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l\1ATHEMATISCHES FORSCHUNGSINSTITUT OBER\VOLFACH

Tagungsbericht26/1997

Partielle Differentialgleichungen

06.07.-12.07.1997

This workshop was organised by L. Craig Eva.ns (Berkeley): Gerhard Huisken(Tübingen), and Lean Simon
(Stanford). 45 participants have been invited to discuss new developments in the broacl field of partial
differential equations.
The program consisted of four 45-minutes lectures in the morning and was supplemented by same 20
to 30-minutes talks before dinner. The afternoons and the evenings offered the possibility for informal
discussions and joint work on projects.
The organisers and the participants are grateful to the Oberwolfach Institute for presenting the oppor
tunity and the resources to arrange this interesting meeting.
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Vortragsauszüge

BEN ANDREWS

Eigenvalue estimates with applications to geometrie evolution equations

'Ve consider a collection of evolution equations including
(1) Parabolic "Prescribed sealar curvature:' equation:
If Rt9t = - ~gt, then the metrics gt converge (after rescaling to fixed volume) to ametrie with R = K,
if they remain comparable to 90 up to scaling. The Kazdan-Warner obstructions to existence of such
metries imply that often the rescaled metries must "blow up:' for arbitrary initial data. The theorem of
Hersch also shows that for any non-constant K the same resuIt holds for generic initial data.
(2) Gauss cunrature flows:
Consider hypersurfaces moving by ~ = -'l1(n)KQ n, q, : sn ~ R+ smooth. \Ve prove an analogue
of Hersch's eigenvalue estimate which shows any possibly limiting solution is unstable if Q < n~2 or
if Q = n~2 and '1' is non-constant. Hence the isoperimetric ratio roust approach infinity for solutions
starting from generic initial data. 'Ve also prove analogues of the Kazdan-Warner obstructions: which
imply the same result for arbitrary initial data for many of these equations.

CLAIRE C. CHAN

Complete area-minimizing hypersurfaces with prescribed asymptotics at infinity

Given a minimal cone C = {rw : w E E, r > O} with isolated singularity, if C is strictl)" minimizing, it is
shown that there exists a large family of complete area-minimizing hypersurfaces asymptotic at infinity
to C: that is, surfaces of the form graphc u :: {x E Rn+l : x = rw + u(rw)ii(w) , rw E n c C} outside a
compact set, where ii is a choice of unit normal on C, and r- 1u(rw) =0(1) as r -t 00. The result holds
also in the strictly minimizing: non-strictly stahle case, although for simplicity: only the strictly stable
Ca5e is described here.
!VIore specifically, the linearisation of the mean cunrature operator, i.e. Jacobi field operator LC: admits
separation of variables. Separated solutions of LCt/J = 0 are of the form r"Y;+l,pj(w). In case C is also
strictly stable, the indices ,; are ordered as follows ... ':5 1'}+1 ':5 'j". < ,. < ,i < , .. s ,j <
o = ')+1 ':5 ... ,j ~ ,t+l .. '. \Ve denote by J, the J-dimensional space of "slow-decaying" Jacobi

fields {E;=l cjr"Yt+ltPi}' Corresponding to each minimizing hypercone with isolated singularity C are

complete hypersurfaces S± ~ graphcu± which are up to homotheties unique minimizers lying on either
side of C. A strictly minimizing cone is characterised by the slow decay r-Iu± =±c±r"Yt4>1 + O(r"Yi -t).
We show that .:J parametrizes a J-parameter family .M of distinct complete minimizing hypersurfaces.
In particular, if J > n + 2, there exists a continuum of non-congruent complete minimizing hypersurfaces
asymptotic to C at infinity.
A sketch of the proof goes as fOllOWS: By the contraction mapping principle, the set C\B1 (0) is perturbed
to a minimal surface (\\;th boundary) having the desired "slow-asymptotics:' at infinity. Specifically, given
tPl' 'l/J2 E 3, with ~tPIII:: 11,li21I: ~ f, there correspond minimal graphs UW1 ' 'U W2 satisfying

Now fixing some .,p E :J the perturbed surface Tl :> graphcul is then arbitrarily completed. Using Tl
as an obstac1e, a complete "one-side area-minimizing" surface T2 is found amongst surfaces lying on
one side of Tl. Then T2 :> graphCtL2 is used as an obstac1e to find a complete "one-sided rninimizer"
T3 :J graphcu3 (on the Tl side). The resulting T3 must then be actually minimizing. In the process of
obtaining the complete minimizer, a sequence of obstacle problems are solved while moving the prescribed
boundaries to infinity. The strictly minimizing property is used to guarantee that the sequence of solutions
does not diverge to infinity. In addition, by means oE a "fast-decaying" harner previously employed by
Hardt and Simon, each one-sided minimizer is sho\\''1l to be ''rapidly:' asymptotic to the abstacle, in the
sense that r- I (UI - U2), r- l (U2 - ua) = Q(r"Yi -f). Thus the minimizers {T3(1/J)}WE.7 finally obtained
still have distinct s]ow-asymptotics in the sense of (*).
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GERHARD DZIUK

Anisotropie mean eurvature flow of graphs

Anisotropy of space is introduced via an anisotropy function I : R n+ 1 ~ R + Voo-hich is positively homoge
neous of degree one. Tbe problem of mean cun~ture Bow for the graph r(t) = {(x: u(x: t)1 xE fl}: nc
Rn bounded: is to find a function u = u(x: t) which solves the equation

n

Ut - VI + IvuI2 E '"(PjPA: (vu: -l)uzjz • = 0
i,k=l

in n x (0: T). 1t is proved that under natural assumptions: inc1uding adequate convexity of'Y and 'Y-mean
convexity of an: a global classical solution exists. A Finite Element :Method for the numerical solution
of the problem is derived from a variational fonn of the equation and as)'-mptotic convergence is proved.
The algorithm can be applied experimentally to crystalline anisotropy_ This is joint work with Klaus
Declcelnick: Freiburg.

KLAUS ECKER

Interior estimates for mean eurvature ßow of spacelike hypersurfaces

\Ve present new interior gradient and curvature estimates for spacelike hypersurfaces in Lorentzian mani
folds evohing by mean curvature. The technical problems involved are very different from those arising
in mean curvature flow in Riemannian manifolds. . ~ ::1'--, -

These estimates are then used to establish the existence of a global srnooth solution of .the Bow for
arbitrary non-compact spacelike initial data in Ivlinkowski space. Selfsimilar solutions of the fiow will
also be discussed.

L. CRAIG EVANS

Monge-Kantorovich mass transfer and stochastic sandpile models

A problem posed by l\·longe in the early 1780:5 is: in modern terms: this: Given 2 measures dJ..L+ = j+dx
and dJ..L- = j-dy: with J j+ dx = J j-dy: find a mapping~· whieb minimizes the work

w[s] := Jc(x:§(x))j+(x) dx

... ~ ...~

Ir §. is a minimizer: a first-variation calculation shows DxC(x: §·(x» = D1J: for same potential va (=
Lagrange multiplier for the constraint (**». The cases C(x:y) = tlx - 111 2

: Ix - 111 are particularly
interesting.
Same (crude) models of "sandpile growth:' can be interpreted as a ~'Ionge-Kantorovich roass transfer on
a "fast:: time scale: e.g. j - Ut E aI[uJ: where u := height: [[u] = 0 if IDul :$ 1 a.e., = +00 otherwise .
Recently Rezakhanlou and I have introduced a related stochastic model:
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~1ARTIN FLUCHER

Construction of comparison functions by p-harmonic transplantation

\Ve define the p-harmonic transplantation of a radial function U = toGo to be u := t 0 G;r.. Here G:r.
denotes the p-Green:s function

The properties

-div (j\7G;r.IP-2vG:r.) =0

G;r. = 0

in n
on an

If.

lead to estimates that are complementary (and sharper) to those obtained by symrnetrization techniques.
The p-harmonic radius p(x) is defined by

G;r.(Y) = K(ly - xl) - K(p(x)) + 0(1) asy-.+x

where

K(r) = {c r;=T
-c log(r)

if 1 < p < n
if p = n

denotes the fundamental singularity of the p-Laplacian.
Reference: rvI. Flucher: Variational problems with concentration (Birkhäuser: to appear)

JENS FREHSE

Regularity for nonlinear mixed boundary value problems

A simple technique is presented to obtain H3j2-o,2-regularity for mixed boundary value problems. (The
Dirichlet and Neumann boundary may touch in corners with angles ::; 1800 .) This applies for equations
and systems

-DiFi(x, \7u) = -Difi

where the Pi corne from a variational integral JF(x, \7u)dx and uniform ellipticity is assumed.
For n = 3, also the stationary Navier-Stokes system is treated in a similar way. So it is for, say: 66.u = f
where H5j2-6,2 is achieved.
For Hencky:s law: the tangential derivatives of the stresses are proven to be in H- 1 j2: i.e.

Jlu(x + h) - u(x)1 2 dx K
s~p Ihl ::; :

h tangential. Imbedding theorems and weighted estimate yield LQ-properties for \7u and V2u. For
example, \7u E L3+6 for n = 3,u E Co.
This is joint work with Carsten Ebmeyer.

CLAUS GERHARDT

Closed hypersurfaces of prescribed mean curvature in conformally Bat space

\Ve prove the existence of c10sed hypersurfaces horneomorphic to sn of prescribed mean cun~ture in a
10cally conformally Hat space if n ~ 6.
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HANS-CHRISTOPH GRUNAU

Positivityand eritieal dimensions in a semilinear polyharmonie eigenvalue problem

\Ve are interested in the eritical behaviour of certain dimensions in the semilinear polyharmonie eigenvalue
problem

in
for

B,
101 $ m-1.

(1)

Here m E N, B C Rn is the unit ball, n > 2m: ). E R; s = (n + 2m}/(n - 2m) is the critical Sobolev
exponent.
Pueci and Serrin (1990) raised the question in which so called "critical dimensions:: the Dirichlet prob
lem behaves "eritically:' with respect to the existence of "ground states':. How does this phenomenon:
which was in the ease m = 1 discQvered by Brezis & Nirenberg (1983), depend on the order 2m
of the polyharmonic operator in (I), if m increases arbitrarily. Pucci and Serrin conjectured that if
n E {2m + 1, ... : 4m - I} the Dirichlet problem (I) has no radial solution for ). elose to O. Their conjec·
ture gains support from complementary existence results. Until now only parts of this eonjecture eould
be proven, a full proof seems to be out of reach.
On the other hand if the Pucci-Serrin conjecture is (slightly?) modified, a surprisingly simple proof can
be given. In the present talk I would like to show that if n E {2m + 1, ... : 4m - I} there is DO positive
radial solution to problem (1) for ). elose to O.
The proof reHes upon some positivity and monotonicity properties of higher order Dirichlet problems.
\Vith respect to such properties only little seems to hold for higher order equations and still less seems
to be known.

l\1ICHAEL GRÜTER

Regularity at the free boundary of minimal surfaces and harmonie mappings

Parametrie minimal surfaces in R 3 are eonformally pararnetrized mappings from a two-dimensional do
main into R 3 such that each eoordinate is a harmonie funetion. Free boundary and partially free boundary
problems for minimal surfaces have been studied sinee Couranfs book appeared in 1950. In particular,
the regularity problem has attracted the attention of a number of mathematicians ever sinee. Hefe I con
sider the corresponding regularity problem for harmonie mappings. For stationary harmonie mappings I
show regularity up to the free boundary by reducing the problem to a hvo-dimensional minimal surfaee in
R5 having its free boundary on a three-dimensional supporting surface. Earlier results by Hildebrandt,
Nitsche and myself ean then be applied and give the desired result. The construction ean be generalized
to the case of stationary points of conforrnally invariant integrals for mappings into Riemannian manifolds
and for supporting surfaees with boundary. For weakly harmonie mappings I have so far only been able
to exclude isolated singularities by using an idea of Saeks and Uhlenbeck.

NORBERT HUNGERSÜHLER

Uniqueness for n-Laplace typ e systems

This talk was based on joint work with Georg Dolzmann and Stefan lVlüller.
We eonsider the nonlinear elliptic system

-O'(x, u, Du) = J.l in TJ'(0):

u = 0 on an,

for u: n -+ R m, where J.L is an Rm-valued Radon measure with finite mass on an open bounded domain
n eRn. "Te assume that 0' has coercivity rate n and growth rate n - 1 in the gradient variable and
satisfies mild assumptions on the regularity and monotonicity together with a structure condition. Then,
there exists a solution u E B~:10(n) and Du E Lq(fl) for all q < n~ provided {lc is of type A. \Ve show
that in fact Du E Ln':X>(fl). In view of the Green~s function for the n-Laplace equation these results are
optimal.
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Ivloreover, if 0 is a Lipschitz domain and if u does not depend on U and is uniformly monotone, we prove
the following uniqueness result:
If 11" V E WI,l (OL U - v E W~,I (0) and Du, Dv E Ln,::x>(o) then

divu(x, Du) = divu(x,Dv) in V/(O),

implies u == v. In fact, it is sufficient to assume Dv E Lq(!l) for q < n, elose enough to n.

JOHN HUTCHINSON

Approximating H-surfaces of disc-type

In joint work with Gerd Dziuk (Uni\'. Freiburg) we consider the problem of obtaining finite element ap
proximations to solutions of the Plateau Problem for disc-like surfaces in R 3 having prescribed boundary
r and prescribed mean curvature H.
The appropriate variational setting is to obtain stationary points for the energy functional

I/, 2H JE(u) = 2' D IDuj2 + 3 U'Ux I\U1/

where D is the unit disc in R 2 and
u: D -+ R3

UIDD: 8D -+ r
is a monotone parametrization (ta rule out Jacobi fields corresponding to the conformal group, an integral
version of the three point condition is also imposed).
\Ve are interested in approximating both stable and unstable solutions, in particular the so-called small
and large H -surfaces.
The natural idea of working directly with piecewise linear elements (functions) in a discretized disc D '1 is
not used, due to the nonlinearity of the class of competing functions. Instead one considers H -harmonie
extensions of boundary functions v ; aD -+ r and writes v = "y 0 s for some fixed parametrisation
'Y: SI -+ r.
Thus we take CO n Ht - maps s : 8D -t SI with winding number one and consider the functional
l(s) = E(1' 0 s).
Denoting solutions of the smooth and a certain corresponding discrete problem by u and uh respectively,
we have proved in case H = 0 that near any u (not necessarily stable) there is a unique Uh, and that
moreover

where ,\ is the non-degeneracy constant for u.
Analogous results have also been obtained: if H f; 0, for the Dirichlet problem.
\Ve are currently applying the previous resuIts to the H i:- 0 Plateau Problem.

TO~I ILr..·IANEN

The inverse mean curvature :8ow

\Ve show long-term weak existence, compactness and partial regularity for the parabolic surface evolution

,~.. ;

1
v=li'

v = normal velocity, H = mean curvature, Nt a family of hypersurfaces flowing in an n-manifold.
The key ingredients are
(1) A variationallevel-set formulation whereby Nt = {u = t}, where u : AI -+ [0,00) minimizes

Ju(v]:= f rDvl + vrDur
JM\Eo
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I

I

h

where aEo = lVo.
(2) Elliptic regularization of the resulting level set equation

H{u=t} = IDul·

,An application is the proof of the (Riemannian) Penrose Inequality of general relativity.
This is joint work with Gerhard Huisken.

HITOSHI ISHII

Homogenization of the Cauchy problem for Hamilton-Jacobi equations

Asymptotic behavior of solutions of the Cauchy problem for Hamilton-Jacobi equations v.;th periodic
coefficients as the frequenc)" of periodicity tends to infinity is discussed. The limit functions are char
acterized as unique solutions of Hamilton-Jacobi equations with the Hamiltonians detennined by the
corresponding cell problems. Our results apply to the case where the initial data oscillates periodically
and so does the Hamiltonian both in the spatial and time variables.

NrNA ~1. IvocHKINA

The description of one class of fully nonlinear parabolic equations and some results con
cerning the solvability of the first initial boundary value problem

Evolutionary equations in question are described in terms of the pairs (G: D): D C R 1 x Sym(n):G :
D ~ R I . The domain D has to be convex and G to be concave over D and also' monotone: i.e.
C(s - u: 5 - 11) ~ C(s: S) if (s: S) E D(s}: q ~ 0: 11 ~ 0 are arbitrary.
\Ve require (8: BSB) E D if (8: S) E D and B is an arbitrary orthogonal matrix. Here and belaw
D(s) = {S: (s: S) E D}. Let O(s) = SUPOD(I) lims-+so G(s: S): G(5) = infD(s) limQ~::X>C(s, (5).
\Ve always assurne -00 :::; O(s) < O(s) :'5 00. Eventually the existence of v(s: G) is assumed S.t.

tr Gii(s,S) ~ v(s:C) > 0: Gij =8C/85ij : (s:5) E D.
Let a ~ 0: b, .4 > 0: AO ~ 0, lV be given functians and matrices respectively defined on Ci xRI xRn , Q =
fl X (0, T): fl eRn. \Ve introduce the operators s[u] = -aUt + b: 8[uJ = u(xx) - UtAO + W, G[u] =
G(s[u]: 5[u]) , u(;c;r) = A !uxxA t. By definition a function u is admissible Hf (8[U]: S[u])(z) E D, Z =
(x,t) E Q+.
Theorem. Let u E C2+a ,1+t(Q) n C4 •2 (Q) be an admissible solution to the problem

9 = g(z:u:ux ): '1': -I>z are given smooth functions. Assume that either a or A is strictly positive and G
is uniforrnly monotone over D: i.e.

Then lIullc2.1(Q) :'5 C (vo: lIullcl.o(Q)}. The conditional soh-ability of problems (*) sequels the Theorem.

ROBERT JERRARD

Vortex dynamics for the Ginzburg-Landau Schroedinger equation

\\Te characterize the asymptotic behavior in the limit e -+ 0 of solutions of the equation

iu~ - ßue: + 2..(lu I:1 2
- 1) uE = 0 in T 2 x [0, Tl

e2

for appropriate initial data hE
• In particular, we show that solutions exhibit "vortices:: and that these

vortices evolve by an ODE. If ~1 (t): ...,{n(t) are the limiting vortex locations: then
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where IV is the renormalized energy identified by Bethuel, Brezis and Helein. This resoh~es a wellknown
open problem.
Main ingredients in the proof are a new weighted energy estimate

for Ju€ := det Du, 1] smooth; and results which show that, if ~i are vortex locations,

are vortex degrees, then
Ju d.x ~ 1T E di 8(t

Il ~1T E 8(;

This is joint work with J. Colliander.

BERND KAWOHL

MaximUlll and Comparison Principles far Anisotropie Diffusion

Image processing leads to many interesting variational and diffusion problems. Among these problems
N. Kutev and I considered the so called Perona~l\·lalik model, in which a given gray-scale g(x) is supposed
to evoh'e into a sharper image under the How described by Ut - div (a(IDuI 2 )Du) = 0 in n x R+, with no
ßux condition on an x R+ and initial datum u(O:x) = g(x). A model case for a is a(s) = (1 + S)-I. If v
denotes -Du(x)/IDu(x)1 and 1] all the orthogonal directions to ~, the differential equation turns into

Ut = b(lDul 2 )uvv + a(lDuI 2 )ufJ 'l

where b(8) = (1 - s)(1 + 8)-2 changes sign at a threshhold So =.1. Therefore the spatial operator on
the right hand side is of mixed elliptic-hyperbolic type. In one space dimension the equation becomes
a forward-backward parabolic equation, for which maximum and comparison principles have preYiously
been dismissed as hopeless.
Assuming existence of weak C 1-solutions we prove a maximum principle: and for the case of one space
dimension we furthermore derive a number of qualitative results such as the preservation and enhancement
of "edges". rvIoreover we give a restricted comparison principle and suggest a way to prove the existence
of solutions.

GARY LIEBERMANN

Parabolie equations with exponential growth

It is well-known that solutions of parabolic equations of the form -Ut + div A(Du) = 0 have good
regularity properties provided A acts sufficiently like a polynomial. I showed that the same is true if
A(p) = exp(8Ipj2)p for some positive constant 8. In this ta1k, we discuss the corresponding equation ..
when A(P) grows even faster, for example A(p) =exp(exp(l + IpI2))p. For the analogaus elliptic equation -
div A(Du) = 0: such behavior is also well·understood.

THOMAS NEHRING

Hypersurfaees with prescribed Gauss curvature and boundary in Riemannian manifolds

Consider a strongly convex, strictly locally convex compact subset BeN: (N,'Y) a Riemannian manifold
of dimension n + 1; assume 8B is smooth and n c aB is a connected subset with smooth boundary
r = an. If there exists a strictly convex function 'lt : fj ~ R, and if K : iJ ~ R>o is a sffiooth function
with KlOß ~ KOß (the Gauss curvature of 8B), it is shown that there exists a hypersurface Al C B such
that
• KIM = KM and Al is strictly locally convex
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• aAl = r
• AI is diffeomorphic to n
The proof is based on mod 2 degree theory and the main ingredients for this are C 2-estimates at the
boundary. These are derived by looking at IV locally as aperturbation of Euclidean space and byapplying
methods which are knO'\\-ll to work in Euclidean space.

in n S; R .

on8n

f\1ICHAEL RUZICKA

Existence results for electrorheological fluids. .

The steady motion of a stear dependent electrorheological fluid is govemed by the system

-div T+u' vu + '\711" = J +XEE· vE
div u = 0

u=O
(1)

..
where the stress tensor T is given by

div E = 0

curl E = 0

E·n=Eo·n

in n (2)

(3)

T = 02 E®E + 03 D + Os (DE ® E + E® DE)

02 = 021 ((1 + IPI2)~ - 1)

03 = (031 + 033 IEI2 )(1 + IDI2)~

05 = 0:51 (1 + IDI2)~

pE Cl (R+); 1 < P:x> :5 p(s) :5 Po < 00.

\Vithin the framework of Sobolev-spaces T defines an operator with non-standard growth conditions
and thus monotonicity arguments cannot \Vork. Under certain conditions ensuring that T defines a
coercive~ monotone operator we show that for P;;o E (~, 6), Po < f(P;;o) there exist strong solutions
u E IV2 .r (O) n I'V~'Poc (0), r < p~~ E E w2 ,q(O), q > 3 of the system (1) - (3). Also in the time
dependent situation we obtain the existence of weak solutions if p:xJ E [2,6), Po < j(p:;,o). .

FRIEDRICH SAUVJGNY

Minimal surfaces in a wedge

This is areport on my joint investigations together with Professor Stefan Hildebrandt (Univ. Bonn) on
minimal surfaces solving a singular mixed boundary value problem (for minimal surfaces). \Ve observe
that minimal surfaces creep along the singular line of a support surface whieb consists of two halfplanes
meeting there. Furtherrnore, we derive an oscillation estimate for the unit normal of a minimal surface
having a wedge-type free boundary. This implies a result of Bernstein·type for minimal surfaces in a
wedge.

BARBARA STOTH

A free boundary problem in the mean fleld theory of superconductivity

'Ve prove a partial regularity result for a free boundary problem in the mean field theory of supercon
ductivity. It consists in detennining t/J E CO,1 (0) and q E Hloc (R2 ) with

9
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Here 0 S; R2 is a bounded domain and qX) is given with -ßqXl + qXJXOO ::;:; 0 in R2. This is a two
dimensional superconductivity model where w::;:; vJ.1j; is the vortex density and ii ::;:; vJ.g is the magnetic
field.
We show the
Theorem: Either q == const in 0 or A :::;:; {x E 01 q(x) ::;:; tf;(x), \/'q(x) ::;:; O} consists locally in 0 of
finitely many points.
To prove this theorem we extend a regularity result of Caffarelli/Friedman for the zero-set of functions
satisfying abound Ißv(x)1 :$ G Iv(x)1 to the case of functions satisfying the weaker bound Ißv(x)1 ~

G v(x), where v(x) is the radially maximal function

v(x}:::;:; sup Iv(tx}1
tEla,t]

In addition we extend the unique continuation theorem of Aronszajn and Cordes to cover this case.
This is joint work with R. Schätzle.

l\1ICHAEL STRUWE

U niqueness of harmonie maps with small energy

Let N be a smooth, compact k-manifold with aN ::;:; 0: isometrically embedded in Rn and let B =
B t (0; R3) ",;th aB ::;:; 8 2. For 9 E HI,2(S2; N) denote

H~,2(B;N} ::;:; {u E H I,2(B; N); 11 = 9 on aB}.

Theorem: There exist constants co ::;:; cO(lV) > 0: C::;:; C(N} such that for any ,q E HI.2(S2; N) with

E(g; 52) = ~h. IVgl2do < co

there is a unique harmonie map u E HJ,2(B; N) such that

sup r- I
( Ivul 2dx < CE(g)

:co,r>O JBnB.. (xo)

(1)

(2)

~Ioreover,u minimizes the Dirichlet energy in H~,2(B; N), u E C Xl nHi,2(B; N), and lIvullH,,2 :$ CE(g).
Remarks. (i) The result is related to the partial regularity results of Evans and Bethuel for stationary
harmonie maps.
(ii) In view of an example of Riviere of a nowhere continuous weakly harmonie map u E HI,2(B; 8 2 ),

condition (2) is essential for uniqueness.
(iii) The global regularity gain of half a derivative is best possible; even for harmonie functions.

VLADIMIR SVERAK

Periodic equilibria of a polyeonvex functional

\Ve give an example of a strictly polyconvex function f : A12 x 6 -+ R such that the Euler-Lagrange
equation

~~(D'U)::;:;OaxQ 8Xia

admits a non-trivial doubly periodic solution u : R 2 -+ R6.

FRIEDRICH TOMI

Existenz konvexer Hyperflächen mit vorgeschriebener Krümmung und gegebenem Rand

Es wird die Existenz lokal strikt konvexer n-dimensionaler Hyperflächen untersucht: die einen vorgegebe
nen Rand haben und deren Hauptkrümmungen AI: ••. , An eine Relation ~(Al' ... , An) =c erfüllen. Hierbei
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bezeichnet Sk: 0 ~ k '$ n, die elementarsymmetrische Funktion vom Grad k in n Veränderlichen: undc ist eine positive Funktion des Orts. Es handelt sich um gemeinsame Ergebnisse mit N. Ivochkina (5t.Petersburg).

TATJANA TORO

Geometry of measures

\Ve study the relationship between the geometries of a set in Rn+l and the doubling properties of themeasures it supports. In particular we show that the boundary of a domain in R n+ 1 is weIl approximatedby n-affine spaces if and only if asymptotically the doubling constant of its harmonie measure coincideswith the doubling constant of the n-dimensional Lebesgue measure.
This is joint work with C. Kenig.

NEIL S. TRUDINGER

Hessian measures

The k-Hessian operator Fk acting on functions u E C2 (fl), n open: C Rn: k = 1: .. :n; is defined by

Fk[U] = [D2 uh: = SUffi of k X k principal minors of Hessian matrix D2u.

An upper-semicontinuous fUßction u : 0 -+ [-00, 00) is called k-convex in n if Fk [q] 2:: 0 for all quadraticpolynomials q for which u - q has a loeal maximum in O. ~4)k(O) denotes the dass of proper k-convex functions in n (i.e. those ~ -00 on a cornponent of 0).Properties. (a) U E C 2 (O) n ~A:(n) {:> Fj{u] 2: 0: j = 1, .. : k.
(h) ~A:(n) c cPi(flL j ~ k ~ k-convex functions are subharmonic.
(c) tt E ~k(n) => mollifications Uh,J. U: E ~k(G'): h < dist(f'l':8fl).

Main theorem. For any u E 4>k(O) there exists a Borel measure /Lk[U] such that:
(i) }.Lk[uJ(e) = Je FA;[U] for Borel e: u E C 2(O)
(ii) if Um -t u in measure: {um} C <pk(fl}, Jlk(Um ] -t ILk{U] weakly.This is joint research with X.T. \Vang.

LlHE 'VANG

Weakly harmonie maps and biharmonic maps

Consider maps between manifolds

.· ..t! ...with energy:

iN lö'ul2
dVol.

Any weak solution of the Euler-Lagrange equation is called weakly biharmonic map.\Ve show the foIlowing:
Theorem 1: H n = 4: then any weakly biharmonic map is smooth.
Theorem 2: For general dimensions the stationary biharmonic is regular up to a set of (n -4)~dimensionalHausdorff measure O.
Our techniques also )field an easy proof for the regularity of weakly harmonie maps.
Theorem 2 was proved using a monotonicity formula.
This is a joint with A. Chang and P. Yang.

DANIEL W(ENHOLTZ

A method to exelude braneb points oe minimal surfaees
Let B C R2 denote the unit disco Assurne "'I E cr,~(Sl, Rn) is a regularly parametrized closed Jordancurve and let W E CO (.B ,Rn) n C2(B, Rn) be a minimal surface monotonically bounded by "'I: Le.(I) 6w =0,
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(2) IIwx ll 2 = IIwy ll 2 , (w:c:Wy) =0 in B,
(3) there exists 'P E CO(R: R) monotone: such that w(eit ) = ,(ei:P(t») and cp(t+27r} = ep(t) +211" for t E R.
Assurne w has a branch point (E B oforder v E N, i.e. wz(z) = A(Z-()II+C(lz-(III) as z --+.( with A E

Cn \ {O}.
If the function g(z) : = wu(z) 0 Wzz(Z) := Ei=} (w{z(z))2; f3 --+ C behaves like g(z) = a(z - ()L +
o(lz - ()L)as z --+ ( \\;th a E C \ {O} and 0 ~ L < 3v, and if (i) ( E B or (ii) L odd or (üi) Re{a(i()L+4} <
0, then there exists a C r - 6 -family W.\ E Cl (B: Rn), 0 ~ ,.\ < c, of mappings monotonically bounded by
l' (in the sense of (3)) with Wo = w and

D(w) := i Ja IIvwll2dx dy > D(w~) für 0 < >. < E (D is the Dirichlet energy).

So w is not a local minimizer of D.
Reference: D. \Vienholtz: Zum Ausschluß von Randverzweigungspunkten bei MinimaIßächen. Disserta
tion, Bann 1996. Also in: Banner Math. Schriften 298, Bann 1997

Author of the report:

Barbara Priwitzer
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