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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 45/1997

Probability and Analysis in the Context of
Mathematical Physics and Biology

14.12. - 20.12.1997

This meeting was organized by Andreas Greven (Erlangen) and Frank den Hol­
lander (Nijmegen).

Mathematical physics and mathematical biology are rapidly developing areas.
Probability theory and analysis provide the main part of the mathematical ideas,
techniques and resuits. In particular, the combination of probabilistic and analytic
tools prove to be useful. The 30 lectures of this meeting (among which were 10
talks of 90 minutes duration) gave an overview on the recent development and the
state of the art in such fields as branching processes, hydrodynamic scaling, genetic
evolution models, genetic algorithms, large deviations, statistical mechanics, and
geophysics.

EVCll though the conference was in the last week before C~ristmas it attracted
the top specialists from all over the world. Certainly it was a highlight of modern
probability theory in Germany this year.

This report was written by Achim Klenke
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Abstracts

PAVEL BLEHER

Scaling Limits and U niversality in the Matrix Model
(joint work with Alexander Its)

About thirty years aga Freeman Dyson found an exact solution for the scaling limit
of correlations between eigenvalues in the Gaussian unitary ensemble of random lua­
trices. He conjectured that this scaling limit should appear in a much broader class
of non-Gaussian unitary ensembles of randorn matrices. This constitutes the famous
conjecture of universality in the theory of randorn matrices. Dyson found also a re-
markable formula which expresses the eigenvalue correlations in terms of orthogonal ..
polynomials on the line with exponential weight. This enables to reduce the uni- •
versality conjecture to semiclassical asymptotics of orthogonal polynomials. In the
talk we will discuss a new approach to the semiclassical asymptotics of orthogonal
polynomials on the line with respect to exponential weights. This approach is based
on the methods of the theory of integrable systems and on an appropriate matrix
Riemann-Hilbert problem. As an application of the semiclassical asymptotics, we
prove thc conjecture of universality for unitary ensembles of random matrices for
models with quartic interaction.

GERARD BEN AROUS

Aging regime and dynamical phase transition für a spherical model of
spin glasses

We presented a survey about dynamics of Sherrington-Kirkpatrick spin-glasses, in
Langevin form as recently ,vorked out in aseries of papers with A. Guionnet. vVe
analyzed the longtime behaviour of the limiting self-consistent dynamics, \vhich
prove to be non-Markovian in a simplified model, i.e. the spherical oue.

In this context, in a joint work with A. Dembo and A. Guionnet we find a
dynamical phase transition, and one aging regime, Le. for low temperature, the
time-correlation of these limiting dynamics is such that

lim C(s,t)
s ~ 00

t -t 00

ts = o(s) •
is a constant but

(
t_S)-3/4

C(s, t) '" K -s-

2

if t s » s.
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MICHIEL VAN DEN BERG

Heat Equation on the Arithmetic von Koch Snowßake

Let 0 < s ::; 1/3J and consider a unit square in ]R2. Replacing repeatedly the middle
proportion S of each side hy the three other sides of a square results in the s-adic
von Koch snowflake K s . Let TK $ be the first exit time of K s of a Brownian motion.
We sho\v that if
(i) K s is non-arithmetic (i.e., log(I;S)/log(s) ~Q) then

I. Px[TK $::; t] dx = Cstl-d~/2 + O{t 1- d.. / 2 ),

K ..

for SOIlle positive constant es;
(ii) K s is arithmetic with log{ 1;5)/ log(s) = ~, P E Z+, q E Z+, (p, q) = 1 then there
exists a strictly positive, ~ log ~-periodic function <l>s such that

I. Px[TK .. ::; t] dx = tPs{-log t)tl-d~/2+ o(t1- d.. / 2 ), t .,J.. 0, ~:\;-::
K tJ

ds is the interior Minkowski dimension of the boundary of K SJ and is given by the
unique positive root of 3sd+ 2 (I;S)d = 1.

KRZYSZTOF BURDZY

A new Ray-Knight-type theorem
(joint work with Richard Bass)

Let B t he a Brownia~ motion, ßl' ß2 E IR, and let Xr be the solution to

dXr = {ßl if Xi < B t

dt ß2 if Xi > B t ;
xg =y.

Let Lr be the loeal time of Xi - B t at O. Fix some t > Q. Then dXr / dy is a smooth
function of Lr, If ßl' ß2 > 0 and ßl - ß2 > 0 then {L~, y 2:: O} and {L;:', y ~ O}
are diffusions. The function y -+ Xi is C l ,1' for 'Y < 1/2 hut it is not C1,1/2.

TERENCE CHAN

Dynamic scaling exponents for interacting KPZ equations

Consider the following non-linear stochastic partial differential equation (known as
the Kardar-Parisi-Zhang equation)

8u A
-8 = vßu + -1V'uI2 + aW(t,x), u(O,x) = f{x),

t 2

and more generally, the system of equations
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ßt VßUO + "2 \7uo + 2(IVU l + IV'U 21 ) + OoWO(t, X),

ßUi

ßt

(Here, X E Rd
) V, A, () and ai are constants and Wi are independent space-time

white noises. The initial conditions fi(x) are given.) It has lang been accepted
in the physics literature that the solution u (and more generally Ui) satisfy scaling
properties of the form b- 1E[u(b3/2t, bx)2] = E[u(t, X)2), or b- 1/ 2U(b3/2t, bx) converges
in some sense to a non-degenerate limit. However, except for the case of 1 spatial
dimension (d = 1), the solution of such SPDEs are typically some kind of stochastic
distribution (for example in the Hida sense) and cannot be interpreted as ordinary •
randorn variables. There is therefore a non-trivial problern in giving a meaning
to the non-linear terms in the above equations and also to things like E[u(t, X)2]
(except in the I-dimensional case). The appropriate interpretation of the non-linear
terms turns out to be Wiek products (which is actually already implicit in much
of the physics literature). This talk presents a family of weighted L2-like spaces
of distributions to which solutions to the KPZ equations belong; moreover, thc
solutions admit a Wiener chaos expansion. This allows one to give a natural meaning
to ideas like expeetation and convergenee in distribution - ideas which are crucial
to any discussion of scaling properties. However) a mathematically rigorous proof
of the aforementioned scaling properties is still an open problem.

PHLIPPE eLEMENT

On the Attracting Orbit of a Nonlinear Transformation Arising from
Renormalization of Hierarchically Interacting Diffusions
(joint work with Jean-Bernard Baillon, Andreas Greven and Frank den Hollander)

In this lecture the asymptotic behavior of the iterates of a non-linear transformation
F acting on a class offunctions 9 : [0,00) --)0 [0,00) is considered. This problem arises
in a probabilistic context, namely the study of systems of hierarchically interacting
diffusions discussed in the previous lecture by Professor Dawson. This study is a
part of a Iarger area, where the goal is to understand universal behavior on large
space-time scales of stochastic systems with interacting eomponents.

The transformation Funder consideration plays the role of a renormalization •
transformation for an infinite system of diffusions, taking values in [0,00) and inter-
acting with each other in a hierarchical fashion. The iterates Fn g (n 2: 0) describe
the behavior of this system along an infinite hierarchy 0/ space-time scales indexed
by n. The n-th iterate Fng is the Iocal diffusion rate of a typical block average on
space-time scale n. If for some class of functions g, we have

lim Fn9 = g* (in an appropriate sense)
n~oo

where g* is a fixed point of Fand is independent of 9 in the dass, then the space­
time scaling linlit of the corresponding infinite system of interacting diffusions on
[0, 00) has universal behavior independent of model parameters.

4
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Thc Transformation

Let 11. denote the dass of functions 9 : [0, 00) -+ [0, 00) locally Lipschitz continu­
ous satisfying g(O) == 0, g(x) > °for x > 0 and limx~oox-2g(x) = 0. For 9 E 1l, let
(lIg)OE[O,oo) be the family of probability measures on [0,00) given by IIg = 00 (point
measure at 0) and

1{I [{X Y - 0 ]}
vg(dx) = zg g(x) exp - Jo g(y) dy dx, 0> 0,

where zg is the normalizing (finite) constant. The transformation F is defined as

(Fg)(O) =100

g(x)vE{dx), B E [0,00).

Sincc vS is thc equilibrium (probability) measure of a single diffusion with drift
towards () alld with IDeal diffusion rate given by g, (Fg)((}) is the average diffusion
rate in equilibrium as a function of the drift parameter O~ It appears that for 9 E 11.,
(Fg)(8) is well-defined for () E [0, (0) and that Fg E 1/.. ',~.r~:

Fixed points of F

From the moment relations:

100

v:(dx) = 1, 100

xv:(dx) =B,

100

x2v:(dx) = (p + (Fg)(B),

for all 9 E 11. anel () E [0, (0), it follows in particular that the linear' functions
.'1(1(:1;) = (J,X, a > 0, x ;:::.0, are fixed points of F in the elass 11.. We have: .

Theorem A There are no fixed points in 11. other than (ga)aE(O,oo)' ~.->-!,

Universal behavior

Theorem B If for 9 E 1i, limx-+C'O x- 1g(x) = a E (0, (0), then limn -+oo Fng = ga
unijormly on bounded intervals.

Idea of the prooE oE Theorem B

After observing that the map F : 11. -+ 1l is order-preserving, i.e. gl, 92 E 1-l and
9L ~ .92 irnplies Fg L ~ Fg2 , we use a "monotone iterations" argument. Let g+ (resp.
g-) denote the concave upper (resp. convex lower) enveloppe of g, then g+ 2:: Fg+,
Fg- ~ g- follow from the first two moment relations and Jensen's inequality and
from 09+ ;::: 9 ;::: g- follows Fng+ 2:: Fng 2:: Fng-, n ~ 1.

Next it is shown that the monotone decreasing (resp. increasing) sequence f"lg+
(resp. Fng-) converges to a fixed point, which by Theorem A is a linear function ga+
(resp. 9a-). From limx --+ oo x-1g+(x) = limx --+oo x-1g-(x) = a, we infer a+ = a- = a.

5
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Idea of the prüof of Theorem A

We use the "quasilinear" structure of the transfornlation F. Let ß be the class
of nleasurable functions h on (0,00) be such that there exist a, b ~ 0 \vith Ih(l;) I :::;
a + bx2

, x ~ O. Then for each 9 E 11.,

(Kgh)(9) := E'" h(x)/.!S(dx), 9 ~ 0

is \vell-defined and Kgh E B. Note that 11. c Band Kgg = Fg. The linear operator
K g : B ----t B can be shown to map convex functions into convex functions. Setting

K~n) := KFn-lgO" ,o/<FOg, with FO = Id, n =2: 1, we have by iterating the moment
relations:

K~n)eo == eo, K~n)el = el and

K~n)e2 == e2 + n(Fng), n ~ 1,

where e~(r) == xi, j = 0,1,2.
If g* E 11. is a fixed point of F, we have

g* == lim Fng* == lilll .!-K~n)e2'
n--+oo n--+oo n

which is convex since e2 is convex.
By using a comparison argument with a translate of a linear function (supporting

the convex function g*) and a kind of "strong" order preserving property of F one
concludes that g* has to be linear.

Reference J. Funet. Anal. 146, No. 1, 236-298 (1997) where other properties of the
transformation F are discussed.

TED Cox
A spatial model für the abundance of species

(joint work with Maury Bramson and Rick Durrett)

In recent years theoretical biologists have begun to use interacting particle systelIlS
to model biologieal and ecological systems. These models are typically quite com­
plicated, making mathematical analysis difficult. This talk summarizes recent \vork
of Bramson, Cox and Durrett on a simple interaeting particle system viewed as a
model of speciation, for \vhich rigorous results can be obtained. This work was mo­
tivated in part by recent data of H;ubbell on species abundances of woody plants in a
50 hectare plot on Barro Colorado Island, Panama. In this study, counts of different
plant species were made, and the data arranged in "oetaves." That is, if N(i) is
the number of different species which had exactly i representatives observed, and
N(I) = LiEf N(i), the data was recorded in the form N(Ij ), with I j == [2 j

, 2j +1
),

j == 0,1, ...
The mathematical model used is the two-dimensional multitype voter model with

mutation, ~t. This model is easily defined. Let 71} be the hvo-dimensional integer
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lattice, and let (t(x) denote the type at site x at time t, ~t(x) E (0,1). At each
site x, at rate 1, independently of a11 other sites, a site y is chosen at random from
the nearest neighbors of x, and the type at site x is replaced by tbe type at site
y. In addition, at rate a (the mutation rate), the type at x is replaced by a new
type not previously observed in the system. For strictly positive 0, there is a unique
equilibrium ~oo such that for any initial state ~o, {t -t (00 in law as t -t 00. We are
interested in the species abundance distribution of {co for small o. .

Inside B(L), the square of side L centered at tbe origin, we count the number
of different types in (00 \vhich are represented by exactly i sites, and denote this
by NL(i). Let NL(I) = LiEf NL{i), and assume that ·L = L(o) satisfies oL2 ~

O(log(1/a))4 for a positive constant (). Thus, as a -7 0, L -t 00. We show that
as Q --7 0, for intervals Ij which are large but not too large, N{Ij ) :::::; c{aL2)j for
an appropriate constant c, and this approximation is valid uniformly over the range
considered. We also obtain another estimate for the very large I j , and observe
exponential fall off in this range.

The limiting formulas obtained do not c10sely fit Hubbell's data; this is to be
expected, since one has gone "too far" in the limit a -t O. However, abundance data
obtained from simulations of the two-dimensional ~odel on large grids for small hut
positive a seem to fit very weH. It also appears that tbe the two-dimensional model
provides a much better fit to Hubbell's data than does the corresponding mean field
model.

DONALD DAWSON

Multiple Space-Time Scale Analysis ofHierarchically Interacting Measure­
valued Processes

This work is motivated by the study of stochastic models of macroevolution. These
rnodels involve a collection of subpopulations {Xe(t) E MI[E] : ~ E S, t ~ O} where
S is the set of population sites and E is the set of types of individuals. The dynamies
includes loeal demographie fluctations given either by measure-valued branching or
Fleming-Viot sampling. We assume that S = ON, tbe hierarchieal group indexed
by the positive integer- N and that the migration is given by a random walk in
which individual jumps to a randomly chosen point in the ball of radius k with rate
Ck / N k

. The reeurrence-transience dichotomy for these random walks is related to
the divergence or convergence of the series L:(Ck)-l. We then consider tbe infinite
interacting system including Ioeal demographie ßuctuations and migration via the
random \valk. When the randorn walk is transient and the initial configuration
is stationary and ergodic the system converges to a mean-preserving equilibrium.
Othenvise, the only invariant measures are concentrated on configurations eonsisting
of a single type. The final ingredient in our analysis is the asymptotic study of the
system when the parameter N goes to 00. This leads to a M1[E]-valued reverse
time Markov chain which describes the multiscale behavior of this system. It turns
out that the measure-valued branching and Fleming-Viot systems arise as attractors
for two Huniversality" classes. For example, in the special ease in whieh E = {O, I}
and the resulting Fisher-Wright dynamics is replaeed by a more general elass of

7
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diffusions, the Fisher-Wright nevertheless eluerges at large space-time scales in the
recurrent case. This convergence has been studied by Baillon, Clement, Greven and
den Hollander. Finally, we give a short discussion of the effects of selection and
mutation-selection on these systems.

JEAN-DoMINIQUE DEUSCHEL

Anharmonic Droplet Construction and Large Deviations
(joint work with Giambattista Giacomin alld Dlnitry loffe)

We consider a continuous 8-0-8 model with Hamiltonian

<X,y>

here the surn is over nearest neighbors and ,ve set r:Px == 0 at the boundary of the
set DN = ND n Zd. In case V(eP) = 4J2 this corresponds to a Gaussian, 01' harrnonic
model. We are looking at anharmonic models, assuming strict convexity of the
function V.

Let

XN(<,b)(x) = ~<,b([NxJ), x E D

be the rescaled profile. Our aim is to described the asymptotic of the la\v of ..\.Nunder
a hard wall condition {XN(4))(x) ~ O} and a volume condition {fD XN(ifJ) eil; ~ v}
for some v > O. We prove that as N -t 00, the profile converges to a deterministic
shape 'ljJv, solution of the variatiollal problem

inf{1D(<,b) = La(V<,b(x)) dx : <,b E H~(D) L<,b(x) dx ~ v}.

Here a is the strictly convex surface tension. Our· main step in the prüof is the
derivation of a large deviation principle for X N (4J) with rate function ID .

JÜRGEN GÄRTNER

Exact asymptotic formulas for moments and Lifshitz tails of the Ander­
son Hamiltonian

(joint work with S. A. Molchanov)

We consider the taBs N(A), A --+ 00, of the spectral distribution functian for the
Hamiltonian 11. = K~ + ~ in l2(Zd). Here ~(x), x E Zd, is a field of Li.d. random
variables with tails F(A) = P(~(O) > A) which decay slawer than double exponen­
tial tails. This means that the overwhelming part of the high exceedances of the
potential consists of single site 'peaks'. Under these assumptions we show that the
tail behavior of N()") is determined by the tails of the principle eigenvalue of 1-l in
a ball of fixed large radius (with Dirichlet and reflection boundary conditiüns, re­
spectively). In particular, this allows to derive exact asymptotic formulas for N(>")
as A --+ 00 in the case of fractional exponential tails F()") = exp{ -A'"Y}, 0 < , < 00.

A similar approach allows to find corresponding formulas for the lnoments of thc
solution to the Cauchy problem au/at = 1iu, u(O, x) := 1.

8
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KENNETH HOCHBERG

The Longtime Behaviour of Multilevel Branching Systems
(joint \vork with Andreas Greven)

\,Ve consider (Yt)t>o, a critical two-Ievel superprocess on IR.d, that is the high-density,
short-lifetime, sIuäU-mass diffusion limit of the following particle system. Initially,
particles are situated in IR.d and are grouped into superparticles. Since the superpar­
ticles cau "be viewed as being elements of M(IRd

), the state of the two-Ievel system
is an element of M(M(lR.d )), with M denoting the set of positive Radon measures.
Individual particles move according to a Brownian motion, and they split or die ac­
cording to a critieal branching mechanism with finite variance in which the offspring
ahvays belang to the same parent superparticle. In addition, every superparticle is
replaced by t\VO copies of itself or becomes extinct, with equal probability.

Dur foeus is on the behaviour of the process (yt)t>o as t -+ 00 and, in particular,
on the features that are different from those of a single-level system-i.e., super­
Brownian motion. Speeifically, we discuss classes of initial distributions for which
the behaviour of the law of yt as t ~ 00 can be determined. -

The longtime behaviour depends on the relative strength of the two competing
forees, migration and branching-one flattening the mass distribution and the other
eausing loeal aecumulation of mass. In low dimensions, the branching dominates,
while in higher dimensions, the migration tends to dorninate. In dimensions d :5 4,
thc limit of C(Y(t)) will be <56~ or <56r&. where Q denotes the zero measure and QQ

denotes the measure that satisfies oo(A) = 00 for every Borel set with positive
Lcbesgue measure. Beeause of the influence of the level-l branching, each of the
dimensions 1,2,3,4 has a distinet way of approaehing c56~ or 06.22.' respectively.

In dimensions d > 4, the limit is either a nondegenerate equilibrium state with
finite intensity or has the dege~erate form 062. or 06~; the determination as to which
limit oeeurs depends on two parameters-the initial intensity of the particles and
the spatial distribution of the superparticles. In particular, in d > 4, for a given
particle intensity_there are different equilibrium states, depending on the suödivision
into superparticles. Nonetheless, it is also possible that in d > 4 the system becomes
extine~, in the event that the particles are initially grouped into superparticles that
are too "Iarge" in a eertain well..:defined sense. In contrast, for super-Brownian mo­
tion, the intensity is the only relevant parameter determining the longtime behaviour
of an initiallaw in high dimensions.

ACHIM KLENKE

Branching Random Walk in a Catalyti~ Medium
(joint work with Andreas Greven and Anton Wakolbinger)

Consider (eritieal binary) branehing randorn walk (€t)t>o on Zd in a space-time
varying eatalytic medium (1]t)t>o. The medium determines the local branching rate
of (~t)t>o. We eonsider the sp~eial ease where (1Jt)t>o is itself ordinary branching
rando~walk. Dur aim is to investigate the longti~e behavior of (€t)t>o if both
(1Jt)t2: 0 and (~dt2:o are started in Poison field field with intensity 1. -

9
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(1) If (7]dt>o is persistent (i.e. ifits symmetrized motion is recurrent), (~dt>o sho,vs
the classical dichotomy of extinction and persistence. -

(2) If both (71dt>o and (~dt>o perforrn symmetrie simple random walk in tE, (rydt>o
dies out fast enough s~ch that (~t)t>o eonverges to a Poisson mean 1 fieid.
However, if (€dt>o has a drift it hits all the catalyst clusters and dies out (in
distribution). -

(3) If (1Jdt>o and (~t)t>o perform both aceording to symmetrie simple randonl
\valk o~ Z2, a new phenomenon occurs. Since (7]dt>o dies out locally only in
distribution and not almost surely, (~t)t~O converg~s to a limit that reftects
the history of the catalytic medium: a mixed Poisson field. The law of the
mixture can be understood in terms of the density of catalytic super-Brownian
motion, investigated in arecent paper with Klaus Fleischmann.

WOLFGANG. KÖNIG

Moment Asymptotics for the Continuous Anderson Model
(joint work with Jürgen Gärtner)

We consider the parabolic problem

8u(t, x)
u(O,·)

~ßu(t, x) + u(t, x)~(x), t > 0, x E }Rd,

0,

where € == {~(x); x E ]Rd} is a randorn stationary Hölder continuous potential. We
write (-) for expectation w.r.t. ~ and assume the finiteness of H(t) == log(et{(O)) for
all t > O. Furthernlore, we assume that the potential has high peaks on srnall islands
with certain probabilities; more precisely, for some scale function a(t) -4 0 and all
test measures J.L E Pc(IRdL the limit

JÜl) == - lim Q2(t) log ((et!{(CtX)tL(dX))e-H(t))
t----too t

is assurned to exist. Then our main result says that, for all P E [1, (0), the asymptotic
expansion

(u(t,OlP) = exp { H(t) - o:2
t
(t) (X +0(1)) }

holds where the convergence parameter is given by X == inf{J(J.L) + S(J.L): {l E
Pc(lRd )}, and S is the Donsker-Varadhan rate function for the Brownian occupation­
times measures. We explain the result in terms of the largest eigenvalue of the
randorn operator ",,6. +~.

10
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GREGORY F. LA\VLER

Intersection Exponent and Multifractal Spectrum for Brownian Paths

The intersection exponent for Brownian motion is a measure of how likely Brow­
nian motion paths in t\VO and three dimensions da not intersect. We consider the
intersection exponent ~(A) = ~d(k, A) as a funetion of Aand show that ~ has a eon­
tinuous, negative second derivative; One major application of this result is to the
nlultifractal spectrum of harmonie measure on a Brownian path; we show that the
multifractal spectrum is nontrivial and give a formula for the spectrum in terms of
the interseetion exponent.

THOMAS M. LIGGETT

Stochastic Growth Models on Trees

• Thc contact process on a graph G is a eontinuous time Markov process with state
space the colleetion of all subsets of G. Points are removed from the set at rate one,
aud points are added to the set at a rate that is a constant multiple of the number
of ueighbors in the set. When G = Zd, there is a critical value' that separates the
regirnes of survival and extinction. It was proved by Bezuidenhout and Grimmett
that in the subcritical regime, extinction oecurs at a time with exponentiar tails,
while in the supercritical regime, survival oecurs in a strong sense, expressed for
example by the complete convergence theorem. In particular, there are always
ci ther exactly Olle or exaetly two extremal invariant measures.

In 1992, Pemantle proved that the picture is rieher on (most) homogeneous trees.
There are no\v two critical values, and three types of behavior: extinction, weak
survivaI, and strong survival. This talk is a survey of the dozen+ papers that have
appeared since 1992 on this process. Greatest interest centers on the intermediate
phase of weak survival. Here there are infinitely many extremal invariant measures.
Two falnilies of invariant measures are constructed.

JEAN-FRANQOIS LE GALL

Branching processes, supoerprocesses and Levy processes

We discuss some recent developments concerning the genealogy of continuous-state
branching processes, and their applieations to superprocesses and interacting parti­
eie systems. The genealogy of a discrete-time Galton-Watson branching process is
described by a discrete tree, the genealogieal tree of the population. One of the goals
of this talk is to study the analogous description for the genealogy of continuous-state
branching processes, \vhieh are the possible scaling limits of discrete-time Galton­
vVatson branching proeesses. To this end, we determine the so-ealled contour proeess
associated with the genealogical structure of a continuous-state branching process.
Informally, the contour process of a tree gives the motion of a particle that explores
thc tree by moving up and down along its branches. In the special case of Feller's
diffusion, thc simplest continuous-state branching process, it has been known for a
long time that the associated contour process is reflecting Brownian motion on tbe
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positive real line. A consequence of this fact is the Brownian snake construction
of superproeesses with a quadratic branching lnechanism. This construetion can be
applied to various properties of solutions of the partial differential equation ßu = u2

in a domain, ineluding the existence of solutions with boundary blow-up and the
classification of general nonnegative solutions.

As another application of the description of the genealogy of Fe11er's diffusion,
we investigate certain limit theorems for systems of coalescing random walks and
for the vater model. In particular, for the voter model in Zd starting initially with
a11 types different, \ve show that the randorn 11leasure describing the positions at
time t of a11 individuals with the same type as the origin converges (after a suitable
rescaling) asymptotically to a simple functional of super-Brownian Inotion (joint
\vork with M. Bramson and T. Cox).

For a general continuous-state branching process, the cantour process can be
determined as a siInple functional of a spectrally positive Levy process (joint work
with Yves Le Jan). This leads to a new connection between branching processes
and Levy processes, which can be used to derive new results in both theories. In
particular, we get an extension for general speetrally positive Levy processes of the
classical Ray-Knight theorem on Brownian IDeal times. We also derive a path-valued
proeess construction of superprocesses with a general branching mechanism, which
extends the Brownian snake approach of the quadratic case.

JOHN T. LEWIS

Large Deviation Theory and Statistical Mechanics

The insights whieh Large Deviation Theory has provided in Statistieal rvlechan­
ies have far-reaehing consequenees; I describe some of these including the use of
equipartition measures in information theory alld ergodie theory.
References

• J.T. Lewis, Ch.-E. Pfister, W.G. Sullivan: Entropy, Coneentration of Proba­
bility and Conditional Limit Theorems, Markov Processes and Related ~ields

1, 319-386 (1995)

•

• J.T. Lewis, Ch.-E. Pfister, R. Russell and W.G. Sullivan: Reconstruction _
Sequenees and Equipartition Measures: An Examination of the Asynlptotic ..
Equipartition Property, IEEE Transaetions of Information Theory (Nov. 1997)

• J.T. Le\vis, Ch.-E. Pfister, W.G. Sullivan: Large Deviations and Generic
Points (DIAS preprint, 1998)

TERRY LYONS

Biological Models für Solving Stochastic PDEs

The Zakai/Kushner Stratonovich SPDE of nonlinear filtering is typical of a class of
parabolic pdes where there is a practical interest in obtaining numerieal solutions
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in moderately high dimensions - and where the solution is a probability measure.
In this case effective algorithms can be built from Branching particle systems. The
greatest efficiency is achieved if the variance of these randorn algorithms can be
minimised) - this has been been achieved in some directions - but the question of
how to recombine particles efficiently has not been settled completely satisfactorily
at the present time.

The methods developed to date are effective, and of value. They are due to a
number of people Relevant references are Grisan, Lyons PTRF 1997, Grisan, Gaines,
Lyons SIAM 1998, and papers of dei Moral, Guionnet, Grisan, Smith, Gordon,
Clifford, ...

STEFANO OLLA

Equilibrium Fluctuations for the Ginzburg-Landau \l<p Interference Model
(joint work with G. Giacomin and H. Spohn)

Consider an effective interface in d + 1 dimensions {cp(x) E IR, x E Zd} wit~:inter-

ference energy .;.
d

H(cp) = L L Vo(cp(x + ex ) - <p(x))
0=1 x

(massless field model). We consider the corresponding Langevin dynamics

The Gibbs measure e-H jZ is reversible with respect to this dynamics.
We prove that the fluctuation field

converges in law, as c ..!. 0, to the infinite dimensional Ornstein-Uhlenbeck process

d~(f, t) = -~(Af, t)dt + dW(x, t)

\vith drift operator A = - Lid ßiqijOj; and we give a variational characterization
and upper and lower bounds for the diffusion matrix qij'

GEORGE PAPANICOLAOU

A survey of some recent work on waves in random media with applica­
tions to seismology

I presented three problems: The O'Doherty-Anstey theory for the behavior of the
front of pulses travelling in randomly layerd media, the universality theory for wave
localization in the time domain (also for randomly layered media), and the univer­
sality theory for the P to S wave energy ratio in the deep coda of elastic waves in
general randorn media.
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CHARLES-EoOUARD PFISTER

Large deviations and surface phase transition
(joint work \vith Y. Velenik)

vVc study the 2D Ising model in a square box AL of linear size L, \vhen the tem­
peraturc is below the critical Olle. There is areal boundary magnetic field h acting
on one siele of thc box. We dctermine the exact asymptotic behaviour of thc large
deviations of the lnagnetization LtEAI_ a(t) when L tends to infinity. Scaling the
lengths by 1/L, thc 1110del is defined in a fixed box B of the Euclidean plane. The
lnain result is the follo\ving one.

Let {J > ßc; h areal nurnber; -m* < m < m· (spontaneous magnetization) and
o< c < 1/4. Then therc exist a, 0 < a < 1 and La such that for all L ~ La,

ProbL,ß,h [I L a(t) - mlAL11 ~ 11~1] = exp ( - L l~t F(8K) + O(La
)) ,

tEAL Val K=:. =.;;;r

wherc F(Bl() is a fUl1ctional on curves in B, given by

F(Dl<) == r r(ns ) ds + ~(ß, h)18K n WI.JaK
Herc T(n s ) is the surface tension of an interface perpendicular to n s ; ~(ß, h) is a
boundary free energy cOIl1ing [roIn the action of the magnetic field h on the side vV
of thc box B; laI{ n WI is thc Lebesgue measure of aK n W.

There are two regilnes. There exists hw(ß) such that if h > hw(ß), then ~(ß, h) =
Q. If h < hw(ß), thCll ~(ß, h) < 0, so that the solution of the isoperimetrie problem
depends explieitly on h. The solution is a convex body whose boundary has a
nOll-elnpty interseetion with the side W of B.

•

References:
1. Pfister C.-E' l Velenik Y.: l\1atllematical theory oE the wetting phenomenon in
the 2D Ising nlodel Helv. Phys.Acta 69 949-973 (1996).
2. Pfister C.-E., Velenik Y.: Large deviations and the continuum liInit in the 2D
Ising [nodel Probab. Theory Relat. Fields 109 435-506 (1997). •

MICHAEL RÖCKNER

Analysis and Geometry on Configuration Spaces: the Gibbsian Case
(joint work with Sergio Albeverio and Yuri Kondratiev)

Using a natural "Riemannian-geometry-like" structure on the configuration space
r over IRd , \ve prove that for a large class of potentials <p the corresponding canonical
Gibbs ll1easures on r can be completely characterized by an integration by parts
formula. That is, if V r is the gradient of the Riemannian structure on r ooe can
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define a corresponding divergence div tP such that the canonical Gibbs measures are
exactly those measures J.l. for \vhich Vr and divq, are dual operators on L2{r, J-l).

One consequence is that for such J.l. the corresponding Dirichlet forms E~ are
defined. In addition, each of them is shown to be associated with a conservative
diffusion process on r with invariant measure J..L. The corresponding generators are
extensions of the operator ß~ := div tP Vr . The diffusions can be characterized in
terms of a martingale problem and they can be considered as a Brownian motion on
r perturbed by a singular drift. Another main result of this paper is the following:
if J-L is a canonical Gibbs measure J then it is extreme (or a "pure phase") if and
only if the corresponding \veak Sobolev space W 1,2 = Cf, JL) on r is irreducible.
As a consequence we prove that for extreme canonical Gibbs measures the above
mentioned diffusions are time-ergodie. In particular, this holds for tempered grand
canonical Gibbs measures ("RueHe measuresH

) provided the activity constant is
sIuall enough. We also include a complete discussion of the free case (Le., 4> == 0)
where the underlying space lRd is even replaced by a Riemannian manifold X.

HERMANN ROST .;~>

Stationary Non-equilibrium States in a Random Environment

Oue perturbs the selfadjoint (=reversible) Markov chain with randorn jump rates
a(x J Y) = a(y, x) on Zd by passing to a(x, y) = exp(u . (y - x)), where u E ]Rd is
a fixed vector: interpreted as external field if the chain describes the position of a
charged particle. The problem is to find an invariant measure u(x), x E Zd, which is
spatially stationary, jointly with the environment a(·, .). In generality, the pattern
is not yet solved. Partial solutions for d = 1 or a periodic environment are known
to exist. Here we sho\v that on a strip Z x finite set a solution exists and that the
current induced by the field is bounded from below, independently of the width of
the strip. The method of showing that relies on a model study for finite Markov
chains, in which reversibility is perturbed by adding an "external term" which is
not of the gradient type.

ALEXANDER SCHIED

A Rademacher Type Theorem on Configuration Space and same Appli­
cations

(joint work with Michael Röckner)

We consider an L2_Wasserstein type distance p on the configuration space r x over a
Riemannian manifold X. Typically the distance between two configurations will be
infinite - a situation reminiscent of the Cameron·Martin norm on Wiener space. We
prove that p-Lipschitz functions are contained in a certain Dirichlet space associated
with a measure on r x satisfying certain assumptions. They are in particular fulfilled
by a large class of tempered grandcanonical Gibbs rneasures with respect to a super­
stable lower regular pair potential. 80th examples rely on the recent integration by
parts formula of Albeverio, Kondratiev and Röckner (1997). As an application we
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show that, if A is a set \vith fuU measure, then the set of all configurations having
BOll-zero p-distance to A is exceptional. This immediately implies, for instance, a
quasi-sure version of thc spatial ergodie theorem. We also show that our Dirichlet
fonn is quasi-regular, which implies the existence of an associated process. FinaUy
we prove in the case dirn X ~ 2 that the distance p is optimal in the sense that it is
thc so-ealled intrinsie Inetrie of Dur Dirichlet form. .

KARL-THEODOR STURM

Diriehlet farms and harmonie maps

In this talk, two problems and partial solutions related to generalized harmonie
Inaps between singular spaces were presented.

The first problelll is how to construct a reversible diffusion proeess X t on a given •
Jnetric space (J11, d). The solution eonsists in construeting a regular .IDeal Dirichlet
fonn as a r -linlit· of eertain non-Ioeal Dirichlet forms defined in terms of the metric
rl anel thc reversible measure 1n, see {I].

The second problern is how to define and approximate the energy of a map f
with values in a Inetric space JV. This leads to the question whether

as a function of t is ahvays decreasing in t (ar whether at least it converges for
t -t 0). A.ffirrnative answcrs can be given either if X t is BM on M = IRm (with
arbitrary f~ N, d) 01' if the space (N, d) has nonnegative curvatlire (with arbitrary
Al, .,:'(t, !), see (2).

REFERENCES.

(1] K.T.Sturm: Diffusion p1"ocesses and heat kernels on metric spaces. Ann. Prob.
26 (1998), 1-55

{2] I(.T.Sturnl: Monotone approximation of ene1'gy functionals fo1' mappings into
metric spaces 1. .1. reine angew. math. 486 (1997), 129-151

DOMOKOS SZASZ

Ball-Avoiding Theorems

According to the Boltzmann-Sinai Ergodie hypothesis, the system of N hard balls
on the v-dimensional torus is ergodic on submanifolds of the phase space specified
by the trivial conserved quantities of mechanics.

A cornerstone of establishing the hypothesis for concrete systems is the handling
of ball-avoiding sets; in particular, the proof of smallness of the subset of those phase
points where the set of the balls can be partitioned into two non-trivial classes such
that the bvo subgroups of balls da not interact in the future.
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\'Veak ball-avoiding theorems claim that the measure of these ball-avoiding tra­
jectories is zero, and strong ones claim that the subset of these orbits has topologieal
codimension at least t\vo. Strong ball-avoidiog theorems are necessary in proofs of
ergodicity of hard ball systems (and, in general, of semi-dispersing billiards), whereas
weak ones are suffieient when one proves that the system in question is hyperbolie,
a property impIying that the ergodic components are open.

Examples of ball-avoiding theort:ms are presented, for instance, a weak theorem
of Nandor Simanyi and myself, which is needed in our recent proof of the following
theorem: the system of N hard balls of masses ml, ... ,mN aod of radii r given on
the v-torus is hyperbolie - apart from a countahle union of analytic submanifolds
of the geometrie parameters ml, ... , mN, r.

BALINT TOTH AND WENDELIN WERNER

Self-Repelling Motions I. & 11.

\Ve eonstruct and study a continuous real-valued randorn process, which" is of a
new type: It is self-interacting (self-repelling) but only in a Iocal sense:-~"'jt only
feels the self-repellanee due to its occupation-time measure density at 'immediate
neighbourhood' of the point it is just visiting. We focus on the most natural process
with these properties that we eall 'true self-repelling motion'. This is the continuous
counterpart to the integer-valued 'true' seIf-avoiding waIk, which had heen studied
among others by the first author. One of the striking properties of true self-repelling
motion is that, although the couple (Xt , oceupation-time measure of X at time t) is
a continuous Markov process, X is not driven by· a stochastic differential equation
and is not a semi-martingale. It turns out, for instance, that it has a finite variation
of order 3/2, which contrasts \vith the finite quadratie variation of semi-martingales.
One of the key-tools in the construction of X is a continuous system of coalescing
Brownian motions similar to those that have been constructed by Arratia. We derive
various properties of X (existence and properties of the occupation time densities
Lt(x), Ioeal variation, etc.) and an identity that shows that the dynamics of X ean
be very loosely speaking described as folIows: -dXt is equal to the gradient (in
space) of Lt(x), in a generalized sense, even if x H Lt{x) is not differentiable.

e S.R.S. VARADHAN

Hydrodynamic scaling, recent developments and open problems

Hydrodynamic scaling is the problem of tracking, over time, the spatial distribution
of eonserved quantities in a large system. Space and time are to be suitable rescaled
before the limiting behavior is established.

The simple exclusion models provide a convenient class of examples that illustrate
the various phenomena that arise. The number of particles is the only conserved
quantity and the quantity to be tracked is the Iocal density over macroscopic scales
of space and time.
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In thc aSyllunctric case the lioliting equation is a hyperbolic nonlinear conserva­
tion equation that develops shocks. the interesting question is how weIl the micro­
scopic particle system tracks the shock, especially how the entropy lass associated
\vith the shock is mirrored in the particle system.

T'here are issues of large deviation that arise in both the symmetrie as weH as the
asyulIuetric case. If wc look at the case of Kawasaki dynamics relative to a Gibbs
Ineasure, the system turns out to be "non gradient" and consequently much more
conlplex.

WENDELIN WERNER

Self.:.Repelling Motions I. & 11.
(see Balint T6th and Wendelin Werner) •MARe VOR

Ranked Functionals of Brownian Excursions
(joint work with Jim Pitman)

The lecture aioled at presenting descriptions of some important random measure
in terms of the laws of ranked lengths of excursions of Brownian motion or, more
gcuerally, Bessel processes.

Defiue F(d;r) == 2:::1 ,~06.xi(dx), \vhere the X/s are iid, with common distribu­
tion a on [0, 1J, and V O == (~O 1 1/2

0
, ••• ) is a randorn sequence of masses which add

Hp to 1. As rar as the law of F is concerned, one rnay replace the CV:°) sequence by
its decreasing reordering \/1 ~ \/2 ~ ... Irnportant randorn rneasures rnay be COI1­

structed by the stick-breaking-procedure starting from beta variables. This gives
the t\vO-paraIneter GEM distributions, whose reordering are the Poisson-Dirichlet
laws PD(a, 0), for 0 ::; a < 1, () > -G.

In terrns of stochastic processes, PD(O,O) is the law of {Vn;f~), n ~ I} where

(08, () 2:: 0) denotes the gaIuma subordinator, whereas PD(a,O) is the law of

{Vn;rX), n ;:::: I} where (a.~o), s ;:::: 0) denotes the stable (0:) subordinator. In

both cases, the above notation {~, n ~ 1} indicates the normalized sequence of

ranked lengths of component intervals of [0,1] \ Z, where Z is the closure of the •
range of thc corresponding subordinator (os, s ~ 0).

References about this work, done with J. Pitman, are fouod in
J. Pitman, M. Vor: Ranked Fuoctionals of Brownian excursions. To appeal' in
Comptes Rendus }\cad. Sei. Paris; end of December 1997 or January 1998.
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