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Mirror Symmetry is an unexpected duahty between Calabi-Yau mamlfolds of ar-
bitrary dimension. This phenomenon has been descovered by physmsts and during
the last six years considerable progress has been made. However it is fair to say that
most of the progress consists of lucky guesses for a correct mathematical formulation
of mirror symmetry, mathematical conjectures about its properties and examples con-
firming these conjectures or consequences of them. For this reason mirror symmetry
for Calabi-Yau manifolds still remains far from complete mathematical understanding.
One of the main achievements of the last years is the rigorous mathematical foundation
of quantum cohomology, which arose as an attempt to give a firm basis to the exciting

calculation of Candelas et al. of the number of rational curves of fixed degree on a .

general quintic threefold.

According to the organizers it is difficult to arrange the recently published material
on mirror symmetry in a logically connected series of eighteen lectures. Therefore they
decided to select five topics (one for each day) and tried to keep logical connections
between lectures mainly within one day. The five topics are the following:

o Gromov-Witten invariants, quantum cohomology and WDV V-equations
(lectures 1-4).

* Rational curves on the quintic threefold (lectures 5-8).

e Mirror symmetry and physics (lectures 9-10).

e Mirror symmetry and toric geometry (lectures 11-14).

e Mirror symmetry “is” T-duality (lectures 15-18)
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Abstracts

1 Spaces of stable maps
Fix X|C projective, and 8 € Hy(X,Z). Let M, (X, B) be the following stack over
(Sch/C):
Mga(X,B) : S category of all (m:C = S;py...,pa:S-Copu: M - X)

where

e 7 is a proper, flat morphism whose geometric fibres are curves of arithmetic genus,
g which are connected, reduced and have at most ordinary double points. ‘

e The p; are disjoint sections of Tsm : Csm — S (sm stands for “smooth part”).

e In any geometric fibre C,, the following stability condition is satisfied:

#Au(Cs; pi, 1) < 0.

(For X = Spec C, this reduces to the usual concept of stabilty & la Knudsen-
Mumford).

In the lecture, it was stated that for g = 0 the stack M, a(X, B) admits a coarse moduli
space My, (X, 3), which is actually projective over C.
X is called convez if it is nonsingular, and if

N H'(Pe,p"(Tx)) =0 VYu:PE - X.

Under the assumption of convexity, it was shown that My, (X, 8) has at most quotient
singularities, and that it is of pure dimension

dim X + /c,(Tx) +n-3.
[
(Jorg Wildeshaus)

2 Gromov-Witten invariants .

In this lecture the Gromov-Witten invariants were introduced and discussed.
Definition: for convex, projective X and 7,,...,7, € H*(CX,Z) set

Ig(v, .- v1m) = / PiM)U...Ups(1m) € Z
ﬁo,n(x|ﬂ)

(Gromov-Witten invariants); 8 € Hy(X,Z) fixed. The enumerative meaning of these
numbers is contained in the following result if X is a homogenuous space:
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Proposition: Let X = G/P, where G is a reductive group over C, P C G a parabolic
subgroup. Let Vy,...,V,,C X for n > 3 subvarieties such that

(%) > " codim V; = dim Mon(X, B).
Then for g = (g1, .- , g) in an open dense subset of G™ the (scheme theoretic) inter-
section:

Pl (@) N .. NpH(gaVh) C Mon(X, 8)
consists of Ig(71...7s) (reduced) points, where v; N [X] = [V;] via the isomorphism

=N [X]): H¥(X) = Haimg x-x(X)

After stating basic properties of Gromov-Witten-numbers the Gromov-Witten invari-
ants were introduced in general as linear maps for any smooth projective variety X/C:
g H'(X)® — H* (M) ‘

gm

satisfying certain axioms GW 0) - GW 8) which were explained and motivated. Fi-
nally a construction of non-trivial Gromov-Witten-invariants was outlined based on
the works of Manin, Kontsevich, Behrend and Fantecki. At the end of the lecture the
boundary of My (X, 3) was discussed in preparation for the next talk. :

et

(Christopher Deninger)

3 Quantum cohomology

The purpose of this lecture was to prove associativity of the quantum cohomology
ring of a homogeneous variety X = G/P, where G is a reductive group and P is a
parabolic subgroup. Let A*(X) = @A*(X) denote the intersection ring with multi-
plication U. All A¥(X) are free abelian groups of finite rank. We fix a basis Ty = 1
of A%(X),Th,...,T, of AY(X) and Tpy, ... T, of the rest (i.e. _€>BZA‘(X)). The matrix

(9i5 = [ TiUT;}); j=o..m is invertible over Z (either by looking at the intersection of gen-
% )

eralized Schubert cycles or by using that the cycle map to singular cohomology is an
isomorphism). An easy calculation shows T;UT; = ¥ : ¢/ Io(TiT;T.) where Io(T;T;T.)

e.f
is the Gromov-Witten-invariant and (g%).,s is the inverse matrix to (g;);;. Define a
“quantum deformation” of this product as T; * T; = Eqﬁqeg STy, where ¢, is the

ef
following formal power series in yo . . . Ym: Pije = Z E LI;(v"TiT;T.) for v = 2 T
=0
This product defines the structure of a commutatlve, associative Q[[yo . Ym]]-algebra
with unit Ty on A*(X) ®z Q{[yo - . - ym)]- The only difficult point is the associativity
relation, which follows from a linear equivalence relation for divisors in the boundary
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of the moduli spaces My, (X, 3).

( Annette Werner)

4 Applications to enumerative geometry

In this lecture, the theory of Gromov-Witten-invariants and quantum cohomology
was applied to questions of enumerative geometry. The system of differential equations
(called WDV V-equations) coming from the associativity by relations of quantum coho-
mology are organized using Feynman diagrams. Then the special case of the quantum
cohomology of the projective plane is discussed. For d > 1 let Ny denote the number
of plane rational curves of degree d through 3d — 1 points in general position. The
number N, has an interpretation as a Gromov-Witten invariant. The corresponding
WDVV-equation yields in this case Kontsevich’s celebrated recursion formula

3d—-4 3d—-4
e e () (70
Wi 3d, -2 3d; -1
which allows to compute the Ny as we have Ny = 1. Finally, a presentation of quan-
‘tum cohomology of P? in terms of generators and relations was given which shows that

quantum cohomology is in general not a deformation of usual cohomology.

(Klaus Kiinnemann)

5 The computations of Candelas et al.

We presented two ways of computing the number 7} of (not necessarily smooth)
rational curves of degree d on a general quintic 3-fold in P*. The first way consists in
computing the top Chern class of the vector bundle £; on the moduli stack Moo(IP*, d).
Assuming the Clemens conjecture, and computing the contribution of curves of lower
degree one finds:

Ciop(&a) = k~3n),
[,ﬁ o) top( d) Ek: d/k

k|d
Physicists propose a different way: Starting from a mirror symmetry conjecture they
compute hypergeometric functions - which might be interpreted as a normalized g¢-
expansion on the moduli space of the mirror family - to obtain these numbers. The
coincidence of both series of numbers gives rise to speculations about mirror symmetry
but lacks a precise description.

(Georg Hein)
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6 Enumeration of rational curves via torus action

After presenting the basic ideology of using torus actions to solve enumerative prob-
lems, we discussed two examples in detail. The first example was the counting of
twisted cubics on general complete intersection Calabi-Yau manifolds following the
work of Ellingsrud and Stromme. The second example consisted of the famous calcu-
lation of degree d curves on the quintic in P* which was made by Kontsevich.

" ( Ralph Kaufmann)

7 Quantum differential systems

Consider the Picard-Fuchs equation
D*I(q) = 5¢(5D +1)(5D + 2)(5D + 3)(5D + 4)I(q) ,

where D := g%. A basis of solutions can be written down in the form
dq

10 = (0 + h@p + L5 + 0P =S HL‘(%’:—")‘) mod p*,
d=0 1 <

where ¢ = e!. According to the computations of Candelas et al. the transformation
t' = I,(¢)/Io(t) gives the new Picard-Fuchs equation

(D'y? (DYJd)=0 ,

K(q)

where
I

3
(@)=5+ Zn Ry (q T @E
is the generating function for the number of degree d rational curves on the generic
quintic threefold. This claim allows to compute the numbers n4 (for any given d).

In the lecture the latter operator was interpreted in terms of the “Euler” quantum
cohomology of the quintic, the quintic Y in fact being virtual, only represented by its
fundamental class. The claim was thereby reduced to the statement that two elements
SY and ®Y of the quantum homology are closely related.

W
d
5]

= E
Y _ d 1
SY = 1+qu1.(h_
d=1
o0 1 id
d
l+d2;lqel.(h__cl) H(lp+mﬁ)

m=1

(I)Y

Here, I = 5, e; : My(d) = X = P! evaluates doubly marked stable rational curves into
X at the first marking, and c, is the Euler class of the universal cotangent bundle at

that point. The Euler class E}, € H*(M,(d)) is constructed by pulling back O(l) to
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the universal curve and taking global sections along the curves, vanishing at the first
marking.

(Klaus Wirthmiiller)

8 Givental’s Proof of SY ~ @Y

In this lecture, which directly continues the previous one, Givental’s proof of the
“mirror theorem” was sketched. The theorem states that the formal power series
@Y and SY, introduced at the end of the previous lecture, are equal up to a certain
transformation.

We consider the standard T = (C*)™*! action on P* = X and work with equivariant
cohomology #*(X, Q). The base ring of this theory is Hj = Q[Ao, ..., An] = Q[)]. By
p € Hi(X,Q) he denoted the equivariant first Chern class of Ox(1).

For the proof we introduce the set P C Hx(X,Q)[[h ™", q]] of power series fulfilling
the so-called “recursion relation” and a “polynomial” condition. In the lecture we have
shown the uniqueness Lemma: If Z,Z' ¢ P fulfill Z = Z' = 1 mod ¢ and Z = Z' mod
h7%, then Z = Z'. The Lemma cannot be applied directly to S¥ and ®Y, because SY
is not, equivalent to ®¥ mod %, Therefore we study the following transformations:

1. Z(q,h) = f(q)Z(q,R) with f(q) € Q[[q]} \ {0}
2. Z(q,h) = exp(g(A, q)/h) Z(q, B) with g(A,q) € ¢- H}:(X){[q]] \ {0}
3. Z(q,h) — exp(f(q)p/R)Z(q - exp(£(q)), 1) with f(q) € Q[(q]] \ {0}

It is straightforward to show that P is closed under these transformations. The key
result which enables one to apply this theory to S¥ and ®Y, is a Theorem of Givental
which says that S* belongs to P. The proof uses fixed point localization (Attiyah-
Bott) on moduli spaces of stable maps and a detailed analysis of the fixed point sets
of the actions on the moduli spaces. From the definition of ®Y it is not hard to deduce
as a Corollary that ®" also belongs to P. Writing ®Y(¢,) = 3_,., ®“(¢)A™", one can
show & (g) € 1+ ¢ - Qllg]] and 21 (q)/2O)(g) = p- f(g) + 9(), q) € q - H3(X)[lg])-
This is used to transform SY in the following way:

S¥(q, k) == @9 (q) - exp(g(A, 9)/K) - exp(f(q)p/R) - S¥ (ge/ )

and we have §¥ € P. Using the uniqueness Lemma, we arrive at the main result (’

Theorem of Givental): §¥ = @Y.

Finally, by descending to the non-equivariant setting (i.e. replacing A by 0), we
obtain a precise description of the transformation from J(to,t) := exp((to + pt)/h) -
E - SY(g,h) to I(to,t) := exp((to + pt)/h) - E - ¥ (g, k). Namely to — to + ©(g)h and

t — t + f(q) where ¢ = exp(t) and ®©(g) = exp(p(g)). This proves the statement at -

the beginning of the previous lecture.

(Bernd Kreufiler)
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9 N =2 superconformal field theories

In the first part of the talk we tried to motivate from a physicist’s point of view that
the representation theory of the Virasoro algebra plays an important role in (2-dim)
conformal QFT. After recalling some facts about unitary irreducible highest weight
representations of this algebra, we focused on the discrete series obtained for ¢ < 1,
the so-called minimal models. In the second part we proceded along the same lines for
N = 2 superconformal QFT, namely we studied the representation theory of the N = 2
superconformal algebra, where one again gets discrete series for the central charge ¢
being smaller than 3, also called minimal models. Finally we introduced the notions
of the formal character of a representation (for convenience in the ordinary Virasoro
case) and the modular invariant so-called partition function of minimal models. It is
worth mentioning that the latter are classified according to the ubiquous A — D — E
pattern.

(Christian Adler)

10 Green-Plesser Mirror Construction for Fermat Hypersur-

faces

For any Calabi-Yau threefold X one constructs a conformal field theory called “non-
linear sigma model”, with central charge g and only integral U(1)-charges. Gepner has
conjectured that this gives all such CFT’s. The N = 2 superconformal algebra allows
an involution, which permutes its representations. By Gepner, this should induce a
mirror symmetry among 3-dimensional Calabi-Yau manifolds. Green and Plesser have
given examples confirming this conjecture. They consider U(1)-projections of tensor
products of five minimal models whose central charges add up to g and on which prod-
ucts of five cyclic groups act.. Their mirror theories are constructed by “orbifolding”;
calculation of the partition functions shows when one theory is the mirror of the other.
For the corresponding Calabi-Yau’s, which are hypersurfaces of Fermat type in weighted
projective 4-spaces, orbifolding also makes sense, and the Hodge diamonds of (crepant
resolutions of) the corresponding mirror paires appear to be related by a rotation of 90°.

(Joseph Steenbrink, Nijmegen)

11 Periods of Calabi-Yau hypersurfaces

<1 vu% € Clui',. .., u!] defines a hypersurface Z, in
the torus with coordinates us, ..., u. if the exponents a; € Z" all have first coordinate

A Laurent polynomial s = ¥V
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1. If a; = (1,0,...,0), then on easily checks:

‘ uy du du. -~ )
/ el Bdet N bl = (2mi)" v ! 1 ._E_L'.vgl ..... U;\]lv
[rg|==|un]=1 5 Ug Un 12. N lN. ]
where the sum runs over all (4y,...,ly) € Z" which satisfy lia; + - + Iyay = 0
and [ < 0, l5,...,Iy > 0. Via the Poincaré residue this can be interpreted as a

period of a holomorphic (n — 2)-form on Z,. The series is an example of a Gelfand-
Kapranov-Zelevinsky hypergeometric function in a “resonant case”. Other periods and
solutions of GKZ hypergeometric differential equations with parameters (ay,...,ay)
and 3 € Za, + - - - + Zay are obtained from the following series ®7 5 (which also needs
a triangulation 7 of the polytope A = conv{ay, ... uN}):

oot = X o] 3181 ®

xeA'lﬂ

AezZN
where A is th n x N-Matrix with columns a,,...,ay, ¢ = (c1,...,cn),

—~Xj—1
Qr(c) = H,\,-<o s (ci ~ k)
A = X
I 50 ITeli(c; + K)

and ¢y, ..., cn are the classes of Cy,...,Cy in the ring Ry 7 := Z[D7Y|[Cy,...,Cy]/J

with D =(product of the volumes of the simplices of the triangulation 7°) and J denotes
the Ideal generated by the linear forms ¢;,Cy +--- + a;nCn, (A = (a;5), i =1,...,n)
and the products Cj, - --- - C;, with conv{e;,,...,a; } not a simplex in 7T~ The ring
Ra7is afree Z[D7Y- module of rank= f(max. simpl. in 7).

View on A-side of mirror symmetry: If the triangulation T is such that all maximal
simplices have volume = 1 and the intersection of all maximal simplices is nonempty
and not contained in the boundary, then R4 r is the cohomology of a toric variety Py,
and better even, naturally constructed from A and 7T is a vector bundle Er — P; and
the zero locus of a generic section of the dual vector bundle EY — P is a Calabi-Yau
complete intersection in Pr.

View on B-sidc of mirror symmetry: solutions of GKZ differential equations may
give periods of differential forms. More precisely: expand ®7 4 for an appropriate
in terms of a (linear) basis of R, 7; candidates with respect to this basis are functions

. (of w,...,vn) which generate the period lattice of an appropriate differential form on

T\ Z,. .

(Jan Stienstra, Utrecht)

12 Hypersurfaces in toric varieties

Any lattice polytope A C Mg = R gives rise to a projective toric variety P,; it
contains the torus T := Homgz(M,C*) as an open subset. This construction allows
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to assign to every Laurent polynomial f € C[M] with support suppf C A a hyper-
surface Z; C P, obtained as compactification of the zero set Z; := {f = 0} C T.
If A is a reflexive polytope (i.e. if A contains 0 as an interior point and both A and

={a€ M’ |(a,A) > -1} are lattice polytopes), then its dual A* provides another
famlly of hypersurfaces Z, C Pa-. This is the ultimate candidate for bemg the mirror
of Z;; at least the resolutions of both families satisfy the relation h': YZ; ) =h"% l(Z ).

(Klaus Altmann)

13 Mirror construction for Calabi-Yau complete intersections

Let V be a Calabi-Yau complete intersection in a toric Fano-variety IP5 associated
with a reflexive polytope A. Denote by Ay, ..., A, the-Newton polyhedra of equations
for the complete intersection V. One has A = A; + --- + A;. We define a reflexive
Gorenstein cone C := {(A1,...,Ar,Z) € Ry X Mg | z € Yi_; MiA} and denote by
CV the dual cone in RS, x NR If there exist lattice polyhedra V,,...,V,, such that
C¥ = {(m, -, pr,y) € R5o x Nr | y € 37_; 4V} then the polyhedra define another
Calabi-Yau complete intersection in a toric variety Py associated with the reflexive
polytope V = V,,...,V,. Moreover, the duality between reflexive Gorenst.em cones
works for the case of rlgld Calabi-Yau varieties.

(V. Batyrev)

14 Mirror symmetry-and. string-theoretic Hodge numbers

This was the continuation of Batyrev’s lecture. Having as starting-point the dual
nef-partitions of A,V: A = A;+---+ A, and V =V, +- ..+ V, respectively, we gave
a sketch of the proof of the mirror-duality identity E,:(V;u,v) = Eu(W;u,v) between
V and W by using the “correction terms” of the E-polynomials. Several examples and
comments for the explicit computation of the “string-theoretic” Hodge numbers were
also included in the talk. ’

(D. 1. Dais)

15 Mirror symmtery for lattice polarized K3-surfaces,

First we gave a summary about basic results on K3-surfaces, i.e. structur of the
lattice H?(X,Z), global Torelli, surjectivity of the periode map, existence of Kéhler
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metrics, Ricci flat metrics and hyper-Kahler structure. Then the notion of M- -polarized
K3-surfaces and the moduli-spaces for M-polarized K 3-surfaces were discussed. Fol-
lowing Dolgachev’s paper, “Mirror symmetry for lattice polarized K 3-surfaces”, the
notion of admissible vector and resulting mirror symmetric families were discussed,
including the fact that the moduli space of one family is related to a tube domain in
Pic(X*) ® C of a generic member of the mirror family. Also examples were discussed.

(Herbert Kurke)

16 Special Lagrahgian submanifolds

First I discussed the notion of a calibration and calibrated submanifolds. As the most
important examples I showed that holomorphic submanifolds of a Kiahler manifold and
special Lagrangian submanifolds in a Calabi-Yau space are calibrated manifolds. Ex-
amples of special Lagrangian submanifolds are fixed point sets of an antiholomophic
involution on a CY, and holomophic submanifolds of a K3 surface for a rotated com-
plex structure. A theorem due to McLean tells us that the moduli space of special
Lagrangian submanifolds is smooth and that the tangent space can be identified with
the space of harmonic 1-forms on the submanifold. The p-branes were discribed as
pairs of a submanifold on which strings are allowed to end and a line bundle defined on
this submanifold. p-branes preserving some supersymmetry correspond to calibrated
manifolds (this follows from the BPS-condition) together with a flat line bundle. This
gives two classes of branes corresponding to holomorphic submanifolds or to special La-
grangian submanifolds. Mirror symmetry exchanges these two, while preserving their
moduli spaces. These muduli spaces are fibrations with as fibres real tori of dimension
the first Betti numbers of the submanifold. Following Strominger, Yau and Zaslow, we
consider a mirror pair of Calabi-Yau spaces X and Y. Starting with a holomorphic
0O-brane on X consisting of a single point z, we find by considering the mirror of this
brane in Y that X should have a fibration by tori of dimension n (n = dim¢ X). This
allows us to apply T-duality to X. By dualising the torus fibration we found a T-dual
manifold X. Now we can construct an r-brane on X in two ways. First as the T-dual
of a point T € X and second as the mirror image of a point y € Y. If one supposes
that these branes coincide, one finds that X =Y. This leads to a description of mirror
symmetry as T-duality and to some natural conjectures about Calabi-Yau spaces X.
Namely first that they should have a fibration by spacial Lagrangian tori, and second
that the mirror can be found by dualising this fibration.

(Christian van Enckwort)

10
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17 Special Lagrangian fibrations on K3’s and Fourier Mukai
functors

In a recent approach of Strominger, Yau and Zaslow, the phenomenon of mirror sym-
metry on Calabi-Yau threefolds admitting a T2 fibration is interpreted as T-duality on
the T2 fibres. In two dimensions this means that we have to consider a K3 surface
elliptically fibred over a projective line p : X — P'. A mirror dual to X can be identi-
fied with the component M of the moduli space of simple sheaves on X having Mukai
vector (0, 1, 0) € H*(X,Z), where p is the cohomology class defined by the fibres of p.
The mirror map between the Hodge lattices of X and M should be given by a suitable
Fourier-Mukai transform. In order to define this functor, one can identify M with a
suitable compactification X of the relative jacobian of X; X is the variety representing
the relative Picard functor Picy/pi. One must assume that X has a section, and one

finds that X is isomorphic to X IfP o X xp X is the Poincaré bundle (suitably

normalized), then the Fourier-Mukai functors are defined as S*(F) = R'.(1°F ® P),
(i =0,1). for any coherent Ox-module ¥ (m, 7 are the natural projections of X xp: X
onto X and X). In this way one gets an equivalence at the level of deriyed categories
of coherent sheaves and we described the induced map between cohomology lattices,
f: H'(X,Q) = H*(X,Q). In particular we proved that f(u) = —@, where @ is
the fundamental class of X. So, Fourier-Mukai formulatioxl gives the correspondence
between special Lagrangian 2-tori in X and 0-branes in X predicted by physicists.
Relations between this “mirror symmetry” construction and Dolgachev-Nikulin’s defi-
nition were also discussed. :

(Claudio Bartocci)

18 T-duality for Borcea-Voisin mirror pairs
FX

The first confirmation for threefolds of the recently proposed T-duality construction
is given in the recent work of M. Gross and P. Wilson. The starting point is a K3
surface S whith a holomorphic involution 7 acting as(—1) on holomorphic 2-forms. The
fixed point locus of i is a union of N holomorphic curves of total genus N’; investigating
the action of i on H%(S, Z) it is possible to find another K'3 with involution (S, ;) such
that 4, has N’ fixed curves of totoal genus NV, and S is the mirror of S according to the
“mirror of lattice polarized K3” construction. The next step is to compare the above
with the T-duality construction. Rotating the complex structure of S gives and ellipic
fibration f : Sy — S which is then a SLAG fibration on S. Dualizing this fibration
gives another K3 (topologically) and it can be checked that this dual can be identified
with S) such that the involutions become homomorphisms of torus fibrations.

Choosing an elliptic curve with involution (E, j), we can build threefolds a la Borcea-
Voisii. X 5 Y = S x E/(i,j) where 7 is the blowup. Choosing a degenerate
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metric on X, the fibration f : S — S? and g : E — S! (trivial) give a SLAG fi-
bration h : X — S% x S'/(#,5') ~ S$® whith torus fibres. The main theorem is
that dualizing this fibration gives X; = (S; x E/(4;, j))" (blowup) which is the mir-
ror of X. So the T-duality construction is compatible with previous mirror symme-
try constructions in this case. The talk concluded with a topological discussion of

singular fibres in the various fibrations, and a direct confirmation of the fact that .

12(N — N') = e(X) = —e(X,) = 12(N’ — N) as predicted by physics.

. (Baldzs Szendréi)

Berichterstatter: 1. Kausz

12
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