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Although probabilistic. cOlubinatorics goes back ahnost forty years~ to the work of
Erdös and Renyi on randOlll graphs alld Broadbent allel Hanllllersley on percolatiorr: over
tbe past teu years the subject has undergone dramatic changes with the infiux/of power­
ful new luethods alld the emergence of llew areas of application~ especially to COlllputer
science. The purpose of this Ineeting was to bring together people from cOlnbinatorics,
probability and conlputer science~ all of whom are concerned with probabilistic COlllbi­
llatorial structures. Alnong the theInes explored in the talks and discussions were new
aspects of: the Steiu.. Chen method. the inequalities of Jausan and Suen, Kohllogorov COlll­
plexity, sharp thresbolds for monotone properties, pseudorandomness, probabilistic graph
coIotlring~ randolnized algorithnls~ average case analysis of algorithms. learning pattern
languages. RaIllsey nUlubers. polYllomial tiIne approxitllation scheInes. first-passage per­
colation, rapid luixing and phase transitions.

A selection of talks will be pu blished in a special issue of Cornbinatorics, PTobability
and Computing. ---

J
Due to unfortunate circumstances, Andrew Barbour and Ingo Wegener were unable

to at tend tbe meeting; Martin Dietzfelbinger anel Friedhehn Meyer auf der Heide kindly
stepped in at short llotice to help with the running of the meeting.
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Random Graphs and Combinatorial Structures
28.9.-3.10.1997

Diameters and Isoperimetrie Inequalities in Sequence Spaces
Rudolf Ahlswede, Bielefeld

~ We survey a number of results obtained with L.K. Khachatrian. N. Cai, I. Althofer.
al1d Z. ZhOllg. These results fall into foul' classes.

1. Contributions to problems cOllcerning the diarnete7':
- a complete solution of the binary constant weight worst case diauleter problelll of

Erdös, Ko and Rado from 1938,
- an exact solu tion of the würst case diameter problenl in Halluning spaces over arbi-

trary alphabets, a
- an asymptotically optimal solution of the average case diameter problenl ill.Hanun.

spaces,
- an asymptotically optimal solution of the average case diameter problein for arbi­

trary ~'SUlu-type~' cost functions (including distances. Hamming. Lee, Taxi.... ) in sequence
spaces.

11. Contribu tions to edge-isope1-imetric probleins:
- derivation by information theoretical methods of asymptotically optitnal bounds

for a class of problems, including all cartesian sunl graphs and all sequellce spaces with
"aum-type" distance functions. In a special case we have an exact result,

- the lexicographic order is shown to be a solution of an edge-isoperimetric problenl for
any power (cartesian surn) of graphs exactly, if it is the solution for one and two factors. An
edge-isoperimetric theorem for powers of every complete bipartite graph is a cOllsequence.

111. Contributions to vertex-isoperimetric problems:
- a novel information theoretic result we call the '"Inherently Typical Subset-Lenlnla~'

implies a rate-wise asymptotically optimal vertex-isoperimetric theoreln. It is llOW already
. for the non-billary Hamming case (the binary case is settled exactly by Harper's well-kllowll

theorem).
- for the space (U~=o{O, l}n,O), where O(x"",yTl.) counts the luinhnal nUlnber of inser­

tions and deletions necessary to transform one word into the other, we establish an exact
vertex-isoperimetric theorem.

IV. A novel edge-diameter theorem for specified Hamming diameter sets in {O, l}n
with maximal nurnber of pairs of numbers with distance 1, whose proof is based on a K
"pushing-pulling" technique. .'

It seelns that an earlier method Qf generating sets. which originated in cOlnbinatorial
number theory and led to a solution of the problem of Erdös. Ko anel R.ado mentioned
above, cannot be applied here.

Phase Transitions and Hard Constraints (11) "­
Graham Brightwell, London

This follows on from the talk by Peter Winkler - see below.
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The situation can be extended as follows: now the edges of tbe constraint graph H
have activities Aij, and the Gibbs condition states that tbe conditional probability that a
finite 'patch: of sites in the regular free r takes on a certain configuratioll (i.e. the map to
H has a given restrietion e), is proportional to the product of the activities on the edges
AcP(a)cP(b). Every set of activities arises from some reversible Markov chain, with state space
V(H), run Oll T,.. We show that, provided H has two non-incident edges~ there are values
of the ).ij such that more than one reversibel Markov chain - and hence more than one
simple invariant Gibbs measure - corresponds to tbe set of activities.

We also consider aspects of ~'lnemory~' when running r-branching random walks ac­
cording to a Markov cbain M. Wbell r > 1/().2)2, where).2 is the second largest eigenvalue
of the transition matrix of M, just tbe number of colours at the distance-n leaves of T,.
gives information about tbe root colour: when r < 1/1>"212 , it does not suffice. For certain
constraint graphs, in particular for K 3 with no loops, a large branching of the tree suffices
to enable us to reconstruct the root calour with confidence, with high probability. This
illustrates a dichotomy between two types of constraint graphs, depending on whether
the set H om(T,., H) of bomomorphisms from T,. to H is connected under. simple-point
recolourings. .-..

Joint work with Peter Winkler.

Compound Poisson Approximation on Groups
Louis Chen, Singapore

Let X be a measurable abelian group, that is, an abelian group such that tbe group
operation is a measurable map of X2 to X. Let 7r be the compound Poisson distribution
e).(~-c5o), where >.. > 0, J.L is a probability measure on B{X) with no atom at the identity
O~ and 60 is the Dirac meäsure at O. That is, 1r = L(Y1 + ... + YN) where YI , Y2, ...
are independent X -valued randonl variables with COIDlllon distribution j.t. N is a Poisson
rand01TI variable with nlean >..~ alld N is independent of Y1 , Y2 , •...

For appropriate choices of X and jL, a Poisson distribution on Z, a compound Poisson
distribution on Z, a multivariable Poisson distribution on Zd and a Poisson.point process
can all he obtained as a compound Poisson distribution on a group. Thus the compound
Poisson approximation unifies various Poisson-related approximations.

Let Z = YI + ... + YN • By using the L 2 space approach, aStein identity of L(Z) is
found to be .

EP. Jf(Z + t)dj.L(t) - E(NIZ)f(Z)} =0

for a suitable choice of f. The conditional expectation E(NIZ) is difficult to COlllpute in
general, hut if N is a function of Z, then E(NIZ) will have an explicit form.

This is possible for the followillg special case. Let Ko be a subgroup of X and let
KI, K2, ... be distinct cosets of Ko such that K,. = K r - 1 + K 1 for r = 1,2,.... If
supp{J.L) C K 1 , then Z takes values in U~O K n and N = ?jJ(Z) where 'IjJ{Z) = r if
~ E Kr, r = 0,1,2, .... The above Stein identity for L(Z) then takes the explicit form:

E{>'! f(Z + t)dj.L(t) - '/fJ(Z)f(Z)} = 0
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and the Stein equation

AJf(w + t)dlL{t) - 'l/J(w)f(w) = h(w) - Eh(z)

can be solved analytically.
This provides a framework for compound Poisson approximation on groups in this

special setting. A special case of this setting is the multivariable Poisson approxilnation
on Zd for 1 ::; d ::; 00. As an application, we obtain a cOlnpound Poisson approxiInation
result bridging two extreme cases for certain SUlliS of independent group-valued randoIll
variables.

Probability vs. Paradoxity _
Walter Deuber, Bielefeld •

Tarski's alternative states the following. Let G be a pseudogroup of transfornlations
of a set X. Then either there is aG-invariant finitely additive probability lneasure on the
subsets of X, 01' else there is a paradoxical G-decomposition of X.

We discuss the situation for the pseudogroup W (X) of all bounded variations of the
identity. This is joint work with M. Simonovits anel V.T. S6s.

Approximately Counting Colourings and Independent Sets
Martin Dyer, Leeds

We review some recent results obtained jointly with Russ Bubley anel Catherine Green­
hilI on approximate counting of k-colourings and independence sets in graphs with Inax­
imum degree ß. For the case of independent sets of size s, this can be done provideel
S ::; I (ß + 1). For all independent sets, provided ß ~ 4. For indepelldence sets such that
size s has probability proportional to XS (0 < .x ::; 1) provided A ::; Ll~2' For colourings
.we describe attempts to achieve k < 2ß. This has been achieved only for tl = 3 01' ß = 4
and triangle-free.

Total Path Length for Recursive Trees
Bob Dobrow, Kirksville, Missouri

Total path length, or search cost, for a rooted tree is defined as the surn of all root­
to-node distances. Let Tn be the total path length for a random recursive tree of or_
n. Mahmoud showed in 1991 that Wn := (Tn - E{Tn])/n converges in distribution.
a nondegenerate limiting random variable W. Here we give two recurrence relations for
the moments of W n and Wand show that W n converges to W in LP. We cOllfinn the
conjecture that the distribution of W is not normal. We also show tbat

W4V(1 + W) + (1- V)W· - c(V),

whe1'e V is a uniform (0,1) random variable, W· is an independent copy of W, and c(x) :=
-x In x- (I-x) In( I-x) is the binary entropy function. Finally, we derive an approxhuation
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for the distribution of W using a Pearson curve density estimator. Simulations exhibit a
high degree of accuracy in the estimation.

The results were obtained jointly with James Fill.

Compound Poisson Approximation for Dissociated Summands
Peter Eichenbacher, Bielefeld

In joint work with M. Roos of Zürich, we consider an arbitrary finite collectioll of
indices r and for each a E r let .Ja be ß - 1 valued, possibly dependent random variables
and W := Luer Ja. The Poisson distribution provides good description of rare events.
If "clumps" of 1s tend to OCCUf, because of the dependence between events, it could be
hoped that approximation by a cC?mpound Poisson distribution would improve results.

We developed an estimation of the total variation distance of the law of Wand a
compound Poisson distribution for the class of dissociated .Ja.

Therefore we apply the Stein-Chen method for compound Poisson distributions in­
troduced by Barbour, Chen and Loh '92. We apply our results for counting k-runs in a
Bernoulli sequence, and colouri~g at random fixed graphs. We improve the:'g~neral Theo·
rem using asymptotic expansion techniques and apply it to a "DNA-breakage}' model.

Can Stoichastic Monotonicity Be Realized?
James A. Fill, Baltimore

With Motoya Machida we studied the following problem which arose in the comparison
of the Markov chaill Monte Carlo perfeet sampling algorithnls of Propp and Wilson and
of Fill. Consider a systenl P := (Pa: a E A) of probability lneasures on a comUl0n finite
partially ordered set (poset) S, indexed by a (possibly different) finite poset A. We say
that P is stochastically monotone if Pa $ Pb stochastically (meaning Pa(U) ~ Pb(U) for
every up-set U in S) whenever a ~ b. We say that P is realizably monotone if there exists
a system (Xa : a E A) of S-valued random variables defined on some common probability
space such that (i) X a has the distribution Pa for every a E A and (ii) X a ~ Xb (for all
sampie points) whenever a ~ b.

It is easy to see that stochastic monotonicity is a necessary condition for realizable
monotonicity. It is perhaps surprising that the condition is not always _sufficient. When
A = .S. we show that the two nations are equivalent if and only if the Hasse diagram
(regarded as an undirected graph) for A is acyclic. We show also that the notions agree
for a given A and arbitrary S if alld only if the Hasse diagram for A is acyclic, and that
they agree for a givell S anel arbitrary A if and only if tbe Hasse diagram for S is a disjoillt
union of paths.

Necessary and Sufflcient Conditions far Sharp Thresholds for Graph Properties
Ehud Friedgut, Jerusalem

In this talk we present some theorems about graph properties that "emerge slowly" in
the building of a random graph. Stated roughly, if the transition interval (the probabilities
for which one expects the property to appear with probability bounds fronl () anel 1) is
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large in comparisou to the critical probability then the property can be approxitnateel by
the property of having a subgraph from a given list.

Another theorem is that such "coarse" thresholds only take place when the critical
probability is elose to a rational power of h.

A Quick Approximation to Matrices and Its Applications
Alan Frieze, Pittsburgh

The aim of the lecture is to present results obtained jointly with R.avi Kaullan. We
give algorithms to find the following simply described approximation to a given Inatrix.
Given an m x n matrix A with entries between -1 and 1, say, and an error paralueter E

between () anel 1, we find (implicitly) a matrix D which is the SUtTI of ()(1/c2 ) sitllple rank
1 nlatrices such that the SUffi of entries of any one of the 2Tn+n submatrices of A - D is~
most Emn in absolute value. The time taken by our algorithms depellds only on E anel •
allowed probability of failure (not on m and n).

We draw on two lines of research to develop these algorithnls: oue is buHt aroulld the
fundamental regularity lenlnla of Szemeredi in graph theory anel the cOllstructive version
due to Alon, Duke, Lefmann, Rödl anel Yuster, allel the second Olle is fronl the papers
of Arora, Karge anel Karpinski, Fernandez de La Vega and, most direct1y, of Goldwasser,
Goldreich and Ron, who developed algorithms for a set of graph problems.

()ur luatrix approximation implies a great many results, including the above algo­
rithms, the regularity lemma and several other result.

We generalize our approximations to multi-dimensional arrays anel frolll that derive
approximation algorithms for all dense Max-SNP problems as weIl as a constructive version
of the regularity lemma for hypergraphs.

Probabilistically Checkable Proofs and Inapproximability
Johan Hästad, Stockholm

By designing an efficient probabilistically checkable proof for an arbitrary N P-statelllent
we get p - € inapproximability result for linear equations mod p. The result applies to
equations with only 3 variables in each equation. By reduction we get optimal inapprox­
imability results also for Max-k-Sat for k ~ 3. We also get improved, but not optimaL
results for Max-2-Sat, Max-Cut, Max-Di-Cut, and Vertex Cover.

On a Random Sphere of Influence Graph
Pawel Hitczenko, Raleigh

A random sphere 0/ infiuence graph is constructed as follows. Consider points dostributed
uniformly and independently in the unit cube of dimension d. Around each point Xi draw
a sphere (of influence) with radius equal to the distance to the point closest to it, anel draw
an edge between two points if their spheres of influence intersect.

Asymptotics for tbe expected number of edges is found, and a sharp concentration of
the total number of edges around its expected value is established by extendillg AZluna's
inequality. Also, bonnds on the tail of the kth largest radius are obtained, and used to
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prove abound on the variance of the size of a graph. Most of the talk is based on joint
work with T.K. Chalker, A.P. Godbole, J. Radcliff, and O.G. Ruehr.

An Algorithm For Heilbronn's Problem
Thomas Hofmeister, Dortmund

Heilbrol111 conjectured that among any n points in'tbe unit square there are three which
form a triangle of area O( 1/n2 ). Koml6s, Pintz and Szemeredi proved by a probabilistic
argument that this conjecture is false. To be precise, they proved that for every n there is
a configuration of n points in the unit square such that all triangles have area !l(log n/n2 ).

In this talk, we give a polynomial-time algorithm which for every n constructs such a
configuration of n points.

We then consider a generalization of this problem due to Schlnidt: what is the IniniInal
area of the convex hull of k of the points'! We obtain the following result. For every k ~ 4,
there is a polynomial-time algorithm which on input n computes n points in the unit square
such that tbe COllvex hull of any k of thenl has area H(1/n(k-l)/(k-2)). Schmidt proved
the existellce of such a configuration for k = 4. _

This is joint w~rkwith Claudia Bertram-Kretzberg and Hanno Lefmann from Dort­
mund.

New Versions of Suen's Inequality
Svante Janson, Uppsala

We give several new versions of Suen's inequality for the probability that none of a
nUlnber of dependent events occur. A typical result is that if {Bi} is a collection of events
with a dependency graph r~ then

where J.L = 'EP{Bi ), Ll = 'EijEEcr)P(Bi" B j ), 6 = SUPi 'Ej:ijEEcr) P({3j). Another
version, useful when Ll > J.L, is

The Swendsen·Wang Process Does Not Always Mix Rapidly
Mark .lerrum, Edinburgh

The Swendsen-Wang process provides one possible dynamics for the q-state Potts
model. (equivalently, the random cluster model) in the ferromagnetic case. It is widely
employed in computer simulations, and appears to converge rapidly to equilibrium in
situations of practical interest. Nevertheless, a simple example demonstrates that the
Swendsen-Wang process may take exponential time (in the size of syste~) to approach
close to the stationary distribution. Absence of rapid mixing is related to the phenomenon
of first-order phase transition, which is exhibited by the Potts model when q ~ 3. The
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question of whether the Swendsen-Wang process is rapidly mixing whell q == 2 (the Isillg
model) is open.

This is joint work with Vivek Gore.

Polynomial Time Approximation Schemes For Some Dense Instances of N P­
Hard Optimization Problems
Marek Karpinski, Bonn

We give an overview of a general method for designing polynomial tilne approxilnation
scheInes (01' approxinlation algorithnls) for dense instances of nlany N P-hard optinlization
problems including: MAX-CUT, SEPARAT()R., BISECTI()N, MAX-3-SAT. SETC()VER,~
STEINER TR.EE, VERTEX COVER, and BANDWIDTH. The unified luethod begins
with the idea of random sampling and tbe exhaustive placement, and then develops in.
a new approximation technique for smooth polynomial integer programs. Some oth.
apprximation techniques have been developed recently for problenls like STEINER TR,EE,
VERTEX C()VER.~ alld BANDWITH.

Checking Pseudorandomness of Graphs
Yoshiharu Kohayakawa, Sao Paulo

A sinlple idea is shown to be applicable in two contexts: (i) in the theory of pseu­
doralldolu or quasirandom graphs, as developed by Thomason and Chung, Grahaln alld
Wilson, and (ii) on the algorithmic aspects of ,Szemeredi's regularity lemnla as developed
by Alon, Duke, Lefmann, Rödl and Yuster.

R.oughly speaking, the idea can be stated as folIows. COllsider, for siInplicity. an
ln/2J-regular graph G = en on n vertices. Then, a nec~ssary alld sufficient cOlldition for
G to be a quasirandom graph is that the codegree

d(x~y) = Ir(x)nr(y)1

of the vertices x alld y should be approximately equal to n/4 for all pairs x~ y with ;r.
adjacent to y in a fixed Ramanujan graph J with V(.J) = V(G). The graph .J luay be
taken to be linear-sized, i.e. r-regular with r = o( 1).

This idea gives rise to a deterministic o(n2 ) time algorithm for checking quasiralldonl­
ness of graphs G = Gn, and also gives a o(n 2 ) time deterrninistic algorithm for cOllstructing
a Szemeredi partition of a given graph G = Gn. _

The results were obtained jointly with V. Rödl. -

Contrast-Optimal (k, n) Secret Sharing Schemes in Visual Cryptography
Matthias Krause, Dortmund

In joint work with Thomas Hofmeister and Hans U. Simon, we study the k out of n

secret sharing schemes introduced by M. Naor and A. Shamir in 1995.
Asender wishing to transmit a secret message c!istributes n trallsparellcies to n players.

If any k player show their transparencies togethei, the secret becomes visible. For any
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set of k - 1 players absolutely no information can be gained from their trallsparencies.
The important measure of the quality of a scheme is given by the contrast, the relative
difference in the grey levels of superpixels corresponding to white alld black pixels of the
original menage. Naor and Shamir could construct for all k (k, k)-scheme of contrast
2-(k-l) which they could prove to be optimal. Using an approacb from Coding Theory we .
can construct (2, n)-schemes which are optimal w.r.t. to contrast alld pixel expansion for
a11 n. Using a linear programming approach we give an efficient algorithm which conlputes
a contrast optimal (k, n)·scheme for all k ~ 11. from N.

By means of Approximation Tbeory we show that the largest possible contrast a
(k, n)-scbeme cau acbieve belongs to tbe interval

[
1 1 nk-n ]

4k - 1 ' 4k - 1 (11. - 1)(11. - 2) ... (n - k + 1) ,

alld it equals tbe upper bouud if and ollly if k = 2 01' 3.

Sparse O-l-Matrices
Hanno Lefmann, Dortmund

In this talk we consider the problem to determine the maximal number N(m, k, r)
of columns in a O-I-matrix with m rows, and exactly r ones per column, such that any
k columlls are linearly independent over Z2' For k 2:: 4, k even and r 2:: 2 the lower

1:1-

bouud N(m, k. r) = f!(rn2(T'=1)} is known frolll work of Pudleik, Savicky and Lefmaull.
Here we sketch a proof that for gcd(k - 1, r) = 1 this lower bouud can be iUlproved

lT
to N(71t, k, r) = U(71tm=t1 (log m)l/(k-l»). Furthenuore, we construct a polynonlial-titne
algoritllln acbieving this lower bound. There is still much to be done. For example, for
fixed values of k and r, we still do not know the correct order of N(m, k, r). Also, for
applications of the results, explicit constructions are desired.

This "js joint work with Claudia Bertram-Kretzberg and Thomas Hofmeister froln
Dortnlund.

ARemark About Dijkstra's Algorithm on Random Digraphs
Kurt Mehlhorn, Saarbrücken

We present joint work with Andreas Crauser and Uli Meyer.
In the standard implementation of Dijkstra's algorithm one vertex, is removed from

. the priority queue in" each iteration of the algorithm. This is a bottleneck for parallel
implementations and for implementations using externat memory. We show that if the
edge destinations are random and the edge weights are uniform then in each iteration
about /Q vertices can be removed from the queue, where q is the current size of the queue.
This implies that about .;n iterations suffice for Dijkstra's algorithm.

Graph Colouring with the Probabilistic Method
Mike Molloy, Toronto
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In this talk we eliscuss a siInple probabilistic technique and survey several of its ap-
plications. The technique is to colour a graph using the following proceclure:

1. assign a randonl colour to each vertex.
2. uneolour every vertex which receives the saUle colour as oue of its neighbours.
Clearly~ this will produce a proper partial colouring of the graph. The key step is to

prove that with positive probability~ this partial colouring will satisfy certain properties
which ensure that the colouring call be conlpleted successfully to an appropriate colouring
of the entire graph. The aspects of the techllique that val'Y froin applieatioll to application
are: a) exactly what properties we require the partial colouring to have; b) the Inallner in
which we cOlllplete the colouring. Two exanlples 01' this are the following.

a) We almost always equire that each vertex has nlany neighbollrs which retain their
colours. If the graph has Inaximunl degree ß and we use ß colours. then it is straight­
forward to cOlnpute that the expected number of such nieghbours is at least ~. Usi.
a standard concentration of probability tool such as Azuma's Inequality 01' Talagran.
Inequality~ we can show that the probability that this nUDlber is uluch slnaller than ~ is
exponentially sDlall in ß. Furthermore~ this ntllnber is independent 01' the correspoucÜug
nUlnbers for all vertices of distallce greater thall 4. Thus~ it is a straighforward applieation
of the Lovasz Local Leinnla to show that, with positive probability~ the subgraph inducecl
by the uncoloured vertices has maximum degree not much bigger than ß(1 - ±).

b) The lUOst common way to complete the colouring is to repeat the procedure on
the uncoloured vertices. It is important that any vertex which retaills its colour does not
lose it during any subsequent iteration. By ensuring that a significant portion of each
neighbourhood gets coloured during each iteration, we can guarantee that after ()(log~)

iterations~ the degree of the subgraph induced by the ullcoloured vertices is extreluely
SIllall , anel this allows us to complete the colouring in a straightforward luallner.

This technique works best when each vertex has relatively few edges withill its neigh­
bourhood. For exarnple, this is the case with triangle-fl'ee graphs allel line graphs. For
densel' gl'aphs we require a variation of the procedure.

We survey applications of the technique due to .lohansson, Kahn, Kiln. R,eed. anel
Molloy and Reed~ including bounds on the chromatic number of a triangle-free graph~ the
list chrornatic index of a graph, and the total chl'omatic number of a graph.

A Large Deviation Principle for the Giant Component in a Sparse Random
Graph
Neil O'Connell _

Let X n denote the size (in vertices) of the largest connected cOlnponellt in the rand.
graph G(n,;;), where c > O. Erdös and Renyi, in one of their early senlillal papers Oll

randorn graphs ('"'-'1960) proved that if c ::; 1, Xn/n converges in probability to 0; if c > 1,
Xn/n converges in probability to the positive solution ac to the equatioll a = 1.- e-ac .

We prove a large deviation principle for the sequence Xn/n: there exists a function
Je : [O~ 1] ~ R+ such that

lim .!.logP(Xn > xn) = -Ie(x)
n-oo n
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r

for x > ac

lim .!.log P(Xn < xn) = -Ic(x)
n-oon

for x < ac .

(This is also valid for c ~ 1 ~ setting ac =0 in this case.)
We also obtain an explicit expression for the rate fUllction Jc ' If c ~ 1~ there are 110

surprises~ the rate function looks nlore or less as expected~ but for c > 1~ the rate fuucHon
has a nlost unusual form.

In particular, if c > 1, Je is not convex. This means that the usual generatillg function
techlliques, based on exponential change of measure, do not apply here. We· prove this LDP
using a more general change of measure technique where~ instead of exponential tilting,
we SilUply vary the parameter c. The idea is to use the information contained in the
Erdös-Renyi laws of large numbers~ which hold for each value of c.

Induced Ramsey Numbers .:.::
Hans Jürgen Prömel, Berlin

We illvestigate tbe induced Ramsey number rind (G, H) of pairs of graphs. (G, H). This
llulnber is defined to be the smallest order of a graph r with the property that, whenever
its edges are coloured red and blue, either there is a red induced copY of O..or else a blue
induced copy of H. We show that, for any G and H with k = IV(G)I ~ t = IV(H)I, we
have

ril1d(G~ H) ::; tcklogq •.

where q = X(H) is the chrolnatic lluillber of Hand c is a universal constant. 'Furthenllore~
we also investigate ril1d(G~H) under some conditions on G. For instance~ we prove abound
which is polynolllial in both k and t in the case when G is a tree. In our proofs we luake
use of randonl graphs based Oll projective planes. .

The results were obtained jointly with Y. Kohayakawa from Sao Paul9" :~nd V. R.ödl
from Atlanta. .':

A Randomized Algorithm for k-SAT
Pavel Pudlak, Prague

We present a sitnple algorithnl which for a satisfiable k-CNF produces a satis(ying
tru th assignnlent in expected tinle 2u (1- t- )+O(log n) ~ where n is the nunlber of variables.

Learning Pattern Languages Fast On Average
Rüdiger H.:eischuk, Lübeck

Patterns are a simple and natural way to generate formal languages. The learnil1g
model we consider is exact learning in the litnit fronl positive data (Gold 1967). A sequence
of salllpie strings from the unknown pattern language L(1r) is presented to tbe learner. anel
after each new salllpie he has to COlllpute a hypothesis pattern tr' such that these hypotheses
evelltually eonverge to 7r.
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In contrast to IUOst previous work, our goal is to minimize the total learning titne,
not just the so-callecl update time for computing the next hypothesis. A new algoritlull
for learniug oue-variable pattern languages is proposed auel analyzed with respect to its
average-case behaviour. The main technical tool is a careful analysis of the eOlnbinatorics
of words generated by a I-variable pattern. For the expectation it is shown that for ahnost
all lneanillgful distributions defining how the pattern variable is replaced by astring to
generate random salllples of the target pattern language. this algoritlllu cOllverges withill
a COllstant lltllUber of rounds with a totallearning thne that is linear in the pattern length.
Thus, the algorithlll is average~case optiulal in a strong sense.

This is joint work with· Thomas Zengmann, Fukuoka.

Colourings Generated by Monotone Properties
Oliver Riordan, Cambridge

We give an account of some joint work with Bela Bollobas. Let Q be a (Illollotone
decreasillg) class of graphs and let <} E Q. Colonr the edges of G black. anel an edge e
of Ge P blue if G U {e} belangs to Q, and red otherwise. This red~blue-brack colouring
of the edges of K n was recently introduced by de Ia Vina alld Fajtlowicz, allel studiecl for
a number of properties. The black subgraph, which is restricted by the property Q. is
usually 'snlall', i.e. contains DO large complete subgraphs. The red-bItte colourillg is then
"generated by Q alld the blank edges, and it is this we wish to study. The general questions
we are illterested in is how 'close to randolu' this red-blue colouring call be, using the order
of the largest monochromatic complete subgraph as a lneasure.

In their paper, de la Vina and Fajtlowici answered this question for the property of
l-colourability, showing that there is al~ays a monochromatic clique of order 1-1/2 n l/2.

They conjectured with Erdös that for K ,.-free graphs, there IUUst be such a clique oforder
11. I/T'. We disprove this cOlljecture for all r ;::: 4, using randolll graphs in an ullexpectedly
complicated way. In fact. for r 2:: 5 we show that the largest Inonochroluatic clique call have
order ()(log 11.) which is best possible by R.amseyls theorelll. Since the ca.'3e "I(1·~free' nlight
be rather special, Erdös asked the same questions for graphs with 110 4-cycIe, strongly
expecting a nlonochrolnatic clique of order n E: We disprove this also, obtainillg a bOUllcl
of 0 ((log n)2), and it is this result which forms the main part of the talk.

Although our proofs are rather complicated. the central idea is fairly siIllple. We
COllnect an algorithm which performs aseries of tasks on the graph, asking if a ·certain
set of edges is present. Ta analyse the behaviour of this algorithm we use the followia
straightforward but usefullemma. •

Let Ub Uz be independent up-sets, and D a down-set in the weightedcube. Then
P(U1 IU2 n D} :5 P(U1 IU2 ) = P(UI We note that the independence condition is, perhaps
surprisingly, llecessary - without it there' is a counter-example in two dituensions!

I-Factors in €-Regular Graphs and the Blow-up Lemma
Andrej Rucinski, Poznan

R.ecently KOllll6s, Sarközy and Szemeredi proved theso-called Blow~Up Lelll111a: a
powerful theorem which allows one to embed a graph of bounded degree illtO allother graph
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with the salne nunlber of vertices alld sufficiently regular structure. This result~ even before
its explicit fonllulation~ has had llunlerous applications in graph theory, especially whel1
cOlnbined with the Regularity Lenlma of Szelneredi.

In the talk we present an alternative proof of the Blow-Up Leulma, obtained jointly
with V. R.ödl. which relies on sitllple facts about ral1dom I-factors in €-regula! graphs.

The Number of Boolean Functions Computed by Formulas of a Given Size
P. Savicky, Prague???

In joint work with A.R. Woods, we give estimates for the nunIber B{n, L) of distinct
functions C0111puted by propositiollal Jormulas of size L in n variables~ cOl1structed USillg
ollly literals alld 1\, V connectives.

Writing ß(n, L) = b(n, L) L, we find that if Land a(n) go to illfillity as n -+ 00 anel
L ~ 2n.ln(·t(n). then b(n~L) "'-J en, where e = 2/(ln4-1). For all L up to lllaxiultllll
c0111plexity, we have b(n, L) ~ n/4log 2. The last result cOl1tains an hnprovelnent on the
bOUlld Oll lllaxiultllll cOlnplexity given by Lu by.

Construction of Expander Graphs Using Kolmogorov Complexity
Uwe Schöning, Ulm

We consider as basic 1110del abipartite graph with a set L of n left vertices and and
a set R of .,\12, right vertices, with each vertex x E L having degree d and with each vertex
y E R having degree d/ >... This bipartite graph is an (o:,ß)-expander if every subset S of
L of size n'n has nlore than /1 An lleighbours. Such expanders call be shown to exist (for a
subtle choice 01' (x, J"l. d) by a probabilistic construction. As an. alternative, here we propose
an approach using Kohllogorov cOluplexity. The "interconnection pattern" between the left
anel right vertices is given by SOHle penllutation 1r of [dnJ. Choose 1r such that C(1r/n, d, >") ~
log((dn)!) where C denotes the cOllditional Kolmogorov complexity. If the graph G = G-rr
defined is not an expander. thell 1r could be nlore compactly desciibed thall by log( (dn)!)
bits. This can be done by splitting 7r into 2 bijections 1r}, 1r2 where 7r} : A -+ B; A, B ~ [dn].
For a ~'splir' penuutation 1r we have C(1r/d, >.., n~ A, B) ~ log( (dn)!) - h( JA/In)· n + lJ{log n),
where h is the binary entropy function. Thus we gain h( Q)n bits of entropy. This approach

leads to a theorenl, that says that an expander as described exists if d < h~:t)_t~~(tr:Jr:J~r:J' As
a further applicatioll, we reconsider the construction of supercollcelltrators and ilnprove'
the best known density of 36 to about 34.

Random Graphs Chromatic Decompositions via Squeezing Janson's inequality
EH Shamir, Jerusalem

Consider spaces of random graphs~ for example the spaces Yn,p of random graphs on
n-vertices. Also. {Xi hel is a collection of r-sets in G~ {Yt}tEL is a collection of (r - 1)
sets in G, Cl = is an event defined by the edges and non-edges in Yt . and Bi = is the event
that Ce occurs for sonle ('r - 1)-set Y/., ~ Xi'

Let us assllllle that the collection {Ce}lEL (anel hence {Bi}iEI) satisties the cOllditions
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needed for Jallson's illequality. The squeezed forDI we prove is

and
2

Pr(l\ iE1Bd ~ e-t?;

where J-L = LiE~ Pr(Bi }, 6. = Ei Et...... i Pr(Bi A Cl) anel i '" i if lXi n Yel ~ 2.
The Inaill advantage of this inequality is that in sonle applications 1~6. is llltich slualler

thall ß = Li L81"o1i Pr(Bil\BsL the quantity appearing in the (usual) .Tanson inequalities.
Note that

AiELBi :::: AlELClo e
We also present an application of this result to the Q-ehrOlnatic lltunbers of randolll graphs.
For a collection Q of graphs~ the Q-chrornatic numbe7' Xq( G) of a graph G is the nülliIllal
value of k such that V( G) == Uf=:l Vi~ with 110 G[Vi] cOlltainillg a lueluber 01' Q. Note that
if Q has only one Dlember then XQ( G} is precisely the chrolnatic l1uluber X( G).

In the book of Alon and Spencer, X(G} is COllIputed (with high probability) 1'01' randonl
graphs Gn ,1/2 with the aid of .lanson's inequality. Using the squeezed fonn~ we C0111pute
XQ(G) for sparse randoln graphs Gn,p, p(n) -4 O. All we have to assulne is that XQ{G) »
Ft·

Hereditarily Extended Properties and Quasi-Random Graphs
Mikl6s Simonovits, Budapest

In joint work with Vera T. S6s, we investigate graph properties P which do not iIuply
quasi-randolllness (in the Thomason-Chung-Grahaul-Wilson seuse) but a.re such t.hat if
every subgraph of a graph G has P then G is quasi-random. Sonle itnportallt instances are
closely connected to counting subgraphs of a given,type. We encotluter different phenolllena
depending Oll whether our subgraphs are assull1ed to be inducecl 01' not. A typical result

. is the following. .
Let L y be a fixed sampie graph and let {Gn } 'be a sequellce of graphs. 11' for sonle

fixed 'Y allel every induced F1I. ~ Gn we have .

as n ~ 00, then (Gn ) is p-quasi-randolll, where N(Ln ~ F n } is the lltuuber of {not .
necessarily induced} copies of L--y in Gn and p == p(,).

Generating d-Regular Graphs Quickly
Angelika Steger, Munich

In this talk we consider the following problein. Given n. d generate a (l;andoln) d­
regular graph on 11, vertices. A first solution to this problen1 is ilUplicit in t.he work of
Bollobas '80, who provided a proof for the asylllptotic nUluber of labelled d·regula.r graphs
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on n vertices based on a probabilistic argument. This approach irnluediately gives rise to
a uniforul generation algorithm of expected running time o(ed2

/4 nd}. Subsequently~ this
bound has been improved by various authors. The currently best bound was obtai:led in
a paper by McKay & Wornlald ~90. We improve this work by showing that the original
algoritlull based on Bollobas approach can be lllodified in order to abtain a fast alld easy
to iIllplelnent algorithul which generates d-regular graphs ahnost unifoflllly. The analysis
of our algoritlull is heavily based Oll various concentration inequalities for randonl graphs.

This is joint work with Nick Wonnald.

Inequalities for Means of First-Passage Times in Percolation Theory
John C. Wierman, Baltimore

First-passage percolation theory was introduced by Hammersley and Welsh in 1963.
The settiilg is an infinite graph. such as the square lattice~ in which every edge has a
non-negative randonl travel tiIue. The travel-time of a path is the SUfi 01' travel tiIlles of
the edges in the path. The object of study is the first-passage time between two points, Le.
the shortest travel tilne over any path betweell the two points. ASYlpptot.ic properties of
first-passage tilnes have been studied für 111any years and much has been leirned. However ~

little is known about first-passage times between points that are close to '-each other. In
fact. a counterexaluple disproves the natural coujecture that an expected first·passage
titne is a nondecreasing function of distance between the points. The talk introduces an
inequality between sums of pairs of first-passage times, which can be used to establish
SOllle nlonotonicity~ convexity~ al1d concavity properties of means of first-passage tilues.
These results are joint work with Sven Erick Alm of Uppsala University.

Peter Winkler, ??? .
we luodel physical systenls with ~'hard~' constraints by random homolu.orphislllS froll1

an infinite graph G to a fixed finite constraint graph H! whose Dodes are "equipped with
positive real ~'activitiesn AI, ... ,An. When Gis the infinite, regular k-branding.tree Tk • the
sitnple, invariant Gibbs lueaSures Oll Hom(G,H) correspond to node·weighted branching
randolll walks on H. .

We characterize the graphs H which exhibit multiple phases~ that is, those H for which
there are different node-weighted randolll walks yielding the salne activities Ab ... ~ An'

Joint work with Grahanl Drightwell~ London.

The Degree Sequence of a Random Graph
Nick Wormald, Melbourne

This is joint work with Brendan McKay of the Australian National University in
Canberra. A nl0del of the degree sequence of a random graph in g (n, p) was obtailled by
us recently. This model relates the degree sequence to the sequence of integers obtained
froin independent binolnial distributions subject to having even surn and averaged to a
certain etfect. This makes Inany previous restllts on the degree sequence luuch easier to
obtain~ to extend greatly. to Blake nlore precise~ anel to explain in tenns of the difference
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between the degree sequence model and the truly independent binonlial lllodel. ()ne of the
main steps is to obtain the difference between independent binolnials and the conditional
space in which the surn is even. In many interesting cases we show that the differellce is
negligible. The results depend on asymptotic enumeration results for graphs with a given
degree sequence~ for which there is a gap when the average degree is betweell (ojn) allel
cn/ log n. We have a conjectured asymptotic fonnula for this range which iluplies that our
model for degree sequence of G E 9(n,p) is correct when 0(1/ vn) < p < cf logn. For
other values of p we have proved the formula~ and hence the DIode!. correet.
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