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Differentialgeometrie im Großen
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Die Tagung "Differentialgeometrie im Großen" sollte dem Gedankenaustausch unter
Differentialgeometern dienen und zog dadurch viele Teilnehmer an, aus deren
neueren Forschungsergebnissen die Tagungsleiter W. Ballmann (Bonn), J.-P. Bour
guignon (Bures-sur-Yvette) und W. ZiHer (Philadelphia) ein interessantes Vor
tragsprogramm zusammenstellen konnten.

Die ersten Tage standen im Zeichen dreier Themensehwerpunkte: auf dem Ge
biet der Einstein- und Kähler-Einsteinmetriken wurd,n interessante Existenz- und
Regularitätsresultate vorgestellt, Beispiele für Gromov-Hausdorff-Grenzübergänge
oder allgemeine Konvergenzfragen unter Krümmungsvoraussetzungen untersucht,
und es wurden neuere Klassifikationsergebnisse möglicher Holonomien erzielt und
entsprechende Beispiele konstruiert. Zur Einführung in jedes dieser Schwerpunkt
gebiete wurde ein Überblicksvortrag gehalten. Daneben gab es Vorträge zu den
un tcrsch iedl ichsten Einzelergebnissen.

Insgesamt bot sich viel Anreiz zu angeregten Diskussionen, die allen Teilnehmern
neue mathematische Impulse gaben.

Vortmgsauszüge:

Lionel BERARD BERGERY:

Holonomy of pseudo-Riemannian manifolds

This was a survey talk on the holonomy of pseudo-Riemannian rrtanifolds, i. e. mani
folds M equipped with a Quadratic form of signature (p, q), p + q = n = dirn M.
HeTe, the canonical L~i-Civitaconnection D gives rise to a parallel transport along
curves inside M. The holonomy group at a point m is generated by all these parallel
transports along loops based at m. This is a Lie subgroup of O(TmM, Um), but not
all subgroups of O(p, q) are possible holonomies. In Riemannian geometry there is
a precise description of possible holonomy groups: any manifold is (at least locally)
a product IRdo x Mt x ... x Mr , where the product is Riemannian, ~do is flat
and each Mihas an irreducible holonomy H i , i. e. Hi acts irreducibly on TmMi.
Then the list of possible irreducible holonomy groups in the non-symmetrie ease
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is quite short (due to M. Berger) and examples have been given for each of them
(R. Bryant). In the pseudo-Riemannian case, the picture is more complicated, since
the decomposition in products leaves at the end "indecomposable" holonomy, that is
the case where H acts on TmM in such a way that there exists no (non-trivial) non
degenemte invariant subspace (but there may exist invariant degenerate subspaces).
As in the Riemannian case, there is a list of possible groups in the irreducible case
(Berger) (and a elassification of symmetrie spaees), but there is no such list in
the non-irredueible indecomposable case. A possible list is given in the Lorentz
case (through joint work with A. Ikemakhen in Marrakech), in the (2,2) case aod
more work has been done in the (n - 2,2) case (Ikemakhen). The (n, n) case has
some special features', since it is possible in that case to get two supplementary
totally isotropie invariant subspaces. In this last case, the metric may be given by a
potential, and the description of holonomy is elear. Finally, we give thc relationship
between the holonomy problem and the Ricci curvature, with special attention to
the case where the Ricci operator is not diagonalizable with respect to the metrie.

Olivier BIQUARD:

Einstein Metries with Cusps

We give a rigidity theorem for Einstein metrics on finite volume quotients of 2-dimc
eomplex hyperbolic space, generalizing LeBrun's theorem in the compact case: on
such a finite volume quotient, any Einstein metric g, complete, bounded curvature,
with diameter of the "horocyeles" going to zero and mean eurvature of these horo
cycles bounded below, differs (up to a constant) from the standard quotient metric
by a diffeomorphism.
The method consists in producing a nontrivial solution to the Seiberg-Witten equa
tions for the metric 9 (on a non-compact manifold): this is aehieved byapproxima
ting 9 by a sequenee of smooth metrics on a compactification and by studying the
convergence of solutions of the Seiberg-Witten equations on the compactification
for these approximating metrics.

Christoph BÖHM:

Examples of Einstein metries on spheres

We prove: S5, fj6, S7, S8 aod S9 earry infinitely many cohomogeneity one Einstein
metrics with positive scalar curvature. We obtain a sequence of Einstein metries,
denoted by gi, which converges for i ~ 00 to a "metric" goo, whieh is smooth
outside the singular orbits (totally geodesic submanifolds of codimension > 3).
More precisely: inj(gdIQl.:J ---+ 00 an~ K(gdIQl.:J -+ 00 on the singular orbi~ Ql

aod Q2.
One gets similar results for low-dimensional produets of spheres, e. g. for 52 x 53,
52 X S5 and 52 x 57. Hence, these manifolds carry infinitely many homogeneous
and inhomogeneous Einstein metrics with positive sealar curvature.

Robert BRYANT:

Finsler n-spheres of constant curvature

I review the basic constructions of Finsler geometry: a Finsler structure E on a
smooth n-manifold M is a (smooth) hypersurface E C TM ~ M, transverse to
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the fibers of 1r with the property that each fiber Er = E n TrM is a strictly convex
hypersurface enclosing Or E TrAf. If E = -Et we say that E is symmetrie. A Finsler
structure defines a notion of length for oriented immersions "y : {a, b] ~ Af and the
locally length minimizing curves in Mare the geodesics. There is a unique vector
field E on E that generates the geodesie flow. I recall how E carries a canonically
defined metric ds2 and contact structure w (for which E is the Reeb vector field).
I review the construction t for any u E E, of a canonical splitting T 1f(u)M = IRuffiu.l

together with a eanonical metric on u.l, together with a parallel translation along
geodesics for the bundle (1').1., where .., : [0, b] ~ M is a unit speed geodesie.
The Jacobi equation takes the form v+ R(..y(s))v = 0, where R(u) : u.l -t u.l. is
the flag eurvature operator, a symmetrie linear map. A Finsler structure is said to
have constant flag eurvature, if R(u) := c idu.J. for some constant c. One problem is
to describe the Finsler structures of eonstant flag curvature (a Riemannian Finsler
structure with constant flag curvature is of constant sectional curvature).
For surfaces (n = 2), one can be very explicit. I review Hilbert's construction of
a Finsler structure with c = -Ion any strictly convex domain in IR n and Akbar
Zadeh's 1988 result that a compact Finsler surface with R( u) == -idu.J. is necessarily
Riemannian. I then review my earlier construction of non-Riemannian Finsler
structures with R(u) == idu.!. on 52 and its relation with Guillemin'sspace ofZoll(rei
metrics. Pinally I state and prove

Theorem: If E C TM is a Finsler structure with constant flag curvature c =+ 1,
then ds2 - -:'2 defines a Kähler metric on the space A = EIE of geodesics
of M. When c = -I, there is a canonical pseudo-metric ds2

- w 2 (got by
reversing the sign of ds2 on the appropriate horizontal space) on A that is of
reduced holooomy GL(n - 1, IR) (as described in Berard-Bergery's talk).

Theorem: There is, up to projective equivalence, an n-parameter family of distinct
Finsler structures of constant flag curvature c = +1 on sn whose geodesics
are the great circles of the standard metric.

Dima BURAGO:

Geometrie approach to semi-dispersing billiards

The talk is based on a joint work with S. Ferleger and A. Kononenko. Let M be a
m-anifold with sectional curvature Ku ~ K o and injectivity radius Tinj ~ TO and Bit

i = I, ... , k a colleetion of smooth convex bodies Bi C M. We consider a billiard
system in the eomplement M \ UBi, where a particle moves along geodesics and
collides elasticaJly with the Bi 'so We assurne that this system is non-degenerate in
the sense that every point is contained in an open cone with vertex at this point.
We prove that:

Theorem 1: There exists a e such that every trajectory of length ~ I experiences
00 more than c collisions.

Theorem 2: Assume Ku :::; 0 and nBi "# 0. Then there exists a c such that every
trajectory experiences no more than c collisions.

Theorem 3: Assurne M is compact and K o ~ O. Then the topological entropy
htop is finite.
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As the main examples these theorems cover systems of balls in a box or empty
space (~n or Hn). The prüofs are based on gluing Alexandrov spaces of curvature
bounded above and distance-type estimations in these spaces. This problem is also
closely related to the problem of existence of gluing rules, which allow to glue a
compact space without boundary out of copies of a given block, e. g. a tetrahedron.

Eugenio CALABI:

Hotneometric embeddings of some homogeneous spaces in Hilbert space

Given two metric spaces (X, d) and (Y, d/), a topological embedding f : X -+ Y is
called a homeometric embedding, if there exists a monotone function cp : IR + -t

IR+, cp(O) = 0 (distortion funetion) such that for any two points X., X2 E X:
d'(f(XI)' f(X2)) = !p(d(XI, X2)). Example: for X = IR, Y = (Hilbert space) =
L2 (IR), !p(r) = J(r): f(x} = {t ~ ~(sign(x - t) + sign(t»)}. This property on
an embedding is interesting in the case where the ambient space (Y, d') is a (real)
Hilbert space.
A classical theorem by I. Schoenberg states that every metric spaee (X, d) (assumed
to be separable) admits a homeometric embedding in a separable Hilbert spaee
11 with distortion function rp(t) = tO if and only if 0 < a < ~. On the other
hand, if (X. d) is a Euelidean spaee and a distance function, a distortion function
(p?(t) = tO is compatible with a homeometric embedding f : X -+ H, if and only
if 0 < Q < 1, while a Euclidean n-sphere (sn, d = geodesie distance) admits a
horneometric embedding with distortion function cp(t) = tO, ifand only ifO < a ~ 4.
Consider the case where (X, d) is a Riemannian manifold with distance defined as
the geodesie distance in X, and assurne the existence of a homeometrie embedding of
X in H with distortion funetion cp(t) = ...ji (the "critieal value" of the exponent 0).
In this ease (X, d) must satisfy some strong cODditions touehing on possible closed
geodesics. Some more examples of explieit homeometric embeddings f : X -t H can
be constructed analytieally, if X is an irredudble symmetrie space of non-compact
type.

Tobias COLDING=

Regularity result,s for spaces with a lower Ricci curvature bound

In this talk we will discuss a theory of regularity and singularities of spaees which
occur as Gromov-Hausdorfflimits of manifolds with a uniform lower Ricd curvature
bound. We will also point out the similarities to the well-known regularity and
singularity theory of minimal submanifolds and harmonie maps. We ~ill also discuss
relations of this theory with geometrie measure theory. Most of the work in this
talk is joint work with Jeff Cheeger.

Jens HEBER:

N on-compact Homogeneous Einstein spaces

An Einslein solvmanifold is a l-connected solvable Lie group S (hence diffeomorphic
to IR n ), endowed with a left invariant Einstein metric Qo. We call (5, Qo) of standard
type, if (on the Lie algebra level), [s, s]1. is Abelian. All known examples of non-
compact homogeneous Einstein spaces are of this form. .
We exhibit structural and uniqueness results for standard Einstein solvmanifolds
and describe their role in the moduli space. We prove:
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l. Solvable Lie groups fall into three disjoint classes: Groups with an (essentially
unique) left invariant standard Einstein metric (subject to many algebraie
restrietions), groups with no left invariant Einstein metric (we provide many
classes of examples), aod groups with a nonstandard left invariant Einstein
metric (no example known).

2. Consider the moduli space Mn of n-dimensional Einstein solvmanifolds (with
COO-topology) and the subspace M~t of standard spaces. We prove: M~t C
Mn is open (union of finitely many compact path connected components)
and real semi-algebraic. For each component M' c M~" we give an explicit
representation C· -+ GL(V) (C· real algebraic, reductive, dirn V < 00), aod
a union MeV of cIosed C·-orbits such that M' is homeomorphic to C·,M.
We thus compute the dimension of Mn to be 0 near JRHn, eH", IHIH2 and
8m2 - 6m - 8 near IHlHm+l for m ~ 2, 84 near CaH 2 •

Dominique HU LIN:

Kähler-Einstein Metries and Projective Embeddings

We are mainly interested in compact Kählerian manifolds with either cdM) < Oor
cdM) = O. Since the work of Aubin-Calabi-Yau it is known that such a manifold
carries a Kähler- Einstein metric. But only few explicit examples of such metrics
are available as yet.
When M has ample canonical bundle (or more gene"rally when M is projeetive) one
ean wonder whether one of the Einstein metrics carried by M ean be obtained by a
eomplex embedding into a projective space equipped with its Fubini-Study metric.
We show that this never happens: namely that a eomplex submanifold of [pN which
is Einstein for the induced metrie must be Fano. This result contrasts with an
asymptotic theorem by G. Tian and T. Bouche which asserts that the Einstein
mctrie on a compact M with cdM) < 0 (which is unique up to dilatation) is a
limit of metrics induced by embeddings into projective spaces (whose dimensions
and holomorphic sectional curvature are unbounded).
In the same spirit, we show that any germ of a eomplex submanifold of the projeetive
space, which is Einstein for the induced metric, actually extends to a complete
complex submanifold of JRN, which is immersed without self-intersections, and that
the value ofthe Eiostein constant is a nonzero rational number (provided the Fubini
Study rnetric is normalized so to have say holomorphic sectional curvature I).

Thalia JEFFRES:

Kähler-Einstein Cone Metries

We look for a Kähler-Einsteio cone metric in a situation which falls roughly ioto
the negative first Chern dass ease.
Namely, suppose M is a compact complex manifold containing D~ a divisor with
one smooth irreducible component. We assume: KM + 0' D is ample. Let V be a
smooth volume form aod s a defining section of [D] and 0' areal number 0 < a < I.
The singular Kähler cone potential is
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w = i8[) log V is a current on M and a cone metric on n = AI \ D. Searching for a
rnetric w + 8äu which is Kähler-Einstein gives the usual Monge-Ampere equation:

det(9i3 + 8i 8;u) = eJ+u

det 9i] .
on O.

Analytic features are that n is non-compact and the background metric is itself
singular. This leads to the following in the application of the continuity method
described by Yau:
1. In thc openncss step, the horizontal operator is degenerate elliptic, and
2. in thc closeness step, the maximum principle must be applied to fundions which
may achieve a maximum in a cusp.
Thc first is dealt with by using weighted Hölder spaces and the theory of "edge"
elliptic operators, and the second by replacing u by u + F, with F a controÜable
fundion so that u + F achieves a maximum in a smooth manner over the interior
O.

Fran\ois LA BOURI E:

Projective structures and affine differential geometry

A flat real projective structure on a surface S is an atlas modelIed on IR p2 with
coordinate changes in PSL(3, IR). Tbe most simple exarnples are tbe following:
i) hyperbolic surfaces,
ii) convex surfaces in A3 , the affine 3-space.
For I), one uses the Klein model of hyperbolic space, for ii), one uses as a developing
map the map S -+ IR.p2, S ~·TJS, A convex Hat real projective structure (or IRp2
structure) is such that the developing map takes values in a convex set·in IR.p2.
In this talk we address the following question: is tbere a better surface (convex
surface in A3 ) which represent a given IR. p2_structure? Combining several results,
one shows that convex IRp2-structures are represented by affine spheres; for non
convex structures, one has to add a parameter, in this case a complex structure
on S. and then there is a one to one correspondence between non-convex IR. p2_
structures and affine surfaces with constant mean affine curvature 1; furthermore,
to each reprcsentation of rr.(S) in AII(3), there exists a unique affine surface with
constant affine Gauss curvature 1..This latter result gives information about the
action of rrdS) on AJ .

Joseph LANDSBERG:

Aigebraic geometry and local differential geometry

This talk is based on two related themes:

I. How many derivatives does one need Lo take ta see i/ a mani/old is built out 0/
linear spaces ~

Classically it was known that to see if a surface in [RJ is ruled by lines one
needs to take 3 derivatives at a general point. I discuss several generalizations
of this theorem, in particular, to see if an 71-fold hypersurface is ruled by lines
one needs to take n + 1 derivatives.
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11. Local and global differential geometry 0/ dual varieties (with B. flic)
I explain the loeal differential geometry of varieties X" C cpn+a with de
generate dual varieties. Ironically this project led us to study and salve an
open question in linear algebra, namely: Given a linear system A C S2([;l of
quadrics of eonstant rank r (i. e. for all q E A: rank q = r). How is dirn A
bounded in terms of n and r?

I. and 11. are related, because varieties with degenerate dual varieties are buHt out
of linear spaces and the results of I. provide strueture theorems for 11. in some
extremal eases.

Claude LEBRUN:

4-dimensional Einstein manifolds

Since the work of Hitchin and Thorpe, it has been known that a 4-manifold M 4 (al
ways assumed smooth, compact and without boundary) admits an Einstein metric
g only if its Euler charaeteristic X{M) and its signature r(M) satisfy the inequality
2X ~ 31 r l. Moreover, if 2X = 31rl, any Einstein metric is locally hyper-Kähler. As
an example of the latter, any Einstein metrie on the 4-torus l' must be flat.
In this lecture, a survey was given of various recent results concerning existence and
uniqueness of Einstein metrics. The main results are: .

Theorem A: (Besson-Courtois-Gallot) If M = 1l4 /r is a compact quotient of
hyperbolic 4-space, then the only Einstein metric on M, up to diffeomorphism
and rescaling, is the hyperbolic metric.

Theorem B: (LeBrun) If M 4 == <C1l 2 Ir is a compact quotient of complex hyper
bolic 2-space, then the only Einstein metric on M, up to diffeomorphism and
rescaling, is the complex-hyperbolic metric.

Theorem C: (LeBrun) There are infinitely many compact smooth simply connected
M 4 which satisfy 2X > 31rl, but which carry no Einstein metric.

Theorem D: (Sambusetti) If (a, b) is a pair of integers with a =b mod 2, there"is
a 4-manifold M 4 (with 1T'J(M) of exponential growth) such that X(M) = a,
r( M) = b, and such that AI carries no Einstein metric.

Theorems A and D follow from entropy estimates, whereas Theorems Band C are
proved by Seiberg-Witten theory.

Bernhard LEEB:

Characterizing symmetrie spaees and Euclidean buildings by their ge
ometry at infinity

Let X be a locally cornpact Hadamard space (CAT(O) space) which is geodesically
complete, i. e. every geodesie segment ean be extended to a complete geodesie.

Main Theorem: If the Tits boundary 8-rihX of X is a thick irreducible spheri-
cal building of dimension ~ I, then the following dichotomy occurs: X is a
Riemannian symmetrie space iff geodesics do not branch. If geodesics branch,
then X is a Euclidean building.
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Addendum: lf X and X' are as above, then every Tits isometry Orit8 X ----t 8Tit8 X'
whieh is eone topology continuous is indueed by a homothety X ----t X'.

These results ean be applied to extend the Mostov and Prasad Rigidity Theorems
as Gromov had done before in the smooth ease:

Application: Let X be a Riemannian symmetrie space or thiek Euclidean building,
irreducible and of rank > 2. Let X' be a locally eompact and geodesieally
eomplete Hadamard spa~e. Suppose that a finitely generated group r acts
properly diseontinuously and eocompactly on X' and X'. Then there is a
r-equivariant homothety X ----t X'.

Example: On a compact quotient of an irreducible symmetrie spaee of higher
rank there exists no pieeewise Euclidean (singular) metrie of non-positive
curvature.

Xiaobo LIU:

The homogeneity of infinite d~mensionalisoparametrie submanifolds

This talk is based on a joint work with Ernst Heintze. The major result presented
in this talk is the following theorem: Every irredueible, eomplete, eonneeted, full,
isoparametrie submanifold in an infinite dimensional Hilbert spaee with codimension
at least 2 is extrinsically homogeneous.
This result extends a similar theorem of Thorbergsson on the homogeneity of finite
dimensional isoparametrie submanifolds to infinite dimensions. Our method also
provide a new proof to Thorbergsson 's theorem which simplifies previous proofs
given by Thorbergsson and Olmos respectively.

Peter PETERSEN:

Comparison theory with integral curvature bounds

In this talk we explain how som~ of the classical comparison estimates for manifolds
with lower seetional or Rieci curvature bound extend in an integral sense to situa
tions where one only has integral sectional or Ried curvature bounds. This ean then
be used to establish generalizations of Heintze-Karcher volume comparison, rela
tive volume comparison, Cheng-Yau gradient estimates, Colding's L'2-Toponogov,
Abreseh-Gromoll exeess estimate, etc. With this foundational work one ean thus
establish several new optimal pinching and eompaetness results.

Xiaochun RONG:

Collapsed manifolds with pincbed positive sectional curvature

Let Mn be a manifold of sectional curvature 0 < d < KM" < 1, let X be an
Alex·androv space of curvature 2: -1. S~ppose tbe Gromov-Hausdorff distance
between Mn and X is less than e(n, J) > O. Our main results are presented in the
talk:
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A: If X has the lowest possible dimension ";], then Al n is diffeomorphic to a lens
space sn /7l q , such that

C(n,J) < < vol(S6)
vol(M") - q - vol(Mn)

B: If X has nonempty boundary, then Mn is diffeomorphie to a lens spaee provided
t depends also on the Hausdorff measure of X.

Mor"eover, a universal lower bound for the Hausdorff measure in terms of only n
and tS is given for whieh all examples of Mn in 8 are included.

Lorenz SCHWACHHÖFER

The classification of holonomies of torsion-free connections

In this talk, we present the recently completed classifieation of irreducibly acting
holonomies of torsion-free connections Uoint work with S. Merkulov). The list· of
possible holonomy groups eorrespond almost completely to the isotropy groups of
symmetrie spaees, as has been pointed out by W. Ziller. More precisely, we get the
following c1assification theorem for complex irreducible holonomy groups:

Theorem: Let He ~ Aut«(["l) be a semi-simple irreducible conneeted Lie sub
grollp, let K C He be its maximal compaet subgroup. Then:

1. If there exists an irreducible real symmetrie space G/ K, then He oceurs as a
holonomy.

2. If there exists an irredueible hermitean symmetrie space G/(U(l) . K), then
He and C- . He oecur as holonomy.

:1. If there exists an irreducible quaternionie symmetrie spaee G /(Sp( 1)· K), then
He oceurs as a holonomy.

4. The above are all irreducible holonomy groups, exeept

(a) G~ ~ Aut(C7
),

(b) Spin(7,C) ~ Aut(ce),

(c) C . S'p(2) ~ Aut(<C").

"-.i_

From here, we ean also deduce the possible real holo"nomy groups. We also describe
the method to prove the existence of connections with one of the holonomies as in
3. above. This method isbased on a quadratic deformation of a linear Poisson
structure, and taking loeal symplectic realizations üoint work with Chi, Merkulov).

Gang TIAN:

Kähler-Einstein metries with positive scalar curvature

This is a survey talk on Kähler-Einstein manifolds. We start with tbe definition of
Kähler-Einstein metrics and Calabi's problem. We first give all known and major
results on existence and uniqueness of Kähler-Einstein metrics in compact cases;
particularly, Yau's solution of Calabi's conjecture on Rieci-ßat metries. Then we
discuss non-compact eases. After describing what necessary algebraic conditions
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should be for complete Kähler-Einstein metries, we discuss major existence theo
rems due to Cheng-Yau, R. Kobayashi, Tian-Yau, etc. We also give abrief dis
cussion why it is also interesting to study Kähler-Einstein cone metries. Finally,
we discuss our recent work on Kähler-Einstein metrics with positive scalar curvR.
ture and stability of underlying manifolds in the sense of Chow-Mumford. This
includes a theorem relating the existence with the properness of a certain func
tional, which is the Lagrangian of complex Monge-Ampere equations considered.
Then we state a result which identifies the properness of the functional restricted
to thc space of induced metrics with the stability of Chow-Mumford. We end up
with a counterexample to a folklore conjecture: there is a Kähler-Einstein metric
on any compact Kähler manifold with positive first Chern dass and without any
nontrivial holomorphic veetor fields.

Domingo TOLEDO:

Monodromy and complex byperbolic manifolds

We review classical constructions of Picard (and reworked by Deligne-Mostow)
of complex hyperbolic surfaces arising from suitable cyclic hranched covers of IP' I.
Then we present arecent joint work with D. Allerck and J. Carlson on a similar
construction for cydic branched covers of IF3 , branched over a non-singular cubic
surface. Sy studying the monodromyand period map of this family of cyclic cubic
3-folds, we prove the following theorem:

Theorem: Let M be the moduli space of stahle cuhic surfaces in IF3
• Then there is

a natural isomorphism M ~ r \ CH4 , where CH 4 is the complex hyperbolic
4-space

CH4 = {I E IF(C) : hl, > O}

where h is the pseudo-hermitean form lIzo1l2 -lIz1112 -lIz2112 -lIz3112 -lIz411'l
and r is the following diserete subgroup of PU(h). Let E = zq-1tA ] be the
ring of Eisenstein integers, then f= Aut(ES,h).

Gregor WEINGART:

The first eigenva:lue of the Dirac operator on quaternionie Kähler man i
falds

Quaternionic Kähler manifolds are Riemannian manifolds with holonomy group
Sp(1)Sp(m) := Sp(l) x Sp(m)/71 2 c SO(IHF) together with a reduction of the
bundle of orthonormal frarnes to a principal Sp(l)Sp(m)-bundle. If M 4m is quater-

.nionic Kähler, spin and with positive scalar eurvature K > 0, then the first eigenvalue
A of the Dirac operator on spinors satisfies

Thus for aB holonomy groups allowing positive sealar curvature the appropriate
bounds on the first eigenvalues are known:
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h%nomy group eigenva/ue bound /imi1il19 mani/o/de"

SOm .x2 >~-!!!...- sm and others
- 4rn-1

Um, ,n odd .x2 > ~!!!±.! ccpm and others

I·

- 4 m
Um, nl even .x2 >~-!!!...- lCpm - I X T 2 and others

- 4 rn-I

Sp(I)Sp(m) A2 "> ~~ IIDPm only?
- .. m+2

€lnd apply it to the special section V 2 yj; E r(TM flJ TM 0 S), where 1/J E r(S).
~~J

Thc proof presented in the talk works for all three eases, without conceptual changes,
turning from 1st order differential operators (like Dirac and twistor operators) to
thcir hermitean squares (A- A), which are 2nd order 00 related to genuine 2nd order
00 on M by several "Weitzenböck" formulas. They are derived using representation
theory of the holonomy group by decomposing TM ®TM 0S using the associativity

(Sym2TM ffiA2TAI)@S

genuine 2nd order 00
and curvature terms

(TMflJTM)flJS TM flJ(TM t.?JS)

hermitean squares
of Ist order 00

T€lkao YAMAGlJCHI:

The eonvergence of 3-manifolds under a lower curvature bound

The st.udy of convergence or collapsing theory of Riemannian manifolds is com
plctely open except in the eases when the limit Alexandrov space has the possible
maximal or minimal dimension. In the case when the limit is a point, the complete
undcrst.anding includes the c1assification of all non-negatively curved manifolds,
wllich is quite far at this stage.
Thcrefore t.hc foeus here is on the three-dimensional case. In the joint work with
T. Shioya, we have darified the collapsing phenomena of c10sed (orientable) 3
rnanifolds with a lower sectional curvature bound and an upper diameter bound.
Let. k/i

3 , i = ],2, ... be such a sequence converging to an AJexandrov spaee X. We
have t.he fibration theorem in the case when X is a Riemannian manifold without
houndary.
So our main concern are the cases dim X = 1,2 and X has singularities. The
prohlem is t.o get the topology of a small neighborhood in Ml near the (essential)
singular point of X. This can be done by a rescaling argument with critical point
theory and by classifying the complete open no.n-negatively curved Alexandrov 3
spaces.

Berichterstatter: .W. Krarner, G. Weingart
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