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Numerical Methods far Singular Perturbations
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Tbe meeting ,vas organized by P.' Hemker (Amsterdam), H.-G. Roos (Dresden) and
M. Stynes (Cork). A significant number of differential cquations in tbe applied sciences
- for example in fluid dynamics - are singularly perturbed, but unfortunately standard
numerical methods often faH to provide satisfactory solutions for such problems. Since tbe
early 1970s, many different numerical techniques have evolved with the aiIil of overcQming
the drawbacks of standard methods. This proliferation of ideas galvanized the organizers
into gatbering together various researchers at a first Oberwolfach meeting in January 1995.

In recent years, the development of numerical techniques for singular perturbation prob­
lems has become one of the focal points of numerical analysis. Three new books recently
appeared on this subject, and several new groups of numerical analysts have begun re­
search into singular perturbation problems. In fact when organizing the 1998 workshop,
tbe organizers were unable to accommodate all colleagues who wished to attend. At the
meeting, 49 participants from 15 countries discussed their work and 29 lectures were pre­
sented. It is worth noting that more than 50% of the participant~ did not attend the
previous Obenvolfach meeting in 1995 and that most of the participants wished to present
a lecture on their research.

The aims of the meeting were:

1. The dissemination of up-to-date inform~tion about current research and open ques­
tions in the numerical and asymptoti9 analysis of singular perturbation problems;
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2. The comparison and evaluation of several approaches and methods for the solution
of such problems;

3. An examination of promising future research directions in this rapidly-changing area.

The lectures presented covered key aspects of the discretization and numerical analysis
of singular perturbation problems: exponential fitting, layer-adapted meshes, stabilizatiön
techniques, etc. The variety of techniques represented (including, for example, iterative
methods for the solution of the discrete linear problems generated), meant that aim (1) Ai
above was succesfully achieved. Towards aim (3), the organizers devoted one day of the •
meeting to adaptive mesh approaches, because the analysis of adaptive procedures for
singularly perturbed problems is important but is still in its infancy.

To achieve aims (2) and (3), it was very important to schedule ample discussion time
both after lectures and for long periods during the day. Researchers with differing points
of vie\v and varied approaches could then meet and profit from each other's experience.
The warm and stimulating atmosphere of the Forschungsinstitut was of course a positive
factor in fostering such mixing. The week's workshop laid the foundation for several future
collaborations between various groups and individuals, \vhich testifies to the attainment of
aims (2) and (3).

All participants agreed that the workshop was extremely beneficial and that contact be­
tween ne,v groups should be established and maintained in the years to come. Conse­
quently, the organizers hope to organize a further meeting on this topic three years from
DO'V (as we observed in the period since the last meeting in 1995, three years allo\vs ade­
quate time for the development of new research, to'the extent that another workshop then
will be desirable and successful).

The alphabeticallist below ofcontributions could be elassified under the follo\ving headings:
exponential fitted uniformly convergent methods, layer-adapted meshes for convection­
diffusion problems, adaptive procedures and aposteriori error estimation, anisotropie prob- .
lems, stabilisation methods for finite element and finite volume approaches, iterative meth-
ods, h - p finite element methods, numerical methods for the Navier-Stokes equations and e
other problems in fluid meehanics, numerical methods for the drift-diffusion equaiions in .
semiconductor device modelling.

Dank einer Unterstützung im Rahmen des EU-Programmes TMR (Training and Mobility
of Researchers) konnten zusätzlich einige jüngere Mathematiker zu der Tagung eingeladen
werden. Dies ist einerseits "eine hervorragende Förderung des wissenschaftlichen Nach­
wuchses und gibt andererseits den etablierten Kollegen die Gelegenheit, besonders begabte
junge Mathematiker kennenzulernen.
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Abstracts

Mark Ainsworth: APosterio,; ETTOr Estimates for Singularly Perturbed Reaction Dif­
fusion Problems.
Aposteriori error estimates are considered for the reaction diffusion problem

-ßU+K?U = f

based on solving Iocal Neumann problems. Tbc main difficulty is in selecting the boundary
ßuxes for thc IDeal problems. Tbc classical metbod of Bank-'Veiser and Demkowicz et a1.
is shown to bc non-robust in the limit h -+ 0 (or equivalently K -+ 0). The reason for the
non-rob~tness lies in tbe fact that the ßuxes do not satisfy the compatibilit~'.condition
for tbc limiting pure Ncumann problem for the Laplacian. Thc Equilibrated Residual
Method (ERl\1) proposed by the author witb J.T. Oden seeks to seleet the fl9-xes so that
the compatibility condition is satisfied. Thc resulting estimator gives an upper bound on
the true error that is robust in the limiting case K. -+ O. However, the estimator is not
robust in the singularly perturbed limit and will over-estimatc by at most 1 + O(Vkh).
Counterexamples show this estimate to be sharp. A ne'v modification of the ERM due to
the author aod I. Babuska is described and shown to lead to an estimator that bounds the
~rue error and that is robust in alllimiting eases K. -+ 00 and K, or h -+ Q.

Vladimir B. Andreev: Applieation of condensing gnds fOT solving singularly perturbed
problems.
The difference schemes on "smoothly" condensing grids are considered for two singularly
perturbed problems. In tbc first problem it is the equation - thc one-dimensional steady­
state convection-diffusion equation - that .is singularly perturbed. In the second problem
it is thc domain ,vhere thc equation is defined that is singularly perturbed - the second­
order ordinary differential equation \vith regular singularity is considered on a segment
disposed at a small distancc from the singular point. For both problems condensing grids
depending on a small parameter E are constructed, use of which makes it possible to obtain
approximate solutions with L~-accuracyO(N-2) uniformly ,vith respect to E, where N is
the meshpoints number.

Lutz Angermann: Numencal solution 01 convection-dominated anisotropie diffusion
equations.
The proposed method is designed to handle the case of a full-tensor diffusion coefficient.
It is based on an additive decomposition of the differential operator and on a fitted dis­
cretization of the resulting components. For standard situations, the derived stability and
error estimates in the energy norm qualitatively coincide with ,vellknown estimates. In the
ease of small diffusion, a uniform error estimate with reduced order is obtained.
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Carmelo Clavero:* Finite differenee methods of high order on Shishkin meshes.
In this talk \. ~ present some numerical methods to solve one dimensional convection­
diffusion problems with dominated convection term. These methods are finite difference
schemes of classical type construeted on a pieeewise Shishkin mesh, whieh condense the
nodes in the boundary layer zone. Ta obtain the schemes we will impose that the loeal
error, assoeiated to the method, be zero for a polynomial basis. When we consider the
polynomial of degree less or equal two, the scheme use a combination of the values of
the second term of differential equatlon in two consecutives points of the mesh (Xj-t and
xi' j = 1, ... , N -1, when we discretize in the point xi, where N +1 is the number of points a,
in the mesh). So, we can deduee a method of order N-2 10g2 N unifonnly with respect the .,
diffusion parameter c. If the polynomial have degree less or equal three, a similar idea
permit us to construct a method having a uniform order of eonvergenee N-3 10g3 N. Same
numerical examples confirrning the theoretieal results are shown for both sehemes.

*joint work with J. L. Gracia

Alan Craig:* Exact difference fonnulas fOT linear differential operators.
A differenee approximation to a linear differential operator ean, in many eases be repre­
sented as an integral. If the integral is evaluated exaetly one obtains an exact method
for obtaining a table of values of the solution to an ordinary differential equation. Many
well-known methods for ODEs, ineluding upwinded finite element methods can be derived
by approximating tbe integral by a quadrature formula. Such exact representations ean
in prineiple be obtained for any nth order linear differential operator and any set of n+1
Dodes under mild technical conditions. Our construetion involves a generalised B-spline
that, instead of being peicewise polynomial is a piecewise solution of the homogeneous
adjoint equations.

*joint work with Dirk Laurie

Manfred Dobrowolski: On a postenori error estimators on anisotropie meshes.
We eonsider the standard pieee\vise linear finite eI.ernent approximation of Poisson 's equa-
tion. The usual residual based aposteriori error estimator is d~rived and it is shown that a
the true error will in general be overestimated if the mesh becomes anisotropie. Based on .,
a paper of Bank and Weiser, a nonloeal error estimator is construeted which avoids the
drawback with the standard estimators. Moreover, the analysis of the nonlocal estimator
indicates that loeal aposteriori error estimation in energy is impossible on anisotropie
meshes.
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Willy Dörfler: Uniformly Convergent Finite-Element Methods for Singularly Perturbed
Convection-Diffusion Equations.
We consider the singularly perturbed boundary value problem for bounded n c mn

. We
prove uniform apriori error estimates which allow to prove stability of the weak form on
a suitable pair of Banach spaces X x Y. This also shows uniform quasi-optimality for
conforming space approximations X h x Yh in case of discrete stability.
In one space dimension (0 = [0,1]) we eonstruct Xh and Yh by means of exponentially
fitted basis funetions and prove stability and the optimal approximation property of this
discretisation. Moreover, we show that a residual error estimator gives uniform efficiency
and reliabiiity in V-norms. Dur tbeory eovers not only tbe ease of strictly positive b, but
also problems with turning points and vanishing bare included.
In two spaee dimension (0 = [0, 1]2) w~ eonsider tensor product exponentially fitted basis
functions on uniform reetangular grids. We show uniform error estimates in V-norms for
3 case studies: b has two strictly positive components, b = [1, y-l/2], and b =JI, 0], c > O.

Michael Eiermann:* On Some Recurrent Theorems Concerning Krylov Subspace Meth- .
oels.
The reeent development of Krylov subspace methods for the solution of operat<;>r equations
has shown that two basic construction principles, the orthogonal residual (DR) and mini­
mal residual (MR) approaches, underlie tbe most commonly used algorithms. It is shown
that these cao botb be formulated as techniques Jor solving an approximation problem on
a sequence of nested subspaces of a Hilbert space, a. problem not neeessarily related to an
operator equation. ~1ost of the familiar Krylov subspace algorithms result when these sub­
spaces form a Krylov sequence. The well-known relations among the iterates and residuals
of OR/MR pairs are shown to hold also in this rather general setting. We further sho\v
that a common error analysis for these ·methods involving tbe canonical angles between
subspaces allows many of the recently developed error bounds to be derived in a simple
man~er. We illustrate these results by discretized convection-diffusion proble~.

*joint work with Oliver Ernst

JosephE. Flaherty: Adaptive and Parallel hp-Refinement Methoels for ConsenJation­
Laws.
We deseribe a discontinuous Galerkin procedure for solving hyperbolie systems of COD­

servation laws. The procedure is adaptive and combines mesh refinement/coarsening (h­
refinement), method order variation (p-refinement), and mesh motion (r-refinement). New
limiting procedures preserve monotonicity through discontinuities and a high order of aceu­
raey in smooth regions. Aposteriori error estimation procedures utilize superconvergence
at Radau points. Three-dimensional meshes are automatically generated from CAD de­
scriptions of the domain. A parallel meshdata base distributes data aeross the memories
of cooperating processors. Software tools maintain a balanced computation and migrate
data between processors. Applications involving compressible fiows are presented.
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David F. Griffith:* The "No Boundary Condition" Outflow Boundary Condition.
Many situations in fluid dynamics are posed on unbounded domains and, when solving
such problems numerically, it becomes nec~ssary to truncate the domain. Some boundary
condition must be devised for the artifical (outfiow) boundary that will not seriously affect
the solution in the interior.
A new form of boundary condition for this purpose was introduced by Papanastasiou and
co11eagues (1992) specifically for finite element methods. We sha11 describe its properties
in the context of convection dominated diffusion problems. The boundary condition is
unusual because, in the \veak fonnulation, it appears to be impose no boundary condition a
at a11 at the outfiow, thus making the problem i11-posed. •
Reference: D. F. Griffiths, The ':No Boundary Condition" Outfiow Boundary Condition,
Inter. J. Numer. Methods Fluids. Vol. 24 (1997) 393-411.

*joint work with Luwai Wazzan

Raphaele Herbin: Finite volume schemes for convection diffusion reaction equations with
non-admissible refinement of the mesh.
The topic of this presentation is tbe discretization of convection diffusion reaction by tbe
finite volume method in one or several space dimensions on general unstructured meshes.
These grids may consist of polygonal control volumes \vhich are not necessarily ordered in

_a cartesian grid, but need to be such that there exists a family of points associated \vith the
grid cells such that the line segments joining the points associated with two neighbouring
grid cells intersect the edge behveen these two cells at a right angle.
Error estimates for finite volume methods have recently been proved by finite difference or
direct finite volume approaches or by finite element approaches.
We consider here the classical cell centered finite volume scheme, with an upwind choice
for the convection Bux. Assuming C2 or 1P regularity of the solution to the equation, error
estimates of order h wherc h is the "size" of the mesh are proven, when a discretization for
the flux over an interface by a 1st order finite difference scheme. Discrete Poincare-type
inequalities are used for this estimate. vVe also show that if thc mesh is locally refined
using some atypical Dodes, then the error est~mate is of order h + m(A) \vhere A is thc .
area of the cells ,vith atypical Dodes. In typcial cases, tlie: area of these cells is of order h, a
and the error estimate is tehrefore the same. .,
Thc convergence of the scheme without any assumption on tbe regularity of the exact
solution may also be proven using some compactness results which are shown to hold for
tbe approximate solutions. This is in particular the case for nonlinear problems.
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Paul Houston: Loool Mesh Design fOT the Numerical Solution of Hyperbolic and Nearly­
Hyperbolic Problems.
We eonsider the design and implementation of an adaptive mesb refinement algorithm
for tbe numerieal solution of byperbolie and nearly-byperbolie problems. In partieular,
empbasis will be given to tbe design of a Ioeal error indieator to identify regions in tbe
eomputational domain wbere the error is loeally large. In praetice, one of the most eommon
approaehes is to design tbe mesh according to tbe size of the loeal residual of tbe underlying
partial differential operator. Clearly, the sueeess of this approach greatIy depends on tbe
relationsbip between tbe size of the loeal errar and tbe size of the loeal residual. We show
tbat for hyperbolic problems, the loeal residual on an element K. onIy eontrols a portion
of tbe loeal error on K., referred to as tbe cell eTTOT. l\1oreover, due to error propagation
effects, tbe error on an element K. is not only inßueneed by the size of the residual on K, but
on the size of tbe residual calculated on the domain 01 dependence of tbe element K.. Thus,
an adaptive mesh refinement algarithm driven by residual-based error indicators will only
refine elements with large cell error. Moreover, in regions of tbe eomputati<?nal domain
where error propagation effects are important, the loeal residual may give ·a':.very poor
estimate of the loeal error. ConsequentlYJ loealised structures in tbc solution ·may not be
accurately resolved, even when global control of tbe error has been aehieved. To overcome
these difficulties we design a local error indieator based on solving the partial differential
equation for the error \vith the residual as tbe right-hand side function. Preliminary
numerieal experiments will be presented to demonstrate the performance of this error
indicator on botb uniformly and adaptively refined meshes.

Juan Carlos Jorge:* Uniformly Convergent Seheme on a Nonuniform Mesh lor
Convection-Diffusion Parabolic Problems.
A general framework for tbe construetion and analysis of numerical methods for evolu­
tionary singular perturbation problems is proposed. This consists of splitting- the totally
diserete seheme in t\vo discretization stages. In first one, only tbe time variable is ·discretized
by means of a convenient implicit method; secondly, we propose the use of standard fi­
nite difference mctbods on special nonuniform. meshes for discrctizing tbe spatial variables.
Using this teehnique, a uniformly convergent scheme is deduced and analyzed for a oned­
imensional evolutionary convection..diffusion problem. Same numerieal experiences are
presented, confirming the good approximation properties predicted by tbe theoretical re­
sults.

*joint work with C. Clavero and F. Lisbona
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(2)

Bruce Kellogg:* n-widths and a self-adjoint singular perturbation problem.
We consider the problem (1): -fßU + u = f in 0, U = 0 on r = the boundary of n, where
n is a bounded domain in R2 with smooth boundary. Let E : f .-+ u denote the solution
operator of (1). Let B, be the unit ball in H'(O). Let dn = dn(EB" L2 (O» denote the
Kolmogorov n-width of the set EBs in L2 (O). We show that there are constants Cl and
C2, independent of f, such that

C -1-8/2 G -1-s/2
In < d <' 2

n
.

l+fn - n_ l+€n

The upper bound in (2) means that there is a subspace Xn of dimension n such that if u
is tbe solution of (1), there is a U n E X n such that

Cn-1- s/ 2

lIu - un IlL2(0):5 1 + €n 1I/IIH.(o).

The subspace Xn is constructed in the form Xn = ~i + Wnb , \vhere the functions in Vni

approximate the smooth part of u and the functions in Wnb approximate the boundary
layer part of u. The dimensions n; and nb in this optimal subspace satisfy nb "J ...jni.

*joint work with Martin Stynes

Rajco Lazarov:* Stream-Line Diffusion Least-Squares Mixed Finite Element Method for
Convection-Diffusion Problems.
We discuss the least-squares finite element approximations of nonsymmetric and/or indefi­
nite problems as stabilization of the classical Galerkin method by using an inner product in
the minus one Sobolev norm. This concept has been developed by Bramble, Lazarov and
Pasciak for both second order clliptic equations and for their mixed. We apply a simpler
version of the least-squares method, which involves only L2-norms, to the modified mixed
system for convection dominatcd diffusion equation. This modification allows us to derive
an error estimate in a norm which together \vith the standard energy norm fllVull2 + lIuJl2
contains the norm of the stream-line derivative c5I1ß· Vu1l 2• The small parameter dispro­
portional to the mesh size and ·cao be chosen' locaily. The derived finite element method
is stahle and yields symmetrie and positive definite matrix. Finally, we discuss some nu- e
merical experiments which confirm the unifonn stability of the method and its accuracy.

*joint work with L. Tobiska, and P. Vassilevski

William Layton: Adaptive finite element methods for highly convection dominated prob-
k~. .
This talk will describe research done in collaboration with V." Ervin and J. Maubach on
solving convection dominated, convection-diffusion problems and high Reynolds number
ßow problems in an adaptive fashion. This includes algorithms, error estimation, grid
adaptation and design and some (so far) unexplained difficulties which occurred in practi­
cal computations. Dur approach is based on: defect correction discretizations using higher
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order elements, subgrid scale modelling, a posteriousing higher order elements, subgrid
scalr t'lodelling, aposteriori error estimatioD and adaptation of confonning meshes using
a biSt"t,;tion type loeal refinement algorithm.

Tors.,en LinO:· Convection-diffusion problefTU, Shühkin me3he.s, SDFEM.
\rVe consider linear convection-diffusion problems on the unit square. We give sufficient
conditions that guarantee the existence of a Sbishkin-type decomp06ition of the exact
solution. This decomposition can be used far the analysis of a number of numerical methods
on Shishkin meshes. We give a survey of convergence results for numerieal methods on
Shishkin meshes (simple upwind FDM and (bi}linear Galerkin FEM).
Finally we derive a variant of the streamline diffusion finite element method using linear
elements on Shishkin meshes. We prove local and global estimates in the LOG norm and in
the L2 norm.

•joint work with Martin Stynes

Gerd Lube:· On the reliability 0/ a non-overlapping domain decomposition~method f~r
elliptic probleTn3. .
The applicatioD: of a non-overlapping domain decomposition method (DOM)' to the s0­

lution of a stabilized finite element method for elliptic boundary value problems - with
emphasis on the singularly perturbed esse - is considered. A properl~ chosen Robin type
transmission condition at the interface yields in numerical experiments for the coarse gran­
ular rase a linear convergence rate which is independent on the fine mesh' \\~idth h and is
even more favourable in the singularly perturbed case. ,A main problem of this iteration­
by-subdomaius method is a lacking Dumerical analysis for the discrete case; hence an
appropriate stopping criterion is not available. .
Here we derive an a-posteriori error estimate which bounds the error 00 the subdomains by
the interface trace of the subdomain solutions. AB a by-product, same foundatioo is gi\~en

to the design of the interface transmission candition. Numerical results suppon, the theo­
retical results. Funhermore \ye combine the neU"' result and reccnt results on a-postcriori
estimates for singularly perturbed problem~ (withuut DD~I) to obtain an a-pos,teriori es-
timate for the discrete DD~t solutions. .
The extension of the proposcd approach to the lineadzed incompressible Na\;er-Stokes
problem is in progress.

• joint work with F. C. Otto

John A. Mackenzie:* Uni/onn converyence 0/ numerical approximations 0/ singularly
perturbed boundary vcllue proble1'1'U u..!ing grid equidütribution.
We examine the convergence properties of finite difference and finite element approxima­
tions of model second-order, singularly perturbed linear boundary value problems using
adaptive grids. The grids are based on the equidistribution of a positive monitor function
which is a linear combination of a constant Oaor and apower of the second derivati\'c of thc
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numerical solution. Analysis shows how the monitor function can be chosen to ensure that
the accuracy of the numerical approximation is insensitive to the size of the singular per­
turbation parameter. Numerical results will be given for convection and reaction-diffusion
problems in o~e and two dimensions.

*joint work with George Beckett

Jens Melenk &l Christoph Schwab: Robust exponential convergence 01 hp-SDFEM fOT

convection dominated problems.
For 0 < E ~ 1 and n = (-1,1), consider the boundary value problem e

Ut: E HJ(f!): Bt:(ul:'v) = F(v) \Iv E HJ(O)

where Bt:(u,v):= J2}(eU'v'+au'v+buv)dx, F(v);:: 121 Ivdx and f,a(x), b(x) are analytic
in fi and satisfy a(x) .~ ß. > 0, b(x) - ~ a' ~ 'Y > O. The solution Ut: has a boundary layer
at x = 1.
For T = {li: 1 :5 i :5 N}, Ii = (Xi-l,xd, -1 = Xo < Xl < ... < IN = 1 a mcsh in 0,
define SC(T) = {u E HJ(O) : ull E Pp lET}. Thc hp-SDFE~1 is givcn by:

u:D E Sb(T) : BSD(u;D, v) = Fso(v) \Iv E 5&(7) , (1)

N

where BSD(-u, v) B.(u, v) + t; Pih , p-2 l av' L.u dx ,

N

and FSD(v) F(v) + L p,h,p-2[ av' f dx
t '

lvith certain positive Pi independent of hi , Pi, e and h, := IIi I·
Theorem 1 Let T = {( -1, 1- ep), (1 - Ep, I)}. There exist C, kindependent 0/ E, P such
that

e IUt: - u;Dltt2tO + lI u t: - u:DIIOt2tO :5 C exp(-kp)

HUt: - u;DIJOtOOtO :5 C cxp(-kp)

Theorelll: 2 FOT P = 1,2,3, ... consideT the geomet~c me.sh sequence {7;}p given by
p=l I I
p=2 I I

{7;}:p=3 I I
p=4 I I
p= 5 I I

-1 1

Then:

i) if p > Co lIogel, the estimate (2) hold with C(co),

ii) for any fixed 0 0 ce 0 erist C, k > 0 independent of c S.t. for all p

lIuf :- u;DIIt,2
t
flo :5 C exp( -kp) .
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Stefano Micheletti:* A new Galerkin Framework for the Drift-Diffusion Equatfons in
Semiconductors.
In this lecture we propose a Dew Galerkin formulation for dealing with the drift-diffusion
equations in semiconductor device modelling. Tbe approach is based on tbe choice of a
suitable weighted inner product that allows to symmetrize the convection-diffusion opera­
tor. The issues of the scaling and of the dependence of the induced nonn on the size of the
electric potential are also addressed. Several exponentially fit ted finite element methods
are then considered aod analyzed. In the one-dimensional case, two new second-order aceu­
rate sebemes are devised and suecessfully validated aod compared with a Petrov-Galerkin
first-order method. A family of monotone schemes is tben proposed for tbe discretization
of tbe two dimensional problem. Tbree metbads, differing in tbe choice of the average of
tbe exponentially varying diffusion coeflicient, are average of tbe exponentially varying dif­
fusion coefficient, are examined. A linear convergence theorem in tbe new eriergy nonn is
established· for two of tbe schemes, while tbe remaining one is ShOWD to be equi.valent with
the Scharfetter-Gummel Box metbad. Its remarkable stability and accuracy properties are
finally demonstrated in the study of several highly convection-dominated test problems.

*joint work with Emilio Gatti and Riccardo Sacco

Mariana Nikolova:* Adaptive Refinement Procedure for Singularly Perturbed Convection·
Diffusion Problems in 2D.
A finite difference method is presented for singularly perturbcd convection-diffusion prob­
lems ,vith discretization error estimates of nearly second order, ,,·hieh hold uniformly in the
singular perturbation parameter c. A theorem proving this fact is given. The metbad is
based on a defect-correction technique and special adaptively graded and patched meshes.
In a standard adaptive refinement method certain slave Dodes appear where the approxi­
mation is done by interpolating the values of the approximate solution at adjacent narles.
This deteriorates the accuracy of truncation error. In order to avoid tbe slave points ,ve
change the stencil at the interface points from a cross to a ske,v ODe. The effidency of this
technique is illustrated by numerical experiments in 2D.

*joint work with Owe Axelsson

Robert E. O'Malley, Jr.: Naive Singular Perturbations Theory.
Tbe talk demonstrates, via extremely simple examples, tbe shocks, spikes, and initiallayers
tbat arise in solving certain singularly perturbed initial value problems. As examples from
stability theory, they are basic to many asymptotic solution teehniques for differential
equations. First, we note that limiting solutions of linear equations EX = -a(t)x on t 2:: 0
are specified by the zeros of A(t) = IJ a(s)ds, rather than tbe turning points where a(t)
becomes zero. Further, solutions to the solvable equations EX = -a(t)x-b(t)xk for k = 1,2,
or 3 ean feature canards, where the trivial limit eontinues to apply after it becomes linearly
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unstable. Solutions of the separable equation €x = a(t)c(x) likewise involve switchings
between the zeros of c(x) above and below x(O), if they exist, at zeros of A(t). Finally, we
note that limiting solutions of many other problems follow by using special funetions and
their asymptotic expansions. For example, solutions of f:X = t2 (t2 - x 2 ) ean be given in
terms of the Bessel funetions K j (t4 /4f} and I j (t4 /4f) for j = 3/8 and -5/8.

Thomas F. Russell: Eulerian-Lagrangian Localized Adjoint Methods (ELLAM) for Tran­
sient Convection-Diffusion Problems.
A prototypieal transient eonvection-diffusion problem is Ut +VUx - Duxx =0, with appro­
priate initial and boundary conditions. The conveetion-dominated ease can be vi ~wed as
a singularly perturbed problem \vith respect to the parameter f = Pe- 1 = D/vL, 'vhere L
is a characteristie length of the system and Pe is the Peelet number. The solution exhibits
traveling fronts of width O(y'i). Eulerian methods, such as centered finite differences,
require a mesh of size O(€} to avoid oscillations, and they have large time-truncation errors
when a front' passes by. Eulerian-Lagrangian methods can avoid oscillations with mesh
O(y'f), as one \vould wish, and tbey reduce time-truncation errors by follo\ving the flow.
EarHer Eulerian-Lagrangian methods did not conserve mass and had difficulties in for­
mulating boundary conditions. Eulerian-Lagrangian localized adjoint methods (ELLAM)

. overcome these dra\vbacks \vith a space-time finite element framework that represents con­
servation and boundary conditions systematically with integrals. The test functions are
oriented along Lagrangian streamlines. The presentation summarized this background and
some further developments, including theoretical analysis, extensions to complex problems,
and a finite-volume ELLA~·1 that uses piecewise-constant test functions to conserve mass
locallyon finite volumes that move with the flo,v.

Alessandro Russo: Stabilization 01 Finite Element Methods via Residual-Free Bubbles.
We study a finite element approximation of tbe solution of a convection-diffusion equation
with a dominating convection term through a decomposition of the finite element space
in lo\v and high frequences, corresponding to continuous piece\vise linear functions and
residual-free bubble functions respectively. It is shown that this approach can reproduce the
\vell-known Streamline-Upwind Petrov/ Galerkin stabiliz.ation method (a.k.a. Strearnline
Diffusion Method). .

Friedhelm Schieweck: Nonconfonning Finite Elements of Higher Order for Solving the
Navier-Stokes Equations.
We construct nonconforming finite elements of higher order with the property that each
degree of freedorn belongs either to the interior of an element or to the interior of an
element face, Le. it belongs to at most two elements. This property is advantageous for
the parallelization of tbe corresponding method since the amount of loeal communication
will be (especially in 3D) esentially smaller compared to the case of conforming elements.
The constructed element pairs for velocity and' pressure, respectively, satisfy the discrete
Babuska-Brezzi condition. Numerical tests with the Stokes and Navier-Stokes problem
indicate that in the case of a smooth solution the higher order elements are mueh more
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efficient than the lower order ones.

V. V. Shaidurov: Second-order monotone scheme for convection-dominated equations
with adaptive triangulations.
We deal with the boundary-value problem

8u 8u
~c~t/, + bt 8x + ~8y = f in 0,

t/, == 9 on r.
Two-dimentional bounded domain n has piecewise-smooth boundary r; E. is a positive
small parameter; bt , b2 , /, 9 are smooth given functions.
First, we construct the finite-element scheme with second-order of approximation \vhich
has M-mat~ix and satisfies discrete maximum principle. To construct some equ~t.ions, one
need an orientation of triangulation. Therefore we additionally suggest a te~hp.ique for
re-orientation of grid along characterlstics. Second, we use Gauss-Seidel iteratiy~ process
with special ordering of equations and unknowns as smootber in multigrid.
Third, to improve the rate )f convergence, we use adaptive refinement of triangulation.
For this purpose, new Ioeal estimator of approximate solution is used in order to divide
or not divide eaeh edge of triangulation in hvo non-equal parts. This algoritbm results in
De\V nested triangulation with unisotropic behaviour.
Several numerical examples confinn theoretical results.

Grigorii J. Shishkin:* Singularly Periurbed Convection-Diffusion Problems with the Flow
Coming to an lmpenneable Wall: e-Hypersensitivity and Grid Approximations.
On the segment [0, dJ we consider the Dirichlet problem {or a singularly perturbed parabolic
equation with varying time-directions in [-T, T]. For € = 0 the parabolic PDE degenerates
into a first-order hyperbolic equation. H the time variable is interpreted as a spflce one,
then the reduced equation describes tbe proeess of stationary transport. The fiow in this
transport equation is directed to an impermeable \vall. ..~s E ~ 0, a parabolic boundary
layer appears in a neighbourhood of the "impermeable wall': disposed along the time-axis.
Such problems arise in modelling of heat and mass transfer in moving fluids with large
Peclet numbers in the stationary two-dimensional case, when \ve neglect beat and mass
conductivity along tbe stream.
Unlike problems considered previously, tbe present problem has a ne\v property of E­

hypersensitivity inherited by a finite difference scheme. More precisely, the solution is
not stahle with respect to the right-h~d side, uniformly in E.. We choose the rigbt-hand
sides and their disturbances from a newly introduced class of functions for which the solu­
tion is e-uniformly bounded in Loo' It is shown that, nnder these assumptions, a monotone
finite difference operator and a special piecewise uni/onTI. mesh yield an E.-unifonnly conver­
gent (in the Loo-norm) difference scheme. Numerical experiments confinn this theoretical
result.

. *work supported by the Russian Foundation for Basic Research under Grant no. 98-01-00362.
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Gisbert Stoyan: Towards discrete Velte decompositions and narrow bounds for .inj-sup
constants.
Tbe stable solvability of the Stokes problem with first kind homogeneous boundary con- .
ditions depends on the so-called inf-sup condition. For the constant ßo appearing in this
condition, narrow upper and lower bounds are given for several domains along with some
values of the corresponding constant ßh of tbe "discrete" inf-sup condition, for specific dis­
cretizations. Such values are useful for computable error bounds and for tuning iterative
methods.
Also considered is the equivalent of the well-known Helmholtz decomposition for vector a
functions in HJ. This decomposition is due to W. Velte, On optimal constants in some .,
inequalities (Lecture Notes in Maths. 1431, pp. 158-168) and contains, besides the rotation-
free and divergence-free vector functions, a third orthogonal subspace. We show the elose
connection of tbe inf-sup condition and tbe third orthogonal subspace of the Velte decom~

position.
Discrete Velte decompositions sbould he useful for the investigation of numerical methods.
Therefore, ,ve derive some first results in this direction for finite element methods includ­
ing the Taylor-Hood family. For the staggered grid difference approximation of the Stokes
problem on a unit square we are ahle to give all details of the discrete Velte decomposition.

Katarina Surla:* On Global Approximation. 0/ the Solution of a Singular Perturbation
Problem.
The semilinear singularly perturbed reaction-diffusion problem

{

Ly = E
2y" + /(x, y) = 0 x E 1 = [0,1],

y(O) = 0, y(l) = 0,

where E is a small positive parameter and f(x, y) E C2(1 x R), fy(x, y} > ß2 > 0 for _
all (x, y) E I x R is considered. The approximate solution is given in the form of the .,
quadratic polynomial spline. The collocation method on a slightly modified Shishkin mesh
is applied and the approximation of the almost second order global uniform accuracy in
small parameter is ohtained. The middles of intervals are used as the collocation points
and the corresponding values of unknown function are replaced by the averages of its values
at the ends of intervals.
The global unifonn accuracy of the approximations of the normalised diffusive ßux and the
function e2y"(x} are also proved. Numerical results, which verify these rates of convergence,
are presented.

*joint work with Zorica Uzelac
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Song Wang: Conforming E:r:ponentially Fitted Triangular and Tetrahedral Finite Elements
for a Singularly Perturbed Convection·DitTwion Equation.
In this talk we discuss construction of some new piecewise exponential basis functions on
triangles and tetrahedra for Galerkin finite element approximations of convection-diffusion
equations of tbe form

- V . (eVU - au) + Im = f

in a polygonal or polybedral region n with a homogeneaus Dirichlet boundary condition on
an. Both the interpolation error and tbe finite element approximation error wcrc discussed.
We also discussed tbe e-uniform convergence of the method on rneshes of Shishkin type.
It is shown that, if a mesh of Shishkin type is used, tbe cODvergence rate of the luethod
is Chl

/
2 for problems with elliptic boundary layers, where C is an arbitrary constant,

independent of e, h and u.

15

                                   
                                                                                                       ©



Aillswnrth. Mark
,\ 1lt!ff.'I'V, Vladimir ß.
AIlJ,!;f'rIlHHlll, Lutz
Apd. '!'!lamas
Callut.o, Claudio
Clnw'rn (;arria, Carmclo
(;raig, j\lall
I1nhrowolski, i\1anfrad
Dc)rflc'r, \Villy
Eip.f1r1il.l1n. Michael
Farn'II, Palll A.
1··f·l~t~lIhil.twr, Anurcas
Flaht'rty, Joseph E.
Fri:lhrlt'r, Anjrl
(;riflith. Davirl A.

IIq~art.y, j\ lan
1If'llIkt'r, Piet.er \\'.
Ikrbill, Haphacle
HOllSt./·III, Paul
Jorg;t', .hrall Carlos
K('II()g~, H. Bruce

Layi.oll, \Villiam J.
Lrtzarnv, Rajc:o n.
Lilll3. T()rst.I~1I

Lllhc, G"rd
Ma("kellzi(~. .lohn A.
i\'ladd"Il. Niall
Mdenk, .Jt:>ns M.
[\.,1 iclH'ld.t.i, St.f~fano

Mill('r .•lohn lL
Nikolova. Mariana
O'Malky. Rohert E.
0'1< iordan, ElIgcne

Bons, lIalls-eörg
Bussdl. Thmnas F.
RIISSO. Alcssandro
Seil i(~\V.~ck, Friedhelm
Schilden~, \V. 11. A.
Srhwah, Christoph
Shaidurov, V. V.
Shishkin, Crigorii I.
Skalirky, Tomas
St.oyaIl, Gisbert.
St.YIH~S, 1\-1 art.in
SlIrla, Katarina
Tobiska, Lutz
Uzclac, Zorir.a

\Vaug, Song
\Vt:'~s('ling, Pieter

1\1 .Ainsworth@mcs.le.ac.uk
avb@cmc.msk.su
ang@am.uni-erlangen.de
apel@mathematik.tu-chemnitz.de
ccanuto@poIito.it *

. davero@posta.unizar .es
Alan.Craig@durham.ac.uk
dobro@mathematik.uni-wuerzburg.de
willy@mathematik.uni-freiburg.de
eierman n@mathe.tu-freiberg.de
farrell@mcs.kent.edu
felgen@math.tu-dresden.de
flaherje@cs.rpi.edu
f roehner@math.tu-dresden.de
dfg@mcs.dundee.ac.uk
hegartya@ul.ie
pieth@cwi.nl
herbin@armstrong.univ-mrs.fr
naph@comlab.ox.ac.uk
jcjorge@si.upna.es
kellogg@ipst.umd.edu
wjl+@pitt.edu
lazarov@math.tamu.edu
torsten@math.tu-dresden.de
lube@math.uni-goettingen.de
caas61@ccsun.strath.ac.uk
n.madden@ucc.ie
melenk@sam.math.ethz.eh
mike@mate.polimi.it
jmiller@tcd.id
nikolova@sci.kun.nI
omalley@amath.washington.edu
eugcne.oriordan@dcu.ie
roos@math.tu-clresden.de
trussell@carbon.cuclenver.edu
russo@dragon.ian.pv.cnr.it
friedhelm.schieweck@mathematik.uni-magdeburg.de
schildr@prl.philips.nl
schwab@sam.math.ethz.ch
shidurov@cckr.krasnoyarsk.su
G rigori i@shishkin.ural.ru
skalicky@math.tu-dresden.de
stoyan@cs.elte.hu
stynes@ucc.ie
su rla@unsim.ns.ac.yu
Lutz.Tobiska@Mathematik. Uni- Magdeburg .de
zora@uns.ns.ac.yu
swang@cs.curtin.edu.au
p. wesseling@math.tudelft.nI

                                   
                                                                                                       ©



Prof.Dr. Mark Ainsworth
Dept. of Mathematics
University of Leicester
University Road

GB-Leicester, LEI 7RH

Tagungsteilnehmer

Carmelo Clavero Gracia
Dept. Ivfatematica Aplicada
Universidad de Zaragoza
Centro Politecnico Superior

E-50015 Zaragoza

Prof.Dr. Vladimir B. Andreev
Fac. of Computationall\1athematics
and Cybemetics
Moscow State University
Vorobjovy gory

119899 Moscow
RUSSIA

Dr. Lutz Angermann
Institut für Angewandte Mathematik
Universität Erlangen
Martensstr. 3

91058 Erlangen

Dr. Thomas Apel
Fakultät für Mathematik
Technische Universität
Chemnitz-Zwickau

09107 Chemnitz

Prof.Dr. Claudio Canuto
Dipartimento di Matematica
Politecnico di Torino
C.orso Duca degli Abruzzi, 24

1-10129 Torino

17

Prof.Dr. Alan Craig
Dept. of Mathematical Sciences
The University of Durham
Science Laboratories
South Road

GB-Durham , DHI 3LE

Prof.Dr. lvlanfred Dobro\volski
Institut für Ange\vandte Mathematik
und Statistik
Universität V\'ürzburg
Am Hubland

97074 Würzburg

Willy Dörfler
Institut für Angewandte Mathematik
Universität Freiburg
Hermann-Herder-Str. 10

79104 Freiburg

                                   
                                                                                                       ©



Dr. Michael Eiermann
Institut für Ange,v. Mathematik 11
TU Bergakademie Freiberg

09596 Freiberg

Prof.Dr. Paul A. Farrell
Dept.· of Mathematics & Comp.Science
Kent State University

Keilt, OH 44242-0001
USA

Doz.Dr. Andreas Felgenhauer
Inst. für Hydrologie und
Meteorologie
Techn. Universität Dresden

01062 Dresden

Prof.Dr. Joseph E. Flaherty
Department of Computer Science
Rensselaer Polytechnic Institute
104 Amos Eaton Hall

Troy , NY 12180-3590
USA

Anja Fröhner
Institut für Numerische ~1athematik

Technische Universität Dresden
Willersbau C 231
Mommsenstr. 13

01069 Dresden

Prof.Dr. David Griffiths
Dept. of Mathematical Sciences
University of Dundee

GB-Dundee , DDl 4HN

Prof.Dr. Alan Hegarty
Dept. of Mathematics and Statistics
University of Limerick

Limerick
IRELAND

Prof.Dr. Pieter W. Hemker
Centrum voor Wiskunde en
Informatica
Kruislaan 413

NL-109B SJ Amsterdam

Prof.Dr. Raphaele Herbin
Centre de Mathematiques et
d'Informatique
Universite de Provence
39, Rue Joliot Curie

F-13453 Marseille Cedex 13

Paul Houston
Computing Laboratory
Oxford University
Wolfson Building
Parks Road

GB-Oxford aX1 3QD

18

                                   
                                                                                                       ©



Dr. Juan Carlos Jorge
Dept. Matematicas
Universidad de Zaragoza
Facultad de Ciencias

E-50009 Zaragoza

Prof.Dr. R. Bruth Kellogg
Department of ~1athematics
University of Maryland

College Park, MD 20742
USA

Prof.Dr. William J. Layton
Department of Statistics
University of Pittsburgh

Pittsburgh , PA 15260
USA·

Prof.Dr. Rajco D. Lazarov
Department of Mathematics
Texas A & M University

College Station , TX 77843-3368
USA

Prof.Dr. Torsten Linss
Institut für Numerische Mathematik
Technische Universität Dresden
Willersbau C 231
Mommsenstr. 13

01069 Dresden

Prof.Dr. Gert Lube
Institut für Numerische
und Angewandte ~1athematik

Universität Göttingen
Lotzestr. 16-18

37083 Göttingen

Prof.Dr. John A. ~1ackenzie

Department of !vlathematics
University of Strathclyde
Livingstone To\ver
26, Richmond Street

GB-Glasgo\v, GI iXH

Niall Madden
Dept. of Mathematics
National University of Ireland

Cork
IRELAND

J.M. Melenk
Semina'r für Ange\vandte ~1athematik

ETH-Zentrum
Rämistr. 101

CH-8092 Zürich

Stefano Micheietti
Dipartimento di Matematica
Politecnico di Milano
Via Bonardi 9

1-20133 Milano

19

                                   
                                                                                                       ©



Prof.Dr. John H. Miller
Department of Mathematics
Hamilton Building
Trinity College

Dublin 2
IRELAND

Dr. Mariana Nikolova
Mathematisch Instituut
Katholieke Universiteit Nijmegen
Toernooiveld 1

NL-6525 ED Nijmegen

Prof.Dr. Robert E. O'Malley
D~partment of Applied ~1athematics

.FS-20
University of "Tashington

Seattle , \VA 98195
USA

Prof.Dr. Eugene Q'Riordan
School of Mathematical Sciences
Dublin City University
Glasnevin

Dublin 9
IRELAND

Prof.Dr. Hans-Görg Roos
Institut für Numerische Mathematik
Technische Universität Dresden
Willersbau C 231

01062 Dresden

Prof.Dr. Thomas F. Russell
Department of Mathematics
University of Colorado at Denver
P.O.Box 173364
Campus Box 170

Denver , CO 80217-3364
USA

Alessandro Russo
Dipartimento di Matematica
Universita di Pavia
Via Abbiategrasso 209

1-27100 Pavia

Dr. Friedhelm Schie,veck
Fakultät für Mathematik
Otto-von-Guericke-Universität
Magdeburg
Postfach 4120

39016 Magdeburg

Dr. Willy H.A. Schilders
Philips Research Laboratories
VSLI Design, Automation and Test
Building WAY 4.77
Prof. Holstlaan 4

NL-5656 JA Eindhoven

20

                                   
                                                                                                       ©



Prof.Or. Cbristopb Schwab
Seminar für Angewandte Mathematik
ETH-Zentrum
Rämistr. 101

CH-8092 Zürich

Prof.Dr. Vladimir Shaidurov
Computing Centre
Sibirian Branch of tbe Academy of
Sciences

Krasnoyarsk 660099
RUSSIA

Prof.Dr. Grigorii I. Shishkin
Institute Math. i. Mehaniki
Russian Academy of Sciences
S. Kovalevskoystr. 16

Sverdlovsk 620066
RUSSIA

Dr. T. Skalicky
Institut für Numerische I\1athematik
Technische Universität Dresden
Willersbau C 231
Mommsenstr. 13

01069 Dresden

Dr. Gisbert Stoyan
Dept. of Mathematical Analysis
ELTE University
Muzeum krt. 6 - 8

H-I088 Budapest

Dr. Martin Stynes
Dept. of Mathematics
University College

Cork
IRELAND

K. Surla
Institute of l\1athematics
University of Novi Sad
dr Ilije Djuricica 4

YU-21000 Novi Sad

Prof.Dr. Lutz Tobiska
Institut für Analysis und Numerik
Otto-von-Guericke-Universität
Magdeburg
Postfach 4120

39016 ~1agdeburg

Prof.Dr. Zorica Uzelac
Department of Mathematics
Faculty of Engineering
University of Novi Sad
Trg Dositeja Obradovica 6

YU-21000 Novi Sad

Prof.Dr. Song Wang
School of Mathematics & Statistics
Curtin University of Technology
GPO Box U1987

Perth 6845
AUSTRALIA

21 .

                                   
                                                                                                       ©



Prof.Dr. Pieter Wesseling
Faculty of Technical Mathematics
and Infonnatics
P.D. Box 5031
Delft University of Technology

NL-2600 GA Delft

22

                                   
                                                                                                       ©


