Tagungsbericht 13/ig69

Kontinuumproblem
11.5. bis 17.5 .1969

Unter der Leitung von Prof.Dr. G.H. Müller (Heidelberg) und Prof.Dr. D. Scott (Amsterdam) fand in der Zeit vom.11. bis 17.5. 1969 im Mathematischen Forschungsinstitut Oberwolfach eine Tagung über das Kontinuumproblem statt. Von den aus allen Teilen der Welt eingeladenen 48 Teilnehmern wurden insgesamt 20 Referate gehalten.

Teilnehmer:

Aczel, P., Manchester
Berendregt, H.P., Utrecht
Bukowsky, L., Leeds
Davis, M., London
Derrick, J., Leeds
Dickmann, M., Aarhus
Diener, K.H., Köln
Doets, H.C., Bussum
Drake, F.R., Leeds
Felgner, U., Utrecht
Felscher, W., Freiburg
Fenstad, J.E., Oslo Gandy, R.O., Manchester Görnemann, Sabine, Hannover
Hajek, P., Heidelberg
Hartmuth, F., Freiburg
Hasenjaeger, G., Bonn
Henkin, L., Oxford
Hinman, P.G., Ann Arbor
Jech, T., Bristol
Juhász, I., Amsterdam
Koppelberg, B.J., Bonn
Läuchli, H., Winterthur
Lawvere, W.F., Zürich

Levy, A., Jerusailem
Lopez-Escobar, E.G.K., Utrecht Machover, M., London
Mansfield, R.B., Manchester
Mayoh, B., Aarhus McAloon, K., Paris
Mostowski, A., Warschau Müller, G.H., Heidelberg Oberschelp, A., Kiel
Oberschelp, W., Hannover
Paris, J., Manchester Potthoff, K., Kiel Prestel, A., Bonn Reznikoff, J., Cachan Richter, M., Freiburg Rodino, G., Neapel Rousseau, G., Aarhus Sacks, G., Cambridge Scarpellini, B., Basel Scott, D.S., Amsterdam Smith, Aarhus
Specker, E., Zürich Schwabhauser, W., Bonn Suzuki, Warschau

Vortragsauszüge (in zeitlicher Reihenfolge)
P. HAJEK: Survey of recent results concerning the continuum hypothesis

1) There are recursive formulas expressing all powers by means of the unary function $\lambda\left(x_{\alpha}\right)=x_{\alpha}$. ${ }^{f}\left(\left(x_{\alpha_{2}}\right)\right.$. 2) If cardinals: $\kappa_{\alpha,}, \kappa_{\beta \text { ? }}$ are defined by "good" definitions and if (x_{α} regular and $\operatorname{cf}\left(x_{\beta}\right)>x_{\alpha}$) is provable then the following is consistent: For every γ, (a) cf $\left(k_{\gamma}\right)<k_{\alpha} \rightarrow \lambda\left(x_{\gamma}\right)=x_{\gamma+1}$,
(b) $x_{\alpha} \leq c f\left(x_{\gamma}\right)<c f\left(x_{\beta}\right) \rightarrow \lambda\left(x_{\gamma}\right)=x_{\beta} \cdot x_{\gamma+1}$,
(c) $\operatorname{cf}\left(x_{\beta}\right) \leq \operatorname{cf}\left(x_{\gamma}\right) \rightarrow \lambda\left(x_{\gamma}\right)=x_{\beta+1} \cdot \chi_{\gamma+1}$.

Consequences for the powers of 2:
$x_{\gamma}<x_{\alpha 0} \rightarrow 2^{x_{\gamma}}=\kappa_{\gamma+1}, \quad x_{\alpha} \leq x_{\gamma}<\operatorname{cf}\left(x_{\beta}\right) \rightarrow 2^{x_{\gamma}}=x_{\beta}$,
$c f\left(x_{\beta}\right) \leq x_{\gamma} \rightarrow 2^{k_{\gamma}}=x_{\beta+1} \cdot x_{\gamma+1}$.
This is the consistency result on violating GCH (generalized continuum hypothesis) "at x_{α} ". In a similar way, the GCH can be violated simultaneously at all regular cardinals.
3) Assuming something on the power of continuum, what statements remain consistent?
(a) Projective hierarchy.
(1) $\mathrm{CH}+$ there is a projective well-ordering of reals
(2) $\mathrm{CH}+$ there is a projective set of the power of continuum without perfect subsets, a projective set without the property of Baire, a projective non-Lebesgue measurable set.
(3) $\mathrm{CH}+$ every projective well ordering of (some) reals is at most countable.
(4) $\mathrm{CH}+$ every projective set is Lebesgue measurable, has the property of Baire and if uncountable contains a perfect subset.
(5) non $\mathrm{CH}+$ there is a projective set of power exactly K_{1}
(6) non $\mathrm{CH}+$ as in (4)
(b) Duality of the notions "Lebesgue measure 0 " and "first category". Definition:
$(K) \equiv$ every set of power less than continuum is of first category $(M) \equiv$ every set of power less than continuum has measure 0 . $(L) \equiv$ there is a set of power of continuum which intersects every set of first category in an at most countable set.
$(S) \equiv$ there is a set of power of continuum which intersects every set of measure O in an most countable set.
Theorem. $\mathrm{CH} \equiv(K+L) \equiv(M+S)$
Consistent assumptions:
(7) $L+$ non $K+M+$ non S
(8) $S+$ non $M+K+n o n L$
(c) Suslin hypothesis. (SH) E every complete dense linear ordering
in which every system of disjoint open intervals is at most countable contains a dense countable subset.
Consistent assumptions:
(9) non $\mathrm{SH}+\mathrm{CH}$
(10) non $\mathrm{SH}+$ non CH
(11) $\mathrm{SH}+$ non CH .

Problems: consistency of $\mathrm{SH}+\mathrm{CH}$; consistency of the existence of projective sets of power x_{2} if $2^{x_{0}}>x_{2}$.

I. JUHASZ: How to Generalize the Suslin Problem

It is well known that many problems of topology involving cardinals: depend essentially on the (generalized) continuum hypothesis or other assumptions on cardinals. It is more surprising, however, that several such problems seem to be closely connected to the Suslin problem.

1. Does there exist any non-separable regular space which does not contain an uncountable discrete subspace?
2. Does there exist a hereditarily Lindelöf regular space which is not separable?
3. Does there exist a first countable T_{T}-space with the Suslin property which is not separable?
4. (Ponomariov) Does there exist a non-separable, perfectly normal compact Hausdorff space? (Perf. normal means that every closed set is a G_{δ}). We can observe that this problem is "contained" in any of the above three.
5. Is every compact Hausdorff space with the Suslin property the

DFG
Deutsche
Forschungsgemeinschaft
$\bullet \otimes$
continuous image of a product of separable compact spaces? Although all these problems are of a much more general character than the Suslin problem itself, the only counter-examplr known to the author is a Suslin continuum. Therefore, the following question seems to be justified: Is the Suslin problem just a particular case of a more or less general "principle "?

A. MOSTOWSKI: Models of the second order arithmetic

Consider the relational systems $M=\langle N, S,+, x, \varepsilon\rangle$ where the elements of N are the "integers of M ", elements of S are the "sets of M ", + and x are the "arithmetical operations of $M^{\prime \prime}$ and ε is the "elementhood relation of M ". If all the axioms of the second order arithmetic are valid in M, then M is called a weak model. If M is elementarily equivalent with the standard model $M_{0}=\langle\omega, P(\omega),+, x, \epsilon\rangle$, then M is called a strong model. In the lecture several examples were given of weak and strong models with singular properties. The main result was the existence of a strong model M whose standard part M^{+}is not even a weak model (the integers of M^{+}are the ordinary integers and its sets have the form (n:ner\} $\}$ w where I is a set of M). Situations were described where the problem of existence of a model satisfying given condition depends on assumptions made in the meta-system. It was printed out that the question whether the set W of sentences true in M_{0} is constructible and if so what is its place in the constructive hierarchy depends on meta-mathematical assumptions. Led by some analogies between this example and the continuum problem, the author expressed the opinion that future mathematics will perhaps reject the full axiom of choice and that the continuum problem $\hat{y} \begin{aligned} & \text { might then } \\ & \text { J. DRAKE: }\end{aligned}$ The Status of the Continuum Hypothesis in Some Generic Extensions
Let M be an arbitrary well-founded model of $Z F$, in which the $C . H$. is false. It is known that if a is a generic ultrafilter on the Boolean algebra $R O\left(2 \omega_{1}\right.$, < ω_{1} top .S.) (for adding a new subset of
ω_{r} but no new subset of ω.) then in the extension $M[a]$ the continuum hypothejis holds: i.e. 2^{ω} collapses to ω_{r} in the extension (whatever value it had in M). We discuss the problem of finding similar caseswhere the status of the continuum in an extension is decided. Boolean algebras; satisfying $2^{(\omega)}$-chain condition are provided by Sacks forcing (with perfect closed sets), by Mathias forcing and by Silver forcing. In all these cases w_{1} can be shown preserved, but the question is open whether the C.H. holds in the extension. Another problem of the same kind is to find a method to add new subsets to ω_{r}, but no new subset to ω_{0}, in such a way that $2^{\left.()_{i}\right)}$ is not collapsed whough $>\omega_{1}$ in M.

J.E. FENSTAD: On the Axiom of Determinateness

The aim of the lecture was to present a survey of results connected with the axiom of determinateness.
We first gave an introduction to the work of Addison and Moschovakis (1967) concentrating on the prewellordering theorem and some of the consequences thereof (in particular reduction principles).
In the second part of the lecture we, gave the known positive results on determined games, the best result being due to M. Davis (1964), stating that every $F_{\sigma \delta} \cup G_{\delta \sigma}$ set is determined.
We next presented a simple example of a non-determined game, assuming the existence of a non-principal ultrafilter on N (due to S. Aanderaa): Let D be such a filter, then the set $X_{D}=\left\{\alpha \in \mathbb{N}^{\mathbb{N}} \mid\{\dot{I} \mid \mu j[\alpha(j) \geq i]\right.$ is even $\left.\} \in D\right\}$ is non-determined. Using the axiom of constructibility we showed (following Mycielski, 1964) that there is a \prod_{1}^{1} non-determined set. The main open problem in this area seems to be whether every Borelgame is determined. Concerning consistency results we gave the result of Solovay (1967) that Cons ($2 F+A x . D e t$.$) implies that Cons (2 F+A C+$ "there exists a measurable cardinal").
In' general it seems that the continuum must be very large if the full Ax. Det. is adopted, there is e.g. the following recent result of Moschovakis $=$ Let ${\underset{\sim}{\sim}}_{1}^{1}$ be the least ordinal not the ordertype of a Δ_{n}^{1} prewellordering of the reals. If we assume full Ax.Det., then

DFG
Deutsche
Forschungsgemeinschaft
$\odot \theta$
δ_{n}^{1} is a cardinal $\geq N_{n}$.
On the other hand it seems that certain versions of "definable determinateness" is provable on the assumption that large cardinals exist, e.g. D. Martin has shown that $\Sigma_{1}^{1}-$ determinateness follows from the existence of a measurable cardinal.

J. PARIS: $\quad \mathrm{L}[\mathrm{D}]$ and G.C.H. and Large Cardinals

For A a κ-additive ultrafilter on κ in $V\left(\kappa>\omega_{0}\right)$ we can iterate the ultrapower construction with respect to A to obtain a sequence of well founded classes $V\left(\underset{A}{(\alpha)}\right.$ and embeddings $E_{\text {aß }}: V_{A}^{(a)} \rightarrow V(\beta)$ for $\alpha_{\leq} \leqslant$. Using this process Kunen has shown:
i) If D_{1}, D_{2} are normal ultrafilters on κ_{1}, k_{2} in $L\left[D_{T}\right], L\left[D_{z}\right]$
 ii) If κ is measurable in V and $\left|2^{K}\right|>\kappa^{+}$then V contains a (set) model for $Z F C+\exists \mathrm{m} . \mathrm{c} .$. In fact a theory O^{+}exists which corresponds to $L[D]$ (D a normal ultrafilter) just as $0^{\#}$ correaponds to L.
On the "positive" side however for any subset a of κ of regular cardinals which is measure zero w.r.t. some normal measure on κ in $V \exists$ a Boolean extension of V in which κ is still measurable and G.C.H. fails at all $\alpha \in a$.
R.B. MANSFIELD:

The measurable cardinal and Σ_{3}^{1} sets

We use the somewhat surprising fact that if κ is a measurable cardinal, sequences of ordinals with length κ can be Gödel numbered by a single ordinal to define trees for Π_{2}^{1} sets. To each Π_{2}^{1} formula φ we associate an ordinal definable tree T_{φ}^{*} : such that for any real number $\alpha \exists \beta$ (φ, β) relativizes to $L\left(T^{*}, \alpha\right)$. We then can go on to prove the analogs of the Kondo-Addison theorem and the perfect set.theorem for Π_{2}^{1} sets. Also, if $\omega_{1}\left(L\left(T^{*}\right)\right)$ is countable, every Σ_{3}^{1} set is Lebesgue measurable.
A. LEVY:

Let us say that a set A of real numbers has the decomposition property if it is the union of at most x_{T} Bore sets. The basic facts about this property in the set theory ZFC (zermelo-Fraenked set theory with the axiom of choice) are as follows. (1) Every: ${\underset{\sim}{\sim}}_{2}^{1}$-set has the decomposition property (a classical result). (2) It is not provable that any set other than a $\sum_{2}^{1}-$ set has the decomposition property (Martin-Solovay). (3) If $2^{\kappa_{0}^{2}}>x_{1}$, then there is a set which does not have the decomposition property (easily seen). (4) If ZFC is consistent with the existence of an inaccessible cardinal then $Z F C$ is consistent with $2^{K_{0}}=\dot{X}_{\Theta}$, where Θ is any "reasonable". fixed ordinal and with "every real-ordinaldefinable set or reals has the decomposition property".
F.W. LAWVERE: Categorical Logic and Models of Generalized Set Theories
It is suggested that the categories corresponding to Boolean models in their own right (i.e. without dividing by ultrafilter) and in fact considerably more general "models" are mathematically interesting (somewhat as arbitrary commutative rings, not only fields, are mathematically interesting). Specifically it is pointed out that for any small cat \mathbb{B} equipped with Grothendieck topology, the category of sheaves $s h(\mathbb{B})$ satisfies not only the "topos" axioms of Giraud (e.g. cartesian closed, etc.) but also has a truth-value object $\mathcal{Z}_{\mathbb{B}}$ in the sense that for all X, the subobjects: of $X \underset{i-1}{\rightarrow}$ morphisms: $X \rightarrow \mathcal{Z}_{B}$. For example \mathbb{B}, can be a complete Boolean algebra with the "canonical" topology. The "generalized set theory" is formalized by uniformly : expressing xi-conversion, recursion, logic axioms etc. in terms of adjointfunctors.

Forschungsgemeinschaft
$\odot \theta$

R.O. GANDY: Subsystems of 2nd-order Arithmetic

The hyperarithmetic sets may be characterised
(a) As the sets ($\subseteq(\omega)$ which are strongly representable in 2ndorder arithmetic $\left(Z_{2}\right)$; (b) as the sets which are recursive in the "jump" operator: Ja: $=\{z:\{z\}(a)$ is defined $\}$; (c) as the minimum β-model for the Δ_{1}^{1} comprehension axiom. Enderton has considered the Ω rule: If $(\exists a)(\forall n) \vdash \varnothing(\bar{\alpha}(n))(m=n u m e r a l$ for $m)$ then $\vdash(\exists a)(\forall n) \varnothing(\bar{a}(n))$. We have defined the superjump \mathcal{E} by $\varepsilon^{3}(\underset{\sim}{\underset{\sim}{F}})=\left\{z:\{z\}\left({\underset{\sim}{F}}^{2}\right)\right.$ is defined $\}$. Theorem: The sets strongly represented in $Z_{2}+थ-$ rule are just those recursive in \mathcal{E}; they are also those sets X such that X and $\omega-X$ are many-one reducible to sets inductively defined by a Σ_{1}^{1} clause. We do not know any analogue to (c) above. Δ_{2}^{1} comprehension axiom is too weak, and Σ_{2}^{1} comprehension axiom is too strong.
P. HINMAN and P. ACZEL: Representability in Extensions of Arithmetic
Our results concern the sets weakly and strongly representable in the system $थ$ of Enderton (cf. Gandy's note) and other systems: Let $\mathrm{E}_{1}^{\#}(\varphi) \simeq$ (0, if $\forall a \exists x[\varphi(\bar{a}(x))=0]$; 1 , if $\exists a \forall x[\varphi(\bar{a}(x))>0]$ undefined, otherwise). Theorem 1: For any $A \subseteq N$, equivalently (1) A is weakly \because-representable (2) A is $1-1$ reducible to a set given by a monotonic Σ_{1}^{1} inductive definition (3) A is semi-recursive in $E_{1}^{\#}$. Theorem 2: For any $A \subseteq N$ equivalently, (1) A is strongly थ-representable (2) A and $N-A$ are both weakly $\because($-representable (3) A is recursive in $E_{1}^{\#}$: The equivalence of (2) and (3) uses the prewellordering theorem for sets semi-recursive in $E_{1}^{\#}$. $\mathrm{E}_{1}^{\#}$ is shown to be much stronger than $E_{1}=E_{1}^{\#} \uparrow N^{N}$ in fact to be at least as strong as Gandy's superjump (one version). However, application of a stronger superjump to $E_{1}^{\#}$ and iteration leads to much more extensive subclasses of Δ_{2}^{1}. The sets recursive in E_{1} are those strongly representable in a weakened $थ$-system which allows थ-inferences; applied only to Φ such that $\forall n\left[\vdash_{\mathcal{U}} \Phi(\bar{n}) \vee \vdash_{\mathscr{U}}-\Phi(\bar{n})\right]$. Theorem 1 extends to systems J with
the additional quantifier symbol Q and the rules (a) if $\exists a \in J \forall x \vdash_{J} \Phi(a(x))$ then $\vdash_{J} Q x \Phi(x) ;(b)$ if $\forall a \in J \exists x \vdash_{J} \Phi(a(x))$ then $\vdash_{J} \rightarrow Q x-\Phi(x)$, and the corresponding functional $E_{J}^{\#}$. For theorem 2 we must add the ω-rule and the functional ${ }^{2}$ E.
L. BUKOVSKY: Constructing a: Suitable Boolean Algebra

Assume $V=L$. We want to construct a complete Boolean algebra B s.t. in the model $\left.B_{V} 1\right)(\exists x)\left(x \subset \omega_{0} \wedge x \notin L\right)$
2) $(\forall m)(\forall y)\left(y \in \omega_{n} \wedge n \in w_{0} \rightarrow y_{i} \in L\right)$.

Equivalent conditions for B: 1) ($\omega_{\omega_{0}}, 2$)-nondistributive
2) ($\omega_{n}, 2$)-distributive for $n \in \omega_{0}$.

Possibilities:

NON-HOMOGENEOUS

TOTALLY NON-HOM. DECOMPOSABLE we know only one example NO

IN HON. FACTORS reduction to homogeneous NO

HOMOGENEOUS
 REPRESENTABLE

CONSTRUCT

ABLE TOP. SPACE and $B=\gamma\left(B^{\prime}\right)$
does not work - NORMAL COMPLETION YES ?

Theorem (for completion): Let B be an a-complete B.alg. with a-generators. If α^{+}is not collapsed in $\gamma(B)_{V}$, then B is (β, δ)-distr: $\equiv \gamma(B)$ in ($\beta, \delta)$-distr: for any $\delta^{\beta} \leq \alpha$.

T. JECH: Trees:

We are considering uncountable trees whose all levels are countable. A natural question is how many long branches does such a tree have, if any. One extreme is when a tree has no branch of length ω_{1}. Existence of such trees is a classical result. The generalization of this property for bigger cardinals gives: in the inaccessible case, a characterization of weakly compact cardinals. Existence of a tree without long branches and without big antichains is equivalent to the famous Suslin's problem. Models are produced both for positive and negative solution. Similarly, there are models for both Kurepa's conjecture and its negation (which is the other extreme): no tree has too many branches (i.e. $\geq \mathbb{N}_{\boldsymbol{z}}$). Moreover, in the constructible universe L, there are both Suslin and Kurepa trees.

L. HENKIN: Multi-models

L, a first-order language. If \mathfrak{M} is an $L-s t r u c t u r e ~ a n d ~ R ~ a n ~$ equivalence rel' n on M, we call $\mathbb{m}^{*}=\langle M, R\rangle$ a multi-L-structure. Let $\langle M i\rangle_{i \in I}$ be the R-partition of M, and set $W=U_{i}{ }^{\omega_{M}} M_{i}\left(\subseteq{ }^{\omega} M\right)$. With respect to \mathfrak{m}, each formula φ of L determines the set $\bar{\phi}$ of all $x \in{ }^{\omega} M$ which satisfy φ; similarly, with rep; to \mathbb{m}^{*}, we define the set Φ^{*} of all those $x \in W$ which satisfy ${ }^{*} \varphi$, specifying, e.g., $\overline{\exists \mathrm{v}_{\mathrm{K}} \psi^{*}}=\left\{x \in W / \exists y \in \bar{\Psi}^{*}, y_{\lambda}=x_{\lambda}\right.$ for all $\left.\lambda \neq k\right\}$. If I is a set of sents. of L, a multi-model of Γ is an $m^{*}, \bar{\Phi}^{*}=W$ iff $\Gamma \vdash \varphi$. Every consistent Γ has a multi-model. Theorem: Let \mathfrak{m}^{*} be any multi-L-structure; then for each formula φ of L there is some $\psi \in L, \bar{\Phi} \cap W=\bar{\psi}^{*}$. Similar results hold for languages L_{n} with only n individ. vars. (where $W=v_{i}{ }^{n_{M}} \subseteq{ }^{n_{M}}$), and for related cylindric algebras. A form of "elimination of quantifiers" is used in the proof.
I. JUHASZ: Some more problems on topology

1) (P.S. Alexandrov) Is every first countable compact T_{2}-space of cardinality $\leq 2^{K^{K}}$? ? 2) Is it true that for every hereditarily separable T_{2}-space $R,|R| \leq 2^{x} \sigma_{\text {? }}$?) Does there exist a T_{2}-space which is ($\omega_{n},(\omega)$-compact for all n< n but not ($\left.\omega_{\omega}, \omega\right)$-compact?

K. MCALOON: A theorem of Krivine

Theorem: Every Boolean Algebra of power x_{α} can be embedded in the algebra of regular open sets of $x_{\alpha}{ }^{N_{0}}$.

A. OBERSCHELP: Bemerkungen zum Platonismus

Es wurde vorgeschlagen (nach Carnap), die Diskussion über die Existenz von Objekten zu ersetzen durch eine Diskussion über die Wahl eines Sprachrahmens. Die Gründe für die Wahl einer platonistischen Sprache sind dann nicht so sehr verschieden von den Gründen, die zur Annahme eines physikalischen Systems führen. Außerdem wurde darauf hingewiesen, 'daß die Tatsache, daß es verschiedene mengentheoretische Systeme gibt, kein Anlaß ist, von der An-sich-Auffassung abzugehen, da diese Systeme ja auch verschiedene Arten von Mengen (oder Klassen) beschreiben sollen. Schließlich wurden einige "Sowohl-als-auch"-Argumente vorgebracht, die sich nicht nur gegen die Mengenlehre richten, sondern auch gegen die (besser begründete) Zahlentheorie. Wenn diese Argumente dann gegen die "bessere" Theorie nicht ernst genommen werden, so verlieren sie auch gegen das platonische System ihr Gewicht.
J. REZNIKOFF: Remarks on the evolution of set theory

Starting from the feeling that the Axiom of Determinateness is cértainly consistent with ZF (without AC.) one wonders what the situation is. New axioms are found and everything is put up and down, usual notions are distroyed or loose their meaning (e.g. every set is Lebesgue measurable). And then either one desires some notions to have a basic meaning either ...? But the situation is not new, when Axiom of Zermelo appeared there came a
"trouble". Recalling of the attitude of Russel (who thought it is contradictory) and in France that of Borel (perhaps the most impressed and looking to narrow constructivism), Lebesgue (calling himself a "Kroneckerian"), Baire (denying even the existence of the power set of \mathbb{N}), and, opposite, that of Hadamard (admitting Zermelo's axiom on the same level as others and denying even interest to Hilbert's attempts in proving consistency) whose attitude prevailed for many years in France (see e.g. Bourbaki), one sees that not only the Axiom of Choice played a role in the evolution of Mathematics but also in some mathematical careers... Of course the present situation is different, but is it really so different? Looking to the past experience one could suggest 1) To try to accelerate the evolution by finding new axioms of non constructible existential character 2) Return to Proof theory (trying to settle the axioms by sharper deduction considerations e.g. infinite) 3) For teaching mathematics: one has not necessarily to choose between set theoretical doubtful frame or intuitionistic one (or Markov's) some alternative can certainly be found (see for instance Bishop's Foundations of Constructive. Analysis, 1967)
D. SCOTT: On the Future of Set Theory

We discussed at this conference many independence proofs and technical results but did so without much regard for their foundational significance. One simple point in connection with the continuum hypothesis (CH) that should be kept in mind is this: There are many properties $(P(m)$ of cardinals for which we can proof without any hypothesis that κ_{r} is the unique cardinal having this property. Thus $P\left(2^{X_{\sigma}}\right)$ is a "cheap" form of (CH), e.g. $P(M)$ could be: every set of cardinality m is the union of a chain of its countable subsets. For more "essential" applications of (CH) one should consider such propositions as (K) \& (L) (cf. the lecture of Hajek) or problems as: the existence of ai $2^{2^{X_{0}}}$ chain of sets of reals or the existence of a $2^{2^{x_{0}}}$ family of "almost" disjoint sets of reals ("almost" disjoint means
having a countable intersection).
Aside fromesimply giving up. set theory in the face of the indpendence proofs, there seem to be two attitudes both of which might be called "realist" but one is absolute and the other relative. Both hold that the notion of set (better set of as in the usual cumulative hierarchy) is definite and that the questions (say, of cardinal arithmetic) are precise. The absolute position claims that the set of all subsets is an "absolute" totality but agrees that the current axioms have not determined all its properties. The models for independence results do not distroy this faith in the "complete" powerset since the meaning of set in the new model is clearly "unintended". What is needed is the discovery of "new" and "correct" axioms. On the other hand the relative position questions the idea of a "final" powerset because the models show how easy it is to adjoin "new" subsets which, of course, appear unintended from the old model. What is needed now for the sake of the relative position is a good theory of the variety of (well-founded!) models so we can appreciate the sence and order of the various possible cardinal arithmetics - the notion of cardinal being precise but relative to the model. If a reasonable theory is forthcoming we might then be satisfied with a "potential" concept of powerset. In view of the really remarkable number of "mathematical" consequences of various hypotheses (such as $V=L$; Martin's Axiom, Measurable Cardinals, Axiom of Determinateness: the proper theory of models for set theories should be very respectable. Whether it is a good foundation will have to be answered in the light of consiidaeration of the properly formulated theory.

