case exponential space and time complexity for
such applications. The analysis provides guidance as to how integer matrix algorithms based on Gaussian
elimination may be further developed for better performance, which is important since many practical
algorithms for computing canonical forms are so based.
(Joint work with Xin Gui Fan, to appear in Proc. ISSAC'97, ACM Press)

Sarah Rees
Hairdressing in groups

Let X == {Xl, . .. ,Xi:} be a finite set, G = (X) a group, r its Cayley graph. A language for G is a set L of
words over X (alternatively, paths from the identity vertex of r), which maps onto Gunder the natural
map.
Two paths in r synchronously (resp. asynchronously) fellow travel if 'travellers' moving with equal (resp.
appropriate) speeds on the two paths remain a bounded distance apart. A language L for.'G is a synehro
nous (resp. asynchronous) eombing for G if tbe paths in r corresponding to words v, w ·E~L for v =a w
or v =0 wx (x E X) synchronously (resp. asynchronously) fellow travel; we shall use the"· word combing
to mean asynchronous combing.
G is automatie if it has a eombing which is a regular language, asynchronously automatie if it has
an asYßchronous eombing witb that property. Many topologically interesting groups are automatie (or
asynchronously automatie), including tbe fundamental groups of many eompact manifolds; but the list
of non-examples indudes the fundamental groups of some compact, geometrisable 3-manifolds and all
nilpotent groups which are not virtually abelian. We aim to capture these examples by dropping the
regularity eondition of automatie groups and looking at more general combings.
Any combable group is finitely presented (Bridson), and has soluble word problem (Gersten).
We let F be a family offormallanguages, and look at groups which are F-combable, that is have eombings
in F. .
Bridson & Gilman proved that all compact geometrisable 3-manifolds M have 1T1 (M) which is an indexed
language; in fact real time languages work too. -
Which other non-automatie groups have real time eombings? Tbe following answers corne fr9m joint work
with Gilman and Holt.

• Any dass 2 nilpotent group with 2 or 3 generators or cyclic G' has a real time combing.

• Any metabelian, polycyelic, torsion-free group with G' n Z(G) trivial has"a real time eombing.

• Any f.g. nilpotent or even polycyclie by finite group embeds 'in a real time combable group.

Derek Holt
Automatie Groups and Subgroups

Automatie groups form a dass of finitely presented groups tbat have been studied extensively during
the past ten years, defined by a collection of finite state automata. They have a normal form for group
elements, wbich enables one (after eonstrueting the automata) to solve tbe word problem in quadratic
time, enumerate group elements, and sometimes to calculate the growth series of the group. Finiteness
can also be decided, and usually whether given elements are torsion or not.
Many groups arising from topology and geometry are automatie, including fundamental groups of ne
gatively curved manifolds, most knot groups, word-hyperbolic groups, Euclidean groups, Coxeter groups
and braid groups.
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The author's package kbmag (freely available by anonymous ftp from ftp.maths.warwiek.ac.uk in the
directory people/dfh/kbmag2, or as a GAP share library) can be used to earry out these ealculations on
a shortlex automatie group. For example, it has been used to prove that the Fibonacci group F(2,9),
F(4,8), F(9,6) and F(15, 6) are infinite, as is the Heineken group

G = (x, y, z I [x, [x, y]] = z, [y, [y, zJ] = x, [z, [z, xl] = y).

The eoneept of an automatie group ean be generalised to a group G being automatie with respeet to a
finitely generated subgroup H. In that case there is a normal form for a system of coset representatives
of H in C. For example, this is the case for a quasiconvex subgroup of a word-hyperbolie group, but
there are many other situations in which it applies. There are sorne fa.cilities in the standalone version
of kbmag for eomputing the associated automata and, when successful, the finiteness of IG : HI can be
decided. It is also possible to eompute a presentation for H (which is always finite). For example, it was
used to show that the subgroup ([x, y), [x, z}, [U, z)) of the Heineken group (defined above) is free of rank
3.

Werner Nickel
Polynomials rar nilpotent groups

A generating set {al, ... ,an} for a finitely generated torsionfree nilpotent group can be chosen such that
each element of the group has a unique form

Xi eZ.

P. Hall (Edmonton Notes, 1957) proved that in the product g.!. =g~ of two elements Zk is a polynomial
in Xi and Yj. These polynomials can be computed by Deep Thought (Leedham-Green & Soicher, OW
1988) from a commutator presentation on these generators and used to perform symbolic multiplications
and inversions in tbe group.
This5-minute talk explained how these polynomials can be used to check if the group satisfies an (En
gel) identity and reported recent computations in the free 2-generator 5-Engel group with GAP 4. The
polynomials involved have 104 indeterminates and total degree at most 9.

William Kantor and Akos Seress
Black box classical groups, with an application to permutation group algorithms

1. There is a Las Vegas algorithm which, when given a black box group known to be isomorphie to a
simple classical group over a field of given size q, produces an explicit isomorphism.

2. There are nearly linear Las Vegas algorithms which, when given G = (8) ::; Sn with no composition
factor an exceptional group of Lie type or a 3-dimensional unitary group, determine membership in G,
IGI, a composition series for C, a Sylow subgroup for each prime factor of IGI, and everything else that
previously eould be found only by Monte Carlo algorithms.

Alexander Hulpke
Algorithms ror permutation groups based on homomorphisms

We have nice algorithms for element test, size, composition series, centralizer &e. for permutation groups;
theoretically as weU as practically. Some other things are harder to compute like conjugacy classes,
maximal subgroups, eomplements. In PC-Groups, on the other hand, we ean compute such things rather
fast by using the homomorphism principle. We compute a nonnal series with elementary factors and lift
the results Qver the factors. As each factor ia isomorphie to a vector space, all to do is linear algebra.
To extend this approach to general permutation groups, one needs to generalize such lifting procedures
to nonabelian elementary groups.
Suppose N <J G is an elementary nonabelian nonnal subgroup, N ~ Tl X ••• X Td' Ti ~ T simple.
Then GG{N) n N = 1, thus G is a subdirect product of GIN with F = Gcp ::; Aut(N), denoting by
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VJ the operation homomorphism of G in Aut(N). As {Tl, .... ,Td} is a characteristic dass, furthermore
Aut(T) ~ Aut(T) I Sd, yielding a small degree permutation representation for F. Let t/J : F --+ Sdt then
M := kert/J is an iterated subdirect product of A, T :5 A :5 Aut(T).
Example:Conjugacy Classes. Strategy: A: Classes of G as dasses of subdirect product, B: Classes of M
as dasses of subdirect product and further fusion by F, C: Classes of F outside M.
~deas: A: Component-wise representative construction. B: "minimal" dass arrangement in each represen
tative tuple. C: Instead F-classes of F\ M only M-classes on F\ M, together with further F-fusion. (As
we have only few classes in F \ M, this is no problem.) Then the action of M on M, z ~ (m ..... [r, z]mZ

)

splits into components and can be regarded as such.
The algorithm is still in the process of implementation, so it is too early to do comparisons with other
approaches.

Bettina Eick
Construction of finite soluble groups

In this talk a method to construct all soluble groups of given order is introduced. The underlying idea of
the algorithm is due 10 W. Gaschütz: in the first step we construct a list of candidates for the Frattini
factors of the desired groups (up to isomorphism) and in the second step we compute Frattini extensions
of each candidate. The method can be restricted to compute certain classes of soluble groups only, such
as non-nilpotent groups or graups without normal Sylow subgroup.
We used a GAP implementation of this method 10 construct all soluble, non-nilpotent groups of order at
most 1000 except for the orders divided by 27 • This shows in particular, that the method is practical.
In eombination with two other methods to construct certain finite groups and the Jrgroup generation
method of E. A. O'Brien we obtained a list of all groups of order at most 1000 except för 512 and 768
up to isomorphism.
(Joint work with H. U. Besehe.)

Götz Pfeiffer
Computing the Size of a Semigroup

MONOID is a package of GAP functions that allows calculations in and a structural analysis of a finite
transformation monoid, Let a submonoid M of the full transformation monoid Tn of a11 maps from
{I, ... tn} to itself. The basic theoretical tool is the concept of a generalized (right) 8ehützenberger group
of an element sEM, a permutation group on the set of images of the map s which stands in bijection to
a certain subset of M containing 8. The whole monoid M is partitioned inta such sets where many of the
associated permutation groups are isomorphie. Thus a task like, e.g, the computation oLthe size of M
can take mueh advantage of existing (and powerful) algorithms for permutation groups. Th~ development
of the algorithms in MONOm is joint work with 5. Linton, E. Robertson, and N. Ruskuc.

Steve Linton
GAP: Status Report and Some Possible Directions

Over the next months, the GAP system will undergo two dramatic changes: firstly, version 4 of the system
will be released; secondly, GAP headquarters will move from Aachen to 5t Andrews.
Already, the final release of GAP 3, version 3.4.4, has been relea.sed from 8t Andrews, incorporating
bug fixes, same new developments from the GAP team, and many contributions from users. The formal
handover will take place soon, and tbe e-mail addresses for the GAP forum, the ttgap-trouble" helpline,
and so forth will move to 5t Andrews.
We evisage t'A move from an Aachen-based project with international involvement to an international
project coordinated at 5t Andrews" , and will depend on user contributions, for whieh we will try to
provide support and recognition.
GAP version 4 will provide a number of new features, improving both the system itself, and its collection
of mathematieal a1gorithms. Alpha test versions are available now, a beta version will be released soon.
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Adalbert Kerber
Applied Finite Group Actions

It was reported on joint work with R. Laue, K.-H. Zimmermann t O A. Betten, H. Fripertinger and A.
Wassermann. The joint work is devoted to the enumeration, construction and randomly generation of
unlabelled finite structures. We studied in particular graphs, linear codes and combinatorial designs.
Unlabelled structures of that kind are usually introduced as equivalence classes of labelled structures and
therefore they can be defined as orbits of finite groups on finite sets, and so the weil developed theory of
finite group actions can be applied.
i) A flexible Ansatz is to choose suitable actions GX and HY and to consider the set

y X := {I: X -+ Y}t

together with an induced action of G, H, H x G or H I G on Y x. Here is an easy example: The labelled
graphs on V, a set of vertices, ean easily be ideotified with the set of mappings from the set (~) (of pairs
of vertices) iota tbe set {O, I}, Le. tbe set of these labelled graphs is equal to

yX = 2(~).

Correspondingly, the set of unlabelled graphs on this set of vertices is the followiog set of orbits of the
symmetrie group Sv :

Sv\\2(~).
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ii) In coding theory we are after isometry classes of (n, k)-codes, Le. we consider the following set of
orbits of the isometry group H 1G := GF(q)· 1Sn on the set of subspaces of dimension k in the finite
vector space GF{q)n :

GF(q)· I Sn \\U{n, k).

But U(n, k) is too abstract to be handled, and so we need to consider generator matrices which consist
of k rows and n columns, and so they are contained in yx := (GF(q)A:)n. For obvious reasons we may
restrict attention 10 matrices without zero columns, Le. we will in fact consider the following set of orbits
(GLA:(q) comes in since a subspace has usually many bases):

GLA:(q)\\GF(qY I Sn\\(GF(q)A:\{O} )n.

According to Lehmann's Lemma the inner set of orbits can be replaced by

Sn\\{GF(q)·\\GF{q)A:\{o})n = Sn \\PA:-l (q)n,

where PA:-dq) denotes the projective space. This result is quite interesting since it clearly shows two
things: First of all it demonstrates why projective geometry plays such an important role in co~ing

theory, and, moreover, it shows why the Hamming codes are so prominent: A particular orbit is formed
by the injective mappings, these matrices generate simplex codes, the dual of Hamming codes.
iii) In design theory we are faced with existence problems, e.g. the existence of 7-designs with small
parameters (there is a well-known theorem that assures the existence of 7-designs, bU~J~e parameters
which guarantee the existence are astronomical). Designs can be considered a.s 0-1-so1i!.1iions of a big
systems of linear equations. Such problems become tractable by prescribing a group 01 aut.omorphisms.
We faund, as first 7-design with small parameters, one with parameters 7-(33,8,10) (the prescribed group
of automorphisms was prL2(32)) and as first 8-design with small parameters an 8-(31,10,93)"-design (with
PSL (3, 5)). In both cases the prescription of an automorphism group reduced the number of ~atrix entries
by a lactor of about 1010 .

Leonhard H. Soicher
Application cf computational group theory to the study of finite geometries

I spoke about same new and future features of the GRAPE package for computing with groups, graphs
and finite geometries.
One new function in GRAPE is for classifying (up to isomorphism) the partial linear spaces with given
point graph and parameters. A modification of this algorithm has been used to classify and discover
new uBailey squares". A Bailey square is an {n x n)/k semi-Latin square with the prope.rty that any
two distinct blocks have at most one point in common. Bailey squares are a generalization of mutually
orthogonal Latin squares, and are used in the Design of Experiments.
I also spoke briefly about joint work with Sarah Rees on practical algorithms to compute fundamental
groups and covers of finite simplicial complexes.

Gretchen Ostheimer
Algorithms for Polycyclic Matrix Groups

This is areport on work in progress concerning practical a1gorithms for studying infinite matrix groups.
I restriet my attention to polycyclic-by-finite groups as this is the setting' in which (most of) the in
teresting questions are actually decidable. I have developed algorithms for testing membership, finding
presentations, and computing normal closures and kemels of homomorphisms. For same of these alge
rithms I have completed experiments which show that they are efficient enough to be useful in studying
some moderately complicated examples; for others I have heuristic arguments that the algorithms are
practical.
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Eddie H. Lo
Enumerate Finite Index Subgroups of Polycyclic Groups

In this report, an efficlent algorithm to enumerate finite index subgroups of polycyclic groups given by

consistent polycyclic presentations is presented. This algorithm makes use of the wreath-product ordering

of coset tables defined by Sims. The algorithm enumerates all the subgroups of finite index less than or

equal to n using O(nm) memory, where m is the number of polycyclic generators, and it seems to be

efficient in terms of time.

Anton Betten
Construction of Solvable Groups

B. HUPPERT discusses the situation of anormal subgroup N of prime index in a group G (B. HUPPERT,

Endliche Gruppen I, 14.8). We reverse the situation to define groups G with prescribed normal subgroup

N of index p. Each solvable group G can be obtained by a sequence of extensions of this kind. One

can reduce the number of necessary extensions by considering the action of Aut(N) and Aut(G/N) _

the set of extensions. Nevertheless, one may still get isomorphie copies of the same group. To red~

the set of groups up to isomorphism one looks at invariants like Sylow-type, conjugacy c1asses, power

maps, characteristic series and so on. Finally, an isomorphism test for groups is realized via canonical

presentations of solvable groups. A systematic computation of the canonical form will also compute a

base and strong generating set for the automorphism group of the group in question.

Eugene Luks
Symmetry-breaking predicates

There have been very successful uses of symmetries to limit the search space in combinatorial optimization

problems. Typically, customised search engines are buHt with this in mind. To researchers in automated

reasoning, a drawback of the approach is the difficulty in coordinating with the complex search control

techniques that have been developed in recent years. In collaboration with the Computational Intelligence

Research Laboratory (Eugene, Oregon), we investigated ways to pre.-process tbe input problem so that

it targets only a canonical element in each orbit of a group of symmetries, whereupon it can be sent to

any existing and future search engines. Specifically, the objective is to design a Boolean pre(Ücate that is

satisfied only by a canonical (say, lex~least) element. In general, this problem is NP-hard. However, we

have provably-efficient solutions in cases corresponding to polynomial-time solvable instances of problems

such as finding centralizers in permutation groups. Notably, even for these tractable instances, we show

that "natural" approaches to the problem would have 100 to exponential-Iength predicates. This work is

joint with Amitabha Roy.

Arjeh M. Cohen
Algorithms for Lie algebras

In GAP a suite of functions for Lie algebras called ELIAS (for Einhoven Lie Algebra System) has
implemented by Willem de Graaf. In the talk, I discussed work of de Graaf, R6nyai, Ivanyos, _

and myself on algorithms developed for this purpose. The main goal was to be able to analyse a finite

dimensional Lie algebra given by a multiplication table. The algorithms highlighted in tbe talk were

the detection of the solvable and the nilpotent radicals, finding a non-nilpotent element and a Cartan

subalgebra (if any), finding a Levi-complement to the solvable radical (in characteristic 0), finding the

decomposition of a semisimple algebra, determining the type of a simple Lie algebra with nondegenerate

Killing form, and an effective version of Ado's theorem.
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Michael R. Vaughan-Lee

Lie relators in varieties oe groups

Mike Newman and I have used tbe theory of Lie relators to computc tbe orders of the free groups in the

variety of Engel-4 groups of exponent 5.

We used Wall 's tbeory of muJtilinear Lie relators to obtain a fuH description of the Lie relators which

hold in tbe associated Lie rings of EngeI-4 groups of exponent 5. We then used the nilpotent quotient

algorithm for graded Lie rings to compute the orders of the associated Lie rings of free Engel-4 groups of

exponent 5. Prom this we obtained tbe following result.

The free rank m group of thc varlety of Engel-4 groups of exponent 5 has order

sm+E.a, (';)(9.+«:.>,

where gk = (k - l)f2k + (k + 1)/211:-2, and where Ck = 0 for k > 10, and CA: has tbe value given in the

following table for 2 ~ k :$ 10.

(Here JA: is the k-th Fibonacci number.)

Mike Atkinson
Descent algebras

Descent algebras are subalgebras of the group algebra of a finite Coxeter group and have a natural

basis with integer structure constants. Therefore they have a p-modular version. Solomon first proved

the existence of the algebras in 1976 and gave a result about tbe radical in characteristic zero. We have

extended this result to characteristic p and given an explicit basis for the radical.

The irreducible representations in all characteristics have been found and are closely connected with the

tabIe of marks of the Coxeter group.

The algebras are not semi-simple even in characteristic zero and so an understanding of their represen

tation theory requires a study of their projective indecomposable modules whose composition factors

are given by a Cartan matrix. The relationship between the Cartan matrices in characteristics zero and

p has been fouod and this result is valid in a much more general setting which generalises a famous

result in group representation theory (also found by Geck and Rouquier). Applying the result demands a

knowledge of the decomposition matrix (which gives the modular composition factors of each irreducible

representation when reduced modulo p). These decomposition matrices can also be read from the table

of marks.
The Iecture surveyed these theorems and used a small descent algebra (that correspoD_ding to the Coxeter

group A3 ) as a running example to illustrate how they were used. .;,.

Robert A. Wilson
Taming tbe Monster

The Monster is the largest of the 26 sporadie simple groups, and up till now has been the only one

for which no computer construction exists. This has now been remedied, by effectively constructing the

196882-dimensional representation over GF(2).

Rather than storing such matrices explicitly, which would require about 5 GB each, we adopt a very

compact notation, occupying about 250 KB for each generator. Rather than multiplying matrices together,

which would take months on a modern workstation, we apply them to a vector, which takes seconds.

We hope to avoid consequent word-length explosion by exploiting the available fast calculations in the

subgroup 31+ 12 . 2Suz, whose action is elose to being tensor product E9 monomial EB small.

The general strategy of the construction is familiar:

1. Make the correct representation of the correct group 31+12 • 2Suz : 2.

2. Find standard generators of the subgroup 32+5+10 (Mll x.22 ).
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3. Change to standard basis and find the 16 extensions to 32+5+10(Mu x Da).
4. Eliminate 14 cases and show tbe other two are conjugate.
There are many technical and mathematical problems, many of which required writing new programs, or
at least extending or customizing old ones. Step 1 was largely done by Peter Walsh in his Ph.n. thesis
(Birmingham, 1996). The rest was done in collaboration with Richard Parker and Steve Linton.
The next step is obviously to optimize the implementation of the vector-matrix multiplications, and
hopefully bring the CPU time requirement down to a small fraction of a second. Then we may be able
to think about tackling some problems:
1. Is the Monster a Hurwitz group?
2. Does the Monster eontain subgroups isomorphie to L2(11) and/or L2 (59)?
Nevertheless these problems are still very bard, even if, as I expect, the answers are affirmative. A eomplete
determination of the maximal subgroups still seems unattainable.

Larry Finkelstein
Constructive recognition of black box groups isomorphie to SL(n, q), PSL(n, q), PGL(n, q)

joint work with Sergey Bratus, Gene Cooperman and Steve Linton

A polynomial time Las Vegas algorithm is presented for eonstrueting an isomorphism between a black box
group G known to be isomorphie to one of SL(n, q), P8L(n, q), PGL(n, q), with known n and q, and its
natural projective matrix presentation. The algorithm takes time O(nqp + n 21J + n3f) where IJ is the time
required for black box multiplication, p is the time required to produee a (nearly) uniformly distributed
random element of G, and f is the time required for a field operation. The algorithm is based on an
approach developed for the case q = 2 by Gene Cooperman, Larry Finkelstein and Steve Linton with new
ideas contributed by Sergey Bratus for the general case. The algorithm uses only elementary properties
of transvections and standard linear algebra. The authors believe that the simplicity and efficiency of the
method will lead to a praetieal implementation.

John McKay
Developments in Monstrous Moonshine

joint work with Mihai Cipu

Let fez) = l/q+ Lk>O akqk, q = e21riz , [mez) > 0, with aA: E cL'be a universal function. We shail further
assume that ak E ~ to avoid questions of Galois action.
We bave Newton relations between elementary symmetricfunctions (aA:) and tbe power sums Pn(f). :The
Pn are the Faber polynomials (see Curtiss Amer. Math. Monthly, 1971) described by Faber in 1903 in
ereIle. They are characterized by the property that Pn(f) - l/qn E qC[(qJJ. For us they arise from the
action of a (generalized) Hecke operator, Tn , on modular funetions of the form of f.
The Grunsky coefficient, hm •n is defined by

Pn(J) = l/qn + n * E hm,n *qm,
m~l

and is the coefficient of qm in Tn(f).
Norton defines replicable funetions by the additional property that hm,n = hr.8 when gcd(m, n) =gcd(r, s)
and lern(rn, n) == lerner, s).
The equations derived from the Newton relations together with the above property enable one to tackle
the problem of finding all replicable functions. Gröbner bases have been used for this purpose. Ad hoc
methods have been more sueeessfulleading to 619 replicable functions so far.
Dedekind, in 1878, derives tbe elliptic modular function, j(z), from tbe Schwarz differential equation.
This has the form 8(J)+ J'2.R(J) =0, where the differential resolvent, R(J)J has the form N(J)ID(f)2.
Roughly D(J) deseribes the eritical points of f, and N(f) deseribes the ramification (or the interna! angles
between the bounding arcs of circles of a natural fundamental domain for GJ J the invariance group of f).
The polynomials, D, and N, have been computed for all 619 known funetions. It is hoped, that edge iden- .
tifications will enable us to find presentations for all reflection groups generated by hyperbolic reflections
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in the arcs, and hence, eventually, presentations for the groups GI appearing as conformal subgroups of
tbe reflection groups.

Charles C. Sims
Subgroups of automorphism groups and other topics

This talk had four parts.
The first part described a solution to tbe following problem: Let G be a finite group and let X be a subset
of Aut(G). Find the order of the subgroup generated by X.
The solution assumes that G has aseries G = 51 ~ 82 ~ •.• ~ Sn+1 = 1 of characteristic subgroups such
tbat the quotients ISi/Si+ll are usmall". The algorithm has been given a prototype implementation in
GAP and used to study the automorpbism group of the Bumside group B(2, 5).
The second part discussed the problem of deciding membership in the ring of n x n rational matrices
generated by a given finite Bubset of Mn(OJ).
The third part raised a question about tbe running time of a computer program implementing multipli
cation in a (large) finite group as the amount of memory available to the program is varied.
The last part illustrated similarities and differences between the recent solution to the ul5-puzzle" and
attempts to determine the diameters of large Cayley graphs.

Robert Gilman
Computation with finite PREES

Every finite presentation may be changed by Tietze transformations into a multiplication table presen
tation, Le. tbe relators are the defined products ac = d etc. (Usually tbe table will hOave blanks in it.) By
imposing various axioms we abtain different classes of groups. For example ward hyperbolic groups can
be characterized by twelve or so axioms, and virtually free groups by an axiom scheme. Another axiom
gives a generalized small cancellation condition suitable for computation.

Mike Newman
Groups with exponent six

This is areport on some computational aspects of work in progress on presentations for groups with
exponent six. It is apart of joint work with George Havas, Alice Niemeyer and Charlie Sims.
It sbows how implementations of various algorithms can be used. These include: coset enumeration,
string rewriting, subgroup presentation calculations and soluble quotient calculations. These were done
in various contexts - Magma, GAP and Quotpic. In particular the question of how ~_any sixth powers are
needed to define the group (a, b Ia3 , b3 , exponent6) is discussed. .:~::.
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