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Tag u n g s b e r ich t 40/1997

Nonlinear Systems, Solitons and Geometry

19.10. bis 25.10.1997

This conference was the fourth in aseries being held in Oberwolfach. It was
organized by Professors M. Ablowitz (Boulder), B. Fuchssteiner (Paderborn),
M. Kruskal (Princeton) and V. Matveev (St. Petersburg). ~

The participants presented their most recent work in the meeting. This aod the
marvelous surrounding again created a lively scientific atmosphere with many
stimulating discussions which certainly will influence future directions and will
contribute to further progress in the field of integrable non-linear systems and
their applications.
The lecture program covered a broad range of topics in this diverse area. In
particular, many contributions dealt with the remarkable relation between in­
tegrability and classical geometry.
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VORTRAGSAUSZÜGE

M.J. ABLOWITZ': On ItReftectionless" Potentials 0/ the Time-Dependent
Schrödinger Equation and Solutions 0/ the K adomtsev-Petviashvili Equation

It was shown same years aga that the time-dependent Schrödinger equation
has a dass of real nonsingular rational potentials which are analogues of the
reflectionless potentials of the time independent Schrödinger equation. These
potentials give rise to the lump solutions of the Kadomtsev-Petviashvili-I
(KP-I) equation. It turns out that there is a much larger dass of such
potentials. They have adefinite spectral interpretation and are related to a
topological number; i.e. an index or charge. These potentials are real and non­
singular and are related tO'an interesting class of solutions of the KP-I equation.

A.I. BOBENKO: Discrete elastic curoes and spinning top

Elastic curves are extremals of the functional

.c =J(k 2 + '" r
2 )dz, '" =const ,

where k) T are the curvature and the torsion of the framed curve. The Kirchhoff
kinetic analogue theorem claims that the frame of an elastic curve describes the
rotation of asymmetrie spinning top (one should treat the arclength parameter
of the curve as the time variable).
In the talk all these notions are discretized 'preserving the integrability. In par­
ticular} the discrete evolution T : Z ~ 8 2 of the axis of the discrete spinning
top is given by

with some constants c E IR} a E }R3. Tn is simultaneously the edge of of
the corresponding discrete elastic curve. The corresponding Lagrangians are
derived. The construction is based on the Ablowitz-Ladik hierarchy of the
smoke-ring evolution of discrete curves by Doliwa and Santini.

M. BOITI (JOINT WORK WITH F. PEMPINELLI, A. POGREBKOY AND WITH

THE PARTICIPATI0N OF B. PRINARI IN THE FRAMEWORK OF A PH. D. THESIS)

Solving the Kadomtsev-Petviashvili equation with initial data not vanishing at
large distances

We consider, in the framework of the inverse scattering method, the solution
of the Kadomtsev-Petviashvili equation in its version called KP-I. The spectral
theory is extended, by using a new approach called resolvent approach} to the
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esse in which the initial data u(x, y) are not vanishing along a finite number
of directions at large distances in the plane. Special attention is paid to the
solutions describing N solitons on a generic background. In order to explore
the analytic properties of the Jost solutions and the structural properties of
the spectral data both solutions built using Bäcklund transformations and the
dressing method are considered. In the first case, if only one soliton is present , all
quantities, including the so called extended resolvent, are expJicitly computed
by using the Darboux transformations. In the second case it is shown that the
Jost solution c"an have in addition to the traditional cut on the real &Xis of the
complex speetral plane a cut connecting the discrete value of the spectrum and
its complex conjugate.

[1] M. Boiti, F. Pempinelli and A. Pogrebkov, Journal of Math. Phys. 35
(1994) 4683.

[2] M. Hoiti, F. Pempinelli and A. Pogrebkov , Physica D 87 (1995) 123.

[3] M. Boiti, F. Pempinelli and A. Pogrebkov, Inverse Problems 13 (19~7) L7.

L. BORDAG (JOINT WORK WITH M.V. BABICH): Projective differential geome·
trical structure of the Painleve equations

The necessary and sufficient conditions that an equation of the form 'y" =
f(x, y, y') can be red.uced to one of the Painleve equations under a general point
transformation are obtained.. A constructive procedure to check these conditions
is found. The theory of invariants plays aleading part in this investigation. The
reduction of all six Painleve equations to the form y" = /(Z, y) is obtained.
Following Cartan the space of the normal projective connection which is
uniquely associated with a dass of equivalent equations is considered. The
specific structure of the spaces under investigation allow to immerse them into
RP3. Each such immersion generates a tripie of two-dimensional manifolds in
RP3. Those surfaces corresponding to the Painleve equations are presented.

M. BORDEMANN (JOINT WORK WITH J. HOPPE): Integrable Hypersurface Mo·
hons in Riemannian Manifolds

Let (E, e) be an oriented compact manifold of dimension M ~ 1 and (Nt 71)
- an orientable Riemannian manifold of dimension M + 1 with Riemannian me­

tric 1]. We consider hypersurface motions (of codimension 1) described by one
pa.rameter families of immersions Xe : E -4 N satisfying tbe first order partial
differential equation

aXe _ ( v'9f;;j) [ ]--0' --- nXe
lJt. g

where n[xd is the surface normal, 0' is a diffeomorphism of an open interval of
the positive realline onto an open interval of tbe positive realline, aod J9IZJ is
the Riemannian volume of the pulled-back metric x; 71. Assuming that for ahort
times there is an open neighbourhood N~ of zo(E) in .N foliated by Xe (E) we
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derive a second order partial differential equation for the corresponding time
function T : Ne --+ IR whieh equals t on xe(E). For a(z) =zone finds that T is
harmonie

ßT = 0)

hence equation (*) is linerizable in tbe sense (.*) for this partieular case. A
reconstruction of a solution Xt to (*) from a given time function (obeying its
PDE) is possible (for short times, assuming a nice foliation) by considering the
flow of t'r/fJ(\lr, \!T), \lT being tbe gradient of T. If (N, 1]) is flat IR M +1, then
(*) for o(z) = z takes the form

(1 :5 i :5 M + 1; 1;'1, ..• , I;'M being coordinates on E) and is integrable.

F. CALOGERO: Some Recent Results On Integrnble Dynamical Systems

Same reeent results on integrable dynamical systems have been reviewed. The
presentation has focused i) on certain solvable dynamical systems in the plane
whieh display a very rieh phenomenology, and ii) on certain integrable Ha­
miltonian systems "of Ruijsenaars type"whose trajectories are all completely
periodic.

[1] F. Calogero: "A solvable n~body problem in the plane. I", J. Math. Phys.
37, 1735-1759 (1996); F. Calogero: "Motion of strings in the plane: a
solvable model", J. Math. Phys. 38, 821-829 (1997); F. Calogero: "Three
solvable many-body problems in the plane", Acta Appl. Math. (in press).

[2] F. Calogero: "A dass of integrable Hamiltonian systems are (perhaps)
all eompletely periodic", J. Math. Phys. (in press); F. Calogero: "Tricks
of the trade: relating and deriving solvable and integrable dynamical sy­
stems" I to be published in the Proceedings of the International Workshop
on "Calogero-Moser-Sutherland Models" beld at the Universite de Mon­
treal in March, 1997;" F. Calogero and J.-P. Francoise: "Solution of cer­
tain integrable dynamical systems with completely periodie trajectories" ,
Commun. Math. Phys. (submitted to).

P .A. CLARKSO"N: Symmetry reductions and exact solutions 0/ .genernlized
Camassa-Holm eq~ations

In this talk I shall discuss symmetry reductions and exact solutions of the ge­
neralized Camassa-Holm equations

. Ut - fUzxt + 2KUz = UUzzz + QUUr + ßuzUZ % , (1)

Uu - fUrzU = UUzrrr + QUrUr :: + ßu;: + (')'u2 + KU)rx (2)
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with 0', ß, ""1, " and f constants.
Three special cases of equation (1) have appeared in the literature, which all
possess unusual travelling wave solutions. The Fornberg-Whitham equation (for
f = 1,0' = -I, ß =3, " =1/2), admits a wave of greatest height, as a peaked
limiting form of the travelling wave solution; the Rosenau-Hyman equation (f =
0, a = I, ß = 3, K = 0), admits a "compacton" soHtary wave solution; and
the Fuchssteiner-Fokas-Camassa-Holm equation (f = I, a = -3, ß = 2), has a
"peakon" solitary wave solution.
Equation (2) is a "Boussinesq-type" equation which arises as a model of vibra­
tions of an anharmonic mass-spring chaio and admits both "compacton" aod
conventional solitons.
A catalogue of symmetry reductions aod exact solutions for equations (I) and
(2) is obtained using the classical Lie method and tbe nonclassical method
due to Bluman and Cole. In particular we obtain several reductions using the
nonclassical method which are not obtainable through the classical method.

A. CONSTANTIN: Some Aspects 0/ a Shallow Water Equation ....

We consider the periodic problem for the Camassa-Holm-Fokas-Fuchssteiner
equation modelling waves on shallow water. We discuss integrability related
questions as weil as some structural properties of the model disclosedby global
existence and blow-up results of this quasilinear hyperbolic PDE. .~~

A. DOLIWA: Geometrie constructions and integmble multidimensional lattices

In this lecture I review recent results of the geometrie theory of the discrete
multidimensional integrable systems from the point of view of the linear con­
structibility of the corresponding lattices. Plan of the talk:

1. Linear constructibility scheme of the Multidimensional Quadrilateral Lat­
tices (MQLs).

2. Quadratic reductions of the MQLs.

3. Line congruences and transformations of the lattices.

E.V. FERAPONTOV: Sur/aces in Lie sphere geometry and the stationary Davey­
Stewartson hiemrchy

We introduce two basic invariant forms which define generic BUrfaces in 3-space
uniquely up to Lie sphere equivalence. Two particularly interesting classes of
surfaces associated with these invariants are considered, namely, the Lie mini­
mal surfaces and the diagonally-cyclidic surfaces. For diagonally-cyclidic sur­
faces we derive the stationary modified Veselov-Novikov equation, whose role
in the theory of these surfaces is similar to that of Calapso's equation in the
theory of isothermic surfaces. Since Calapso's equation itself turns out to be
related to the stationary Davey-Stewartson equation, these results shed same

5

                                   
                                                                                                       ©



new light on differential geometry of the stationary Davey-Stewartson hierar­
ehy. Diagonally~cyclidic surfaces are the natural Lie sphere analogues of the
isothermally-asymptotic surfaces in projective differential geometry for which
we also derive the stationary modified Veselov-Novikov equation with the diffe­
rent real reduction.
Paralleis between invariants of surfaces in Lie sphere geometry and reciprocal
invariants of hydrodynamie type systems are drawn in the eonclusion.

A.P. FORDY: Commuting Hamiltonians and systems 01 hydrodynamic type

In this seminar I shall exhibit a surprising relationship between separable Ha­
miltonians and integrable, linearly degenerate systems of hydrodynamie type.
This gives a new way of obtaining the general solution of the latter. Our for­
mulae also lead to interesting canonical transformations between I"arge classes
of Stäckel systems. .
I shall then eonsider a class of non..homogeneous systems of hydrodynamie type:

q: = v;(q)~ + cpi(q) , i == 1,. '" n,

whieh ean be related to quadratic Hamiltonians with electromagnetie terms.
Whilst it is unlikely that these systems are genemlly integrable, they do pos­
sess intriguing properties, such as having a higher eonservation law and a
2n-parameter family of exact solutions. In fact these systems eoineide with
those possessing a eonservation law with the density {, being a quadratie ex­
pression in the first derivatives:

The eorresponding 2n-parameter family of exact solutions are just tbe stationary
points ofthis integral. There are several examples, some of which have important
applications.
These results are joint work with E.V. Ferapontov [1,2].

[1] E.V. Ferapontov and A.P. Fordy. Separable Hamiltonians and integrable
systems of hydrodynamie type. J. Geom. and Phys., 21:169-82, 1997.

[2] E.V. Ferapontov and A.P. Fordy. Nonhomogeneous systems of hydrody­
namie type related to velocity dependent quadratic Hamiltonians. Physica
D, 1997.

B. FUCHSSTEINER: The Camassa-Holm Equation

By compatibility, splitting of the KdV-recursion operator leads to the heredi­
tary recursion operator ~ = ~1 ~21, ~ 1 = DuD-l + u + 2k, ~2 = D2 - I,
of the so ealled "factored KdV" Ut = cI>(u)uz . This equation is a Bäcklund
transformation u =v - Vzz away from the Camassa-Holm equation. It i5 shown
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how this factorization leads to the isospectral formulation in a straightforward
way. Furthermore. how intertwining of this isospectral formulation gives rise to
the hodograph link to the (-1 )-5t generalization of the KdV. This hodograph
link then allows for master symmetries and a (2+1)-dimensional generalization.
An abundance of open problems i5 presented along the lines of this de.rivation
of the Camassa-Holm equation.

B. GRAMMATICOS (COLLABORATIVE WORK WITH A. RAMANI): Discrete
Painleve Equations: A Self-Dual Approach

The discrete forms of the Painleve equation5 can be derived systematically
u5ing the method of singularity eonfinement which plays the role of the
Painleve property for diserete systems. The application of this method results
in difference or q-equations involving their full complement of free parameters.
A detailed analysis of these most general forms of the discrete (difference)
Painleve equations (d-P) reveals the property of self-duality: the same equation
describes the evolution along the diserete independent variable and along the
parameters (the latter indue~d by the Schlesinger's of the d-P). An explanation
of the self duality ean be sought in the relation of the differenee Painleve
equations (q - PVI being a notable exeeption). Self-duality ean be used to
eonstruct the basis for a geometrieal classifieation of discrete Painleve equations.

P.G. GRINEVICH (COLLABORATIVE WORK WITH M.U. SCHMIDT): Confo~al
invariant functionals 0/ immersions of tori into IR3 .

We show. that higher analogues of the Willmore functional, defined on immer­
sions M 2 ~ }R3, where M 2 is a two-dimensional torus, are invariant under
conformal transformations of IR3 . This hypothesis was formulated recently by
I. A. Taimanov.
Higher analogues of the Willmore functional are defined in terms of the
modified Novikov-Veselov hierarchy, associated with the zero-energy scattering
problem for tbe two-dimensional Dirac operator.

J. HIETARINTA: Singularity Confinement, Degree Growth, and the ldentification
of lntegrable Maps

One important problem in the study of differenee equations is to identify the
integrable ones. For differential equations we have the Painleve test, which works
very weil (although passing the test is not rigorously equivalent to integrability).
For difference equations an analogue, the "singularity cODfinement test". was
provided in [1]. The idea is as folIows: From certain initial values one may
end up in an ill-defined situation, such as 00 - 00,0 . 00 etc. ODe should then
study the behavior around these initial values, and if ODe can continue past the
"singularity" in a finite number of steps, without losing information. then the
system is said to pass the test.
We point out that singularity confinement is not sufficient for integrability: so­
metimes even chaotic maps pass the test. As a particular example we have 2:"+1+

7

                                   
                                                                                                       ©



Zn-1 = x;;2 + Xn, which shows numerical chaos. Rational maps are best studied
as polynomial maps in projeetive space. Introducing Xn = unIIn, X n-1 = vnlIn
we can write the above map as (u, v, I) ~ (u3 +13 - u2v, u3 , /u 2 ). The de­
gree growth of such maps is usually exponential, but the conjeeture is that for
integrable maps the growth is only polynomial due to eaneellation of common
factors (projectivization) [2]. For the above map we have

lim !- Iog(degree of nth iteration) = log (3 + -15)
n-+oo n 2

The conclusion is tbat the singularity confinement test should be accompanied
with a study of degree growth before predictions about integrability are made.
This work was done in collaboration with C.M. Viallet.

[1] B. Grammaticos, A. Ramani and V. Papageorgiou, Phys. Rev. LeU. 67,
1825 (1991)

[2] G. Falqui and C.M. Viallet, Commun. Math. Ph~s. 154, 111 (1993)

N. JOSHI (COLLABORATIVE WORK WITH M.D. KRUSKAL): A Natural Sum 01
Diveryent Asymptotic Senes

Divergent asymptotic series commonly oceur in the analysis of solutions of
differential equations near an irregular singular point. Orten such series hide
exponentially small terms which are essential for identifying tbe solution
uniquely. Here we show how a new extension of conventional asymptotics allows
a unique identification of such a solution.

A.V. KITAEV: Isomonodromy approach to penodic solutions 0/ the Ernst
equation

We present a construction of periodic solutions of the Ernst equation in terms
of isomonodromy deformations of a linear 2 x 2 matrix ODE of the spectral
parameter. Its coefficients are meromorphic functions of the spectral parameter.
It is shown that in the static case this construction reduees to the periodic
analogue of the Schwarzschild solution constructed by R.C. Myers (1987) and
D. Korotkin & H. Nicolai (1994).

B.G. KONOPELCHENKO: lnduced sur/aces, their integrable dynamics and
application

A new method of analysis of surfaces and their properties is discussed. The
method is based on a construction of surfaces in IR3 via the two-dimensional
linear equations and generation of their deformations via 2 + I-dimensional
"nonlinear integrable equations. This method allows us to analyse surfaces and
deformations using explicit formulae taking advantage of the knowledge of
2 + I-dimensional integrable equations. Two basic examples are eonsidered.
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The first is given by a generalized Weierstraß formula which allows to construct
any surface in }R3 both locally aod globally starting with a system of two
linear equations (tbe Davey-Stewartson-II linear problem). The eorresponding
formulae define eonformal immersions of surfaces in }R3. Integrable deforma­
tians in this ease are generated by the modified Veselov-Novikov equation. A
eharacteristic feature of such deformations is that they preserve tbe Willmore
funetional (total squared mean curvature) as weil as an infinite set of other
funetianals. Tbe Clifford torus is a stationary point of these deformations.
Lelieuvre's formula in affine geometry is the second example. Deformations of
affine eonormal of a surface via the Nizhnik-Veselov-Novikov equation generate
integrable deformations of affine surfaces. These deformations preserve the total
affine mean curvature. Affine spheres are· stationary points of such deformati­
ons. A particular dass of deformatioos is governed by the Korteweg-de Vries
equation. Applications of the method of indueed surfaces and their integrable
deformationsin string theory, the theory of liquid biologieal membranes and
other fields are discussed.

M. LAKSHMANAN:Geometricallnterpretation 0/(2+ 1) Dimensionallntegroble
Nonlinear Evolution Equations and Localized Solutions

A large dass of (1 + 1) dimensional equations of AKNS type as weil as spin
equations ean be associated with moving space curves or with surfaces in
E 3

I thereby giving a simple but effective geometrical interpretation ofihese
equations. In this lecture, it will be pointed out that byextending the formalism
an important dass of 2+1 dimensional integrable nonlinear evolution equations
ean also be interpreted as equations of motion of moving space curves but
endowed with an extra spatial variable or equivalently in terms of moving
surfaces (in orthogonal coordinates). Topological conserved quantities naturally
folIowas geometrical invariants. Underlying evolution equations are shown to
be equivalent to a triad of linear equations. Geometrical equivalence between
a dass of 2 + 1 dimensional spin equations such as Myrzakulov equations and
Ishimori equation with Zakharov-Strachan aod Davey-Stewart80n equations,
respectively, will be brought out. Special localized solutions of some of"these
systems will also be reported.

5.B. LEBLE: Elementary and binary genemlized gauge tmns/ormations at
differential rings geometry

Elementary gauge transformations (with spectral parameter) of covariant
Zakharov-Shabat operators on differential rings and modules factorize Darboux
transformations. The form of such transformations is introduced and investiga­
ted in general and for Schlesinger versions. Reductions are discussed. Binary
transformations that correspond to the iteration of elementary ones with special
choices of solutions of the Zakharov-Shabat problem and its conjugate are
intraduced. They widen the dass of possible reductions. We exhibit an infinite­
simal version of the transform. Tbe geometrical meaning of the constructions

9

                                   
                                                                                                       ©



via Darboux surfaces of the corresponding Lie group and generalizations for
rings is discussed. A generalization of Bianchi-Lie transformation formulas is
derived. Applications to the spectral theory of operators aod to soliton theory
are outlined. The example of N-wave interaction equation and its generalization
to rings is discussed. Soliton solutions and its infinitesimal deformations are
analyzed. It widens the class of initial conditioos and allows to check stability.

YI LI (IN COLLABORATION WITH P. OLVER): Convergence 0/ solitary-wave
solutions 0/ a perturbed bi·Hamiitonian system

This lecture is concerned witb tbe bi·Hamiltonian system

Ut + IIU:n : t = a Ua: + PUrrr + 3""(UUz + ""(11 (UUrrr + 2Ur Urr ) (1)

as a model to generalize the Korteweg-de Vries equation. However, different
from the KdV equation, the perturbed system possesses not ooly analytic
travelling wave solutions, but also weak, noo-analytic solitary-wave solutions,
called peakons and compactons. To understand singularity formations of these
weak solutions, we investigated the dynamical system governing travelling wave
solutions, showing that the nonlinear dispersion term UUrra: has generated
a singularity in the dynamical system, at which the compacton occurs. In
addition, we extended real-analytic solitary-wave solutions to functions defined

.on the complex plane, showing that they are analytic functions except for
countably many branch points and branch lines. We demonstrated that these
analytic functions converge to the functions whose restrictions to the real
line are peakons or compactons. Moreover, branch points of the analytic
functions also approach singularities of peakons or compactons in the process
of convergence. This fact has also been used to explain why peakons and
compactons are weak solutions of the system (1).

w.x. MA: Graded Symmetry Algebras 0/ Evolution Equations in 2+1 Dirnen·
. sioßS

Integrable hierarchies of evolution equations in 2 + 1 dimensions are presented
from Gelfand-Dikij spectral problems, which include the KP hierarchy and
the modified KP hierarchy as examples. Associated with each such hierarchy,
there exist infinitely many hierarchies of master symmetries which constitute
a graded Lie algebra. On tbe other hand, starting from graded Lie algebras,
time-dependent evolution equations, which may involve a group of arbitrary
time functions, are analyzed and their graded symmetry algebras are given.
The basic tool adopted is the Lax operator method, which mayaiso be applied
to higher dimensional cases.

F. MAORI (COLLABORATIVE WORK WITH G. FALQUI AND G. TONDO): Sepa.
ration 0/ variables /or bi.H~miltonian systems: a concrete example

The aim of tbis talk is to emphasize the role of the Hamiltonian structures in
the problem of constructing separable coordinates for a given Hamiltonian flow.
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We shall consider a specific example: the stationary flows of tbe Boussinesq
hierarchy. They are defined as folIows. In tbe space of third-order differential
operators Q = a: + u(z)8z +v(z), where u(z) and v(x) are two arbitrary peri­
odic functions of the space coordinate x, one considers the submanifold M of the
operators obeying the non linear constraint [Q, (Qi)+] = 0, where (Qi)+ is the
differential part of the fourth power of the cubic root of Q (in tbe algebra of for·
mal pseudo-differential operators). One can provethat M is finite-dimensional:
dimM = 8. On M one considers the first three non trivial flows of the Boussinesq
hierarchy, defined by the equations 8Q/ätj =[Q, (Qi)+J for i = 1,2, 5.
Our aim is to prove that these equations cau be solved by separation of variables
aod that the separable coordinates ean be explieitly eomputed by earefully using
the bi-Hamiltonian structures of these equations. In fact, on tbe manifold M, one
can eonstruet a linear pencil of Poisson brackets {F, G}.x = {F, G}o + A{ F, G} 1

with the following properties:

1. it has two Casimir funetions H(A) = Hl A + H2 and K(.\) = H3 .\2 +
H4 A+ Hs; ...~

2. the functions H1 and H3 are Casimir functions of {F, G} l, tbe funttions
H2 aod Hs are Casimir functions of {F, G}a; v~

3. the functions H2,H4 and Hs are the Hamiltonian funetions, witb respect to
the first Poisson bracket {P, Gh, of the three vector fields under scrutiny;

4. the functions Hb H3, H4 are tbeir Hamiltonian functions with respect to
the second Poisson bracket {F,G}o;

5. all these functions are in involution with respect to a11 brackets of the
Poisson pencil.

This bi-Hamil tonian strueture of the Boussinesq flows ean be used to integrate
the equations of motion according to the following scheme.
First one considers a level surface S of the functions H 1 and H3 . It is a six­
dimensional sympleetic leaf of the Poisson bracket {F, G}o. The given vector
fields are tangent to S, so they can be restricted to this manifold. The-ri -one
observes that both Poisson brackets {F, C}o and {P, C}l naturally reduce to
S (by a Marsden-Ratiu reduction procedure). So one ean conelude that S is
a Poisson-Nijenhuis manifold, i.e., S is a manifold endowed with a symplectic
form w {indueed by {F, G}o) and with a compatible Nijenhuis tensor N (induced
by {F,G}d.
The final step is to construct the Darboux coordinates defined on S. It is a
general result [lJ that on any Poisson-Nijenhuis manifold of dimension 2n,
there exist canonical coordinates (Aj; Jlj) such that w = Ei=1 dJlj A dAj and
N· dAj = Aj dAj, N· dJlj = Aj dJlj. The coordinates Aj are the roots of the
minimal polynomial of N;. tbe coordinates pj are tbe values, at the points
A = Aj, of a "conjugate" polynomiaI Jl = '0>"" + '2 A"-l + ... + In, where
/;., i = 0, ... , n , are suitable chosen functions. In this case, we have explicitly .
computed the Darboux coordinates for the stationary Boussinesq fiows, and we
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have shown that the Hamilton-Jacobi equation associated with the Hamiltonian.
functions (H2 , H4 , Hs) can be solved by separation of variables in the Darboux
coordinates.
In our opinion these Bows provide a good example of the tight connection bet­
ween separable coordinates and the bi-Hamiltonian structure of soliton equati­
ons.

[1] F. Magri, T. Marsico, Some developments 0/ the concepts 0/ Poisson ma­
ni/olds in the sense 0/ A. Lichnerowicz, Gravitation, Electromagnetism
and Geometrical Struetures, (G. Ferrarese, 00.), Pitagora editrice, Bolo­
gna 1996, pp. 207-222.

v .B. MATVEEV:. Darboux Transformations in Associative Rings and
Functional-Difference Equations

We formulate and prove same general eovariance theorems for a certain dass
of functional-difference or functional-differential multi-dimensional equations.
These theorems are not yet sufficiently explored. They include as a special
case the previous results of the author eoneerning the extension of the original
results by Darboux and Crum to tbe ease of nonabelian partial derivative,
differential-differenee and difference-difference evolution equations. We briefly
describe the applieation to the Hirota-like bilinear lattiee equations and some
other nonlinear integrable problems.

A. V. MIKHAILOV: Towards classification 0/ 2+ 1 dimensional integrable equa­
hons: the symmetry approach

During the last 18 years tbe Symmetry Approach suitable for (1 + 1) di­
mensional nonlinear partial differential equations and difference differential
equations has been created aod developed. It proved to be a powerful tool for
testing the integrability and solving the classification problem for integrable
equations. In the current work we try to extend the above theory to the 2 + 1
dimensional case. Tbe main feature of integrable quations in 2 + 1 dimension is
that the equations themselves, their higher symmetries and conservation laws
are nonlocal, and that is the main obstacle for a straightforward extension of
the 1 + 1 dimensional approach. To overcome this problem, a new concept of
quasi-Iocal functions which are a natural generalization of loeal functions is
introduced. All known integrable equation and its hierarchies of symmetries
and conservation laws can be described in terms of quasi-Iocal functions. This
observation will be exploited for an extension of the Symmetry Approach to
multi-dimensions, creating integrability testSt aod a classification of the most
important types of equations. Some results have already been obtained this
way. A few first integrability conditions for scalar equations based on the
eoncept of. quasi-Iocal functions have been fouod. A few first classification
results for Davey-Stewartson type equations, based on existence of one extra
symmetry, have beeo recently obtained.
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T. MIWA: Solvable lattice models and representation theory 0/ infinite dimen­
sional algebras

I explain two topics from tbe semi-infinite construction of tbe highest weight
modules of the affine Lie algebra ;;2 and its q-deformation. One is on the iden­
tification

with
EBiJ;::O,l V(Ad ® V(Aj ).

Here the latter is the tensor product of the level one highest weight modules.
This is used for solving tbe integrable quantum spin chain with mixed spins
(1/2,1).
The other is on polynomial identities related to tbe higher level characters for
;/2' In one side of the identities we count the number of bases of given weight
and degree, and in the other side I the number of symmetrie polynomials with
certain conditions. .
In both problems the energy functions in the crystaJ base theory pr;~~ an
essential role.

P. VAN MOERBEKE: Random Matrices And Soliton Equations

The spectrum of very large random matriees provide a model for excitation
spectra of heavy nuclei at high excitations (Wigner). The analysis of nuclear
experimental data has shown Uspectral rigidity" and Hlevel repulsion" . The dis­
tribution of the spectrum of large random matrices have come up in the spaci~g
of the zeros of the Riemann (-function. It is also believed that tbe quantum ver­
sion of chaotic dynamical systems leads to the same "spectral rigidity", typical
of random matrices.
What is the connection of random matrices with integrable systems? Is this
connection really useful? Introduce an appropriate time t = (tl, t2, ...)­
dependence in the probability distribution

CN e-TrV(M)+E ti TrM
i dM,

where dM is a Haar measure on the space of N x N Hermitian matrices MN. The
probability that N eigenvalues belang to the disjaint union E =uHA2i-l, A2i] C
IR is a ratio of functions

TN(E t)
P(spectrum MN E E) = --(-')­

TN t

whieh satisfy

(i) TN (t) and TN(E, t} are solutions of the K P-Equation.

(ii) T =(TN(H))N~O is a T-vector of the Toda lattice on tridiaganal symmetrie
matrices.
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("')G' V' h Ei>obi(i . I () cl ( )
111 wen - -= 7 = Ei>o ai(i ratlOna, T t an T E, t satisfy the follo-

- wing Virasoro eonstraiöts

(Ei (aiJJ!~m - bi..u!~m+l) -"2:i Ar+ 1f(Ad 8
8
Ai ) r(E,t) =0,

where, in the last expression, the time-part and the boundary-part decou­
pIe.

Given same extra-conditions on V', it is possible to express the t-partials in
terms of A-partials of T. Putting these expressions ioto the K P equation leads
to a "non-commutative" K P hierarehy. In the special case where E = (A,oo),
the first equation of the hierarchy is one of the Painleve equations.
The methods ean be extended to eapture symmetrie aod sympleetic ensemble,
aod also coupled random matrices.

O. I. MOKHOV: On the equations 0/ associativity and compatible Poisson
structures 0/ hydrodynamic type

The problem of classifieations of compatible Poisson structures of hydrodynamic
type is studied. It is shown that in the two-component case such eompatible
pairs ean be completely described by a 4-eomponent homogeneous nondiago­
nalizable system of hydrodynamie type, which has two double eigenvalues and
four eigenveeto:rs at any point. Two Riemann invariants of this system are
found and it is proved that tbe system has DO other Riemann invariants. An
integrable two-component reduction of the system is constructed. For an arbi­
trary number of components N the theory of eompatible deformations of two
Frobenius algebras is developed. The equations of the eompatible deformations
eorrespond to some natural special ease of tbe equations for compatible Poisson
struetures of hydrodynamic type. For N = 2 these equations of deformations
are eompletely integrated.

F. NIJHOFF: Elliptic Solutions 0/ Lattice KP Systems and Integroble Discrete
Many-Body Systems

In arecent paper [F.W. Nijhoff, O. Ragnisco and V. Kuznetsov, Commun.
Math. Pbys., 1996] a discrete version of the Ruijsenaars' model (the relativistic
generalization of the Calogero-Moser model) was derived aod its integrability'
was proven as a multivalued Lagrangian map. This discrete model, which in its
generic form is given in terms of the Weierstraß u-function, was integrated in
the rational and hyperbolic limits, and in the the latter case a eonnection with
soliton solutions of the lattice KP equatioo'was pointed out. More recently,
Krichever and collaborators have shown how the discrete Ruijsenaars ' model
in the elliptic case arises from pole expansions of the lattice KP equation. In
the present talk another connectioD between lattice KP systems (including the
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lattice modified KP equations, Hirota-Miwa equation, etc.) and tbe Ruijsenaars,
model is explained. Tbe connection arises via linear integral equations with
arbitrary contours and measures and an elliptic kernel given in terms of the
Larne function 4ly(z) ~ O'{z + y)/{O'(z)u(y». Such integral equations had been
studied in the past in the rational case to study solutions of integrable partial
difference equations of J{P type. In the elliptic case special reductions (from
special choices of contours and measures) yield solutions of elliptic soliton type
and they are given in terms of tbe Ruijsenaars' Lax matrix. Tbe Ruijsenaars,
flow can be shown to be compatible witb tbe lattice KP flows. Finally, the
general problem of the existence of a "discrete" integration scheme for the
elliptic Ruijsenaars' model is discussed.

w. OEVEL: QR-Factonzation and Elementary Dressing Transformations of
the Toda Hiemrchy

QR-factorization of matrices is known to provide transformations leaving~tlie

(generalized) Toda hierarchy invariant. We consider the numerical algorithm
computing the orthogonal factor Q as a product of Ho'useholder (reflection)
matrices". It is shown "that for Lax operators of upper Hessenberg type the
partial transformations inrluced by the Householder matrices also provide
invariances of tbe Toda flows. In contrast to tbe complete QR·step, tbe partial
transformations are only elementary: they introduce an additional entry ioto
the Hessenberg matrices.

F. PEMPINELLI: Finite-Dimensional Systems Integrable via Inverse Scattering

The discrete spectral problem of Ablowitz-Ladik is considered in tbe case' in
which the potential has a finite support of length L. The spectral transform is
explicitly computed and a recurrence relation on the length L for computing it
in L algebraic step is given. This spectral transform ean be used to generate
via the scattering method a finite dimensional version of the dynamical systems
associated to the Ablowitz-Ladik spectral problem. A special case in which
the potential can be constrained to evolve in time on a semi-line is proposed.
In this case the evolution of the spectral transform is governed by a Riccati
equation. The truncated soliton (i.e. the potential obtained by putting to
zero the one soliton outside an interva.l of length L) ia examined in detail.
The sufficient aod necessary condition for having a soliton contained in the
truncated soliton solution is derived. Finally, the continuous counterpart of
these finite-dimensional systems is considered. The spectral transform via a
Ricatti equation and tbe special case of the truncated soliton is studied.

Q. RAGNISCO: Integmble Hamiltonian systems from co-algebras

I present an algorithm to eonstruct N-body (classical and quantum) completely
integrable Hamiltonian systems from representations of co-algebras with Casi­
mir elements. In particular, this construction shows that q-deformations ean be
viewed as structures generating integrable deformations cf Hamiltonian systems
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with co-algebra symmetry. To illustrate the method, I consider as a first exam­
pie a canonical realization of 80(2,1) that yields the Gaudin-Calogero system.
Then, the Drinfeld-Jimbo q-deformation of 80(2,1) is shown to yield an integra..
ble deformation of the previous model; finally, adeformation of the co-product
of the (1 + l)-Poincare algebra, compatible with the algebra itself, is shown to
provide a simple, but non-trivial Hamiltonian of the Ruijsenaars-Sehneider type.

P .C. SABATIER: On Multidimensional Darboux Transformations

In contrast to known results on one-dimensional Darboux transformations,
known results on multidimensional Darboux transformations do not seem
convenient for disentangling the sets of solutions in global inverse problems. In
the present paper, on one hand it is given a wide generalization of vectorial
Darboux transformation and a more limited generalization of binary transfor­
mations. On the other hand, reduction of multidimensional transformations
in special examples is described to show the limits of their use in Inverse
Theory, to generate one dimensional transformations, and to give a better
understanding of how the latter ones work.

P.M. SANTINI (JOINT WORK WITH A. DOLIWA, J. CIESLINSKY AND S. MAN­

AKOV): Discrete Geometry and Integrability in Multidimensions

We present the discretizations of some classical notions of Differential Geometry
and their eonnection with integrable difference equations in multidimensions. We
show that the diserete analogue of an N dimensional manifold in IR M, N :$ M,
parametrized by conjugate coordinates is what we eall an N -dimensional qua­
clrilaterallattice, i.e. an N-dimensionallattiee x: ZN ~ RM whose elementary
quaclrilaterals are planar. We also prove that the N dimensional quadrilateral
lattice can be uniquely eonstructed assignihg N(N - 1) arbitrary fUßetions of
2 discrete variables on N(N - 1)/2 intersecting boundary surfaces [1]. We also
show that the discrete analogue of an N-dimensional orthogonalnet is what we
call a circular (spherical) lattice, Le., an N-dimensionallattice whose elemen­
tary quaclrilaterals are inscribed in circles. We prove that the circular lattice is
a true reduction of the quadrilaterallattice, Le. the eireularity eonstraint, onee
imposed on the N(N -1)/2 boundary quadrilateral surfaces, is preserved in the
quadrilateral construction (2). We finally show that the above lattices can be
solved via the ä (dbar) dressing method; in particular, we identify the linear
constraint on the ä-data of the quadrilatal lattice, whieh allow one to solve the
cireular lattice [3].

[1] A. Doliwa and P.M. Santini, "Multidimensional quadrilateral lattiees are
integrable", Phys. Letters A 233, 365 (1997).

[2] J. Cieslinsky, A. Doliwa and P.M. Santini, "Tbe integrable discrete analo­
gues of orthogonal coordinate 'systems are multidimensional cireular latti­
ces", Preprint ROMEI-1167/97. To appear in Phys. Letters A.

[3] A. Doliwa, S.V. Manakov and P.M. Santini, "8-reductions of the multidi-
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mensional quaclrilateral lattice I: The multidimensional circular lattice",
Preprint ROMEl-1172/97

W.K. SCHIEF (IN COLLABORATION WITH B.G. KONOPELCHENKO): Three­
dimensional integmble lattices in Euclidean spaees: eonjugacy and orthogonality

It i.s shown that the discrete Darboux system descriptive of conjugate lattices
in Euclidean spaces admits constraints on tbe eigenfunctions wbicb may be in­
terpreted as discrete orthogonality conditions on the lattiees. Thus, it turns out
that the elementary quadrilaterals of orthogonal lattices are cydic. Orthogonal
lattices on lines, planes and spheres are discussed and the underlying integrable
systems in one l two and three dimensions are derived explicitly. A discrete
~nalogue of Bianchis Ribaueour transformation is mentioned and partieu]ar
orthogonallattices such as discrete Egorov coordinate systems are given.

E. SKLYANIN (I~ COLLABORATION WITH V. KUZNETSOV): Some remarks"on
Baecklund tronsfonnatlons fOT many-body systems

Using the n-partide periodic Toda lattice and Ruijsenaars' relativistic genera­
lization of tbe elliptic Calogero..Moser system as examples, we revise the basic
properties of the Baecklund transformations (BT's) from the Hamiltonian point
of view. The analogy between BT and Baxter's quantum Q-operator poin~ed

out by Pasquier and Gaudin is exploited to produce a conjugated variable.JJ
for the parameter Aof the BT such that JJ belongs to the spectrum of the Lax
operator L(A). As a consequence, tbe generating function of the composition of
n BT's gives rise also to another canonical transformation separating variables
for the model. For the Toda lattice the dual BT parametrized by JJ is introduced.

Y.B. SURIS: Integrable discretizations for tatliee systems: local equations 0/
motion

The approach to the problem of integrable discretization based on the notion
of r-matrix hierarchies is developed. One of its basic features is the coincidence
of Lax matrices of discretized systems ·with the Lax matrices of tbe underlying
continuous time systems. A common feature of the diseretizations obtained
in this approach is non-Ioeality. We demonstrate how to overcome this
drawback. Namely, we introduee tbe nation of localizing changes of variables

. and construct such changes of variables for a large number of examples,
inc1uding the Toda and the relativistie Toda lattices, tbe Volterra and tbe
relativistic Volterra lattice, the second flows of tbe Toda and of the Volterra
hierarchies, the modified Volterra lattiee, the Belov-Chaltikian lattice, the
Bogoyavlensky lattices, the Bruschi-Ragnisco lattice, and a novel dass of
constrained lattice KP systems. Pulling back tbe differential equations of
motion nnder the localizing changes of variables, we find also (sometimes
novel) integrable ~ne-parameter deformations of integrable lattice systems.
Poisson properties of the localizing changes of variables are also studied: they
produce interesting one-parameter deformations of the known Poisson algebras.
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s. P . TSAREV: On superposition principles and completeness 0/ (2+1)­
dimensional Baecklund transformations

The usual superposition formulas for Baecklund transformations of (2+1)­
dimensional integrable systems include quadratures un~ike the weIl known ease
of (1+1)-dimensional integrable systems where the fourtb solution is found with
algebraic operations. We show how one can find an analogous extended formula
of nonlinear superposition for some (2+1)-dimensional integrable systems.
Also we solve positively the problem of (Iocal) density of solutions of such
(2+ 1)-dimensional integrable systems obtainable from a given initial solution
with conseeutive Baeeklund transformations in the space of aIl solutions of the
systems in question .

A.P. VESELOV: Integrable Gradient Flows and Morse Theory

Examples of Morse functions with integrable gradient fiows on some classical
Riemannian manifolds are eonsidered. This gives an explicit eeIl decompositi­
on and geometrie realization of the homology for such a manifold. As another
application of tbe integrable Morse functions we give an elementary proof of
Vassiliev's theorem on the flag join of Grassmannians.

[1] A.P. Veselov aod LA. Dynnikov J "Integrable gradient flows aod Morse
theory", 8t. Petersburg Math. Journal, vo1.8, n.3 (1997),429-446.

M. WADATl: Collapse of the Bose-Einstein Condensate under Magnetic Trap

We consider the Bose-Einstein eondensate with attractive interparticle interacti­
ons (more precisely, negative S-wave scattering lengths) under a magnetic trap.
By using a model equation, axiaIly symmetrie nonlinear Schrödinger equation
with harmonie potential terms J we investigate the time-evolution of tbe wave
function. We prove that the singularity of wave functions emerges in a finite time
even when the total energy of the system is positive. Wepresent a formula for
a eritieal number of atoms above which the collapse of the condensate oceurs.
This number can be the same as the one in tbe reeent experiment.

[1] T. Tsurumi and M. Wadati, J. Phys. Soe. Jpn. 66 (1997) 303l.

[2] T. Tsurumi and M. Wadati, J. Phys. Soe. Jpn. 66 (1997) 3035.

V.E. ZAKHAROV: Dressing Method in Differential Geometry

The dressing method ia one of the most powerful taols in the theory of solitons.
The advanced version of this method is based on the "non-Iocal ä-problem" .
Let X = X(A, X, x), x E C", be an N x N quasi-analytical matrix function of
A, XJ satisfyiog the equation:

(1)
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An integrable system can be construeted after introducing the set of commuting
differential operators

(2)

i == 1, ... , n, n 2: 3. Here h(A) are given commuting rational matrix functions.
The integral operator R commutes with all Di:

(3)

Ir h(A) are polynomials, condition (3) imposes an infinite number of differential
constraints on the coefficients of the asymptotic expansion

A~OO . (4)

They ean be interpreted as an integrable system with a set cf conservation laws.
The simplest choice h = ).,12 == A2 , 13 = 4).3, N == 1 leads to the KP-Il equation -
for U = 28Ql/8xl. ~~

The dressing metbod can be efficiently applied to solve problems of Classical
Differential Geometry. The easiest problem is the classifieation of conjugated
nets in n-dimensional Euclidean space. It is given by solving tbe system of
Laplaee equations

lfJi,j = QijY'j + QjiCf'i I

whose compatibility conditions lead to the Darboux system:

Qij,k = QikQkj ,

whieh ean be integratecl by p.osing

Now Qij =Qlij. The "dressing" matrix R has tbe form:

Rij(J.l, P, A, X, x) = eP:r:i-),:r:j Roij(JJ, P,)., X) .

(5)

(6)

(7)

(8)

(9)

Solutions of the Laplace equations (5) are given by the solution of the ä-problem
dual to (1) having a simple pole at A= O.
Tbe next important problem is the classification of n-orthogonal conjugated
nets. Orthogonality imposes on Qij following additional constraints

BQij BQji "0+-8-+ LJ QiJcQjle=O,
Xj . Xi Jc~i#j

which is satisfied , if Ra obeys the t'differential reduction"

(10)
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Formulae (1-4) and (7-10) give the solution of the c1assical problem of classi­
fication of n orthogonal curvilinear coordinate systems making it possible to
find all "rotation coefficientsU Pij = Qji. To find the Lame coefficients Bi
(Qij = B j-

1 8Hi/8xj) one has to consider the matrix function

<Pij(A t Ä, x) = Xij(At'x, x) e->'Zj .

Each column of<p at any given ..\ is a set of Bi.
Integration of the Lame-Darboux system (6),(9) makes it possible to solve ano­
ther classical problem of Differential Geometry: the integration of the Gauss­
Codazzi equations. They arise if n = 3 and 8Qij/8xj == O. Then Qlj = 0,
and the Lame-Darbou.x system degenerates to three equation for four rotation
coefficients Q21, Q31, Q32, Q23, equivalent to the Gauss-Codazzi system. This
procedure makes it possible to embed tbe theory of surfaees in 3-d space into
t~e tbeory of solitons.

[1] V. Zakharov t A. Shabat. An Integration Scheme for the Nonlinear Equa­
tions of Mathematical Physics by the Method of the Inverse Scattering
Problem. Funk. Analiz i ego Prilozh. V8.. p 43-54 (1974)t v.8 P 226-235
(1974).

[2] V. Zakharov, S. Manakov. Construction of Multidimensional Nonlinear
Integrable Systems aod their Solutions. Funk. Anal. i ego Pbilozb. v19 p
11-25 (1985).

[3] V. Zakharov. Description of tbe n-Orthogonal Curvilinear Coordinate Sy­
stems and Integrable Systems of Hydrodynamic typ~. Part 1. Integration
of tbe Larne equations, Duke Matbematical Journal 1998 (in press).

Berichterstatter: W. Oevel
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