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13.09. - 19.09.1998

The meeting was organized by Mike Hopkins (MIT), Karlheinz Knapp (Wuppertal), and Erich
Ossa (Wuppertal). 48 participants from Europe, Japan and the USA attended. There were 20
lectures and three contributed talks about a wide variety of topics in homotopy theory, such as
stable homotopy theory, equivariant homotopy theory, elliptic cohomology, Hopf rings, localization,
and algebraic K-theory. Several talks presenting details and extensions of unpublished work on
chromatic theory aroused particular interest. Some other talks focused on applying homotopy
theory to problems in geometry. '
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Mark Mahowald

Finitely presented spectra and Brown Comenetz duality

This talk represents joint work with Charles Rezk.

Brown and Comenetz introduced a notion of duality into stable homotopy. Hopkins and Gross
showed that this notion, in certain situations, is closely connected with Spanier-Whitehead duality.
In this talk I wish to explore this connection and investigate it in connection with the Adams
spectral sequence. In particular I will study a class of spectra, called fp-spectra. These are
connective, p-complete spectra whose mod p cohomology is finitely presented over the Steenrod
algebra. This class of spectra include BP(n), connective K-theories, and some spectra whose L,,
localization is the Ly, localization of some finite spectra. An interesting example is a connective
cover of L,S° at p > 3.

Andrew Baker

Isogenies of elliptic curves and operations in elliptic cohomology

If k is a commutative ring, an oriented elliptic curve (€,w) over k is a 1-dimensional irreducible
abelian variety £ equipped with a non-vanishing invariant 1-from w. A rule which assigns to each
equivalence class of oriented elliptic curves (£,w) a section F(€,w) of Q' (£)®* is called a modular
form of weight k over k if it transforms under a morphism of abelian varieties ¢: & — &; under
which ¢*ws = Aw; according to the rule

¢ (F(&3,ws)) = F(£1,un).

If k contains 1/6, then oriented elliptic curves are classified by the graded ring of modular forms
Ete, = Z[1/6)[Q,R,A™"]. Elliptic homology and cohomology are defined using Landweber’s
Exact Functor Theorem and an associated genus by

Ete()=Ett. ® MU.(), Ee'()=Ett. ® MU().

An isogeny ¢: (£1,w1) — (£2,w2) consists of a finite degree morphism of abelian varieties
@: &t — &; on 1-forms it induces p*w; = A, w for some A, € k. If A, = 1 then ¢ is a strict
isogeny. An isogeny ¢ factors uniquely as

& — E/kerp S &,

where the first arrow is a strict isogeny and the second is an isomorphism.

The category of oriented elliptic curves over C and their isogenies can be used to describe
a large part of the stable operation algebra E€¢*E¢¢, and the dual object E€¢,E¢L is a certain
algebra of functions on this category.

Hecke operations are defined in elliptic (co)homology by symmetrizing over all isogenies of a
fixed degree n in the universal case. One application of these operations is to computing part of
the Eg-term of the Adams spectral sequence for spheres in elliptic cohomology.

Using a theorem of Tate we define a certain cogglﬁtion of the category of separable isogenies
between supersingular elliptic curves over F,, Seplsog,,. A certain class of functions on this
category can be identified with part of the dual operation algebra of supersingular elliptic cohom-
ology - and this is used to identify the supersingular Adams Ej-term, using a topological splitting
of Seplsog,,.
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Goro Nishida
Ring spectra maps from BZ/p” to the Morava K(n)-spectrum

Let K(n) be the spectrum of Merava K (n)-theory with 7, K(n) = We,. [t,t™"] where Wp,. is the
ring of Witt vectors and degt = 2. Let K be the fraction field of Wg,. . For a finite extension L of
K let Oy, denote the ring of integers in L. Let Ko, be the spectrum representing { ,K}* ®Owy,. Oy.
Let BZ /p" be the classifying space of Z/p". Since BZ /p" is an H-space, the spectrum BZ/p] is
a ring spectrum. Then the set of all ring spectra maps

f:BZ/p} — K(n)g,
turns out to be a group under the cup product.

Theorem 1 There ezists a finite ramified extension L of K such that the group of ring spectra
maps is isomorphic to (Z/p")".

In the Hopf algebra K(n) (BZ/p") ®wr,. OL, an element u corresponds to a map of ring
spectra if and only if u is grouplike, i.e., Au = u ® u. Using the self-duality of a bicommutative
finite dimensional Hopf algebra over an algebraically closed field, we can reduce our problem to
determining the dual group structure

Homag(K(n) (BZ/p"),0L),
but this is known by local class field theory.

As an application, we consider the mod p reduction K(n) with K(n). = Fp(t,t”!). Then
K(n)°((BZ/p)™) is regarded as a representation of GL,,(F,) over Fpn.

Theorem 2 As el ts in the repr tation ring Ry,. (GLm(Fp)), we have K (n)°((BZ/p)™) =
Fp~ [Mpn,m(Fp)), where the right hand side is the group ring of the additive group of (n xm)-matrices
with the natural GL,(F,)-action.

Dominique Arlettaz )
Homotopical properties of the K-theory space of the ring of integers

(joint work with C. Ausoni, M. Mimura, K. Nakahata, N. Yagita)

The algebraic K-theory of a ring R is the study of the homotopy type of the infinite loop space
KR = BGL(R)*. The purpose of this talk is to investigate this space in the case of the ring
of integers R = Z. The recent calculation of the 2-torsion of the groups K;(Z) by J. Rognes
and C. Weibel (based on Voevodsky’s work) implies the following relationship between KZ and
Bokstedt's space JK(Z, p) after 2-completion.

Theorem. Let p be any prime =3 or 5 mod 8. R

(a) There is a homotopy equivalence KZ; ~ JK(Z,p);.

(b) There is a commutative diagram

SU; —— KZ; —— BO;

| | | (1)

U; — (KF,)2 — BU,,

where rows are fibrations and where f, is induced by the reduction mod p.
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This enables us to deduce precise results on the homotopy type of KZ,. For instance, we can
completely determine the Hurewicz homomorphism K;(Z) = H;(GL(Z);Z) at the prime 2, for
all positive integers i, and compute the 2-part (p;); of the order p; of the Postnikov k-invariants
k+1(KZ) e H*Y(KZ[i - 1]; Ki(Z)) (where KZ[i — 1] denotes the (i — 1)-st Postnikov section of
KZ): for all positive integers 1,

(5542 ifi=1 mod4andi5,
2 ifi=2 modB8andi>10,0ri=30r7,

(pi)2 =4 16 ifi=3 mod8andi2>1l1, ori=15,
2(ti+1); ifi=7 mod8andi> 23,
1 otherwise.

The following calculation of the mod 2 cohomology of the space KZ also follows from the above
theorem.
Theorem. There i3 an isomorphism of Hopf algebras and of modules over the Steenrod algebra

H*(KZ;Z/2)= H*(BO,Z/2)® H*(SU;Z/2).

Therefore, H*(KZ;Z/2) = Z[2{un, w,,...] ® A(u3,us,...), where deg(w;) = i and deg(uzx—y) =
2k — 1. For all k > 2, the exterior generators uz:_; are inductively defined as follows by using the
homomorphism f; : H*(KFp;Z/2) - H*(KZ;Z/?) for any prime p = 5 mod 8:

k=2

okt = fyler) + 3 wium a1,
: =t

where the e;’s are the exterior generators (of degree 2k — 1) of H*(KFp;Z/2). If one wants to

study the space KZ at an odd prime [, one can again consider Bokstedt’s space JK(Z, p); for
suitable primes p and prove the following statement.

Theorem. If! is a Vandiver prime, then JK(Z, p); is a direct factor of K Z,.

This implies in particular that the I-part (p;): of the order of the Postnikov k-invariant k+!(KZ)
satisfies (p;)1 > ((£5%)!): for all integers i = 1 mod 4 (with i > 5).

Bob Oliver

Fixed point free actions on Z-acyclic 2-complexes

The talk centered aroundthe following theorem, proven in joint work with Yoav Segev.

Theorem A finite group G has an essential action on a 2-dimensional Z-acyclic CW pl
without fized points if and only if G is isomorphic to one of the simple groups PSL(2*) for
k > 2, PSLy(q) for g = £3 (mod 8) and ¢ 2 5, or Sz(2*) for odd k > 3.

Here, a G-complex is called tial if there is no normal subgroup 1 # N 4 G with the
property that for each H C G, the inclusion X#~ — X# induces an isomorphism on integral
homology. (Otherwise, X# is a G/ H-complex with “essentially” the same homological properties.)
One can show that a 2-dimensional G-complex is essential if and only if thereisno 1# N 9 G
for which XV # 0.

There is a classical example of an action of As = PSL3(4) on an acyclic 2-complex without
fixed points: the only such example already known. It is easy to see that this is the smallest
dimension where such an action is possible, since any 1-dimensional Z-acyclic complex is a tree.
In an earlier paper, Aschbacher and Segev showed that the only finite simple groups which could
possibly have fixed point free actions on 2-dimensional Z-acyclic complexes are groups of Lie type
and Lie rank one, and the sporadic group J;. What Segev and I did was to determine which of
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these remaining groups do have such actions, and show that no non-simple groups have essential
actions.

Paul Goerss
Hopf rings, Dieudonné modules, and E,(%S%

Let E be a commutative ring spectrum and E,, = Q°E-"E. Then the cup product on E, gives
the graded collection of Hopf algebras H,E = {H.En}nez the structure of a Hopf ring; that is,
a commutative ring object in the category of colagebras over F,. The study of such goes back to
Milgram and plays a role in the study of unstable cohomology operations for E*.

There is an equivalence of categories D, : HA — D due to Schoeller from graded bicommutative
Hopf algebras over F,, to the category of graded Diedonné modules. The functor D, turns the Hopf
ring H.E into a graded E* Dieudonné algebra D.H, E. The functor on spectra X = Do H.Q*X
is part of a homology theory represented by a spectrum B(n), the Brown-Gitler spectrum. The
spectra B(n) are stable retracts, by the Snaith splitting, of 2253 and one obtains a surjective
homomorphism of E, Dieudonné algebras

E.?S! — D.H.E

which is an isomorphism in favorable cases, such as E Landweber exact and concentrated in
even degrees. Since BP,2253 has been calculated by Ravenel, one can recover the calculation of
D.H,E in the Landweber exact case due to Hunton, Hopkins, Turner, and others.

Jéhn Hunton

Applications of homotopy theory to quasicrystallography
joint work with Alan Forrest and Johannes Kellendonk

A pattern in RY is taken to be a locally finite arrangement of compact subsets. We say- that it
is quasiperiodic if any finite portion of it (i.e., the part of the pattern visible in some spherical
window) repeats infinitely often under translation, with only bounded gaps between occurrences,
but the whole pattern has itself has no global translational symmetries. A well known example is
that of the Penrose tiling.

From a quasiperiodic pattern (q.p.p.) P we can construct a topological space - we take the set
of all translations of the pattern and metrise it essentially by saying that two patterns are “close”
if they almost agree on a “large” ball about the origin; this can be made rigorous in a variety of
equivalent ways. Done correctly this gives a precompact space which we complete to the space
M P associated to the q.p.p. P.

We consider in detail the q.p.p.’s which arise by the “strip and projection” method. This
takes as data an irrationally sloped subspace R in a larger space R, 0 < d < N, together with
a chosen neighbourhood K x R? of the subspace. The projection of the integer lattice points
ZN N K x R4 lying within the strip onto R¥ givs a q.p.p. of points on R¢.

We can then ask about the topological invariants (cohomology, K-theory etc.) of the associated
space M P. These can be shown to provide important geometric information about the underlying
pattern. For example, work of Bellissard shows that its K-theory contains information about the
spectrum of the Schrodinger operator on a “quasicrystal” formed by atoms sitting on the points
of the original q.p.p. (such structures seem to occur in nature). The rational cohomology of MP
provides an invariant for discussing self similarity properties of the pattern.

We give techniques that interpret the topological invariants in terms of group homology and
this is used to show that for large ranges of initial date projection method patterns do not display
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self-similarity (arising from a substitution system). The same conclusion is also shown to hold for
generic projection patterns. The group homological description is sufficiently practical to allow
for complete computation of the homology groups for specific patterns and we illustrate this by
describing the computation for the Penrose tiling.

Takuji Kashiwabara

Homological algebra for coalgebraic modules and Morava K-theory of infinite loop
spaces

Given a generalized homology theory h and a spectrum E, what can we say about h, (£,)? There
have been many case by case computations, but very few systematic phenomenon is known so far.
Ravenel and Wilson computed h.(BP,) and showed that it has nice properties. For BP-module
spectrum A, using the knowledge of h,(BP,) and the BP*-module structure of M*, one can
construct a natural algebraic model h.(BP,)®;, (pp-)h.[M*] that comes with a natural map to
h.(M.,). Now it is natural to ask when this map is isomorphism. Hunton and Hopkins showed
that it is isomorphism when M is Landweber-exact (although the notion of & didn’t exist at the
time).

However, the theory of coalgebraic modules (module objects in the category of coalgebras)
developped by Hunton and Turner suggests that this could be proved using the derived functor of
®. As a matter of fact we have the following:

Theorem 1 Let h = K(n), HZ/p,orHQ, and M a reasonable BP-module spectrum. If
CTor,'»"[BP ](h.(ilz,),h.[M *]) vanishes for i > 0, then the natural map
he(BP.,)8h.(8p-jhe[M*] = h.(M,) is isomorphism.

From this point of view, the result of Hunton and Hopkins is a consequence of the following:
Theorem 2 Let h= HZ/p. If (p,v1,...vn,...) is a reqular sequence on M, then
CTor:"(BP kh.(B_Ij,),h.[M]) vanishes for i > 0.

Recently Wilson and the author computed K(n).(BP < g >), and showed that the map in
question is isomorphism for ¢ > n — 1. This, together with the above motivates the following

conjecture:
Conjecture 3 Let h = K(n). If (p,v1,...vn_1) is reqular on M, then
CTor}BP N (h.(BP.), h.[M])

vanishes for 1 > 0.

As a matter of fact, we have
Theorem 4 The conjecture holds if n = 1 or M is I,,-complete.

This result and a detailed analysis on the functor

CTor{ 17 )(k (1).(BE.), K (1).[M))

for i = 0,1 (as a matter of fact it vanishes if i > 1) lead to the determination of K(1).(M,)
when M is not necessarily p-torsion free, notably one can recover the Hopkins-Ravenel-Wilson 's
theorem for K (1)-case.
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Sarah Whitehouse
Operads and Gamma Homology of Commutative Rings

Joint work with Alan Robinson on gamma homology is described. This is the natural homology
theory for E-algebras. It specialises to give a new homology theory for discrete commutative
rings. The motivation for this theory is that the obstructions to an E, multiplicative structure on
a spectrum lie (under mild hypotheses) in the I'-cohomology of the corresponding dual Steenrod
algebra, just as the obstructions to an A-structure lie in the Hochschild cohomology of that
algebra.

Cyclic operads and algebras over them are introduced, in order to describe a ‘realization’ of

. an algebra over a suitably cofibrant cyclic operad. For an E-operad and an algebra over it,
this realization is called the gamma cotangent complex of the algebra and its homology is gamma

homology. There is also a cyclic version of realization, which gives rise to cyclic gamma homology.

A useful check on the constructions is given by calculating the A- analogues; weféét Hoch-
schild and cyclic homology. A natural filtration of the cotangent complex gives a spectral sequence
for the gamma homology of a commutative algebra A with coefficients in an A-module M:

El_, .2 Hy(S,;V, ® A% ® M) = HTpy o1 (A M),

where V}, is the tree representation of the symmetric group I,. This is used to show that rationally
gamma homology agrees with André/Quillen homology. In general the theories are different. Other
properties of the theory include flat base change and transitivity theorems.

Finally, we discuss two spectral sequences which relate to calculating the gamma homolog) of
the Eilenberg-Mac Lane spectrum for F; over the sphere.

Martin D. Crossley
Conjugation Invariants in the dual Steenrod Algebra 3

We study the canonical conjugation or anti-automorphism, x, in the dual Steenrod algebra, A.,
with a view to calculating the subspace of invariant elements, A¥. This problem arises in White-
house’s work on Gamma homology.

It is well-known that the dual Steenrod algebra is polynomial on generators §;,£2,§3,--- in
degrees 1,3,7,--- and that x is a multiplicative map defined using the product and coproduct in

A..
. It is trivial that A¥ is a subalgebra of A, and that in each degree its dimension is at least half
that of A,. Up to degree 42 it is minimal subject to this constraint. In general, however:

Theorem 1 (dim A4-1)/2 < dim(x - 1)(Ag) < (dim Ag4)/2 and hence

(dim 44)/2 < dim(AX)q < dim Ag - (dim Ag_1)/2.
For example, in degree 42, where dim Ay = 92, dimAy_; = 86, so the theorem says 46 <
dim(AX)4 < 49. In fact dim(AX)4 = 47. So the bounds are not perfect, but they’re not bad.

The lower bound on dim(A4X)4 comes from the above lemma. The upper bound hinges on the
following curious result.

Lemma 2 The monomials ending in 1, i.e. things of the form €163 ---£;°1' €} have linearly
independent images under x — 1.

To get from the lemma to the theorem one simply counts the monomials ending in 1.
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Question 3 What'’s the first degree containing an invariant which involves &,?

Well, it is at least 2" + 1, by:

Lemma 4 &, is not a summand in any invariant, nor is §,¢,,.
But the proof of this lemma fails for ¢3¢, and in fact, for 3 < n < 7, we know that this is the

leading term of an invariant, e.g. for n = 3, (x — 1)(2¢3) is divisible by £, and the quotient has
€3¢, as its leading term. ’

Conjecture 5 For eachn > 3 there exists an invariant d, € A, ,, with £}€,, as its leading term.

These elements are important because they are easily seen to be indecomposable, i.e. necessary

algebra generators of AY.
Assuming this conjecture to be true, we make the following generating conjecture:

Conjecture 8 AX is generated as an algebra by :- &, 6, = énxén forn > 2, by oo om, =
(x = 1){ém, - -&m,) where2 <my < -:- < my, n > 2 and sequences (2,n) are excluded, and d,,
for n > 3, taking the place of ba n.

Again we know that these elements are all indecomposable so .AX is not polynomial - it has far
too many generators. So the following result came as a great surprise to us:
Theorem 7 A[([')X = AX[¢]'] = klez, €3, -] where k =T, [1,&7"], €2 = Eax€2 and, forn > 3,
€n = (X - 1)(62{")' »

The proof relies on classifying which monomials occur as leading terms of invariants. One easy

result shows that all such monomials must have a certain property (even &, exponent) and then one .

observes that all monomials with this property do actually occur as leading terms of monomials
in the €,’s which are visibly invariant and algebraically independent. One then proceeds by a
transfinite induction. )

(Joint work with with Sarah Whitehouse)

Franklin P. Peterson
The Global Structure of the Dickson Algebra

The following gives the global structure as an unstable A-algebra for the Dickson algebra on k
variables. Let W, be the free unstable A-module on one generator u of dimension 2(*=1) modulo

the left ideal generated by Sg? (u) for j =0,...,k — 3. Then Dy is isomorphic to U (W) with'

one more relation, namely Sg2“™” (u) - u = $¢2* " 5¢2“ " (u).
To calculate Hom(Dy, —) in the category of unstable 4-algebras is now an easy corollary.
The main step in the proof is to find an A-submodule of Dy which is isomorphic to Wy. This
is the cyclic A-module generated by the bottom Dickson invariant. An additive basis fo W is
given by the elements w(n) = ¥z}’ ---z}*, where 3i; = n and each i, is either 0 or a power
of 2. This symmetric sum is invariant under GL(k,Z/2) if and only if 2*~2(")|n and it is those
elements which are in W;. The proof is somewhat complicated.
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Tibor Beke

Locally presentable categories and topos theory with applications to abstract homo-
topy theory

Add the following hypotheses to Quillen’s axioms for a (closed) model category: that the under-
lying category be locally presentable, and that the full subcategory of its category of morphisms
with objects the weak equivalences be accessible. This extra set-theoretic handle makes it possible
to prove theorems on the existence and localization of model categories more easily and more
functorially. An added advantage is that the theory of accessible functors and categories applies
to sheaves of structures (je. algebraic objects in a topes) equally well. (The current theory of
accessible categories is mainly due to Makkai, Adamek and Rosicky, but it is rooted in work of
Grothendieck, Gabriel and Ulmer, conceived precisely for such purposes.)

Our main theorem gives a sufficient condition for a category and subcategory as above to be
part of a model category; a very similar result has recently been announced by J. Smith. Either
makes it possible to give a proof of the existence of f-localizations (in the sense of Dror-Farjoun
and Bousfield) in simplicial sets that generalizes almost verbatim to the analogous construction
for simplicial objects in a topos; this is the technical ingredient needed for the "homotopy theory
of site with an interval”, due to Voevodsky and Morel. As another application, there exists a
model structure on simplicial algebraic objects in a topos, created by the forgetful functor into
simplicial ”sheaves”. (Here "algebraic” means the single-sorted, finitary equational theories of
universal algebra.) This generalizes the "sA” model structure developed by Quillen, and answers
a question he left open at the end of "Homotopical Algebra”.

Carles Casacuberta
Implications of large-cardinal principles in homotopical localization =

A functor E in the category of simplicial sets is called homotopy idempotent if it preserves
weak equivalences and comes equipped with a natural transformation Id — E inducing weak
equivalences EX ~ EEX for all X. For any map f: A — B there is a homotopy idempo-
tent functor L;, described by Bousfield and Farjoun, with the property that, for each X, the
map X — L,X is homotopy universal among maps X — Y where Y is fibrant and satisfies
f*: map(B,Y) ~ map(4,Y). Farjoun has asked if every homotopy idempotent functor is weakly
equivalent to L; for some map f.

In a joint article with Dirk Scevenels and Jeff Smith, we prove that the answer to this question is
affirmative if Vopénka's Principle holds, yet it is impossible to prove that the answer is affirmative
using the ordinary ZFC axioms of set theory (Zermelo-Fraenkel axioms with the axiom of choice).
Vopénka's Principle (VP) states that no locally presentable category contains a large discrete
subcategory, that is, given a proper class A of objects in a locally presentable category, there is a
nonidentity arrow A —+ B for some A and B in A. This statement cannot be proved using ZFC,
since its truth implies the consistency of ZFC.

If VP holds, then every full subcategory S closed under filtered colimits in a locally presentable
category has a set X of presentable objects such that every object of S is a filtered colimit of
objects from X. From this fact we infer that the local complement of any (possibly proper) class
of fibrant simplicial sets is the class of L 7-equivalences for some map f. This has two important
consequences:

Theorem 1 If VP holds, then for every homotopy idempotent functor E there is a map f such
that L; ~ E.

Theorem 2 If VP holds, then h*-localization ezists for every cohomology theory h*.
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It is not known if the statement of Theorem 2 can be proved without using VP. On the
other hand, we show that it is impossible to prove the statement of Theorem 1 using ZFC, with-
out VP. Indeed, assuming that measurable cardinals do not exist —this assumption is consistent
with ZFC— we exhibit a homotopy idempotent functor in the category of reduced simplicial sets
which is not equivalent to L, for any map f. To this aim, let A be the class of groups Z*/Z<*
for all regular cardinals x, where Z* denotes the abelian group of all functions x = Z, and Z<* is
the subgroup of functions whose support has cardinality lower than x. Let P4 be the idempotent
functor in the category of groups which sends every group G onto its largest quotient admitting
no nontrivial homomorphisms from groups in A. Let EX = W(P4 m (X)), where W denotes the
classifying space functor. Then EX is homotopy idempotent, yet, if it is equivalent to Ly for
some map f, then we infer that Hom(Z"/Z<*, Z) = 0 for some cardinal x. This implies that x is
measurable, contradicting our assumption. :

Stefan Schwede

Formal groups and stable homotopy of commutative rings

We discuss properties of a certain (Ax-) ring spectrum DR, functorially associated to any com-
mutative ring R. DR is characterized by the property that its modules have the same homotopy
theory as spectra of commutative simplicial R-algebras.

We present an explicit construction which associates to every 1-dimensional commutative for-
mal group law over R a map of ring spectra from HZ to DR. This way the homotopy classes of
ring spectrum maps HZ — DR can be identified with strict isomorphism classes of formal group
laws. We also express the space of ring spectrum maps in terms of formal group data and the
homotopy units of DR.

Hal Sadofsky ,
The homotopy type of the K(n) localization of the Brown-Comenetz dual of L,S°

In joint work with Mike Hopkins we calculate E, .(IL,S° A X) as a module over the Galois
extended stabilizer group. Here I is the Brown-Comenetz duality functor, X is finite type n, and
E,. is the homology theory based on Johnson-Wilson theory such that

En,o = wF,- [[uh .. -aun—ll]["y“_llylul =-2.

This calculation is motivated by Gross and Hopkins’s result identifying the dualizing module

for Su — En,. modules. We calculate that E, .(TLaS® A X) is E, .4n2(X) tensored with that

dualizing module. : .
This formula has the corollary that LK(,,)IL,.S" € Pic,,, and allows one to deduce the result

announced by Hopkins and Gross in the Bulletin of the AMS relating L, X to a suspension of

L,DX in case X is finite type n and annihilated by p (DX is the Spanier-Whitehead dual of X).
Our calculation uses standard results about the cohomology of profinite groups, together with

results of Hopkins and Miller that provide an action of the Morava stabilizer group on the spectrum

E,, and results of Devinatz and Hopkins that provide a construction of homotopy fixed points

with respect to this action.
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Stefan Stolz

Positive scalar curvature metrics and the Baum-Connes Conjecture

According to the Gromov-Lawson-Rosenberg Conjecture a smooth closed spin manifold M of
dimension n > 5 with fundamental group 7 admits a metric of positive scalar curvature if and
only if an index obstruction a(M) € KOq(C*x) in the K-theory of the real group C*-algebra C*7
vanishes. This conjecture has been verified for groups = with periodic cohomology in joint work
with Botvinnik and Gilkey; but last year the conjecture turned out to be too optimistic when
Schick produced a counterexample for 7 = Z* x Z/3 and n = 3. However, there is a “stable”
version of the conjecture according to which the vanishing of e(Af) should imply the existence of
a positive scalar curvature metric on the product M x B x ---x B of M with enough copies of the
“Bott manifold” B, which is any simply connected 8-dimensional spin manifold with A(M) =1.

The stable conjecture can be reformulated by saying that the kernel of the “assembly map”
A: KO, (Br) - KO,(C*w) is equal to the subgroup K O} (Bw) consisting of elements of the
form f.[N], where N is a spin manifold admitting a positive scalar curvature metric, [N] is its
KO-fundamental class, and f is a map from N to Bw. Joint work with Rosenberg led to a proof
of the stable conjecture for finite groups m; it is based on an “Artin” induction argument which
shows that elements in the kerne! of the assembly map come from elements in the K-theory of
cyclic subgroups of 7. :

For general groups, it is useful to factor the assembly map in the form

KO, (Br) = KOX(En) — KOZ(En) < KOX(pt) = KOa(C*), .-

where Ex denotes the universal 7-space with finite isotropy groups, and KO isa suitably defined
equivariant K O-homology which for finite groups = agrees with the usual equivariant theory. The
Baum-Connes Conjecture claims that 3 is an isomorphism for all groups. The author showed
that injectivity of 3 (which has been been proved for quite a few groups, unlike surjectivity) implies
the stable conjecture for . The proof again involves reducing down to the cyclic subgroups of «.

Katsumi Shimomura
The Adams-Novikov differentials on the mod 2 Moore spectrum

In the same way as the case p > 2, we study the Adams-Novikov differentials in the Adams-
Novikov Eg-term Ej(LyAf,) for the homotopy groups w.(LzM3) of the mod 2 Moore spectrum
M, through the Bockstein spectral sequence E;(L;M(1,4)) = E;(L2M>). Here BP.(M(1,4)) =
BP./(2,v}). The Bockstein Ey-term Ej;(L2M(1,4)) is the direct sum of modules M and N, where
M is "generated” by hjo and hyy, and N by (2. The Adams-Novikov differentials on Af can be
read off from Hopkins and Mahowald's calculation of 7.(EOQ). In order to consider differentials
on N, we consider a spectrum X! such that BP.(X}) = (BP./(2,v]))[t1)/(ti*"). Note that
X§ = M(1,4). Then we know the E-term E3 (L2X}°), in fact, E3 (L2 X(°) = Eg(L2X5°),
which implies immediately that E3(L2X}®) = E5(L2X %) for j < 4. By the cofibrations X T
X}s - 2‘°X}' and X} - X} — £8X3, we obtain E;,(LQX;—) for i = 3,7 and j < 4. In particular,

Theorem. The Eo-term for m.(L;X}) is the tensor product of A(hso, p2) and a K(2).-module
GK(2).[ha0)/ () & K (2).[h20]/(h35")

for some integer r > 9.
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Christian Nassau

An improved algorithm for the computation of a minimal resolution of the mod 2
Steenrod algebra A

So far minimal resolutions of 4 have only been computed with the straightforward ‘brute force’
method which does not take any nontrivial structural results about A into account. In this talk I
describe how some easy vanishing lines for Extg(F,) - where B C A = is a finite sub Hopfalgebra
of A - can be used to speed up the computation considerably.

Nobuaki Yagita
Highly homotopy non-commutativity of Lie groups

Lie groups are highly non-commutative. This fact follows, for example, from the structure of Lie
algebras. Even when we consider in the homotopy category, highly noncommutativities also holds.
However the Pontrjagin ring structures of the mod p ordinary homology are not sufficiently highly
noncommutative. For example the Pontrjagin ring of H.(G;Z/2) for the exceptional Lie group
G = G; or F}, is commutative. The Pontrjagin ring of ordinary mod p cohomology of each finite
Lie group is nilpotent, because it is finite dimensional.

V. Rao first noticed that the Morava K-theory K(n).(—) is a powerful theory to show this
homotopy non-commutativity. He showed that for an adequate n, K(n).(SO(2m + 1)) is as non-
trivial as possible. Moreover, he proved that if a Lie group G has p-torsion in homology, then
for some n, K(n).(G) is not nilpotent. In this paper we study the Pontrjagin product structure

" of K(n).(G) for smallest n such that K(n).(G) = K(n). ® H.(G;Z/p). Note that if n is large
enough, then the product is induced from that of H.(G;Z/p). Of course K(n).(G)/(va = 1)
is additively isomorphic to H.(G;Z/p). However its Pontrjagin ring structure is quite different;
indeed, the Pontrjagin ring K(2).(G2)/(v2 = 1) is not nilpotent but H.(G2;Z/2) is commutative.

The Pontrjagin product of K(4).(Es) for p = 2 has a very interesting structure, namely the
Pontrjagin ring is generated by one odd degree element and six even degree elements so that odd
degree primitive elements are expressed as vertices of a cube and the adjoint actions of even degree
generators are expressed as oriented edges on the cube.

Wojciech Chachélski

An A-complication and an A-Blanc-Stover resolution

Let A be a finite complex.. For an A-cellular space X we define its A-complication 1(X) by
induction. We say that {(X) = 0if X is a retract of \/ Z*A. We say that {(X) < n if X is a retract
of a pointed homotopy colimit hocolim}F, where F : I — Top, is a pointed diagram such that,
for all ¢, F(i) < (n — 1). Thus spaces of A-complication 1 are those A-cellular spaces that can be

built using only primary information about A, i.e., only maps between wedges of suspensions of
A.

Example 1. Let 4 = S®. Stover proved that, for any S™-cellular space X, {(X) < 1.
Example 2. Let A = M(Z/p,n). Then lim,_,»!(M(Z/p",n + 1)) = c0.
Example 3. Let A= V>0 M(ZF/p,n). For any A-cellular space X, I(X) < 1.

Proposition. Let A be a finite, p-torsion complez. Assume that A ~ £B. If there ezists N, such
that, for an A-cellular space X, I(X) < N, then the Bousfield class of A is equivalent to that of a
Z/p-Moore space.

In view of the above Proposition and Example 3, the way to obtain spaces of arbitrary A-
complication is either to play a "game” with torsion or higher type.
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The main theorem is as follows:
Theorem. Let B be finite, and
d = (dimension of top cell in B) — (dimension of bottom cell in B.)
Let A = £9B. For any A-cellular space X, there is a natural map X' = X such that:
e (X<,
o If F = Fib(X' = X), then map.(A, F) is a d-PolyGEM.
(Joint work with W.G.Dwyer, M.Intermont)

John Greenlees
Equivariant bordism and equivariant formal groups

This is a report on joint work with M. Cole and 1. Kriz.
Let A be a finite abelian group. One may consider tom Dieck’s equivariant homotopical bordism,
MU}, and more generally, equivariant complex oriented cohomology theories. .

The idea of an equivariant formal group law is to model E4(CP(U)) where CP(U) is a clas-
sifying space for equivariant line bundles. Thus (i) CP(U) is a group object in the homotopy
category (i) the components of the fixed point set CP(U )4 has components corresponding to the
dual group A* and (iii) we need an orientation. -

Definition An A-equivariant formal group law (Afgl) is a topological k-algebra R such tli_&t
(i) R is a Hopf k-algebra

(ii) thereisamap6: R — kA" of Hopf algebras, and the topology of R is defined by the kernel
of 8 and it is plete for the topology and

(iii) there is a reqular element y(e) in R which generates the kernel of R — kA" = k (projection
onto the €’th factor).

The examples at and away from the Euler class ideal were discussed, as were multiplicative Afgl’s
and the representing rings identified. In fact one may find an additive basis of R, and hence deduce
there is a representing ring L4 for Afgl’s.

As for MU}, one may show (i) that MU is topologically universal in the sense that if E is
complex oriented there is an equivariant ring map MU -+ E and (ii) the map Ly, > MU} is
surjective and the kernel is divisible, torsion and nilpotent in suitable senses. This shows (iii) that
MU represents Afgl’s over any Noetherian ring. It is conjectured that the map is injective. The
strategy of proof was described.

Ethan Devinatz
On the non-existence of the Toda V(n)’s

This is a report on work of Lee Nave of the University of Washington. Recall that a p-local
finite spectrum is said to be a Toda V(n) if its Brown-Peterson homology is isomorphic to
BP./(p,v1,... ,vs) as a BP,BP-comodule. Nave proves that, for any prime p > 7, the spec-
trum V(E?) does not exist. (One can of course do better for p < 7.) The proof makes use of the
Hopkins-Miller spectrum E*S,, where G = Z /(p) » Z/(p — 1)? is a maximal finite subgroup of the
Morava stabilizer group S,. The main step is to prove that if V(r — 1) exists, r = ﬁz’-’—, then the
element v2 in H%(G, Ep—1,V(r — 1)) does not survive to n.(E:,‘fl AV(r—1)). This is achieved by
proving that if it does survive, it must be in the image of n'.(E,';f, AV(2)) = 7. (ERS, AV(r - 1)).
However, one can prove that v? is not in the image of H%(G, E,-1.V(2)) & H%(G, Ep—1,V(r-1)),
a contradiction.

Berichterstatter: Bjorn Schuster
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