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Although probabilistic combinatorics goes back almost forty years, to the work of
Erdés and Rényi on random graphs and Broadbent and Hammersley on percolatiorn over
the past ten years the subject has undergone dramatic changes with the influx/of power-
ful new methods and the emergence of new areas of application, especially to computer
science. The purpose of this meeting was to bring together people from combinatorics,
probability and computer science, all of whom are concerned with probabilistic combi-
natorial structures. Among the themes explored in the talks and discussions were new
aspects of: the Stein-Chen method, the inequalities of Janson and Suen, Kolmogorov com-
plexity, sharp thresholds for monotone properties, pseudorandomness, probabilistic graph
colouring, randomized algorithms, average case analysis of algorithms. learning pattern
languages, Ramsey numbers. polynomial time approximation schemes. first-passage per-
colation, rapid mixing and phase transitions.

A selection of talks will be published in a special issue of Combinatorics, Probability
and Computing. - :

Due to unfortunate circumstances, Andrew Barbour and Ingo Wegener were unable
to attend the meeting; Martin Dietzfelbinger and Friedhelm Meyer auf der Heide kindly
stepped in at short notice to help with the running of the meeting.
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A i’t}nﬁoiﬁ Graphs and Combinatorial Structures
28.9.-3.10.1997

Diameters and Isoperimetric Inequalities in Sequence Spaces
Rudolf Ahlswede, Bielefeld ;
" We survey a number of results obtained with L.K. Khachatrian, N. Cai, 1. Althofer.

and Z. Zhong. These results fall into four classes.

L. Contributions to problems concerning the diameter:

- a complete solution of the binary constant weight worst case diameter problem of
Erdés, Ko and Rado from 1938,

- an exact solution of the worst case diameter problem in Hamming spaces over arbi-

trary alphabets,

- an asymptotically optimal solution of the average case diameter problem in .Hamm_‘
spaces, '

- an asymptotically optimal solution of the average case diameter problem for arbi-
trary “sum-type” cost functions (including distances, Hamming. Lee, Taxi.... ) in sequence
spaces.

II. Contributions to edge-isoperimetric problems:

- derivation by information theoretical methods of asymptotically optimal bounds
for a class of problems, including all cartesian sum graphs and all sequence spaces with
“sum-type” distance functions. In a special case we have an exact result,

- the lexicographic order is shown to be a solution of an edge-isoperimetric problem for
any power (cartesian sum) of graphs exactly, if it is the solution for one and two factors. An
edge-isoperimetric theorem for powers of every complete bipartite graph is a consequence.

I11. Contributions to vertez-isoperimetric problems:

- a novel information theoretic result we call the “Inherently Typical Subset-Lemma”
implies a rate-wise asymptotically optimal vertex-isoperimetric theorem. It is now already

" for the non-binary Hamming case (the binary case is settled exactly by Harper’s well-known
theorem).

- for the space ({Jz,{0.1}".0), where #(z™,y™) counts the minimal number of inser-
tions and deletions necessary to transform one word into the other, we establish an exact
vertex-isoperimetric theorem.

IV. A novel edge-diameter theorem for specified Hamming diameter sets in {0,1}"
with maximal number of pairs of numbers with distance 1, whose proof is based on a n
“pushing-pulling” technique.

It seems that an earlier method of generating sets. which originated in combinatorial
number theory and led to a solution of the problem of Erdés, Ko and Rado mentioned
above, cannot be applied here.

Phase Transitions and Hard Constraints (II) .
Graham Brightwell, London
This follows on from the talk by Peter Winkler - see below.
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The situation can be extended as follows: now the edges of the constraint graph H
have activities A;;, and the Gibbs condition states that the conditional probability that a
finite 'patch’ of sites in the regular free r takes on a certain configuration (i.e. the map to
H has a given restriction e), is proportional to the product of the activities on the edges
Ag(a)e(b)- Every set of activities arises from some reversible Markov chain, with state space
V(H), run on T,. We show that, provided H has two non-incident edges, there are values
of the A;; such that more than one reversibel Markov chain - and hence more than one
simple invariant Gibbs measure - corresponds to the set of activities.

We also consider aspects of “memory” when running r-branching random walks ac-
cording to a Markov chain M. When r > 1/(A2)?%, where A, is the second largest eigenvalue
of the transition matrix of M, just the number of colours at the distance-n leaves of T;
gives information about the root colour: when r < 1/|Xz|?, it does not suffice. For certain
constraint graphs, in particular for K3 with no loops, a large branching of the tree suffices
to enable us to reconstruct the root colour with confidence, with high probability. This
illustrates a dichotomy between two types of constraint graphs, depending on whether
the set Hom(T,,H) of homomorphisms from T, to H is connected under s1mple-pomt
recolourings.

Joint work with Peter Winkler.

Compound Poisson Approximation on Groups
Louis Chen, Singapore

Let X be a measurable abelian group, that is, an abelian group such that the group

operation is a measurable map of X2 to X. Let 7 be the compound Poisson distribution

er#=%) where A > 0, u is a probability measure on B(X) with no atom at the identity
0, and bo is the Dirac measure at (. That is, 7 = L(Y; + ... + Yy) where Y1.Y,..
are independent X-valued random variables with common dxstrlbutlon ©. Nis a Poxsson
random variable with mean A, and N is independent of ¥;,Y3,.

For appropriate choices of X and u, a Poisson distribution on Z .a combound Poisson
distribution on Z, a multivariable Poisson distribution on Z¢ and a Poisson point process
can all be obtained as a compound Poisson distribution on a group. Thus the compound
Poisson approximation unifies various Poisson-related approximations.

Let Z=Y; +...+ Yn. By using the L? space approach, a Stein 1dent|ty of L(Z) is
found to be

E{) / 1(Z +)du(t) - E(N|Z)f(2)} = 0

for a suitable choice of f. The conditional expectation E(N|Z) is difficult to compute in
general, but if NV is a function of Z, then E(N|Z) will have an explicit form.

This is possible for the following special case. Let Ky be a subgroup of X and let
K;,K,,... be distinct cosets of Ky such that K, = K,_; + K, for r = 1,2,.... If
supp(p) C K, then Z takes values in JJoo Kr, and N = 9(Z) where ¢(Z) = r if
£ € K,,r=0,1,2,.... The above Stein identity for L(Z) then takes the explicit form:

E{x / H(Z + t)du(t) - 9(2)F(2)} = 0
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and the Stein equation

A / Flw + £)d(t) — $(w) f(w) = hw) — Eh(z)

can be solved analytically.

This provides a framework for compound Poisson approximation on groups in this
special setting. A special case of this setting is the multivariable Poisson approximation
on Z¢ for 1 < d < co. As an application, we obtain a compound Poisson approximation
result bridging two extreme cases for certain sums of independent group-valued random
variables.

Probability vs. Paradoxity
Walter Deuber, Bielefeld

Tarski’s alternative states the following. Let G be a pseudogroup of transformations
of a set X. Then either there is a G-invariant finitely additive probability measure on the
subsets of X, or else there is a paradoxical G-decomposition of X.

We discuss the situation for the pseudogroup W(X) of all bounded variations of the
identity. This is joint work with M. Simonovits and V.T. Sés.

Approximately Counting Colourings and Independent Sets
Martin Dyer, Leeds

We review some recent results obtained jointly with Russ Bubley and Catherine Green-
hill on approximate counting of k-colourings and independence sets in graphs with max-
imum degree A. For the case of independent sets of size s, this can be done provided
s < 5(A+1). For all independent sets, provided A < 4. For independence sets such that
size s has probability proportional to X* (0 < A < 1) provided A < ﬁ. For colourings
we describe attempts to achieve k < 2A. This has been achieved only for A =3 or A =4
and triangle-free.

Total Path Length for Recursive Trees
Bob Dobrow, Kirksville, Missouri

Total path length. or search cost, for a rooted tree is defined as the sum of all root- i
to-node distances. Let T, be the total path length for a random recursive tree of or
n. Mahmoud showed in 1991 that W,, := (T, — E[T,])/n converges in distribution‘
a nondegenerate limiting random variable W. Here we give two recurrence relations for
the moments of W,, and W and show that W, converges to W in LP. We confirm the
conjecture that the distribution of W is not normal. We also show that

WEV1+W) + (1= V)W* = V),

where V is a uniform (0,1) random variable, W* is an independent copy of W, and &(z) :=
—zlnz—(1—z)In(1-z) is the binary entropy function. Finally, we derive an approximation
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for the distribution of W using a Pearson curve density estimator. Simulations exhibit a

high degree of accuracy in the estimation.
The results were obtained jointly with James Fill.

Compound Poisson Approximation for Dissociated Summands
Peter Eichenbacher, Bielefeld

In joint work with M. Roos of Ziirich, we consider an arbitrary finite collection of
indices I' and for each o € T let J, be § — 1 valued, possibly dependent random variables
and W := 3. Jo. The Poisson distribution provides good description of rare events.
If “clumps” of 1s tend to occur, because of the dependence between events, it could be
hoped that approximation by a compound Poisson distribution would improve results.

We developed an estimation of the total variation distance of the law of W and a
compound Poisson distribution for the class of dissociated .J,.

Therefore we apply the Stein-Chen method for compound Poisson distributions in-
troduced by Barbour, Chen and Loh ’92. We apply our results for counting k-runs in a
Bernoulli sequence, and colouring at random fixed graphs. We improve the general Theo-
rem using asymptotic expansion techniques and apply it to a “DNA-breakage” model.

Can Stoichastic Monotonicity Be Realized?
James A. Fill, Baltimore

With Motoya Machida we studied the following problem which arose in the comparison
of the Markov chain Monte Carlo perfect sampling algorithms of Propp and Wilson and
of Fill. Consider a system P := (P, : a € A) of probability measures on a common finite
partially ordered set (poset) S, indexed by a (possibly different) finite poset A. We say
that P is stochastically monotone if P, < P, stochastically (meaning P,(U) < P,(U) for
every up-set U in S) whenever a < b. We say that P is realizably monotone if there exists
a system (X, : a € A) of S-valued random variables defined on some common probability
space such that (i) X, has the distribution P, for every a € A and (ii) X, < X; (for all
sample points) whenever a < b.

It is easy to see that stochastic monotonicity is a necessary condition for realizable
monotonicity. It is perhaps surprising that the condition is not always sufficient. When
A =5, we show that the two notions are equivalent if and only if the Hasse diagram
(regarded as an undirected graph) for A is acyclic. We show also that the notions agree
for a given A and arbitrary S if and only if the Hasse diagram for A is acyclic, and that
they agree for a given S and arbitrary A if and only if the Hasse diagram for S is a disjoint
union of paths.

Necessary and Sufficient Conditions for Sharp Thresholds for Graph Properties
Ehud Friedgut, Jerusalem

In this talk we present some theorems about graph properties that “emerge slowly” in
the building of a random graph. Stated roughly, if the transition interval (the probabilities
for which one expects the property to appear with probability bounds from 0 and 1) is
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large in comparison to the critical probability then the property can be approximated by
the property of having a subgraph from a given list.

| Another theorem is that such “coarse” thresholds only take place when the critical
probability is close to a rational power of h.

A Quick Approximation to Matrices and Its Applications
Alan Frieze, Pittsburgh

The aim of the lecture is to present results obtained jointly with Ravi Kannan. We
give algorithms to find the following simply described approximation to a given matrix.
Given an m X n matrix A with entries between —1 and 1, say, and an error parameter ¢
between 0 and 1, we find (implicitly) a matrix D which is the sum of O(1/€?) simple rank
1 matrices such that the sum of entries of any one of the 2™+" submatrices of A — D is
most emn in absolute value. The time taken by our algorithms depends only on € and 6
allowed probability of failure (not on m and n).

We draw on two lines of research to develop these algorithms: one is built around the
fundamental regularity lemma of Szemerédi in graph theory and the constructive version
due to Alon, Duke, Lefmann, R6dl and Yuster, and the second one is from the papers
of Arora, Karge and Karpinski, Fernandez de La Vega and, most directly, of Goldwasser,
Goldreich and Ron, who developed algorithms for a set of graph problems.

Our matrix approximation implies a great many results, including the above algo-
rithms, the regularity lemma and several other result.

We generalize our approximations to multi-dimensional arrays and from that derive
approximation algorithms for all dense Max-SNP problems as well as a constructive version
of the regularity lemma for hypergraphs.

Probabilistically Checkable Proofs and Inapproximability
Johan Haistad, Stockholm

By designing an efficient probabilistically checkable proof for an arbitrary NV P-statement
we get p — € inapproximability result for linear equations mod p. The result applies to
equations with only 3 variables in each equation. By reduction we get optimal inapprox-
imability results also for Max-k-Sat for £ > 3. We also get improved, but not optimal,
results for Max-2-Sat, Max-Cut, Max-Di-Cut, and Vertex Cover.

On a Random Sphere of Influence Graph '
Pawel Hitczenko, Raleigh

A random sphere of influence graph is constructed as follows. Consider points dostributed
uniformly and independently in the unit cube of dimension d. Around each point z; draw
a sphere (of influence) with radius equal to the distance to the point closest to it, and draw
an edge between two points if their spheres of influence intersect.

Asymptotics for the expected number of edges is found, and a sharp concentration of
the total number of edges around its expected value is established by extending Azuma’s
inequality. Also, bounds on the tail of the kth largest radius are obtained, and used to
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prove a bound on the variance of the size of a graph. Most of the talk is based on joint -

work with T.K. Chalker, A.P. Godbole, J. Radcliff, and O.G. Ruehr.

An Algorithm For Heilbronn’s Problem
Thomas Hofmeister, Dortmund

Heilbronn conjectured that among any n points in the unit square there are three which
form a triangle of area 0(1/n?). Komlés, Pintz and Szemerédi proved by a probabilistic
argument that this conjecture is false. To be precise, they proved that for every n there is
a configuration of n points in the unit square such that all triangles have area Q(log n/n?).
In this talk, we give a polynomial-time algorithm which for every n constructs such a
configuration of n points.

We then consider a generalization of this problem due to Schmidt: what is the minimal
area of the convex hull of & of the points? We obtain the following result. For every k > 4,
there is a polynomial-time algorithm which on input n computes n points in the unit square
such that the convex hull of any k of them has area §}(1/n(¥=1)/(k~2)) " Schmidt proved
the existence of such a configuration for & = 4. L

This is joint work with Claudia Bertram-Kretzberg and Hanno Lefmann from Dort-
mund.

New Versions of Suen’s Inequality
Svante Janson, Uppsala

We give several new versions of Suen’s inequality for the probability that none of a
number of dependent events occur. A typical result is that if {B;} is a collection of events
with a dependency graph T, then

P(AB;) < e~#t+0¢™

where o = 3 P(B;), A = ZijGE(F) P(B; A B;j), 6 = sup; 3. ;i pry P(B;). Another

version, useful when A > y, is

P(AB;) < e~#"/max(88 4p.66)

The Swendsen-Wang Process Does Not Always Mix Rapidly
Mark Jerrum, Edinburgh

The Swendsen-Wang process provides one possible dynamics for the g-state Potts
model. (equivalently, the random cluster model) in the ferromagnetic case. It is widely
employed in computer simulations, and appears to converge rapidly to equilibrium in
situations of practical interest. Nevertheless, a simple example demonstrates that the
Swendsen-Wang process may take exponential time (in the size of system) to approach
close to the stationary distribution. Absence of rapid mixing is related to the phenomenon
of first-order phase transition, which is exhibited by the Potts model when ¢ > 3. The
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question of whether the Swendsen-Wang process is rapidly mixing when ¢ = 2 (the Ising
model) is open.
This is joint work with Vivek Gore.

Polynomial Time Approximation Schemes For Some Dense Instances of NP-
Hard Optimization Problems
Marek Karpinski, Bonn

We give an overview of a general method for designing polynomial time approximation
schemes (or approximation algorithms) for dense instances of many N P-hard optimization
problems including: MAX-CUT, SEPARATOR, BISECTION, MAX-3-SAT. SETCOVER,
STEINER TREE, VERTEX COVER, and BANDWIDTH. The unified method begins
with the idea of random sampling and the exhaustive placement, and then develops int
a new approximation technique for smooth polynomial integer programs. Some oth
apprximation techniques have been developed recently for problems like STEINER TREE,
VERTEX COVER, and BANDWITH.

Checking Pseudorandomness of Graphs
Yoshiharu Kohayakawa, Sao Paulo

A simple idea is shown to be applicable in two contexts: (i) in the theory of pseu-
dorandom or quasirandom graphs, as developed by Thomason and Chung, Graham and
Wilson, and (ii) on the algorithmic aspects of Szemerédi’s regularity lemma as developed
by Alon, Duke, Lefmann, R6dl and Yuster. .

Roughly speaking, the idea can be stated as follows. Consider, for simplicity, an
[n/2]-regular graph G = G™ on n vertices. Then, a necessary and sufficient condition for
G to be a quasirandom graph is that the codegree

d(z,y) = |T(z)NT(y)|

of the vertices = and y should be approximately equal to n/4 for all pairs z, y with z
adjacent to y in a fired Ramanujan graph J with V(J) = V(G). The graph .J may be
taken to be linear-sized. i.e. r-regular with r = o(1).

This idea gives rise to a deterministic o(n?) time algorithm for checking quasirandom-
ness of graphs G = G™, and also gives a o(n?) time deterministic algorithm for constructing
a Szemerédi partition of a given graph G = G™. .

The results were obtained jointly with V. Rédl.

Contrast-Optimal (k,n) Secret Sharing Schemes in Visual Cryptography
Matthias Krause, Dortmund

In joint work with Thomas Hofmeister and Hans U. Simon, we study the k out of n
secret sharing schemes introduced by M. Naor and A. Shamir in 1995.

A sender wishing to transmit a secret message distributes n transparencies to n players.
If any k player show their transparencies together, the secret becomes visible. For any
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set of k — 1 players absolutely no information can be gained from their transparencies.
The important measure of the quality of a scheme is given by the contrast, the relative
difference in the grey levels of superpixels corresponding to white and black pixels of the
original menage. Naor and Shamir could construct for all k (k, k)-scheme of contrast

2=(k=1) which they could prove to be optimal. Using an approach from Coding Theory we

can construct (2,n)-schemes which are optimal w.r.t. to contrast and pixel expansion for
all n. Using a linear programming approach we give an efficient algorithm which computes
a contrast optimal (k,n)-scheme for all £ > n from N.

By means of Approximation Theory we show that the largest poss1ble contrast a
(k,n)-scheme can achieve belongs to the interval

11 nk-n
[F’u_-l(n—1)(n-2)...(n-k+1)]’

and it equals the upper bound if and only if k = 2 or 3.

Sparse (-1-Matrices
Hanno Lefmann, Dortmund

In this talk we consider the problem to determine the maximal number N(m, k,)
of columns in a 0-1-matrix with m rows, and exactly = ones per column, such that any
k columns are linearly independent over Z;. For k > 4, k even and r > 2 the lower
bound N(m,k.7) = Q(mmh-;‘s) is known from work of Pudldk, Savicky and Lefmann.
Here we sketch a proof that for ged(k — 1,7) = 1 this lower bound can be improved
to N(m,k,r) = Q(mm‘%ﬂ(log m)}/(*=1)) Furthermore, we construct a polynomial-time
algorithm achieving this lower bound. There is still much to be done. For example, for
fixed values of k and r, we still do not know the correct order of N(m,k,r). Also, for
applications of the results, explicit constructions are desired.

This is joint work with Claudia Bertram-Kretzberg and Thomas Hofmexster from
Dortmund. _

A Remark About Dijkstra’s Algorithm on Random Digraphs
Kurt Mehlhorn, Saarbriicken
We present joint work with Andreas Crauser and Uli Meyer.
In the standard implementation of Dijkstra’s algorithm one vertex is removed from

“ the priority queue in each iteration of the algorithm. This is a bottleneck for parallel

Deutsche

implementations and for implementations using external memory. We show that if the
edge destinations are random and the edge weights are uniform then in each iteration
about ,/g vertices can be removed from the queue, where g is the current size of the queue.
This implies that about \/n iterations suffice for Dijkstra’s algorithm.

Graph Colouring with the Probabilistic Method
Mike Molloy, Toronto
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In this talk we discuss a simple probabilistic technique and survey several of its ap-
plications. The technique is to colour a graph using the following procedure:

1. assign a random colour to each vertex.

2. uncolour every vertex which receives the same colour as one of its neighbours.

Clearly, this will produce a proper partial colouring of the graph. The key step is to
prove that with positive probability, this partial colouring will satisfy certain properties
which ensure that the colouring can be completed successfully to an appropriate colouring
of the entire graph. The aspects of the technique that vary from application to application
are: a) exactly what properties we require the partial colouring to have; b) the manner in
which we complete the colouring. Two examples of this are the following.

a) We almost always equire that each vertex has many neighbours which retain their
colours. If the graph has maximum degree A and we use A colours. then it is straight-
forward to compute that the expected number of such nieghbours is at least %. Using
a standard concentration of probability tool such as Azuma’s Inequality or Talagran
Inequality, we can show that the probability that this number is much smaller than % 1s
exponentially small in A. Furthermore, this number is independent of the corresponding
numbers for all vertices of distance greater than 4. Thus, it is a straighforward application
of the Lovész Local Lemma to show that, with positive probability, the subgraph induced
by the uncoloured vertices has maximum degree not much bigger than A(1 — %).

b) The most common way to complete the colouring is to repeat the procedure on
the uncoloured vertices. It is important that any vertex which retains its colour does not
lose it during any subsequent iteration. By ensuring that a significant portion of each
neighbourhood gets coloured during each iteration, we can guarantee that after O(log A)
iterations, the degree of the subgraph induced by the uncoloured vertices is extremely
small, and this allows us to complete the colouring in a straightforward manner.

This technique works best when each vertex has relatively few edges within its neigh-
bourhood. For example, this is the case with triangle-free graphs and line graphs. For
denser graphs we require a variation of the procedure.

We survey applications of the technique due to Johansson, Kahn, Kim. Reed. and
Molloy and Reed, including bounds on the chromatic number of a triangle-free graph, the
list chromatic index of a graph, and the total chromatic number of a graph.

A Large Deviation Principle for the Giant Component in a Sparse Random
Graph

Neil O’Connell .
Let X, denote the size (in vertices) of the largest connected component in the randoy
graph G(n, £), where ¢ > 0. Erdés and Rényi, in one of their early seminal papers on
random graphs (~1960) proved that if ¢ < 1, X,,/n converges in probability to 0: if ¢ > 1,
Xn/n converges in probability to the positive solution a. to the equation a = 1 — e—¢¢,
We prove a large deviation principle for the sequence X,,/n: there exists a function
I.:[0,1] — Ry such that

lim ;-lllog P(X, >zn)=-I.(z)
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for z > a, 1
lim —log P(X, < zn)= -I.(z)
n—co N

for z < a..

(This is also valid for ¢ < 1, setting a. = 0 in this case.)

We also obtain an explicit expression for the rate function I.. If ¢ < 1, there are no
surprises, the rate function looks more or less as expected, but for ¢ > 1; the rate function
has a most unusual form.

In particular, if ¢ > 1, I, is not convex. This means that the usual generating function
techniques, based on exponential change of measure, do not apply here. We prove this LDP
using a more general change of measure technique where, instead of exponential tilting,
we simply vary the parameter c. The idea is to use the information contained in the
Erdés-Rényi laws of large numbers, which hold for each value of c.

Induced Ramsey Numbers Ha
Hans Jirgen Promel, Berlin

We investigate the induced Ramsey number 7;,4(G, H) of pairs of graphs (G, H). This
number is defined to be the smallest order of a graph I" with the property that, whenever
its edges are coloured red and blue, either there is a red induced copy of G_or else a blue
induced copy of H. We show that, for any G and H with k = |[V(G)| <t = |V(H)|
have

Tina (G, H) < tF184..

where ¢ = x(H) is the chromatic number of H and c is a universal constant. Furthermore,
we also investigate 7;,4(G, H) under some conditions on G. For instance, we prove a bound
which is polynomial in both k and ¢ in the case when G is a tree. In our proofs we make
use of random graphs based on projective planes.

The results were obtained jointly with Y. Kohayakawa from Sao Paulo a.nd V. Radl
from Atlanta.

A Randomized Algorithm for k-SAT
Pavel Pudlak, Prague

We present a simple algorithm which for a satisfiable k-CNF produces a satisfying
truth assignment in expected time 2#(1=%)+Q09gm) where n is the number of varla.bles

Learning Pattern Languages Fast On Average
Riidiger Reischuk, Liibeck

Patterns are a simple and natural way to generate formal languages. The learning
model we consider is exact learning in the limit from positive data (Gold 1967). A sequence
of sample strings from the unknown pattern language L(w) is presented to the learner. and
after each new sample he has to compute a hypothesis pattern 7’ such that these hypotheses
eventually converge to «.
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In contrast to most previous work, our goal is to minimize the total learning time,
not just the so-called update time for computing the next hypothesis. A new algorithm
for learning one-variable pattern languages is proposed and analyzed with respect to its
average-case behaviour. The main technical tool is a careful analysis of the combinatorics
of words generated by a 1-variable pattern. For the expectation it is shown that for almost
all meaningful distributions defining how the pattern variable is replaced by a string to
generate random samples of the target pattern language. this algorithm converges within
a constant number of rounds with a total learning time that is linear in the pattern length.
Thus, the algorithm is average-case optimal in a strong sense.

This is joint work with- Thomas Zengmann, Fukuoka.

Colourings Generated by Monotone Properties ‘
Oliver Riordan, Cambridge )

We give an account of some joint work with Béla Bollobds. Let () be a (monotone
decreasing) class of graphs and let G € Q. Colour the edges of G black. and an edge ¢
of G¢ P blue if G U {e} belongs to Q. and red otherwise. This red-blue-black colouring
of the edges of K,, was recently introduced by de la Vina and Fajtlowicz, and studied for
a number of properties. The black subgraph, which is restricted by the property (). is
usually ‘small’, i.e. contains no large complete subgraphs. The red-blue colouring is then
generated by ¢ and the blank edges, and it is this we wish to study. The general questions
we are interested in is how ‘close to random’ this red-blue colouring can be, using the order
“of the largest monochromatic complete subgraph as a measure.

In their paper, de la Vina and Fajtlowicz answered this question for the property of
l-colourability, showing that there is always a monochromatic clique of order [=1/27,1/2,
They conjectured with Erdés that for K,-free graphs, there must be such a clique of order
n1/". We disprove this conjecture for all 7 > 4. using random graphs in an unexpectedly
complicated way. In fact, for 7 > 5 we show that the largest monochromatic clique can have
order O(logn) which is best possible by Ramsey’s theorem. Since the case ‘K,-free’ might
be rather special, Erdds asked the same questions for graphs with no 4-cycle, strongly
expecting a monochromatic clique of order n*. We disprove this also, obtaining a bound
of O((logn)?), and it is this result which forms the main part of the talk.

Although our proofs are rather complicated, the central idea is fairly simple. We
connect an algorithm which performs a series of tasks on the graph, asking if a -certain
set of edges is present. To analyse the behaviour of this algorithm we use the following
straightforward but useful lemma.

Let Ui,U. be independent up-sets, and D a down-set in the weighted cube. Then
P(U1|U; N D) < P(U1{U;) = P(U1 We note that the independence condition is, perhaps
surprisingly, necessary - without it there'is a counter-example in two dimensions!

1-Factors in e-Regular Graphs and the Blow-up Lemma
Andrej Rucinski, Poznan

Recently Komlés, Sarkézy and Szemerédi proved the so-called Blow-Up Lemma: a
powerful theorem which allows one to embed a graph of bounded degree into another graph
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with the same number of vertices and sufficiently regular structure. This result, even before
its explicit formulation, has had numerous applications in graph theory, especially when
combined with the Regularity Lemma of Szemerédi.

In the talk we present an alternative proof of the Blow-Up Lemma, obtained jointly
with V. Rodl, which relies on simple facts about random 1-factors in e-regular graphs.

The Number of Boolean Functions Computed by Formulas of a Given Size
P. Savicky, Prague???

In joint work with A.R. Woods, we give estimates for the number B(n, L) of distinct
functions computed by propositional formulas of size L in n variables, constructed using
only literals and A,V connectives.

Writing B(n,L) = b(n,L)*, we find that if L and a(n) go to infinity as n — oo and
L < 2% /n*(") then b(n.L) ~ en, where e = 2/(In4 — 1). For all L up to maximum
complexity, we have b(n,L) > n/4log2. The last result contains an improvement on the
bound on maximum complexity given by Luby.

A

Construction of Expander Graphs Using Kolmogorov Complexlty
Uwe Schoning, Ulm

We consider as basic model a bipartite graph with a set L of n left vertices and and
a set R of An right vertices, with each vertex z € L having degree d and with each vertex
y € R having degree d/A. This bipartite graph is an (@, #)-expander if every subset S of
L of size an has more than JAn neighbours. Such expanders can be shown to exist (for a
subtle choice of ¢, 8. d) by a probabilistic construction. As an alternative, here we propose
an approach using Kolmogorov complexity. The “interconnection pattern” between the left
and right vertices is given by some permutation 7 of [dn]. Choose 7 such that C(n|n,d, A) >
log((dn)!) where C denotes the conditional Kolmogorov complexity. If the graph G = Gn
defined is not an expander, then 7 could be more compactly described than by log((dn)!)
bits. This can be done by splitting 7 into 2 bijections 7, 75 where m; : A — B; A, B C [dn).
For a “split” permutation 7 we have C(7|d, A\, n, A, B) < log((dn)!)—h(]A|/n)-n+6(logn),
where h is the binary entropy function. Thus we gain h{a)n bits of entropy. This approach
leads to a theorem that says that an expander as described exists if d < %)ﬁ% As
a further appl]gatnon we reconsider the construction of superconcentrators and improve
the best known density of 36 to about 34.

Random Graphs Chromatic Decompositions via Squeezing Janson’s inequality
Eli Shamir, Jerusalem )
Consider spaces of random graphs, for example the spaces G, ,, of random graphs on
n-vertices. Also. {Xi}ies is a collection of r-sets in G, {Yi}eer is a collection of (r — 1)
sets in G, C¢ = is an event defined by the edges and non-edges in Y;, and B; = is the event
that C, occurs for some (r — 1)-set Y C X;.
Let us assume that the collection {C¢}ecr (and hence {B;};cs) satisfies the conditions
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needed for Janson’s inequality. The squeezed form we prove is

Pr(hierB;) < [] Pr(Bi)et2 < e T+

and . .
Pr(hierB;) < e"k

where p =3, Pr(B;), A =3,%, ,Pr(B; ACy) and £~ if |X; NY,| > 2.
The main advantage of this inequality is that in some applications A is much smaller
than A =37, 3" . Pr(B;AB,), the quantity appearing in the (usual) Janson inequalities.

Note that _ L
NieLBi = N, Co. . &lI
{

We also present an application of this result to the Q-chromatic numbers of random graphs.
For a collection ) of graphs, the Q-chromatic number Xq(G) of a graph G is the minimal
value of k such that V(G) = UL, V;, with no G[Vi] containing a member of (). Note that
if @ has only one member then xo(G) is precisely the chromatic number x(G).

In the book of Alon and Spencer, x(G) is computed (with high probability) for random
graphs G,, 172 with the aid of Janson’s inequality. Using the squeezed form, we compute
xQ(G) for sparse random graphs G, 5, p(n) — 0. All we have to assuine is that xQ(G) >>
NS

Hereditarily Extended Properties and Quasi-Random Graphs
Miklés Simonovits, Budapest .

In joint work with Vera T. Sés, we investigate graph properties P which do not imply
quasi-randomness (in the Thomason-Chung-Graham-Wilson sense) but are such that if
every subgraph of a graph G has P then G is quasi-random. Some important instances are
closely connected to counting subgraphs of a given type. We encounter different phenomena
depending on whether our subgraphs are assumed to be induced or not. A typical result
_is the following.

Let Ly be a fixed sample graph and let (G,,) be a sequence of graphs. If for some
fixed v and every induced F,, C G,, we have ’

N(L, C Fu) = 7- b + o(n”) ®

as n — oo, then (G,) is p-quasi-random, where N(L, C F,) is the number of (not .
necessarily induced) copies of L, in G, and p = p(7).

Generating d-Regular Graphs Quickly
Angelika Steger, Munich

In this talk we consider the following problem. Given n. d generate a (random) d-
regular graph on n vertices. A first solution to this problem is implicit in the work of
Bollobas 80, who provided a proof for the asymptotic number of labelled d-regular graphs
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on n vertices based on a probabilistic argument. This a.pproa.ch immediately gives rise to
a uniform generation algorithm of expected running time o(ed /4nd). Subsequently. this
bound has been improved by various authors. The currently best bound was obtained in
a paper by McKay & Wormald *90. We improve this work by showing that the original
algorithm based on Bollobds approach can be modified in order to obtain a fast and easy
to implement algorithm which generates d-regular graphs almost uniformly. The analysis
of our algorithm is heavily based on various concentration inequalities for random graphs.
This is joint work with Nick Wormald.

Inequalities for Means of First-Passage Times in Percolation Theory
John C. Wierman, Baltimore

First-passage percolation theory was introduced by Hammersley and Welsh in 1963.
The setting is an infinite graph. such as the square lattice, in which every edge has a
non-negative random travel time. The travel time of a path is the sum of travel times of
the edges in the path. The object of study is the first-passage time between two points, i.e.
the shortest travel time over any path between the two points. Asymptotic properties of
first-passage times have been studied for many years and much has been learned. However,
little is known about first-passage times between points that are close to each other. In
fact. a counterexample disproves the natural conjecture that an expected first-passage
time is a nondecreasing function of distance between the points. The talk introduces an
inequality between sums of pairs of first-passage times, which can be used to establish
some monotonicity, convexity, and concavity properties of means of first-passage tlmes
These results are joint work wnth Sven Erick Alm of Uppsala University.

Peter Winkler, 77?7 ] )

we model physical systems with “hard” constraints by random homomorphisms from
an infinite graph G to a fixed finite constraint graph H, whose nodes are equipped with
positive real “activities” A;,...,A,. When G is the infinite, regular k-branding tree T}. the
simple, invariant Gibbs measures on Hom(G, H) correspond to node-welghted branching
random walks on H.

We characterize the graphs H which exhibit multiple phases, that is, those H for which
there are different node-weighted random walks yielding the same activities A,..., A

Joint work with Graham Brightwell, London.

The Degree Sequence of a Random Graph
Nick Wormald, Melbourne

This is joint work with Brendan McKay of the Australian National University in
Canberra. A model of the degree sequence of a random graph in G(n,p) was obtained by
us recently. This model relates the degree sequence to the sequence of integers obtained
from independent binomial distributions subject to having even sum and averaged to a
certain effect. This makes many previous results on the degree sequence much easier to
obtain, to extend greatly. to make more precise, and to explain in terms of the difference
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between the degree sequence model and the truly independent binomial model. One of the
main steps is to obtain the difference between independent binomials and the conditional
space in which the sum is even. In many interesting cases we show that the difference is
negligible. The results depend on asymptotic enumeration results for graphs with a given
degree sequence, for which there is a gap when the average degree is between (o) and
cnflogn. We have a conjectured asymptotic formula for this range which implies that our
model for degree sequence of G € G(n,p) is correct when o(1/y/n) < p < ¢/logn. For
other values of p we have proved the formula, and hence the model. correct.
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