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This meeting was organized by P.Goodey (Norman, Oklahoma) and P.M.Gruber
(Vienna). It dealt with convexity as related to analysis. There were lectures of survey
character as well as presentations of more specialized problems and results. The top-
ics ranged from valuation and dissection problems to approximation of convex bodies
. and affine and integral geometry, from the algebra of polytopes and the metric the-
. ory of polytopes to classical problems of convex bodies, including stability questions,
and from the local theory of normed spaces to the geometry of numbers and inequal-
itics. The different mathematical backgrounds of the participants strongly enlivened
the exchange of ideas.

VORTRAGSAUSZUGE

Rotatlon invariant contlnuous valuations on
convex sets
Semyon Alesker

Let K¢ denote the family of convex compact subsets of R?. A function ¢ : K¢ — € is
called valuation if )

H(KUL)+¢(KNL)=¢(K)+¢(L)
whenever K, L, K U L € K9. It follows from the Blaschke selection theorem that X4
equipped with the Hausdorff metric is locally compact complete space. We will be
interested in valuations, which are continuous with respect to the Hausdorff metric
Theorem. (Hadwiger 1957). Every continuous translation invarient and SO(d)-invariant
valuation ¢ has the form

#(K) = Z:cM(K),

=0
. where V; are intrinsic volumes, ¢; are fized constants, K € K¢.
We will describe continuous rotation invariant valuation without assumption of
translation invariance. Description of all continuous valuation on the line is easy and
non interesting, so we will assume ¢ > 2.
Definition. A ualuat/on ¢ : K¢ = € is called polynomial valuation of degree at most I,
if for every K € K¢ $(K + z) is a polynomial in z € R® of degree at most I.

Theorem 1. Every continuous SO(d)(resp. O(d) }-invariant valuation can be approzi-
mated uniformly on compacts in K¢ by SO(d) (resp. O(d))-invariant polynomial valu-
ations.
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Polynomial continuous rotation invariant valuations can be described explicitly.

Theorem 2. 1) Let ¢ be a continuous polynomial valuation, which is SO(d)-invarient
if d > 3 and O(d)-invariant if d = 2. Then there ezist polynomials po, . .., pa-1 in two
variables such that

d-1

HE) =Y [ pillsl (s, m))dO; (K 5,m),
j=0Rlx$d—l
where | - | is the Euclidean norm, (-,-) is the scalar product, ©;(I;-) is the j-th gen-

eralized curvature measure of K. Moreover, any ezpression of the above form is a
continuous polynomial O(d)-invariant valuation.

2) Let d = 2. Let ¢ be a continuous polynomial SO(2)-invariant valuation. Th'
there exist polynomials go, qi in two variables sucht that

1
= Z / gi((s,n), (s,n'))dO;(K; 5,n)
jzomrxsl

with the above notation, where n' denotes vector n rotated to the angle /2 counter-
clockuwise.  Morcover, any expression of the above form is a continuous polynomial
SO(2)-invariant valuation.

Random polytopes and lattice polytopes in convex

bodies: a survey
Imre Béardny

Let K C IR* be a convex body and X, = {z),...,2Z,} C K be a finite set. We
consider the cases when X, is a random sample, i.e., the z;'s are random, independent,
and uniform points from K and when X, = K N L is the set of lattice points in A
where L is a d- dimensional lattice in R?. We are interested in the properties of the
polytope K, =convX,. By and large, the behaviour of K, is similar in the random
and the lattice cases. For instance, when K is sufficiently smooth, the expectation of
the number of vertices of K, (random polytope) is const(K)na-'z' (1+0(1)) as n goes to
infinity. ‘The number of vertices of K, (lattice polytope) as the lattice L gets finer a
finer is essentially the same. Similarly, if approximation is measured as missed volm‘
K, approximates K in the same order which turns out to be almost as good as best
approximation (with the same number of vertices).

Approximating general hypersurfaces
Karoly Béroczky, Jr.

Following the work of Rolf Schneider, Peter M. Gruber and Monika Ludwig, the theory
of asymptotic approximation by polytopal hypersurfaces of a smooth hypersurface .\
with strictly positive curvature is basically complete.
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The talk consist of two parts: first the long standing conjecture is verified that the
results can be extended to smooth convex hypersurfaces where the Gaufl curvature is
allowed to be zero. This is the largest family for meaningful asymptotic results, as
cven differentiable hypersurfaces may show rather irregular behavior.

Next, a further generalization is considered if the facets of the approximating poly-
topal hypersurface touch the hypersurface; namely, the Gau8 curvature is allowed to
be negative.

The convex hull of random points in a tetrahedron
Christian Buchta and Matthias Reitzner

At first, let K be a convex polygon with r vertices and area one. Choose n points
from K, independently and according to the uniform distribution on K. Clearly, their

. convex hull K, is a polygon contained in K. Denote by D,(K) the difference of the
arca of K and the expected area of K,,. A classical result of Rényi and Sulanke (1963)
implies that

+o( ) (n—-)oo)

Du(K) = ;2; logn+c1(K)

n

with an explicitly given constant ¢;(K). More precise information about D,(K) follows
in the following way: For a plane convex body K of area one consider all chords of K
that divide K into two parts of areas s and 1 — s. The locus of the midpoints of these
chords is a closed curve M,, called equiaffine inner parallel curve of the boundary curve
of K. The assumption that the chords rotate counter-clockwise implies an orientation
of M,. Put -
Kg=1- [ w(zM)dz,

zeK\M,
where w(z, M,) is the winding number of the closed curve M, about the point z. Then

1 N
/s"-lK[,]ds, L

0 B

Dn(K) =

wl.h

whence it can be deduced in the particular case of a polygon with r vertices that

grlogn + a(K) + ¢ (K) 4 c3(K) +
3 n n n? n3

D,(K) =

The constants ¢ (K), c2(K),c3(K), ... are all known explicitly. Furthermore, it is pos-
sible to give a simple explicit formula for D,,(K) which extends an old result of Herglotz
(1933) from the case n = 3 to arbitrary n and from a quadrilateral to a general polygon
K.

Currently, we are working on the respective problem in dimension 3. In particular,
we are able to give the asymptotic expansion for the difference of the volume of a
tetrahedron and the expected volume of the of the convex hull of n random points
in this tetrahedron as n tends to infinity. The structure of the asymptotic expansion
turns out to be much more complicated as in the planar case.
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Steiner type formulas for convex functions:

applications and related topics
Andrea Colesanti

1. Steiner formulas

Let « be a convex function defined in a convex open set Q C R”. At each point z of
Q the subgradient (or subdifferential) of u, Ou(z), is defined. For a Borel subset 7 of Q
and for a nonnegative p we define the set .

P,(U;n) ={z+pv:z€n,ve du(z)}.-

It is known that P,(u;n) is Lebesgue measurable and its measure is a 1)0lyn0mlal of
degree (at most) d in the variable p:

. ®
LM(Py(u;m)) = (?)p‘l’j(u; n); : ’ ]

=0

i

where £4is the d-dimensional Lebesgue measure. The coefficients Fj(u;-),j =0,...,d,
are nonnegative Borel measures and they represent the analoguc of the curvature mea-
sures Cyj(K;-) of a convex body K C R®. In particular the numbers Fy(u; ) cor-
respond to quermassintegrals W;(K).. At this regards notice that if u is Lipschitz in
), with Lipschitz constant L and § is bounded, then the following sharp inequalitics
hold:
Fyw;Q) < DW;(@), j=0,....d

The measures Fy(w;-) do not depend on wu; indeed it is simply the restriction of £2 to
2. On the other hand the measure Fy(u;-) is the image measure of the subgradient
map, i.c.

Fy(u;n) = L4{v : v € Bu(z),x € n}) = LYOu(n)).
This corresponds-to the fact that the curvature measure Co(K;-) of a d-dimensional
convex body K is the image measure of the Gauss map of K. A further analogy with
the case of convex bodies arises when we consider the case of smooth functions; indeed
if u € C*(2) we can write

Fy(u;n) = /S,-(D’u), j=0,....d,
n

where S;(D?u) is the j-th elementary symmetric function of the Hessian of u. Similarly.
if K is a convex body with C? boundary, then its curvature measures can be written

as integrals over 9K of the clementary symmetric functions of the principal curvatures

of OK.

2. An application
Steiner formulas are used to estimate the sizes of the singularities of a convex function
u defined in a convex domain Q C IRY. We considered the sets ¥°; of singular points of
order i of w:

Y ={z€Q:dim(u(z)) >d-i}, i=0...n-1

i
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The union of the 3°,’s is the set of all singular points of u. The sets ¥°; were studied
in several papers; in particular it is well known that the Hausdorff dimension of ¥; is
1 at the most, for every i = 0,...,d — 1. Simple examples show that the i-dimensional
measure of }°; can be 400, even though, if we assign to each point z of T°; a weight
cqual to the (d — 7)-dimensional measure of du(z) and we integrate this weights over
¥;, then we obtain a finite quantity. More precisely:

1) / Hi-i(Bu(z))dH (z) < L Wai@), i=0,...,d~1,
.

where H° is the Hausdorff measure of order s and € is the closure of . These in-
equalities are sharp. This result corresponds to the estimates for weighted measures of
scts of singular points of a convex body K. We remark that in order to establish esti-
mates (1), we preliminarly proved integral respresentations of the coefficient measures
Fj(u;-). Such respresentations parallel the ones obtained by Zahle for the curvature
measures of a convex body. Furthermore, the proof of the integral respresentations for
functions can be given independently of the corresponding one for bodies, by the use
of the conjugate function of a convex function. R
On the perimeter deviation of a convex disc from
a polygon

August Florian

Let C) and C; be two compact convex subsets of the plane. We denote by ¢”(Cy, C,)
the distance between C) and C, determined by the L; metric in the space of support
functions. This distance can also be written in the form

 2p([C1, Ca)) = p(C1) - p(C)
where [(), C,] denotes the convex hull of Cy U Cs, and p(C) is the perimeter of C. Let

D, be any convex polygon with at most n vertices. Given a convex sét C, there is a

polygon P, = P,(C) minimizing the distance ¢F(C, P,). Let p be the perimeter of C.
It is known that

o (C,P,(C)) <p (l - 2?11 arcsin (% sin %))

with equality if C is a circle (Florian 1992). For this inequality I recently found an
alternative proof which avoids limiting processes.

Affine inequalities and radial mean bodies
Richard J. Gardner (joint work with G. Zhang)

Two important objects in convex geometry are the difference body and the polar pro-
jection body of a convex body. The difference body K + (—K) of a convex body K
was studied by Minkowski, and is ubiquitous in geometry (and elsewhere, as the vector
sum of a set and its reflection in the origin). The operation that forms the difference
body is essentially that known as central or radial symmetrization and as such finds

5
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many applications in mathematical physics and partial differential cquations. Projec-
tion bodies also originated in the work of Minkowski, and have found application in the
theory of vector-valued measures (Liapounov’s theorem), the local theory of Banach
spaces, stochastic geometry, random determinants, Hilbert’s fourth problemn, mathe-
matical economics and other areas. The projection body 1K of a convex body K is
defined for u € S"~! by

hnk(u) = V(K[ub),

where h denotes the support function, V' the k-dimensional volume of a k-dimensional
body, and K|u* the orthogonal projection of K on the (n—1)-dimensional subspace u*
orthogonal to u. The polar projection body IT* K, the polar body of the projection body
of K, appears explicity (but very frequently) in the more recent literature; its behaviour
under linear transformations often renders it more natural than the projection bogie
itsclf.

Both the difference body and the polar projection body appear in known affine
inequalities. The first is an ingredient in the famous Rogers-Shephard inequality:

V(DK) < (2:) v (K),

with cquality if and only if the convex body K in E" is a simplex. The second appears
in another affine incquality, a reverse Petty projection inequality, first proved by the
second author:

n—n (2:) S V(K)"_'V(H'K),

with cquality if and only if K is a simplex.

We establish a strong new affine inequality that yields both the above inequalities
as special cases. This involves a new body associated with a convex body, defined as
follows. Let K be a convex body in E". For z € K, let

ok (z,u) = max{c: z + cu € K},

u € S™', be the radial function of K with respect to z. The radial pth mean body
R,K of K is defined for nonzero p > —1 by

Y44
Ok (u) = (ﬁ/gx(x, u)”dr) , .

K

for cach u € S*~!. We also define RyK by

)= (s s enteie).
K

.

for each u € S"~'. Thus the radial function of R,K is just the pth mean of the values
of the radial function of K with respect to points inside K. Then R K is the difference
body of K, and the shape of R,K tends to that of the polar projection body as p tends
to —1. It turns out that R,K is itself convex when p > 0.

6
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If =1 < p < g, the new inequality states that
& V(R K) € L,V (RK),
with equality if and only if K is a simplex. Here
enp = (nB(p+1,m))7",

for nonzero p > —1, and cag is defined by continuity. When p = n and ¢ — oo, the
new inequality becomes the Rogers-Shephard inequality, and when p =+ —1 and ¢ =mn,
it becomes the reverse Petty projection inequality.

Our proof of the new inequality requires a generalization due to C. Borell of a
classical inequality of Berwald for the pth means of a concave function defined on a
convex body. We find a new proof of Borell’s inequality that yields exact equality
conditions (not explicitly stated by Borell).

Integral geometry and boundary structure
of convex bodies
Stefan Glasauer -

Subjects of the talk were several new integral-geometric relations for mixed area mea-
sures and support measures (or generalized curvature measures) of convex bodies. The
results concern the convex hull of the union of a fixed and a moved convex body, moved
cither by translations or by rigid motions. There are simple explicit results even in the
case where one integrates with respect to a measure that is not invariant. The versions
for support measures are closely connected with certain difficult questions about the
boundary structure of convex bodies, which are related to investigations by Besicovitch,
Ewald, Larman, Rogers, Zalgaller, B. A. Ivanov, and Schneider (among others).

Minkowski sums of projections of convex bodies
Paul Goodey

T'his work is motivated by questions which seek information'about a convex body based
on knowledge of its projections. We obtain results based on certain geometric averages
of projections. To make this precise, we let K be a convex body (non-empty, compact
convex set) in . For each 1 < k < d — 1, we denote by L¢ the compact manifold of
all k-dimensional subspaces of E¢. The unique rotation invariant probability measure
on this manifold is denoted by v¢. For each L € L%, K|L denotes the orthogonal
projection of K onto the subspace L of 4. Although this is typically a k-dimensional
convex body, we find it convenient to think of it as a convex body in E*. The Minkowski
sum Py (K) of these projections is defined, in terms of its support function A(P(K), "),
by
h(Py(K), u) = / h(K|L,u) v{(dL), for each u € §%°".
124

Note that, although this can be thought of as an average of all the ‘k-dimensional
projections of K, the body Pi(K) will typically be of dimension d. Our major objective
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is to obtain information about K based on knowledge of this Minkowski sum Py (K)
for some particular value of k.

The operator Py_, was introduced by Schneider who showed that if Py_,(K) = cK
for some constant ¢, then K is a ball. More recently, Spriestersbach showed that Py_,
is injective. In fact she gave stability results which show that if P4_;(K’) is close to
Py_ (L) then K is close to L and that, if P4_,(K) is close to cK for some constant ¢
then K is close to a ball. Interestingly, it transpires that a certain isoperimetric deficit
of K is bounded above by a multiple of the distance between Pi(K) and cK for a
certain constant ¢ depending only on the dimension d.

Here we obtain some analogous results for the operator Py in the cases 1 < k < d-2.
We first show how Spriestersbach’s techniques can be used to establish the injectivity
of P4 in all the cases k > d/2. We then examine the operator P,. Contrary '
expectations, we find that this is injective in all dimensions except d = 14 where itb
not injective. The principle techniques employed are those of integral geometry and
harmonic analysis. The main results give circumstances under which a convex body is
determined by sums of its projections.

Theorem 1. Let K, M be convez bodies in IE® with P(K) = Pi(M) for some k > d/2.
Then K = M.

Theorem 2. a) Let K, M be convez bodies in E* with Py(K) = Py(M). Then, if
d # 14, we have K = L.
b) There are distinct bodies K, M in EY with Py(K) = Py(M).

Goodey and Weil previously carried out a similar investigation involving sums of sec-
tions, as opposed to projections, of convex bodies. They showed that convex bodics
are determined by averages of their 2-dimensional sections, but not by averages of their
1-dimensional sections. Various averages of both sections and projections were investi-
gated by Goodey, Kiderlen and Weil. They showed that certain apparently disparate
averages have strong inter-relationships. Rather surprisingly, our operator % is very
closely connected to another operator B which is defined in terms of Blaschke sums
of sections instead of Minkowski sums of projections.

The proofs of the theorems make use of a continuous linear operator py : LS4 ) —
L2(S%'). This is the functional equivalent of Py and is defined in such a way that, for a
convex body K € E?, we have h(Pi(K), ) = px(h(K,-)). The opcrator py intertwines
the group action of SO(d) on S%! and is therefore susceptible to the methods of
harmonic analysis. These intertwining properties imply that, when restricted to
space of spherical harmonics of degree n in dimension d, the operator p; acts as a
multiple ay, x4 of the identity. The injectivity results described in the above theorems
arise from analysing whether or not any of these multiples can be zero. This question is
resolved by first using some integral geometry to find explicit integral representations
for the oy x4 and then providing estimates which prove that, in most cases, they arc
not zero. The exceptional case k = 2, d = 14 is a consequence of the fact that

~ 2(d — 14)
524 = — (d+2)(d+1)d(d~-1)

which is proved directly.

o
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Volume formulas in L,-spaces
Yehoram Gordon (joint work with M. Junge)

According to the definition of Firey, the Minkowski p-sum of m segments in R" is

where x, . .., Zm are m vectors in R", ,1-, + L1 = 1. The case p = 2 defines an ellipsoid,
and p = 1 defines a zonotope in R", i.e. the body V(BTZ), where V(&) = it =
1,...,m, is the linear map V : R™ — R".

We extend the classical volume formulas for ellipsoids and zonotopes to p-sums of
segments and prove

m T\ : »’=
vol (Zeap[—xi,zg]) ~e, "-#( > |det(2i)iel|’> .

i=1 ard(/)=n
More precisely,

Theorem. Let 1 < p < oo with ;7+;,‘- =1 andlet z1,...,Zm bem vectors in R". The
associated linear map V : R™ — R",V(e;) = satisfies ’

1 L
V2 vol(V(BZ)\ " e\ oy (eltv(By) 3
\/nve:’ min(p,n)( vol(B7) ) < (cm%“idet(x.)ue:ip) <ev (——Lfvol(B,',',) ) .

Examples show, that equality only holds for p € {1,2} and that it is necessary to
take the n-th root. : ’

We also describe related geometric properties of the Fritz John and Lewis maps
associated to classical operator norms such as the p-summing, p-nuclear, p-factorizable
ideal norms for 1 < p < co. The results are then applied to yield estimates for the inner
and external volume ratio of arbitrary convex bodies K with respect to the volumes of
n-dimensional balls of quotients, of subspaces, and of subspaces of quotients, of Ly(p)
spaces. .

Microlocal Aspects of Convex Bodies
Eric L. Grinberg

A number of geometric properties of convex bodies may be described by the action of
integral transforms on functions associated to the bodies, especially radial and support
functions. Notable such transforms include the Cosine and Funk-Radon transforms
which describe k-projections and k-intersections. While a great deal is known about
the analysis of the latter transform, less is known about the former. In particular, the
Funk-Radon transform is, in typical contexts an elliptic real-analytic Fourier integral
operator. This leads to some amusing continuation properties for convex bodies where
analyticity is replaced by some standard property for cross-sections. We present a link
between the Cosine and Funk-Radon transform which allows some of the microlocal
properties of the latter to be transferred to the former.
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The form of best approximating polytopes
Peter M. Gruber

1. Introduction

Let 6 be a metric or some other notion of distance on the class of all proper convex
bodics C in Euclidean d-space E*. Forn = d + 1,d + 2,..., let P, be a class of
convex polytopes with n vertices or n facets, respectively, or their subclasses of convex
polytopes which are inscribed or circumscribed to C. Then the problems arise to
determine or estimate

§(C,Pa) = inf{6(C, P) : P € Py}

and to describe those polytopes P, € P, for which the infimum is attained, the best.

approzimating polytopes of C in P, with respect to §. These problems have numerous

aspects.

It is out of reach to give precise descriptions of the best approximating polytopes
or to specify algorithms for finding them. The best one may expect is to give a rough
description of the form. The first weak results in these direction are due to Glasauer and
Schneider for the Hausdorff metric 6 and to Glasauer and Gruber for the symmetric
difference metric 6V and the mean width deviation 6. These results hold for convex
bodies C of class C? with positive Gauss curvature kc. They say that the density of
the distribution of the vertices of the inscribed polytopes, resp. the points where the
facets of the circumscribed polytopes touch C, are proportional to appropriate powers
Of Ker.

In the following we give more precise information in the case when d = 3.

2. The form of best approximating convex polytopes

Let C be a convex body in E® of class C? with positive Gauss curvature s¢. Let
the boundary bd C of C be endowed with a Riemannian metric pc and let (P,) be a
sequence of circumscribed convex polytopes such that P, has n facets.

We say that P, has asymptotically reqular hezagonal facets of the same edgelengths
with respect to gc if the following hold: there are Landau symbols o(n) and o(1) and
a positive real sequence (g, ) such that each facet F of P,, with a set of at most o(n)
exceptions, has 6 vertices vy, ..., v and

"U.‘ - p”p) ”vi-(-l - Ui”P = aﬂ(l + 0(1)) fori = 1) ey 61”7 =,

where p is the point where F touches bd C and || ||, is the Euclidean metric induce(.

by gc on the tangent plane of bd C at p.

Theorem 1. Let bd C be endowed with the Riemannian metric g, of the second
fundamental form. For n = 4,5,..., let P, be a best approzimating circumscribed
conver polytope with n facets with respect to the Hausdorff metric 6. Then P, has
asymptotically reqular hezagonal facets of the same edgelengths with respect to oy;.

Similar results hold for inscribed polytopes, the Banach-Mazur distance, and a notion
of a distance due to Schneider.

Theorem 2. Let bdC be endowed with the Riemannian metric o4 of equi-affine
differential geometry. For n = 4,5,..., let P, be a best approzimating circumscribed

10

Forschungsgemeinschaft

o




convez polytope with n facets with respect to the symmetric difference metric 6*. Then
P, has asymptotically regular hezagonal facets of the same edgelengths with respect to
On.

A similar result holds for the mean width deviation 6",

3. The form of convex polytopes with minimum isoperimetric quotient
Consider convex polytopes in E® of given volume with n facets. If such a polytope

has minimum surface area, a theorem of Lindelof says that it is circumscribed to a

Euclidean ball. Thus an application of Theorem 2 yields the following result.

Corollary of Theorem 2. Forn =4,5,..., let P, be a convez polytope in IE® with n
Jacets of given volume and minimum surface area. Then P, has asymptotically regular
hezagonal facets of the same edgelengths.

Note that the metric used here is the ordinary Euclidean metric in E°.

A four-vertex theorem for space curves
Erhard Heil
A regular closed simple curve in Euclidean 3-space, lying on the boundary of its convex
hull and without zero curvature points, has at least four points where the torsion 7
changes sign. Under minor additional assumptions this was shown by Bisctrizcky and in
full generality by Sedykh. Admitting singular points and sign changes of the curvature

x, Romero Fuster and Sedykh showed that -
V+2K+352>4

where S is the number of singular points, K the number of points where changes
sign, and V' the number of points where 7 changes sign. Here we will consider regular
closed space curves which may have double points and must not Ile on the boundary
of their convex hulls. We show that

I

(+) V+K+D>4

where D is the number of extrema of the conical curvature 7/x. We call such points
Darboux vertices because there the Darboux vector changes its sense of rotation within
the rectifying plane.

Darboux vertices can be made visible in the following way: Wrap a rectangular
strip symmetrically along the space curve. It then is the rectifying strip of the curve,
and its straight generators, which have the directions of the Darboux vectors, can be
seen on the paper strip.

The main idea in order to proof () is to consider the unit tangent vector of the
curve as a curve on the sphere. Its geodesic curvature is just 7/«.

11
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Rectifiability for curvature measures of convex
sets
Daniel Hug

We investigate the connection between measure theoretic properties of curvature mea-
sures of convex sets and geometric properties of these sets in a d-dimensional Euclidean
space. In a recent paper, we established explicit representations for the singular parts of
the curvature mecasures of an arbitrary closed convex set with respect to the boundary
measure of the set. This now leads to characterizations of absolute continuity for the
curvature measures in terms of conditions on naturally defined generalized curvature
functions which are defined on the unit normal bundle of a given convex set. For the
cnrvature measure of order zero of a convex body, another characterization is obtained
which involves the set of directions in which the convex body is touched from inside
by a nondegenerate ball. By using a Crofton intersection formula and various integral-
geometric transformations, we extend this result to curvature measures of any order.
Another extension is given which uses the notion of a touching affine subspace and a
certain lower-dimensional spherical supporting property. Dual results are obtained for
the surface area measures of convex bodies. For the proofs we employ methods from
convex and integral geometry and also some basic geometric measure theory.

One class of effective step-by-step algorithms for

polyhedral approximation
George K. Kamenev

The class of step-by-step algorithms for approximating convex bodies C in E?,d > 2,
by inscribed (circumscribed) polyhedra Pi(Pg) are considered. These algorithms are
based on the idea of the general adaptive schemes: the augmentation scheme and the
cutting scheme (the second one was introduced by Button and Wilker 1978). Let C € C
with the supporting halp-space H(C,u) and the support function g(C, u).

Augmentation scheme. Let P, € P%.
Step 1. Choose the point p € 0C.
Step 2. Construct P,y = conv{p, Po}.

Cutting scheme. Let P, € P§.

Step 1. Choose the unit direction u € S9! .

Step 2. Construct Py = P,NH(C,u).

The particular algorithm is defined with the methods of choosing of the polyhedron
P, and the point (the direction) on the step 1 of the scheme. Let us consider the
schemes, that improve polyhedron approximately in the direction of the maximum
deviation from the body. Formally we define the sequence {P,} as H(y)-sequence
for C with constant (H(C,~)-sequence) if there exist a constant v > 0 such that
8H (P, Pay)) > 76" (P,,C). The corresponding adaptive schemes we define as H-
schemes.

There are some examples of H-schemes with v < 1. Let T(C,u) = CNIH(C,u)
and U(P) be the set of external unit normals to hyperfaces of dP.
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Algorithm A (Bushenkov 1981). Let P, € P, be constructed.
Step 1. Find u* = argmax{g(C,u) — g(Pa,u) : © € U(P,)}; findp* € T(C,u").
Step 2. Construct Payy = conv{p®,pa}. :

For the algorithm A it was proved {(Kamenev 1986) that for C € C it generates
H-sequence with v > 1/a, where @ = R/r, where r is internal radius for P, and R is
external radius for C, and for C € C? asymptotically v = 1.

In case of d = 2 this algorithm coincides with the known “sandwich” algorithm with
chord rule (Fruhwirth, Burkard and Rote 1989-1992). Obviously, in this case v = 1.

Let {P,} be H(C,~)-sequence for C € C2. Then it was proved (Kamenev 1992)
that asymptotically 6(P,, C) < const/n**"" in Hausdorfl and Nikodim metrics:

51(P,.C) < Mn?4-D, where A = (2/p)ld(d + 1)o(C)/((d — Vrme-1) /4,
55(Pa. C) < Mnt=), where ) = (2/p)(2da(C) I/ /((d = Dyra-n) [0

where o(C) — the “area” of 8C,p — the minimum curvature radius of dC (using
Blaschke’s rolling theorem (Brooks and Strantzen 1989) we do not imply positivity
of Gaussian curvature k) and mqy — volume of the unit ball. Numerical computer
experiments shows that for algorithm A in approximation of 2—6-dimensional ellipsoids
the constant in the rate of convergence depends only of d and [ k(z)M2do(z).

In nonsmooth case (C € C) there are more weak results for H-schemes: 8(P,,C) <
const/n'/@1 (Kamenev 1986). Now it is proved that for augmentation H-schemes
with some additional properties it follows that 6(Pp,C) < const/n?4-), P, € P;.
More preciscly let {P,} be the sequence of inscribed polyhedra generated by an aug-
mentation scheme. We define {P,} as H(C, 7)-sequence if for each n there exists an
external unit normal u in p € 8C, Payy = conv{p, P}, such that g(C,u) — g(Pa,u) >
~8"(P,,C). Obviously H;(C,v)-sequence is H(C,7)-sequence and H (C, 1)-sequence
is H,(C,1)-sequence. Furthermore it is easy to see that the algorithm A generates
H,-sequence with the corresponding constant. o

Let C € C and {P,} — the H,(C,v)-sequence. Then it is proved (Kamenev 1997)

that there exist ng: for any n > ny if follow e

§"(P,,C) < A/n¥@D | where A = (2/7)[o(C + B)a(C + B)*? /w241,

Here B is the unit ball in the origin, a(C) — the asphericity of C.

In some application there is a problem of polyhedral approximation using minimum
calculations of the support function. For this reason step-by-step algorithm for reduc-
ing the number of calculations of the support function of the approximated body was
developed. This algorithm uses augmentation and cutting adaptive schemes simulta-
neously. :

Algorithm B (Kamenev 1986). Let P € P, and Qn € Py, be constructed.
Step 1. Find u* = argmax{g(Qn, u) — g(Pn,u) : u € U(P,)}; find p* € T(C,u").
Step 2. Construct Poyy = conv{p®, P} and Quy1 =Qn N H(C,u*).

In case of d = 2 this algorithm is similar to the “sandwich” algorithm with maximum
error rule (Fruhwirth, Burkard and Rote 1989-1992). For the algorithm B it was proved
(Kamenev 1994) that for C € C? asymptotically 6(Pn, C), §(@n, C) < const/n?/4-Y in
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Hausdorfl and Nikodim metrics. Note that on each iteration of this algorithm there is
only one calculation of the support function of C. For this reason in case of C € C? we
need 1 < const/e@~1/2 calculations of g(C, u) to approximate C with the deviation ¢.

Kinematic formulas for finite lattlces
Dan Klain

The essential link between convex geometry and combinatorial theory is the lattice
structure of the collection of polyconvex sets; that is, the collection of all finite unions

of compact convex sets in R™. In analogy to valuation characterizations and kinematic
formulas of convex geometry, the author develops a combinatorial theory of invariant
valuations and kinematic formulas on finite lattices. "

Let P be a finite poset with minimum 6, and let J(P) denote the lattice of order .

ideals of P. A theorem of Birkhoff states that every finite distributive lattice takes the
form of J(P) for some poset P. Let G be a finite group of automorphisms acting on P.
The action of G partitions P into a family U of orbits U. The action of G on P also
induces an action of G on the distributive lattice J(P). In a recent paper the author
showed that every G-invariant real-valued valuation ¢ on J(P) must take the form

Q= Z CyPu, (1)
veu
where each ¢, € R is a constant and where the G-invariant valuation ¢, on J(P) is
defined by
pu(A) = |ANU,

for each U € U. Here |A| denotes the number of elements of a finite set A. This
analogue of Hadwiger’s characterization theorem (for rigid-motion invariant valuations
on compact convex sets) yields kinematic formulas for the finite lattice J(P), leading
in some cases to new polynomial identities for the Whitney numbers (of the second
kind). of a modular lattice P. In particular, the author develops the general kinematic
formula for a G-invariant valuation ¢ on J(P):

1
(AngB copu(A)py(B
|G|Q§G<p gB) = L%lUl vpu(A)py(B).

for all A, B € J(P). Here each ¢y is the constant given by (1) for the valuation ¢. By
sctting ¢ = X, the Euler characteristic of the lattice J(P), one derives a combinatorial
analogue of the principal kinematic formula of convex and integral geometry.

These kinematic formulas enable one of compute expectations of random valuations
on J(P). In many cases we are able to compute these expectations in more than one
way, leading to identites such as the following identity for the Gaussian coefficients:

s () (0,0 = (). ().

This particular identity results from the case of P = L,(g), the lattice of subspaces of
a finite dimensional vector space over a finite field of order ¢. Setting ¢ = 1 we obtain
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the analogous results for the case of P = B, the Boolean algebra of subsets of a finite
set. Other examples to consider include the lattice of partitions of a finite set, the
lattice of multisets over a finite set, and finite cell complexes exhibiting some degree of
symmetry. '

Report on recent research: Applications of the

Fourier transform to convex geometry
Alexander Koldobsky

1. Inverse formula for the Blaschke-Levy representation

We say that an even continuous function H on the unit sphere Q in R® admits the
Blaschke-Levy representation with ¢ > 0 if there exists an even function b € L;()
so that H(z) = [ |(z, £)|%(E) d¢ for every z € Q. This representation has numerous
applications in convex geometry, probability and Banach space theory. In this paper,
we present a simple formula (in terms of the derivatives of H) for calculating b out
of H. This formula leads to new estimates for the sup-norm of b that can be used in
connection with isometric embeddings of normed spaces in L.

2. An application of the Fourier transform to sections of star bodies

We express the volume of central hyperplane sections of star bodies in R" in terms of
the Fourier transform of a power of the radial function, and apply this result to confirm
the conjecture of Meyer and Pajor on the minimal volume of central sections of the
unit balls of the spaces £; with 0 <p < 2.

3. Intersection bodies, positive definite distributions and the Busemann-
Petty problem

We prove that an origin-symmetric star body K in IR" is an intersection body if and
only if ||z|5' is a positive definite distribution on R, where ||z||x = min{a >0: z €
aK'}. We use this result to show that for every dimension n there exist polytopes in
IR" which are intersection bodies (for example, the cross-polytope), the unit ball of
cevery subspace of L,, 0 < p < 2 is an intersection body, the unit ball of the space
7, 2 < g < oo is not an intersection body if n > 5. Using Lutwak’s connection with the
Busemann-Petty problem, we present new counterexamples to the problem for n > 5,
and confirm the conjecture of Meyer that the answer to the problem is positive if the
body with smaller sections is a polar projection body.

4. Intersection bodies in R*
We prove that the unit cube in R™ is an intersection body if and only if n < 4, and
give precise cxpressions for generating measures (signed measures).

5. Second derivative test for intersection bodies

We use the connection between intersection bodies and positive definite distributions,
established in an earlier paper, to give a necessary condition for intersection bodies
in terms of the second derivative of the norm. This result allows us to produce a
variety of counterexamples to the Busemann-Petty problem in R", n > 5. For example,
the unit ball of the g-sum of any finite dimensional normed spaces X and Y with
g > 2, dim(X) > 1, dim(Y) > 4 is not an intersection body, as well as the unit balls
of the Orlicz spaces £3,, n > 5 with M'(0) = M"(0) = 0.
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6. An analytic solution to the Busemann-Petty problem on sections of con-
vex bodies (joint work with R. J. Gardner and Th. Schlumprecht)

We derive a formula connecting the derivatives of parallel section functions of an origin-
symmetric star body in R™ with the Fourier transform of powers of the radial function
of the body. (A parallel section function gives the ((n — 1)-dimensional) volumes of all
hyperplane sections of the body orthogonal to a given direction.) This formula provides
a new characterization of intersection bodies in R" and leads to a complete analytic
solution to the Busemann-Petty problem. In conjunction with earlier established con-

- nections between the Busemann-Petty problem, intersection bodies, and positive def-

inite distributions, our formula shows that the answer to the problem depends on the
behavior of the (n — 2)-nd derivative of the parallel section functions. The affirmative
answer to the Busemann-Petty problem for n < 4 and negative answer for n > 5 now
follow from the fact that convexity controls the second derivatives, but does not contro
the derivatives of higher orders.

7. A short proof of Schoenberg’s conjecture on positive definite functions
(joint work with Y. Lonke) .

In 1938 1. J. Schoenberg asked for which positive numbers p is the function exp(—||z||?)
positive definite, where the norm is taken from one of the spaces £, ¢ > 2. The solution
of the problem was completed in 1991, by showing that for every p € (0, 2], the function
exp(—||z||P) is not positive definite for the £ norms with ¢ > 2 and n > 3. We prove
a similar result for a more general class of norms, which contains some Orlicz spaces
and ¢-sums, and, in particular, present a simple proof of the answer to the original
Schoenberg’s question. Some consequences concerning isometric embeddings in L,
spaces for 0 < p < 2 are discussed as well.

Old and new aspects of the affine geometry of

convex bodies
Kurt Leichtweif3

Issuing from the equiaffine differential geometry and equiaffinely associated sets as
centroids, difference body, floating body, projection body, random simplices etc. the
classical affine geometry of convex bodies was established in the early twenties. Hcre
the (old) aspects like

e inequalities and discussions of equality ‘

e other characterizations of special curves and hypersurfaces
o affine rigidity
e analogy to the euclidean case

were determining and led to a list of typical results.
In the last years new aspects like

e generalization to n dimensions

16

o




o relaxation of smoothness assumptions
o consideration of affine evolutions

appeared. The aim of the survey lecture is to explain the progress at the first mentioned
results and to indicate new ones.

Infinite-dimensional convexity
Joram Lindenstrauss

This is a report on some joint work with V. Fonf. It involves three results concerning
the structure of convex sets in infinite dimensional Banach space.
. (i) A polytope is a closed bounded convex set which intersects every finite-dimensional
.‘ subspace in a usual polytope.
Theorem 1. If C is a polytope in a separable Banach space X then the affine span of
C is closed and C has an interior point in this affine span.

(ii) Theorem 2. There is no discrete proziminal net in a separable mﬁmte dimensional
Ly(2) space.l < p < oo.

For p = 2 this is related to (a still open) problem on exnstence of a nice tiling of I,
by convex bodies.

(iii) Approximation of convex sets by sets in which the extreme points are dense.

Theorem 3. Let X be a separable infinite dimensional Banach space. A closed bounded
convez set C can be approzimated (in the Hausdorff distance) by closed convez sets
whose eztreme points are dense if and only if C does not intersect any affine space with
finite codimension by a set with non empty interior.

If the approximation is possible the approximating sets can be chosen to actually
have a dense set of strongly exposed points.

Zonoids -
Yossi Lonke

1. Zonoids whose polars are zonoids

Some time ago I have found examples of non-smooth zonoids whose polars are zonoids.
. They were of the form B} + rB}~! where B} is the Euclidean unit ball in R™ and

0 < r < 1. However, these examples do not work for n > 6. The question is whether
- there exist at all examples of non-smooth zonoids whose polars are zonoids in any
dimension. As a first step, the search is restricted to rotation-bodies. Some partial
results in this direction are the following.

Proposition. Assume n > 6. If K is an n-dimensional rotation body, such that
K + By~! is a polar of a zonoid, then K is not a polar of a zonoid.

Corollary. Assume n > 6. If K is an n-dimensional rotation body.then there exists
a number r(K) > 0, such that for every 0 < r < r(K), the body K + B3 is not a
polar of a zonoid.
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2. Isometric embeddings into L, spaces, 0 < p < 2 (joint work with Alexander
Koldobsky)

Theorem. Assume X = (R || ||} is a 3-dimensional normed space. Assume that
Jor each fized (y,z) € R*\{0}, the function z — Iz, v, 2)|| is in C*(IR), and that the
following two conditions are satisfied:

- (i) For every (y,2) € R*\{0},
d a
E”(z,y, Z)“L=0 = E“(Ir Y, Z)IIL=0 = 0’

(i) There exists a constant C > 0, such that if (y,2) € R? and [|(0,y, z)|l = 1, then

d?
(¥2) 723, 2)l < €.

Then the space X is not linearly isometric to a subspace of L,, when 0 < p < 2.

Examples of spaces satisfying the hypothesis of the theorem are 83 forg > 2. In
this case the thcorem provides an answer to a question posed by Schoenberg in 1938
about positive definite functions. The answer was known before, but its proof was
more complicated than the proof of the theorem here, which is very simple.

A characterization of affine length and asymptotic
approximation of convex bodies
Monika Ludwig

Let K be the set of planar convex bodies (compact, convex sets). For K € K affine

length A is defined as
1

MK) = /n,((t)% dt
0
where (1) is the curvature of K given as a function of arclength ¢ and { is the length of
bd K". Since ky exists a.e. and is an integrable function, this functional is well defined

for a general (not necessarily smooth) convex body. Affine length has the followi
propertics: lb

e it is equiaffine invariant:

AB(K)) = A(K)
for every affine map ¢ with determinant 1

e it is upper semicontinuous:
AMK) > limsup MK,)
n-00

for K, - K
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e it is a valuation:
MKUL)+ MK NL)=XK)+ ML)

for K,L,KUL€eK
Besides A(K), the area A(K) and the Euler characteristic have these properties.

Theorem 1. Let u : K — R be an upper (or lower) semicontinuous and equiaffine
invariant valuation. Then, there are constants o, C1, and c; such that

w(K) = co + ¢ A(K) + 2 M(K)

for all K € K. If i is upper semicontinuous, then ca > 0, if it is lower semicontinuous,
then ¢y < 0.

This theorem can be used to obtain results on asymptotic approximation of convex
bodies. Let 6(K, L) denote the area of the symmetric difference of K and L and let
Pi(K) denote the set of polygons with at most n vertices which are contained in K.
Define .

8(K,P.) =inf{6(K,P): P € Pi(K)}, s
i.c., 6(K,PL) is the distance of K from its best approximating polygon with at most n
vertices. It was shown by L. Fejes Téth, McClure and Vitale that for a convex body
I with boundary of class C? and positive curvature -

MK
12n2

as n — oo. This can be extended to general convex bodies.

5(K,P.) ~

Theorem 2. For every K € K

tim ndo(, P = (35) MK,

In a joint work with Matthias Reitzner, Theorem 1 is extended to general dimen-
sions. It follows from results of K. LeichtweiB, E. Lutwak, C. Schiitt and E. Werner
that affine surface area can be defined for general convex bodies and is an equiaffine
invariant and upper semicontinuous valuation. Our result says that every equiaffine
invariant and semicontinuous valuation can be written as a linear combination of Euler
characteristic, volume and affine surface area.

Each symmetric convex body in R® admits an
inscribed cube :
Endre Makai, Jr. (joint work with T. Hausel and A. Sziics)

Answering a question of Klee-Wagon, we prove that each convex body in R? admits
inscribed rectangles with any given ratio of the side lengths. We prove that each
centrally symmetric convex body in R® admits an inscribed cube, and, more generally,
an inscribed similar copy of any given rectangular parallelepiped. For the case of the
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cube we give simple arguments using elements of (equivariant) algebraic topology, via
the solution of a special case of Knaster’s problem. Connected with this, we investigate
the existence of equivariant maps SO(3) — S? for certain group actions of subgroups
of Sy on SO(3) and S2. The statement for the general rectangular parallelepiped
follows from a rather technical recent theorem of Griffiths, about another special case
of Knaster’s problem, that includes the above one. Answering a question of Bodlaender-
Gritzmann-Klce-van Leeuwen, we prove that for n large enough there exists in R” a
(centrally symmetric) convex body, admitting no inscribed parallelepiped; moreover, a
typical (centrally symmetric) convex body in /R” has this property. We prove that in
R? any set of diameter at most 1 can be included to a rhombic dodecahedron, with
distance of opposite faces equal to 1. Possible application of this theorem to the Borsuk
problem in [R3 is pointed out.

On inner illumination of convex bodies
Horst Martini (joint work with V. Boltyanski and V. Soltan)

Due to P. Soltan (1962), a set F C bd K illuminates a convex body K ¢ E* (d >
2) from within if for each point z € bd K there is some y € F (z # y) such that
]z, y[C int K. For example, any K C E? is illuminated from within by at most d + 1
points, with equality if K is a simplex (Soltan 1962). Moreover, FF C bd K is said to
be a primitive inner illuminating system of K if no proper subset of it will illuminate
K from within. Although even a proof for the existence of the maximum number of
points of a primitive inner illuminating syste was lacking for d > 3, B. Griinbaum
(1964) conjectured this number to be 2¢. For d = 3, this was confirmed by V. Soltan
(1995), with equality if K is combinatorially equivalent to the 3-cube. We show that
for d > 4 Griinbaum’s conjecture is wrong: for any positive integer m, there is a
convex body K C E®, d > 4, with a primitive inner illuminating system of at least
m points. Also we show that any such system is finite. H. Hadwiger (1972) asked
whether a convex d-polytope P C E* illuminated by its vertices (i.e., for any vertex
2 of P there is another vertex y of P such that )z, y[C int P) has at least 2d vertices.
P. Mani (1974) proved that for d < 7 the answer is affirmative, while for d > 7 there is
such a polytope having about d + 2v/d vertices. We show that any convex d-polytope
primitively illuminated by its vertices has at least 2d vertices.

Polytopes: valuations, dissections and
combinatorics
Peter McMullen

The purpose of this talk is to survey recent developments in the area of the title. The
emphasis will be firmly on the algebraic aspects of the subject. An initial motivation
for studying valuations in the abstract was to investigate the extent to which equality
of volume of ordinary polyhedra is characterized by equidissectability, as is the case for
area of polygons. Indeed, some of the problems still being looked at were first raised
by the Greeks.

Rather than develop the subject historically, the starting point here will be the
most recent approach to the polytope ring and algebras. The polytope ring, which is
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the abstract algebraic object corresponding to valuations on polytopes (with no trans-
lational properties as yet assumed) is identified with the ring of piecewise exponential
functions. Completion and quotients then provide connexions with polytope algebras,
piecewise polynomials and tensor weight algebras. Another natural quotient then de-
scribes the conditions for equidissectability of polytopes by translation (when any rigid
motions are allowed, the general problem is still open).

A striking application of scalar weights (which can be thought of as the algebra of
mixed volumes of polytopes) was to the purely combinatorial problem of characterizing
the f-vectors of simple polytopes. Part of the structure of the weight space of a simple
polytope, established by non-analytic methods, is a family of quadratic inequalities,
among which is Minkowski’s second inequality. From this (as is well known) the Brunn-
Minkowski theorem can be deduced; of interest, perhaps, is that the equality conditions,
which are lost in proceeding to a limit, can be recovered for polytopes by an inductive
argument.

Affine surface area and p-affine surface area
: Mathieu Meyer and Elisabeth Werner .

For a convex body K in R" and t € R, t > 0, we define the Santal6-bodies S(K,t) as
IK|IK*|
2

SWK.t) = {z e K: =7 <1},

where | K | denotes the n-dimensional volume of the convex body K and v, is the volume

of the n-dimensional Euclidean unit ball B(0,1). K= is the polar of K with respect to
.
Those bodies are related to the affine surface area
oK) = [ fxw)Pdo(w) = [ s(@) dux(a),
gn-1 8K .
where fx(u) is the Gauss curvature function, that is the reciprocal of the Gauss
curvature k() at this point z € K that has u as outer normal. ug“is the usual surface

measure on the boundary K of K and o is the spherical Lebesgue measure.
It was shown that the connection between O;(K) and the Santalé-bodies is as

follows
lim ¢ (1K1 - 150K, 0) = 227 0,(K)
tooo ’ 2% v, N
Lutwak introduced for a convex body K in IR™ with positive continuous curvature
function the p-affine surface area Op(K). -

fr(w)™ x(z) "5
Op(K) = ————do(u) = ——duk(z),
G B =i irymers =t

where hy is the support function of K and N(z) is the outer normal in z € K.

We show that for bodies with sufficiently smooth boundary there is a geometric
interpretation for the p-affine surface area (for —n < p) comparable to the one for
affine surface area in terms of a generalization of the notion of Santalé-bodies.
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On isometric embedding of subspaces of L, into [,
Aleksander Pelczynski (joint work with F. Delbaen and H. Jar(.how)

The following results answer a question of A. Pietsch:

Theorem 1. Let 0 < p < oo, p € 2IN. Let E be a (closed linear) subspace of L,
L,([0;1]). Then E is isometric to a subspace of l, iff every unital subspace of L
zsometnc to E consists of functions having discrete distributions.
It is well known that every subspace of L, is isometric to a unital one.

Corollary 1. A subspace E of L, (0 < p < oo, p & 2IN) is isometric to a subspace
of by iff every 2-dimensional subspace of E has the same property.

Corollary 2. The 2-dimensional Euclidean space is not isometric to a subspace of

I, (0 <p<oo, pg2N). . .

>

Proof. Otherwise by Corollary 1 [, would be isometric to a subspace of lp.

Theorem 2. If p € 2IN then every finite dimensional subspace of L, is isometric to a
subspace of I,. Moreover for every n € IN there ezists an N = N(p,n,K) € IN (K is
the field of scalars, either IK = R or KK = €) such that every n- dtmc’mzonal subspace
of L, embedds isometrically into lN

An 1soper1metr1c inequality for hyperplane
sections of a convex body
) Carla Peri

Consider the cuclidean space /R" with the canonical inner product (.-} and corre-
sponding norm || - || . Denote ™! := {z € R" ||| z ||= 1} the unit euclidean sphere,
V(-) the Lebesgue n- dimensional measure and A(-) the Lebesgue (n — 1)-dimensional
measure defined on Borel sets lying in hyperplanes of R".

Let us suppose that a convex body K C R" is divided by a hyperplane H into
two sets K, K>. We want to find a sharp upper bound for the product V(K,)V(K;)
in terms of the area A(K N H) of the intersection of K with the hyperplane H. This
problem has been studied by Bokowski and Sperner (1979), Bokowski (1980), Gysin
(1986), Mao (1993) and Santalo (1983) who obtained upper bounds where A(K N H)
is multiplied by a constant depending on the diameter of K and on the dimension n. It
should be noted that a more general version of this problem, where H is replaced by a
measurable surface, has been studied by many authors in connection with randomized
algorithms for approximating the volume of a convex body. Relative isoperimetric
inequalities are also related to immersion theorems for Sobolev spaces.

We prove that if K C R" is a convex body divided into two parts K|, K, by a
hyperplane H orthogonal to u € S®! then

V(K)V(K;) < —( min, / | (u,z — y) | dz)A(K N H).

This inequality is asymptotically tight, for sufficiently large n, and implies the
following:
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VKDV () < o ’[ | (4,7 — c(K)) | dz)A(K N H),

where ¢(K) denotes the centroid of K. We also show that if K is centrally symmetric
then the constant 1/1n2 can be dropped. Moreover, the inequality we obtain in this
case is exact as equality holds for a cylinder and a hyperplane cut, through the center,
parallel to the base of the cylinder.

The main ingredient in the proofs is a “Localization Lemma” due to-Kannan, Lovasz
and Simonovits (1995).

The constant i | (u,z — ¢(K)) | dz can be given a geometric interpretation: it is
the support function in the direction u of the centroid body 'K of K, multiplied by
the volume of K. Thus, the previous results imply

min {V(K,), V(K2)} < —DpKA(K NnH) -
£
(Drk being the diameter of I'K), where the constant 1/1n2 can be dropped ‘when K
is centrally symmetric.
We think that the last inequality can be generallzed as follows.

Conjecture 1. Let K be a conver body in R™ such that c(K) =o andlet EC K be a
measurable set. Let A(K, E) denote the Minkowski content of the part of the boundary
of E which is contained in the interior of K. Then

min {V(E), V(K\E)} < 0= DrA(K, )

and the constant 1/In2 can be dropped when K is centered.

In the case where K is the unit cube this inequality was proved by Hadwiger
(1972); in the general case it would improve an inequality due to Kannan, qué.sz and
Simonovits (1995).

The subindependence of coordinate slabs in £}
balls ‘

Irini Perissinaki (joint work with K. Ball)

It is proved that if the probability P is normalised Lebesgue measure on one of the
£, balls in R", then for any sequence t,t3,...,tn of positive numbers, the coordinate
slabs {|z;| < t;} are subindependent, namely,

P( N {l=:l < t-‘}) < | P({|z:| < t:})

i=l..n

A consequence of this result is that the proportion of the volume of the unit £} ball
which is inside the cube [—t,¢]" is less than or equal to fu(t) = (1 — (1. —¢)*)"
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It turns out that this estimate is remarkably accurate over most of the range of
values of . A reverse inequality, demonstrating this, is the second major result of this
work.

1. The two Theorems and their relation

Theorem 1 Subindependence of coordinate slabs. If the probability P is nor-
malised Lebesgue measure on one of the € balls in R", then for any sequence ty, ..., ta
of positive numbers,

P(ﬂ{mmuﬂs P({lzd < t.}).

i=l..n i=l.n

proportion of the volume of the unit ¢} ball which is inside the cube [—¢,¢]" . Sinc
proportion of the volume of the unit ¢ ball which is inside a coordinate slab of widt
2t is 1 — (1 —¢)" when ¢t < 1, the result in this case is given by the following Corollary.

The particular case p =1, ¢, = ... =t, of Theorem 1 gives an upper bound for !.lle
h

Corollary 1.1. If F,(t) is the proportion of the volume of the unit €} ball inside the
cube [—t, " then

Fult) < falt) = (1= (1 = )7

Although F,(¢) is the function Zy/t'(—l)j(;‘)(l-]’t)" (an indircct result of the proof
of Theorem 1), which is a spline with many knots, we prove in Theorem 2 that the
polynomial f,(¢) = (1 - (1 —¢)")" is an astonishingly good approximation to F,(t), at
least. when [5,(£) is not too small.

Theorem 2 (An estimate in the reverse direction). With F,(t) as above,

1= Fa(t) (log n)?
l—ﬂﬂ)_l+0( n )

as 1. — 00 uniformly in t.

Theorem 2 enables us to describe the threshold behaviour of F,(t) quite accurately.
For example, if ¢ = '982=1%¢ then the information we get from Theorem 2 is that Fy(t)
should be something like f,(t), which in turn is something like

(1 - exp(—logn +logc))" = (1 - %)n ~ exp(—c).

2. A brief account for the method of the proofs of the two Theorems
We shall briefly explain the crucial points of the proofs of the two Theorems, for the
simplest case p =1 and t; = --+ = t, = t. The general case is treated in a very similar
way, so we shall not examine this here.

As above, we write Fy(t) for P([—t,t]*), where P is now normalised Lebesguc
measure on the unit £} ball. We also write f,(¢t) for (1 — (1 —¢)™)® which is a function
dominating F,, according to Corollary 1.1.

Proof of Theorem 1. The proof of Theorem 1 (the upper bound for F,) depends
on a very convenient interaction between two different equations expressing F, and its
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derivative in terms of F,,_,. Each of these equationsis proved using a simple geometric
argument: they can readily be combined to give a differential inequality for F,, which
integrates up to the stated result.

These equations are:

Fa(t) = n/(:(l — )" Fy ( t ) du

1-u

%Fn(t) =n2(1 - t)""F,._.(ﬁ)

The upper bound is extremely precise as long as F,(t) is not too small. The easiest
way to state this is to write it as an estimate for the volume outside the cube, namely
for 1 — F,,(t). This is what we do in Theorem 2.

Proof of Theorem 2. The proof of Theorem 2 (a lower bound for F,) is technically
more complicated although it is much less delicate. The crucial point is to show that
at its maximum, the function i—‘_—% is dominated by the value of a related function,
which in turn can be shown to be small by means of the (rather precise) upper bound
already proved.

Selection measures
Krzysztof Przeslawski

Let K™ be the family of all convex bodies in R". An /R"-valued Borel measure u over
$™-1 is said to be a selection measure if it is of finite variation, and if for every A € C*

[ ha@)du(z) = s(4) € 4,

where h, is the support function of A. We denote by M" the family of all selection
measures over S"~1. It is easily seen that s is Lipschitz continuous with respect to the
Hausdorff metric, and linear, i.e. Minkowski additive, and homogeneous With respect
to the multiplication by nonnegative scalars. Conversely, if s : K® — R" is a Lipschitz
continuous and linear selection, then a standard application of the Riesz representation
theorem shows that there exists a unique selection measure u such that the above
equation is satisfied. The family of all such selections will be denoted by S™.

It would be interesting to have effective methods that enable one to determine
whether a given measure over S"~! is a selection measure. A little appears to be
known in this direction even in case of n = 2. The following properties of selection
measures have been established in a joint work of G. Rote and the present author.

1°If n > 3, u € M", then for every n — 2-dimensional subspace X of R,
ul(S™ N X) =0,

where |u| denotes the variation measure of x. In particular, there is not a discrete
selection measure if n > 3.
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2° If p € M is singular with respect to the arc length measure, then p is odd.
(Equivalently, if s is the selection corresponding to p, then s is centrally symmetric,
i.e. (=) = —s(A4) for every A € K2.)

3% 0f 1 € M* is odd, then for every z,y € S',if 2 Ay > 0, then

0z / (v, u)z Adu(u) <z Ay
{ux(z,u)(y,u) <0}

and
0> / (ywyzAdu(u) <z Ay,
{u:(z.u)(y.u)>0)

where w A w is the éigncd area of the parallelogram determined by the two vectors v

and . .

PROBLEMS
1. Does there exists a measure ¢ € M™,n > 3, which is singular with respect to the
surface arca measure? :

2. Let B C S™'. We say that B has the intersection property if for every function k& I
which is the restriction to B of a support function, the set N{K € K" : hylp = k}
is nonempty. Clearly, if ;2 is a selection measure, then suppyu has the intersection
property. The question is whether there exists a finite subset B ¢ S*~',n > 3, wich
has the intersection property. Observe that for n = 2, B has the intersection property !
il #8B > 4. _ ]
3. Let x.y € S*7! be lincarly independent. Let s;,(K) be the center of the smallest
parallelogram containing K € K™ which has one pair of the sides perpendicular to x
and the other to y. It is easily seen that s;, € S?, and that the selection measure ;.
which corresponds to sz, is of the form:

1 yl yl x’ I'
==1|6 +4_ +94, +4. .
s 2(Iy/\:1: Tyr—z VYzAy Yz A —y

where 2’ is obtained by revolving z about 0 counter-clockwise through a right angle.
It can be shown that each centrally symmetric selection s € S? is an affine, possibly
infinite, combination of such parallelogram selections. Is s a convex combination of
parallelogram sclections? A slightly weaker question reads as follows: Is it true t

for any triangle T, s(T) belongs to the triangle with vertices at the midpoints of b
sides of 77

’

A special case of Mahler’s conjecture
Shlomo Reisner (joint work with M. Lopez)

A special case of Mahler’s conjecture on the volume-product of symmetric convex
bodies in n-dimensional Euclidean space is treated here. This is the case of polytopes
with at most 2n + 2 vertices (or facets). Mahler’s conjecture is proved in this case for
n # 8 and the minimal bodies are characterized.
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I On the algorithmical solution of the main
problems in the metric theory of polyhedra
1. Kh. Sabitov

The following two problems in the metric theory of polyhedra are known as main
ones: the first is the problem of isometric realization in R® of a given polyhedral
metric and the second is the problem of recognition of the flexibility of any given
, polyhedron. For the first problem there are many different settings; we suppose that
i the polyhedral metric is given as one of a metric simplicial complex K and we require
' that the combinatorial structure of K should be carry on the sought polyhedron P
isometric to K so that the faces of K must serve for P as its natural development. Up
to now in such a formulation there has been no result either positive or negative nature
. (even the famous Alexandrov’s theorem on the existence of the isometric realization
of any convex polyhedral metric as a convex polyhedron in R® doesn’t guarantee that
the combinatorial structure of K would be carry over to P). It turns out that the
solution of the ”bellows conjecture” admits to indicate an algorithmical approach to
the solution of the both problems above.
Indeed it is known that the volume V of any polyhedron P in R3 may be calculed
as a root of a polynomial equation .

QY =0 N )

with the coefficients depending only on the P’s combinatorial structure (defined as one
of a simplicial complex K) and the metric of P i.e. for the calcul of V' = vol(P) we
have a generalization of the Heron’s formule. It is essential that the polynomial Q(V?)
may be found by the application of an algorithm (the proof affirms only the existence
of such a polynomial equation for V but it doesn’t give any method to find it). First
we note that the equation (1) gives the following necessary conditions for the solution
of the both problems:

1. Let |K| be the body of a simplicial metric complez K. Then for the ezistence of
a simplicial isometric map P : |K| = IR® it is necessary that the equation (1) composed
on the base on |K| should have at least a root V? > 0.

2. Let P be a flezible polyhedron then its volume is a multiple root of the corre-
sponding equation (1).

. The algorithm for seaking of isometric realizations of the given polyhedral metric

is based on the following

Lemma. Let A be a vertez in a polyhedron P of degree m > 4 and let p,, . .., pi-1, Pi,
Pit1,- -2 Pm be the vertices of 3(Star A) enumerated in a cyclic ordre. Suppose that the
segment < p;_1p;s1 > is not an edge of P. Denote the length of < pi_1piy1 > by d;.
Then the volume V of P and d; are related by a polynomial equation of the form

Qv di) = o (L,Vd™ + . +an(L,V?) =0 @)
where { = ({2,...12) and e is the number of P’s edges.

If P is in the general position then it is guaranteed that 2M; > 2. This means
that the equation (2) has the leading coefficient a8’ # 0 so taking V2 as one of the
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non-negative roots of (1) we find a finite number of the d;’s values. After this for the

construction of polyhedra having the given values of edge lengths and diedral angles

| it is casy to indicate a finite algorithm which will give either a required polyhedron

or show the non-existence of such polyhedron. As a consequence of this construction

| we have an other proof of the affirmation that almost all polyhedra in R? are rigid, a

result. due to Gluck (for polyhedra homeomorphe to a sphere), Whiteley and Graver

(for the toroidal polyhedra) and Fogelsanger (in the general case).

When in the equation (2) for the given values of [ and V all coefficients a;i),O <

7 < M;— 1. are zero (by the way it is a necessary condition for the flexibility of P) we

have an algorithm for the construction of P too but for the moment it gives a result
only under some supplementary suppositions.

‘ As to the verification of flexibility of a given polyhedron P we can indicate an
algorithm based on the following idea: in the star of A (in notations of the lem

‘ we remove the edge < Ap; > with adjacent faces and consider the new polyhedro
with the edge < pi_ypiyy > and the faces < Ap;_1pi+1 > and < p;_ pipis1 >. Now we
apply to ' the lemma,; if it is applicable then P’ is rigid so P is flexible for the values
of d; near of the one given in initial position of P. If the lemma is not applicable we
can repeat, analogical consideration with P’ and so on.

Adapted convex bodies

Jane R. Sangwine-Yager

The support function and supporting hyperplane of a convex body K with non-empty
interior are denoted by A(K,-) and H(K,-). For z € bd K, the boundary of K, N(K, x)
is the normal cone at = and it is defined by {u # olz € H(K,u)} U {0}, where o is
teh origin of E". The touching cone of K containing u is T(K,u) = N(K, z) for any
@ € relint H(K,u) N K. E(K) is the set of unit extreme directions of K, and B is the
unit ball. )

Adapted convex bodies were introduced by Schneider (1990). A is adapted to C if
for all 2z € bd C, there is y € bd A such that N(C,z) C N(A,y).

Schueider (1990) uses the first result below to obtain the second.

If A is adapted to C and u € S"~1, then
hi(C ~ TA,u)|,=0 + h(4,u) = 0,

where I, denotes the right-hand derivative and C ~ TA is the Minkowski diﬂere.
T>0.

Let K, L and C; be convez bodies for € = (Cy,...,Cn_2). Suppose equality holds
in the Aleksandrov-Fenchel inequality, V(K,L,C)? > V(K,K,C)V(L,L,C). If A =
(Ay,..., A,_2) where A; is adapted to C; and i =1,...,n — 2, then equality also holds

when A replaces C.

It is a corollary to this result that equality holds in A— F when C consists of smooth
bodies if and only if K and L are homothets.

To prove strengthened characterizations of zonoids, Goodey and Zhang [1996] es-
tablish the denseness of differences of surface area measures using the following result.
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If K is a smooth convez body and u € S™™!, then
h.(K ~7B,u)|;=0+1=0,

and the convergence of the difference quotient to the derivative is uniform on S™L.
We show

Theorem. If K and A are any conver bodies and u € S™!, then
—hL(K ~ TA,u)|r=0 = max y_ A:ih(A, v),

where the mazimum is over all sets {v;} such that u = Y5, \wv; for some integer
k,»; >0, and each v; € E(K)NT(K,u).

Corollary. A is adapted to K if and only if (K ~ TA,u)|,=0 + h(A,u) = 0 for all
uwe S*h

Lemma. If the boundary of K is smooth, the difference quotient for the derivative in
the Theorem converges uniformly to h(A,u) on S™ 1.

Sketch of the Proof of the Theorem and Lemma. Fix u € $*7'. For each 7,0 < 7 <
7(K, A), the relative inradius, there exists a set {vi(7,u)}, i =1,...,k, of elements of

E(K ~1A)NT(K ~ 7A,u) such that

k
u=7 M(r,u)vi(r,u), M(r,u) 20.
i=1
It follows that A{K ~ 7, A,v;(7,u)) = h(K,vi(7,u)) — Th(A,vi(7,u)) forri.=1,...,k,
and 5
hK ~TAu) = Z (T, w)(R(K, vi(T,u)) — Th(A,v:((T,uw))).
Let DQ(7,u) = (h(K,u) — h(K ~ 74, u))/m. These results and the sublinearity of the
support function lead to |

LN

S0, u)R(A, vi(0,u)) < DQ(T,u) < Z X, wh(A,vi(T,u)),

for all sets {v;(0,u)} ¢ E(K)NT(K,u) and {vi(r,u)} C E(K ~TA)NT(K ~ 74, u)
with u in their posivite hulls. Next we show that the v;(7,u) — v;(u) € T(K,u) as
7 —0.

If bd K is smooth, the derivative is h(A, u). Suppose the convergence is not uniform.
For ¢ > 0 there must exist £ — oo, such that 7, = 0,ug = ¥ Ai(7e, ue), Ai(7e, ue) >
0,v:(7e,ue) € E(K ~ 7 A) NT(K ~ 7,A,up), and € < DQ(re,ue) — h(A uy). If
e — u, then vi(7y, ug) = v € T(K,u) which implies that each v; = u, and we have a
contradiction. .
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A rearrangement inequality & applications
Michacl Schmuckenschldger (joint work with A. Burchard)

Lot My denote the simply connected d dimensional manifold with constant sectional
curvature k. We study functionals J of the form

'/(./la" fn) —/ / H fg 11;) H Kij(zi,zj)dz,... dz,

1<icn 1<i<j<n

where for cach pair 4, 7, the kernel K;(z,y) is a nonincreasing nonnegative function of
the distance between z and y and f), . .. f, are nonnegative measurable functions on My
which vanish at infinity (so that the spherically decreasing rearrangements f},. .., f;
can be defined.

Theorem 1. The functional J (with fired nonincreasing kernels K;;) never decrea.
under spherically decreasing rearrangement of the f;, that is,

J(fls---yfn) SJ(f;llf;)

Jor all nonnegative measurable functions fy,..., fn on My so that the rearrangements |
fi..... [y can be defined.

Applications: 1. Suppose we are given a regular' domain A C M; of finite volume
©(1). l.e. A is an open connected subset with smooth boundary. Denote by u4(t, )
the solution of the Dirichlet problem

—Auy=0us Vz € A: us(z,0)=1and Vz € dAVEt > 0: uy(z,t) =0,

where the signe of the Laplacian A is choosen in order to make A a positive operator.
Then ua(t, ) is always bounded from above by ug(zg,t), where B is a gedodesic ball
centered at g such that v(B) = v(A).

2. Let V' be a potential on M, satisfying suitable growth conditions at infinity
(it k < 0). Then the trace of e™4+Y) can only increase under spherically decreasing
rearrangement of V', that is

tr(e—t(A+V)) < tr(e—t(A+V.)) . . |

Let P be the heat semigroup on M; with generator —A, A a measurable subse
M. and B a geodesic ball in My such that v(B) = v(A). By the Theorem we have

all t > 0. f4 PIa < [y PJg. In this form the rearrangement inequality has already
been proved by A. Baernstein and Taylor. Following an idea of M. Ledoux we prove a
formula that relates [4 PJ4 to the volume of the boundary of 9A.

3. A particular case of the Theorem implies the isoperimetric inequality on Mi:

Theorem 2. Let A be an open relatively compact subset of a complete Riemannian
manifold M with Ricci curvature bounded below. Assume A has smooth boundary.

Then
lim f [ Pdadv = v(34)
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Corollary. For all measurable subsets A of My, k > 0, with smooth boundary 0A and

allt > 0: . 1
—_— < —_— .
2(84) /A Pladv < S8 /H Pl dv

where H 1is a hemisphere.

Conjecture: Suppose the Ricci curvature of M is bounded from below by (d — 1)k,
k > 0. Let u, pux be the normalized Riemannian measures on M and M respectively
and P, PF the corresponding heat semi groups. Let A be any measurable subset of M
f and B a geodesic disk in Mj such that u(A) = u(B), then for all t > 0:

| Pudall3 < 1P 181,
. If both sides»coincide for some t > 0, then M = My and A = B.

Stability results in convex geometry
Rolf Schneider

A stability result, as it is understood here, answers questions of the following type: If
some condition enforcing uniqueness of a geometric object is satisfied “only upt o €”,
can uniqueness be ascertained “up to f(€)”, in a precise and explicit sense? The aim
of this survey is a report on stability results in convex and dicscrete geometry from the
last decade. The described stability results are grouped in four sections.

(1) Inequalities. Examples are stability versions of the isoperimetric inequality and
: the general Brunn-Minkowski theorem, a sharpening of the difference body inequality
f due to Bordczky jr, Gruber’s recent results on the stability of the regular hexagonal
E pattern in the plane with respect to extremum properties. -3

(2) Inverse problems. Stability results by Campi, Goodey-Groemer, Bourgain-
Lindenstrauss on the determination of convex bodies from projections, new extensions
of these results, other inverse problems related to intertwining operators on the sphere,
mecan section and mean projection bodies.

(3) Curvature conditions. Almost umbilical surfaces recent stability results of
Kohlmann on the general Liebmann-Siiss theorem involving curvature measures.

ellipsoids, as the ones due to Brunn or Blaschke, obtained by Groemer, Gruber, and
others.

. . (4) Geometric conditions. Stabilized versions of some classical characterizations of

Floating body, illumination body, and polytopal
- approximation
’ Carsten Schiitt

The convex floating body K, of a convex body K is the intersection of all halfspaces
whose defining hyperplanes cut off a set of volume ¢ from K.
The illumination body K* of a convex body K is

{z € R*|voly([z, K]\K) < t}
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Theorem. Let K be a convez body in R®. Then we have for every t,0 < t <
Lo Woly(R), that there are n € IN with

deOId(K\Kt)

<
" ola(BY)

and a polytope P, that has n vertices and suph that

KtCPnCK'

Theorem. Let K be e convez body in R* such that

1
C—B‘; C K C B
1

i
i
Let 0 <t < (Hejeg)~*tvoly(K) and let n € IN with .
128 4o 1 '
—mn)7T <n< la(KA\K).
()7 Sn < grogvoldKOK) ‘
Then e have for every polyotpe P, that contains K and has at most n d—1 dimensional ]
Jaces |

voly(K'\K) < 107d%(cyc2)2* #Tvoly( P\ K).

Convex bodies instead_ of needles in Buffon’s
experiment
Marius Stoka

The idea of repeating Buffon’s experiment using other objects instead of a needle is not,
new. Various special planar convex bodies have been investigated in the literature; we 1
shall consider here the general case. Of course, to go beyond convexity makes no sense,
because only the convex cover is relevant to our problem (if the object is supposed 1
connected).

Among the particular cases alread treated in the literature we mention those of a
circular disc, a sector thereof, a segment thereof, a (not necessarily symmetric) lens,
and an ellipse.

Also, we follow the idea of considering not only one family of parallel lines but, tw, i
and of studying the hitting probability for the resulting lattice and the independe‘
case of the two hitting events.

Consider a convex body (which means here a compact convex set) K C R. Let R,
be a set of equidistant parallel lines in R (at distance a) and R, another such set of
lines (at distance b), the two directions making an angle @ € (0, 7). The objects of our
investigation are the events I,, I, that the random convex body K —- more precisely
the random congruent copy of K — meets some line in R,, R, respectively. ;

Let L(¢) be the width of K in direction ¢. We consider the following natural
condition:

max L(¢) < min{a, b}.

0<g<m
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All cells of the lattice R, U R, are congruent to a parallelogram II.

Let K be the set of all convex bodies congruent with K and their centroids (just to
make a choice) inside II. We consider our convex bodies as uniformly distributed, in
the sense that the centroid as a random variable is uniformly distributed in IT and the
random variable ¢ (the rotation angle) is uniformly distributed in the interval [0, 27].

Various solutions of the isoperimetric problem
Anthony C. Thompson

In Minkowski planes (two-dimensional normed spaces) the isoperimetric problem is
well-defined and the solution well-known. However, there is a variety of descriptions
of that solution. If B denotes the unit ball then, up to homothety, the isoperimetrix
I (the solution to the isoperimetric problem) may be described in one of the following
three ways: up to homothety,

1= 1I(B)° =T1I(B°) = A(B°)
where I denotes intersection body, IT denotes projection body and A denotes the map-
ping from X* to X defined by g(Af) := det[f, g].

In higher dimensions, area (n — 1 dimensional content) may be defined in a variety
of ways. Depending on the definition one now has: I = /(B)° (Busemann), I = I1(B°)
(Holmes-Thompson) or I = A(B°) (Benson). Moreover, these bodies are now different
although for certain symmetric balls B they have similar shapes. Note that A is now
a mapping from (X*)"! to X defined by g(A(fi, fo, - fam1) = detlg, fi, 2, - fn-1]
and A(B°) is the image under A of all n — 1-tuples from B°. The first two of these
mappings are injective (on centrally symmetric balls) the third is not; it is suspected
that the first two have only ellipsoids as fixed points (n > 2) the third has the rhombic
dodecahedron as a fixed point.

One would like either to show that one definition is clearly preferable to the others

or, failing that, to impose some structure on the variety.

Recent results in convex tomography
Aljosa Volcic

P.C. Hammer posed in 1961 the following question:

The X-ray problem. Suppose there is a convex hole C in an otherwise homogeneous
solid and that X-ray pictures taken are so sharp that the “darkness” at each point
determines the lenght of a chord in C along an X-ray line. (No diffusion, please.) How
many pictures must be taken to permit exact reconstruction of the body if:

a. The X-rays issue from a finite point source?

b. The X-rays are assumed parallel?
Note that the X-ray problem makes sense also if the finite point is taken in the interiorof
K. A device which rotates around the solid so that all the X-rays pass through a given
point p € intK permits to determine the length of all the chords through p.
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Let us denote by A; the i-dimensional Lebesgue measure. By G(n, 1) we denote the set
of all i-dimensional subspaces of IR*. If G € G(n,4) and p € R", let us denote by by
G(n, i.p) the family of all thesets F=p+G={z:2=p+y,y € G}.

‘The 4-section function at a point p of a convex body K < IR" is the function which
assigus, to every F € G(n, 1, p), the measure )\;(K N F). ‘

1M« € 577" identifies a direction (a point at infinity p), and G(n,i,u) is the sct of all
the afline i-dimensional subspaces containing a:translate of u, the i-section function of
K indirection wis the function which assigns the value A;(KNF) toevery F € G(n,i,u).

In particular, if ¢ = 1, the i-section function reduces to the X-ray function of K at

P
A natural generalization of the Hammer's X-ray problem is the following:

The generalised Hammer X-ray problem. Suppose that K is a convex body in
" and let 1 € ¢ < n— 1. How many i-section functions must be taken in or‘o
permit the exact reconstruction of K if:

a. The i-section functions are taken at finite points?

». The i-section functions are taken at points at infinity?

Sample problem. Suppose K C IR® and let p;, p, and p; be three non collinear
points not belonging to K such that the plane P determined by them intersects the
interior of K. Suppose we are given the 2-section functions of K at p;, p, and ps. Does
this data determine K uniquely?

We prove that the answer to this question is affirmative.

We also consider the following further generalization:

The mixed Hammer X-ray problem. Suppose that K is a convex body in IR". How
many points pi,pe, ..., px must be taken in order to permit the exact reconstruction J
of A if the 45-section function is known, with 1 <4; <n — 1, at points p;, 1 < j < k7

Sample problem. Let K be a three-dimensional convex body, let p; and py be two
interior points and suppose that we know

a) the lengths of all the chords of K through p; and

b) the arecas of the intersections of K with all the planes through p,.

Is K uniquely determined?

The guestion is open in all its generality. We only know a partial answer. Denote
by [a, 0] the chord of K containing p, and p,, with a, p;, ps, b in that order. Then K
is uniquely determined if p, is closer to b than to a. .

Translative integral geometry
Wolfgang Weil

[terated translative intersection formulae for curvature measures and intrinsic volumes
involve mixed measures and functionals. These can be introduced directly for polytopes j
and cxtended to arbitrary convex bodies by continuity. Various integral formulae for

mixed measures and functionals are presented and a number of consequences are dis-
cussed. They include a kinematic formula for projection functions, a formula for mean
section bodies and a translative formula for support functions. The investigations are
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motivated by applications in Stochastic Geometry and are finally used to estimate the
intensity of a non-isotropic Boolean model in R®.

Mixed volumes and packings
Jorg M. Wills

A family of convex bodies Kj, i € I in euclidean d-space E? is called a packing, if
int (K;NK;)=0 fori#j (%)

If 1 is finite, the packing is called finite, otherwise infinite. A basic property of packings
is the density, and for important special cases, e.g. for lattice packings or bin packings
there are appropriate and useful density definitions since long.

For general packings (*) there is A. Thue’s density (1892), which leads to a general
theory in IE? (Rogers, Bambah, Zassenhaus, Groemer, Graham), but not in E*, d>3.
The introduction of a parameter in 1992/93 led to application of mixed volumes and
to parametric density, which permits a joint theory of finite and infiniteipackings. We
describe the simplest and most relevant case: :

Let K; = K +¢;, i =1,...,n be a packing, C, = {c1,...,¢,} and p > 0. Let V
denote the volume. Then :

8(K,Cn, p) = nV(K) |V (conv Cy, + pK)

is the parametric density of the packing C, + K with respect to p. Here

d_ (d . )
V(convCp + pK) =3 (z) V; [conv Cy, K] ¢ L
=0 .
is a polynomial in p, and its coefficients are the mixed volumes. The density of densest
packing of n translates of K is given by

5(K,n, p) = max {8(K, Cy, p) | Cn + K packing}.

Any C, with 6(K,C,, p) = 8(K,n, p) is denoted by Cr,(K), and C,, + K is called a
best or densest packing (of n translates of K with respect to p).

In this basic concept of packings the mixed volumes are the essential tool for a joint
theory of finite and infinite packings. So this is an application of convex geometry
to discrete geometry. The interaction between finite and (classical) infinite packings,
finite analogues of classical theorems (Minkowski~Hlawka, Blichfeldt, Rogers, Rankin),
applications to strange packing phenomena (sausages, sausage catastrophes), and to
crystallography (Wulff shape, online packings, quasicrystals, microclusters) are shown.
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Cut locus and ambiguous locus
Tudor Zamfirescu

The notion of a cut locus is well-known to differential geometers. The cut locus of a
point x in a Riemannian manifold M is the set of those points y € M such that no
shortest path from = to y can be extended (as a shortest path) beyond y.

The notion of an ambiguous locus belongs to Analysis. The points without a unique
nearest point in a given closed set form its ambiguous locus.

Apparently quite distant from each other, the two notions share a common soul.
Why this is so and some of their joint properties will be revealed in my talk.

Sobolev-type inequalities with best constants
Gaoyong Zhang

The Sobolev inequality in the Euclidean space IR™ states that for any C! function f(,
with compact support in R"™ there is

(1) [ 1V 51dz > ot 1) 2,
P

where |V [| is the Euclidean norm of the gradient of £, || f||, is the usual L, norm of f
in IR", and w, is the volume of the unit ball in R™. The constant in the inequality is
sharp. It is attained at the characteristic functions of balls.

It is known that the Sobolev inequality (1) is equivalent to the classical isoperimetric
inequality. Let. M be a compact domain in JR" with piecewise C' boundary. If M has
volume V(M) and surface area S(M), then the isoperimetric inequality is

(2) S(M) > nwl/™V(M)"*%,

with cquality if and only if K is a ball. One can consider (1) as the analytic form of
(2).

The aim of this paper is to establish Sobolev-type inequalities with best constants.
Our first result is the following inequality.

Theorem 1. If f is a C' function with compact support in IR", then

—n =1l/n 2
Wn—1
du) > 2l ®

1

of

Ou

where %& is the partial derivative of f in direction u.

The constant in (3) is best. It is attained at the characteristic functions of ellipsoids.
Applying the Holder inequality and Fubini’s theorem to the left-hand side of (3), one
can easily see that inequality (3) is stronger than the Sobolev inequality (1). We prove
inequality (3) by using an affine isoperimetric inequality, which is called the Petty
projection inequality.

Our second result is a generalization of the Gagliardo-Nirenberg inequality.

36

Forschungsgemeinschaft © @




UFG

Deutsche
Forschungsgemeinschaft

Theorem 2. Let {w;}7 be a sequence of unit vectors in R", and let {¢;}T" be a sequence
of positive numbers for which

Y cui®ui=1In,

=1
where u; ® u; is the rank-1 orthogonal projection onto the span of u; and I, is the
identity on R". If f is a C* function with compact support in R", then

4 — >2 .
(@ i{ o NEET

If m = n and {u;}} is an orthonormal basis of R", then inequality (4) becomes the
Gagliardo-Nirenberg inequality. Inequality (4) is proved by using an isoperimetric-type
inequality of Keith Ball, which is a generalization of the Loomis-Whitney inequality.

Finally, we prove a generalization of the Sobolev inequality.

Theorem 3. If hx is the support function of a conver body K in IR", then, for
1 < p < n and for every C' function f(z) with compact support,

%) (TNl > cln, DV Il = > =

where the constant c(n,p) is best and is given by

%:_11)) (r(n/p)r(l}(:)n - n/p))* _

(6) (n,p) = (

When K is the unit ball in R*, (5) was proved by Aubin and Talenti, and in
particular, when p = 1, it further reduces to (1). When K is origin-symmetric and
p =1, (5) was shown by Gromov. ;

Berichterstatter: P.M.Gruber
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