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Mirror Syrometry is an unexpected duality between Calabi-Yau mainifolds of ar­
bitrary dimension. This phenomenon has been descovered by physicis~ and during
the last six years considerable progress has been made. However it is fair to say that
most of the progress consists of lucky guesses for a correct mathematical formulation
of mirror symmetry, mathematical conjectures about its properties and examples COD­

firming these conjectures or consequences of them. For this reasan mirror symmetry
for Calabi-Yau manifolds still remains far from complete mathematical understanding.
One of the main achievements of the last years is the rigorous mathematical foundation
of quantum cohomology, which arose as an attempt to give a firm basis to the exciting
calculation of Candelas et a1. of the number of rational curves of fixed degree on a
general quintic threefold.

According to the organizers it is difficult to arrange the recently published material
on mirrar symmetry in a logically connected series of eighteen Iectures. Therefore they
decicled to seleet five topics (one for each day) and tried to keep logieal connections
between lectures mainly within one day. The five topics are the following:

• Gromov-Witten invariants, quantum eohomology and WDVV-equations
(lectures 1-4). ~

• Rational curves on the quintic threefolä (lectures 5-8).
• Mirror syrometry and physics (lectur,es 9-10).
• Mirror syrometry and torie geometry (leetures 11-14).
• Mirror syrometry "is" T-cluality (lectures 15-18)
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Abstracts

1 Spaces of stahle maps

Fix J\ le projective, and ß E H2(X, Z). Let Mg,n(X, ß) be the following stack over
(SchjC):

Mg,n(.L'Y, ß) : SN category of all (1T : C~ S;Pl ... ,Pn : S -t C, J-L : M -t X)

wherc

• 1T is a proper, flat morphism whose geometrie fibres are curves of arithmetic genus_
9 whieh are connected, reduced and have at most ordinary double points. •

• The Pi are disjoint seetions of 1Tsm : Csm -t S (sm stands for t'smooth part").
• In any geometrie fibre es, the following stability condition is satisfied:

#Aut(Cs ; Pi, J-L) < 00.

(For )( == Spec C, this reduces to the usual eoncept of stabilty a la Knudsen­
IvI lunford) .

In the lecture, it \vas stated that for 9 = 0 the stack Mg,n(X, ß) admits a coarse moduli
space lvJo,7t(JY, ß), \vhich is actuaBy projective over C.

..\ is called convex if it is nonsingular, and if

H 1(IP~, J.L*(Tx ) == 0 VJ.L:]pb -t X.

Under thc assumption of convexity, it was shown that Mo,n(X, ß) has at most quotient
singularities, and that it is of pure dimension

dimX +! Cl (Tx ) + n - 3.

ß

(Jörg Wildeshaus)

2 Gromov-'Witten invariants

In this lecture the Gromov-Witten invariants were introduced and discussed.
Definition: für convex, projective X and i'h" . ,"In E Hev(cx, 7l) set

[kr,··· ,'Yn) = ! pibd u ... up~bn) E Z

M,o,n(X,ß)

(Grolll0v-Witten invariants); ß E H2(X,71) fixed. The enumerative meaning of these
numbers is contained in the following result if X is a homogenuous space:

                                   
                                                                                                       ©



Proposition: Let X = G/P, where G is a reductive group over C, P c G a parabolic
subgroup. Let VI,' .. , Vn , C X for n 2:: 3 subvarieties such that

Lcodim Vi = dim Mo,n(X,ß).

Then for 9 = (gi,' .. ,9n) in an open dense subset of Gn the (scheme theoretic) inter­
section:

Pli (gi Vi) n ... n p;;l(gnVn) C Mo,n(X, ß)

consists of Iß ('l ... Tn) (reduced) points, where Ti n [X] = [Vi] via the isomorphism

- n [X] : Hk(X)~ HdimRX-k(X)

After stating basic properties of Gromov-Witten-numbers the Gromov-Witten invari­
ants \vere introduced in general as linear maps for any smooth projective variety X/C:

I;'n,ß : H*(X)0n~ H*(Mg,n )

satisfying certain axioms GW 0) - GW 8) ~hich were explained and motivated. Fi­
nally a construction of non-trivial Gromov-Witten-invariants was outlined based on
the works of Manin, Kontsevich, Behrend and Fantecki. At the end of the lecture the
boundary of M O,n(X, ß) was discussed in preparation for the next talk. .

(Christopher Deninger)

3 Quantum cohomology

The purpose of this lecture was to prove associativity of the quantum coliomology
ring of a homogeneous variety X = G/ P, where G is a reductive group and P is a
parabolic subgroup. Let A*(X) = EBAi(X) denote the intersection ring with multi­
plication U. All Ak(X) are free abelian groups of finite rank. We fix a basis To = 1
of AO(X), Tl, ... ,Tp of A1(X) and Tp+l ... Tm of the rest (Le. EB Ai(X)). The matrix

i>2

(gij = JTi UTj)iJ:O...m is invertible over Z (either by looking at tbe intersection of gen­
x

eralized Schubert cycles or by using that the cycle map to singular cohomology is an
isomorphism). An easy calculation shows ~UTj = E : ye,1Io(~TjTe) where Io(TiTjTe)

etl
is the Gromov-Witten-invariant and (ge'/)e,/ is the inverse matrix to (gij )i,j' Define a
"quantum deformation" of this product as Ti * T j = E 4>ijege,IT/, where 4>ije is the

e,j

following formal power series in Yo··· Ym: 4>ije.- = E E ;hI[3(,n7iTjTe) for , = f: YiTj.
n>O ß i=O

This product defines the structure 9f a commutative, associative Q[[yo ... Ym]]-algebra
with unit Ta on A*(X) ®z Q[[yo ... Ym]]. The only difficult point is the associativity
relation, which follows from a linear equivalence relation for divisors in the boundary

3
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of the looduli spaces Mo,n(X, ß).

( Annette Werner)

4 Applications to enumerative geometry

In this lecture, the theory of Gromov-Witten-invariants and quantum cohomology
was applied to questions of enumerative geometry. The system of differential equations
(calIed vVDVV-equations) coming from the associativity by relations of quantum coho­
1l1ology are organized using Feynman diagrams. Then the special case of the quantum
cohomology of the projective plane is discussed. Fot d > 1 let Nd denote the number e
of plane rational curves of degree d through 3d - 1 points in general position. The
llunlber Nd has an interpretation as a Gromov-Witten invariant. The corresponding
\VDVV-equation 'yields in this case Kontsevich's celebrated recursion formula

Nd = L Nd1 Nd2 [did~ (:: __~) - d~d2 (:: __~)]
dl +d2=d 1 1

di>O

which allo\vs to compute the Nd as we have N 1 == 1. Finally, a presentation of quan­
'turn COhOlllOlogy of p2 in terms of generators and relations was given which shows that
quantlull cohomology is in general not adeformation of usual cohomology.

(Klaus Künnemann)

5 The computations of Candelas eta!.

We presellted hvo ways of computing the number n~ of (not necessarily smooth)
rational curves of degree d on a general quintic 3-fold in JP4. The first way consists in
computing t~le top Chern class of the vector bundle [don the moduli stack Moo(IF, d).
Assulning the Clelnens conjecture, and computing the contribution of curves of lower
degree one finds:

Physicists propose a different way: Starting from a mirror symmetry conjecture they
compute hypergeometrie functions - which might be interpreted as a normalized q­
expansion on the nloduli space of the mirror family - to obtain these numbers. The
coincidence of both series of numbers gives rise to speculations about mirror symmetry
but lacks apreeise description.

(Georg Hein)

4
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6 Enumeration of rational curves via torus action

After presenting the basic ideology of using torus actions to salve enumerative prob­
lems, we discussed two examples in detail. The first example was the counting of
twisted cubics on general complete intersection Calabi-Yau manifolds following the
\vork of Ellingsrud and Stromme. The second example consisted of tbe famotis calcu­
lation of degree d curves on the quintic in p4 which was made by Kontsevich.

. ( Ralph Kaufmann)

7 Quantum differential systems

Consider the Picard-Fuchs equation

D4/(q) = 5q(5D + 1)(5D + 2)(5D + 3)(5D + 4)/(q) ,

where D := q1q. A basis of solutions cao be writteo down in the form

00 05d (5d + )
I(t) = Io(t) + I 1(t)p + 12(t)p2 + 13(t)p3 == e!t L qd ~=I m rn"od p4,

d=O Om=1 (p + m)5 ~

where q = et . According to the computations of Candelas et al. the transformation
t' = 11(t)/ Io(t) gives the new Picard-Fuchs equation

(D')2_1 _(D')2J(q') = 0
K(q') ,

where
00 ( ')d

K(q') = 5 +"n d3
_

q
_L...J d 1 _ (q')d

«1=1 •.•

is the generating function for the number of degree d rational curves on the generic
quintic threefold. This claim allows to compute the numhers nd (for any given d).

In the lecture the latter operator was interpreted in terms of the "Euler" quantum
cohomology of the quintic, the quintic Y in fact heing virtual, only represented by its
fundamental class. The claim was therehy reduced to the statement that two elements
SY and <Xl

y of the quantum homology are closely related.

00 (E')Sy = 1 + L qdeh __Id_

d=1 h - CI

<p
Y = 1 + ~leh (h ~ cJ lll(IP + m1i)

Here, l = 5, el : M2(d) -+ X = JP4 evaluates doubly marked stahle rational curves into
X at the first marking, and Cl is the Euler class of the universal cotangent bundle at
that point. The Euler class E~d E H*(M2(d)) is constructed by pulling back 0(1) to
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the universal curve and taking global seetians along the curves, vanishing at the first
Inarking.

(Klaus Wirthmüller)

8 Givental's Proof of SY r-v <t>Y

In this lecture, whieh directly eontinues the previous one, Givental's proof of thc
"nürror theorem" was sketched. The theorem states that the formal power series
cI>}' anel S}', introduced at the end oE the previous lecture, are equal up to a certain
transformation. e

V";e consider thc standard T == (C* )n+1 action on pn == X and work with equivariant
cohorHology H*(X, Q). The base ring of this theorYls Hr = Q(.Ao, ... , .An] =: Q[A]. By
]J E l/.j,(){, Q) he denoted the equivariant first ehern class of Ox(l).

Für the praof \ve introduce the set P c HT(X, (Q)[[h -I, qJ] of power series fulfilling
thc so-called "recursion relation U and a "polynomial" condition. In the lecture we have
ShOWIl the uniqueness Lemma: If Z, Z' E P fulfill Z == Z' == 1 mod q and Z == Z' mod
ti- 2

, then Z == Z'. The Lemma cannat be applied directly to SY and q,Y, because SY
is HOt. cquivalent to <I>ll" ruod h-2

. Therefore we study the following transformations:

1. Z(q, h) H j(q)Z(q, Ii) with f(q) E Q[[q]) \ {O}
2. Z(q, /1,) H exp(g(..\, q)/h)Z(q, h) with g(A, q) E q . H;'(X)[[q]] \ {O}
3. Z.(q, ti) H exp(j(q)p/h)Z(q . exp(f(q)), n) with f(q) E Q[(q]) \ {O}

It is straightforward to show that P is closed under these transformations. The key
result. \vhich enables one to apply this theory to SY and <I>Y, is a Theorem of Givental
which says that SY belangs to P. The prüüf uses fixed point localization (Attiyah­
Bott) on 1llOduli spaces of stable maps and a detailed "analysis of the fixed point sets
of the actiolls on the moduli spaces. From the definition of q,Y it is not hard to deduce
as a Corollary that <I>Y also belangs to P. Writing ct>Y(q, 11,) == ElI>o cpV(q)1i- lI , one can
sho\v 4>(0) (q) E 1 + q . Q[[qJ] and <p(1)(q)/q,(O)(q) == P . f(q) + g(A~q) E q . H;'(X) [[q]].
This is llsed to transform SY in the following way:

§Y (q, 11) := ~(O) (q) . exp(g(A, q)/n) . exp(f(q)p/n) . SY (qe(f(q))

and wc havc SI' E P. Using the uniqueness Lemma, we arrive at the main result (_
Theoren1 of Givental): SY = epY.

Finally, by descending to the non-equivariant setting (Le. replacing A by 0), we
obtain apreeise description of the transformation from J(to, t) := exp((to + pt)/Ii) .
E . S}~ (q, n,) to l(to, t) :== exp((to + pt)j11,) . E . ct>Y (q, 1i). Namely to H to + cp(q)h and
t 1-4 t + j (q) where q == exp(t) and <p(O) (q) == exp(cp(q)). This proves the statement at "
the beginning of the previous lecture.

(Bernd Kreußler)
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9 N = 2 superconformal field theories

In the first part of the talk we tried to motivate fram a physicist's point of view that
the representation theory of the Virasoro algebra plays an important role in (2-dim)
conformal QFT. After recalling some facts about unitary irreducible highest weight
representations of this algebra, we foeused on the diserete series obtained for c < 1,
the so-called minimal models. In the second part we proceded along the same lines for
N = 2 superconformal QFT, namely we studied the representation theory of the N = 2
superconformal algebra, where one again gets discrete series for the central charge c
being smaller than 3, also called minimal models. Finally we introduced the notions
of the formal character of a representation (for convenience in the ordinary Virasoro
case) and the modular invariant so-called partition function of minimal models. It is
worth mentioning that the latter are classified according to the ubiquous A - D - E
pattern.

(Chris.tAan Adler)

.10 Green-Plesser MirrorConstruction for Ferrnat hypersur­
faces

For any Calabi-Yau threefold X one constructs a eonformal field theory called "non­
linear sigma model" , with central charge 9 and ooly integral U(l )-charges. Gepoer has
conjectured that this gives all such CFT's. The N = 2 superconformal algebra allows
an involution, which permutes its representations. By Gepner, this should induce a
mirror syrometry among 3-dimensional Calabi-Yau manifolds. Green and Plesser have
given examples confirming this conjecture. They consider U(l)-projections of tensor
products of five minimal models whose central eharges add up to 9 and on which prod­
ucts of five cyclic groups act.- Their mirror theories are constructed by "orbifolding";
calculation of the partition functions shows when one theory is the mirror of the other.
For the corresp'onding Calabi-Yau's, which are hypersurfaces of Fermat type in weighted
projective 4-spaces, orbifolding also makes sense, and the Hodge diamonds of (crepant
resolutions of) the corresponding mirror paires appear to be related by a rotation of 90°.

(Joseph Steenbrink, Nijmegen)

11 Periods of Calabi-Yau hypersurfaces

A Laurent polynomial s = 2:7=1 VjUOj E C[ut1
, ... , U;I] defines a hypersurfaee Zs in

the torus with coordinates U2, . .. ,Un if the exponents Qj E zn all have first coordinate
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1. If Gj == (1,0, ... ,0), then on easily checks:

j. 1]'1 dU2 dUn (2 ")n-l -1 '"" (-ld! LI LN
--::--,-/\ ... !\-== 1rZ VI L..JZ' 1 ,VI ·····VN

• 11L:.!I= ...=lulll=:=l S U2 U n 2···· N·

wlJcre thr. SUlll runs over all (lI,'" ,LN) E ZN which satisfy [101 + ... + [NON = 0
and l S 0, l2,'" ,IN ~ Q. Via the Poincare residue this can be interpreted as a
period of a holoHlorphic (n - 2)-form Oll Zs. The series is an example of a Gelfand­
I<apra.nov-Zelevinsky hypergeolnetric function in a "resonant case". Other periods and
solutions of GKZ hypergeometric differential equations with parameters (al"", ON)
and (J E Znt + ... + ZON are obtained from the following series eJ:>T1ß (which also needs
a triangulation T of the polytope ß = conV{Ol"'" aN}):

N N

<I>T,ß(V) = L Q~(c) rr v;; rr V'/ e
.\EA-Ifj j=l j=1
AEZ N

wherc .4 is th n x N-l\tlatrix ,vith columns 01,' .. ,aN, C = (Cl" .. , CN),

n n-Aj-I( k)
Q ( ) ._ Ai <0 k=O Cj -

A C .- A"
llAj>O Ilk~l (Cj + k)

anel CI, ... ,CN are thc classes of Cl,' .. ,CN in the ring RA.r := Z[D-I][CI, ... ,CN ]/']

with D =(product of the volumes of the simplices of the triangulation T) and J denotes
thc Ideal generated by the linear forms ailCl + + aiNCN , (A = (aij), i = 1, ... , n)
and lhe products eil ..... Cir with conv{ O-i l , , air} not a simplex in T . .The ring
R A •T is a frce Z[D-1]-rnodule of rank= U(max. simpl. in T).

View on A-side 0/ miTTaT symmetry: If the triangulation T is such that all maximal
silnplices have volume == 1 and the interseetion of all maximal simplices is nonempty
and not eontained in the boundary, then RA1T is the eohomology of a torie variety PT,

anti better cven, naturally eonstructed from A and T is a veetol' bundle JE..r -t ]PT and
thc zero locus of a generic section of the dual veetor bundle JEt. -t PT is a Calabi-Yau
complete intersection in Pr.

View on B-sidc 01 miTTaT symmetTY: solutions of GKZ differential equations may
givc periods of differential forms. More precisely: expand q,T.ß for an appropriate ß
in tenns of a (linear) basis of RA•T ; candidates with respect to this basis are functions

" (of Vt, ... , VN) ,vhich generate the period lattice of an appropriate differential form on

ll'\Zs. e
(Jan Stienstra, Utrecht)

12 Hypersurfaces in toric varieties

;\ny lattiee polytope ~ c MIJ{ == Rn gives rise to a projective torie variety Pß; it
containB thc torus T :== Homz(M, CX

) as an open subset. This construction allows

8
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to assign to every Laurent polynomial f E C[M) with support suppf ~ 6. a hyper­
surface ZJ ~ IP6 obtained as compactification of the zero set Zj := {f = O} ~ T.
If ß is a reflexive polytope {Le. if ß contains 0 as an interior point and both ß and
ß* := {a E M* I (a, ß) ~ -I} are lattice polytopes), then its dual ß· provides another
family of hypersurfaces Z9 ~ IP6·. This is the ultimate candidate for being the mirror
of ZJ; at least the resolutions of both families satisfy the relation h1,I(Zj) = hn - 2,1 (Zg).

(Klaus Altmann)

13 Mirror construction for Calabi-Yau complete intersections

Let V be a Calabi-Yau complete intersection in a torie Fano-variety ]Pa .a.ssociated
with a reflexive polytope ß. Denote by 6.1, ... , ß r the -Newton polyhedra of equations
for the complete 'intersection V. One has 6. = 6.1 + ... + 6.r o We define a reflexive
Gorenstein cone r: := {(A}, .. 0' Ar, x) E IR;o X MIR I X E E~=I Ajßj} and denote by
GV the dual cone in IR;o x Na. If there exlst lattice polyhedra VI, ... , Vr, such that
GV = {(tLl,"" tLn Y) E-IR;'o x Na 1Y E E;=I ttiVi} then the polyhedra define another
Calabi-Yau complete intersection in -a toric variety lPv associated with the reflexive
polytope V = V l, ... , \lr' Moreover, the duality between reflexive Gorenstein cones
works for the case of rigid Calabi-Yau varieties. '.~

(V. Batyrev)

14 Mirror symmetry anq string-theoretic Hodge numbers

This was the continuation of Batyrev's lecture. Having as starting-point the dual
nef-partitions of ß,V': ß = ßI + ... + ß r and \I = VI + ... + V r respectively, we gave
a sketch of the prüof of the mirrür-duality identity Est(V; u, v) = Est(W; u, v) between
V and W by using the "correetion terms" of the E-polynomials. Several exampIes and
comments for the explicit computation of the Hstring-theoretic" Hodge numbers were
also included in the talk. -

(D. I. Dais)

15 Mirror symmtery for lattice polarized K3-surfaces.

First we gave a summary about basic results on K3-sudaces, Le. structur of tbe
lattice H 2(X, Z), global ToreIli, surjectivity of the periode map, existence of Kähler

9
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metries, Ricci flat nletrics and hyper-Kähler structure. Then the notion of M-polarized
K3-surfaces and the moduli-spaces for M-polarized K3-surfaces were discussed. Fol­
lowing Dolgachev's paper, "Mirror symmetry for lattice polarized K3-surfaces", the
notion of admissible vector and resulting mirror symmetrie families were discussed,
including the fact that the moduli space of one family is related to a tube domain in
~ic(X*) ® C of a generic member of the mirror family. Also examples were discussed.

(Herbert Kurke)

16 Special Lagrangian submanifolds e
First I discussed the notion of a calibration and calibrated submanifolds. As the rnost

important examples I showed that holomorphie submanifolds of a Kähler manifold and
special Lagrangian submanifolds in a Calabi-Yau space are calibrated manifolds. Ex­
ampies of special Lagrangian submanifolds are fixed point sets of an antiholomophic
involution on a CY, and holomophic submanifolds of a K3 surface for a rotated COffi­

plex structure. A theorem due to MeLean teIls us that the moduli space of special
Lagrangian submanifolds is smooth and that the tangent space can be identified with
the space of harmonie I-forms on the submanifold. The p-branes were discribed as
pairs of a submanifold on which strings are allowed to end and a line bundle defined on
this submanifold. p-branes preserving some supersymmetry correspond to calibrated
manifolds (this follows from the BPS-condition) together with a Bat line bundle. This
gives two elasses of branes corresponding to holomorphic submanifolds or to special La­
grangian submanifolds. Mirrar symmetry exchanges these two, while preserving their
moduli spaees. These muduli spaces are fibrations with as fibres real tori of dimension
the first Betti numbers of the submanifold. Following Strominger, Yau and Zaslow, we
consider a mirror pair of Calabi-Yau spaees X and Y. Starting with a holomorphic
O-brane on X consisting of a single point x, we find by considering the mirror of this
brane in Y that X should have a fibration by tori of dimension n (n = di~ X). This
allows us to apply T-duality to X. By dualising the torus fibration we found aT-dual
manifold X. Now we can construct an r-brane on X in two ways. First as the T-dual
of a point x E X and second as the mirrar image of a point y E Y. If one supposes
that these branes coincide, one finds that X = Y. This leads to a description of mirror e
symmetry as T-duality and to some natural conjectures about Calabi-Yau spaces X.
Namely first that they should have a fibration by spacial Lagrangian tori, and second
that the mirror can be found by dualising this fibration.

(Christian van Enckwort)

10
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17 Special Lagrangian fibrations on K3's and Fourier Mukai
functors

In arecent approach of Strominger, Yau and Zaslow, the phenomenon of mirror sym­
metry on Calabi-Yau threefolds admitting a T 3 fibration is interpreted as T-duality on
the T 3 fibres. In two dimensions this means that we have to consider a K3 surface
elliptically fibred over a projeetive line p : X ~ pt. A mirror dual to X can be identi­
fied with the eomponent M of the moduli spaee of simple sbeaves on X having Mukai
vector (0, J1., 0) E H-(X, Z), where JL is the cohomology elass defined by tbe fibres of p.
The mirrar map between the Hodge lattiees of X and M should be given by a suitable
Fourier-Mukai transform. In order to define this funetor, one can identify M with a
suitable compaetifieation X of the relative jacobian of X; X is tbe variety representing
the relative Picard fUDetor Picx/pl. One must assurne tbat X has a section, and one

finds that X is isomorphic to X. If 'P ~ X xlPl X is tbe Poincare bundle (suitably
normalized), then the Fourier-Mukai functors are defined as Si(F) = Ri1f.(tr·F ~ 1'),
(i = 0, 1). for any eoherent Ox-module F (1T, 1r are tbe natural projectiol}8 of X XlPl X
onto X and X). In this way one gets an equivalence at the level of deri~~ categories
of coherent sheaves and we deseribed the induced map between cohomology lattices,
f : He(x, Q) ~ He(x, Q). In partieular we proved that f(JL} = -w~ ·where w is
the fundamental class of X. SO, Fourier-Mukai formulation gives the eorrespondence
between special Lagrangian 2-tori in X and 0-branes in X predicted oy physicists.
Relations between this "mirror symmetry" construction and Dolgachev-Nikulin's defi­
nition were also discussed.

(Claudio Bartoeci)

18 T-duality for Borcea-Voisin mirror pairs

The first confirmation for threefolds of the reeently proposed T-duality'''construction
is given in the reeent work of M. Gross and P. Wilson. The starting point is a K3
surface 8 whith a holomorphie involution i acting as-( -1) on holomorphic 2-forms. The
fixed point loeus of i is a union of N holomorphie curves of total genus N'; investigating
the action of ion H2(S, Z) it is possible to find another K3 with involution (SI, i 1) such
that i l has N' fixed eurves of totoal genus N, and 8 1 is the mirror of 8 according to the
"mirfor of lattiee polarized K3" construetion. The next step is to compare the above
with the T-duality construction. Rotating the complex strueture of S gives and ellipie
libration f : SK ~ S which is then a SLAG fibration on S. Dualizing this fibration
gives another K3 (topologically) and it ean be cheeked that this dual cau be identified
with 8 1 such that the involutions beeome homomo"rphisms of torus fibrations.

Choosing an elliptic curve with involution (E,j), we ean build threefolds a la Borcea­
Voisin: X ~ Y = S x E/{i, j) where T is the blowup. Choosing adegenerate

11
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metric on X, the fibration f : 8 -7 8 2 and 9 : E -7 S1 (trivial) give a SLAG fi­
bration h : X -+ S2 X S1 /(i', j') ~ 8 3 whith torus fibres. The main theorem is
that dualizing this fibration gives Xl = (SI X E j(i}, j))-. (blowup) which is the mir­
ror of X. So the T -duality construction is compatible with previous mirror symme­
try constructions in this case. The talk concluded with a topological discussion of
singular fihres in the various fibrations, and a direct confirrnation of the fact that
12(N - N') = e(X) = -.e(Xd = 12(N' - N) as predicted by physics.

(Balazs Szendroi)

e I
:J

Berichterstatter: I. Kausz
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