- e,

Math. Forschungsinstitut

Oberwolfach
E20/p1245

MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 30[1972

Kategorien

23. 7. bis 29.7.1972

Unter der Leitung der Herren J. Gray (Urbana) und

H. Schubert (Diisseldorf) fand eine Tagung iiber Kategorien

statt.

. Teilnehmer

K. Baumgartner, Bochum
J. Beck, Brighton
J. Beﬁabou, Paris
F. Bourceux, Héverlé
M. Bunge, Montreal
A. Burroni, Paris
E. Burroni, Paris
J. Celeyrette, Lille
P. Cherenack, Mannheim
J. Cole, Brighton

‘ A. Deleanu, Syracuse
E. Dubuc, Rochester
J. Duskin, Buffald
H. Ehrig, Berlin
S. Eilenberg, New York
J. Engelhardt, Miinster
H.-G. Ertel, Diisseldorf
S. Fakir, Paris
W. Felscher, Tiibingen
R. Fletcher, London
R. Fritsch, Konstanz

D. Gildenhuys, Montreal

DF Deutsche
Forschungsgemeinschaft

J. Gray, Urbana

R. Guitart, Paris

R. Harting, Ziirich

R.~E. Hoffmann, Oberhausen
C. Jensen, Kopenhagen

A. Kock, Aarhus

C. Lair, Paris

J. Lambek, Montreal

0.A. Laudal, Oslo

R. Lavendhomme, Héverle
F;W. Lawvere, Aarhus

H. Lindner, Diisseldorf
F.E.J. Linton, New Haven
E. Lohre, Miinster

S. MacLane, Chicago

P. Malraison, Northfield
C. Maurer, Berlin

C.J. Mikkelsen, Aarhus
B. Mitchell, New Brunswick
H. Miiller, Bielefeld

C. Mulvey, Brighton

G. Osius, Bremen

o®




R. Parée, Halifax T. Thode, Diisseldorf

M. Pfender, Berlin W. Tholen, Miinster

R. Rabjohn, Brighton M. Tierney, New Brumswick

B. Rattray, Montreal F. Ulmer, Ziirich

G. Richtet,ABielefeld H. Volger, Aarhus

D. Schlomiuk, Perugia. R. Voreadou, Chicago

H. Schubert, Diisseldorf - van de Wauw, Héverlé.

D. Schumacher, Wolfville J. Wick-Negrepontis, Montreal
Z. Semadeni, Warschau . M. Wischnewski, Miinchen

R. Street, North Ryde G.C. Wraith, Brighton

M. Thiebaud, Aarhus

Vortragsausziige

Baumgartner, K.: Categories admitting free algebras.

Let A be any small algebraic theory and D be an arbitrary cate-
gory. Then we consider the full subcategory 1T{A,D] of product-
preserving functors (i.e. of algebras) in [A,D] . The central
question is, whether the functors I: ﬂ[:A,D] > [A,D] and

v: 1'[A,D_‘]—» D are r~adjoint.

Now for a functor U: D » M consider the following diagramm:

[4,D] — > [A.M]
I ............ > Il
x [4:D] v - (8]
5 |
v v
!
D v > M

If U: D » M preserves products 1'U = [A,U] « I is called the

algebraic lifting of U. Now we consider two problems:

P 1. Under what conditions ,U is (together with U) a r - adjoint?
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P 2. Consider a factorisation:

u' ~
¢ ——
< F'

of a r - adjoint U' over a faithful functor U. Under what
conditions V is a r - adjoint? (Note, that if zU and V' are

r - adjoints, then P 2 applies for V' ﬂU = U' = Uv),.

A detailed study of P | and P 2 finally yields:

Theorem: Let A be a small algebraic theory and let D be a cate-

gory satisfying

(1) D has products

(2) D has natural (¥-Mono, {’-Epi) factorisations

(3) D is{? - cowell prowered

(4) For any cardinal numberv n always fef implies f“gf
Assume further that M is a {Q-epi - core _ flexive subcate-
gory of D, such that V': 1T[A,M] + M is already a r - adjoint.

Then for any € - epi - reflexive subcategory D of D the functors
V: "[A,_l-)-] + D and 1: 1“[A,'l-)'] -+ [A’D] are r - adjoints.

Final remarks:

(1) Let D be a coreflexive subcategory of Top resp. Unif, then
for M = Ens the theorem shows the existence of free algebras

over topological categories.

(2) Starting with M = Komp® one gets the same result for coal-

gebras.

(3) There are {?-— epi - reflexive subcategories D of locally
presentable, categories D being not locally presentable, but

again by the theorem we have free algebragover D.




Beck, J.: Rational homotopytheory and coalgebras

This is to suggest a new proof of Quillen's theorem
(Annals 1969)

HoQ Top, = Ho (EEE/Q)z‘

These homotopy categories are formed by inverting all maps of

2 - reduced spaces X + Y which induce rational homology iso-
morphisms (n-reduced means (n-1) connected), and all maps

C + D of DG cocommutative coalgebras/Q which are connected and
have CI = Dl = 0, The idea of the proof is that the deviation
of the diagonal chain map from commutativity is measured by
Steenrod operations, but these becowme trivial over the rational

numbers.

Obviously HoQ Tog2 HoQ §§2, where SS is the category of

simplicial sets. The adjoint functors are cotripleable:

FD

s & > (FD), ———> DGG

Thus HoQ §§2 = HoQ DGG2 . Here y is the underlying simplicial

set functor of simplicial Q-vector spaces, and G = UF is also

written for the cotriple on DG Q - vector spaces which corres-

ponds under the Dold-Kan equivalence FD + DG .

There is also a cotriple W on DG whose coalgebras are unstable
infinitely homotopy cocommutative DG coalgebras. The cotriple
C will be the one whose coalgebras are strictly cocommutative.
The first step of the proof is to show, that the cotriple maps

G * W « C induce homology isomorphisms
(1) Hy (AG) —> Hyu(AW) <—— Hy(AC)

for every A € DG . This requires studying cohomology operations

in these categories (which reduce to cup products).
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Contensor products supply right adjoints:

DGG - > DGW < > Dbec
(a 4¢ (Joyt

Any A € DGW has a standard cosimplicial resolution A -+ AWY .
Using the fact that these categories are enriched/SS, together
with simple connectivity, we map A into the corealization

|AW®| = lim |AW?|(n) whose finite coskeleta are sub DG modules
of 1 Hom(Ai, Awl*l), o «<i <n. This is dual to the usual con-
cept of geometric realization. The right derived functor of the

cotensor product AD_ C (for example) is then defined as

W

® R
- AD_ Cc = JAW¥| O C

W L]
The right derived functors are well defined on the homotopy

categories and give adjoint functors

(2) Ho DGG :————> Ho DGW <«

2 5 Ho DGC

In DGW we have diagrams

(3) A > |AWF| —— |AWF| _ C

The first arrow is a homology equivalence by the ﬁsual con-
tracting homotopy argument, and the second is such by (1)
'. and a kind of Eilenberg-Moore spectral sequence; similarly
for G » W. It is this part of the argument that is uncertain,
as there are convergence difficulties. Probably the fact that
in all of these coalgebra categories the "fundamental theorem"
holds, that every coalgebra is a union of finite type ones, |
will give thehecesasary convergence. Arrows (3) being homology

equivalences implies the functors in (2) are equivalences.

These equivalences should be compatilde with the fibration, etc.
structures on the homotopy categories, and are probably fairly
computable. I do not know how this compares with Quillen's
equivalence, which is fer harder to compute. It is this incom-

putability which justifies a new approach to the theorem.
Al
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Benabou, J.: 2-dimensional limits and colimits of distri-

butors (or how to glue together categories)

In this work we define two constructions permitting to glue
together categories, based on a multiplicative category N,

where the attaching maps are Ul-Distributors.

Precisely: Let C be a category and N be a morphism of Q:*,
considered as a one dimensional bicategory, in the bicategory
V- Dist of UL -Distributors; N being defined by the following
data:

1 - for each object A of C , a?/l_-CategoryXA

2 - for each a: A » B inC, a Yl - distributor Ta X}; -+ X.A

C
3 - for each A %> B B , ¢ inva morphism of Ul - distributors
: T T, —> T
Hay8 f Ta BT TBa
4 - for each object B of C a morphism of UL - distributors

ng ¢ 1d(X'g) —> Tr4(p)

making commutative the following diagrams

Mo, T
T, Tg Ty 2. Too T T Id(X, )<— T, > 1d(Xg)
Tovg Y - HYga,y AU
? Ao, WR)
v
‘T T > T
o TYg T YBa Ta T 1a(a) | Id(B)

Theorem 1: If U is right complete and ® commutes with right

limits, then I has a 2 - dimensional right limit (i.e: there

exists a Ul category X.'_ together with Yl - distributors

X' XT and maps of Ul - distributors Ja : JA Ta > JB
malilng commutative: JA Tu. TB NPT > JA TBOL
A Ta,B
Ja TB JBO.
v V
JB TB J > Jc
B
- 7 -
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()(; Jys Jy) being universa} with respect to this property.
Moreover it turns out that the JA are in fact functors.
This construction yields as special cases:

1 )”'The Kleisli category of a triple (takeC = 1,1R.= Sets,

T] a functor)

2 ) The generalisation of this to the Ul - based case, or to

the "pro - triples"”

3 ) The construction giyen by Grothendieck in "Categories
fibrées et descente' of the category associated with a
pseudo functor, and its universal property (not given

in this paper)

4 ) taking all the X'A to be a fixed monoid X in Ul and the

T to be identities, one gets the U categoryﬁ( €)

a’ ua,B
(the group ring whenVUl = Ab and € is a group).

With the "obvious'" definitions we have:

Theorem 2: If?1 is closed symmetric and left complete any

. % . .
comorphism 1 from a small category C to Ul- dist has a 2 -
dimensional left 1imit)§wl

We mention a few particular cases, the reader will convince
himself. that many well known, and apparently different, con-

structions are covered by this process.

1) The Eilenberg-Moore category (ordinary,zn— base, or with

respect to a pro - cotriple).

' C
2) The functor categories x (Xa Ul— Category and C a cate-

gory). In particular the left adjoint of the forgetful functor

"Vl - cat » cat.
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Borceux, F.: Les limites relatives

Soit F: A » Ens un foneteur; le foncteur d'oubli.é_F : R A
défine sur sa catégorie de représentation EF admet 1' objet
L de A comme limite a gauche ssi L est le reflet de F par le
plongement de Yoneda Y : A -+ Nat (A, Ens); en particulier,
le plongement de Yoneda admet un adjoint 4 gauche dés que A

est compléte a gauche, localement petite et posséde un coghérateur.

Ces faits nous suggérent de P relativiser comme suit la notion
de limite soient V une catégorie fermée monoidale symétrique,

F: A+ Vet G: A >B deux V - foncteurs; un object L de B est

dit étre la V - limite a4 gauche de G modulo F - (L = lim G) -
F
ssi L est je teéefletde F par le foncteur

»* Y

B ———> V - Nat (B ,V) G,1

>Y_-Nat(.A_9v)

die Y est le V - plongement de Yoneda de B .

Cette notion de limite permet d'établir les résultats:suivants

(1) Un V - foncteur F: A * V est V - representable ssi

(a) lim N existe
¥ =

(b) F commute avec cette limite.

(2) Un V - foncteur F:A 5 B admet an V - foncteur V - adjoint

4 gauche ssi

(a) YV Be|B i 1, existe
2| ]f_(B,F—) 2

(b) F commute 4 ces limites -

(3) Si F: A » Bet G: A » C sont deux V -foncteurs, G &dmet

und v - extension de Kan par F dés que
(a) VB € IBI lim G existe
-_— -+~
_B_ (B9F-)

(b) Yce |_g| C (C,-) commute avec ces limites

(ce résultat est di 4 Marguerite Zandarin, Louvain)
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(4) Si F: A >V est un V - foncteur et Y: A" » V -Nat (A,V)

le V -plongement de Yoneda de A, alors F = 1lim Y.

-

Comme exemple d' application de ces théoremes, signalons

la dualitg de Gel'fand qui fournit une situation d'adjonction
relativisée par rapport a la catégorie des espaces topologi-
ques, rendue fermée monoidale symétrique au moyen du bi-

foncteur de la convergence simple.

Cherenack, P.F.: Algebraic Homotopy Theory

Some of the usual notions of homotopy theory: loop functor,
suspension, quotients exist in the category of affine schemes
of a countable type over a field k. When k is the real numbers,
it is possible to see that the algebraic suspension of the n
sphere is the n plus 1| sphere The algebraic suspension functor

is the right adjoint of the algebraic loop functor.

Cole, J.C.: Topology = Left - exact adjoints, or 2 is a

category of Sets.

To a continous map f: <X,0_.> - <Y,0Y> we may associate an

X
adjoint pair of functors:

0x < -

. -1 . .
with £ , the inverse - image map left - exact.

Since a map f-I: 0y—-——'>0x between posets which is cocontinuous
automatically has a coadjoint, we consider the category of cocomplete
distributive lattices, and cocontinuous lattice homorphisms. (By

distributive, we mean that colim's are exact), CDL.

Proposition: Sober spaces form a reflective subcategory of cpL®P,

Proof. To a cocomplete distributive lattice L associate the set

of maps L + 2 as the underlying set of the space, topologized

o®
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in the natural way, setting as opens, 0 = {p: L *2: :p(u) =11}

for each u € L.

Note that sober spaces form a wide category to walk in, with a

sober reflection of any space.

Proposition: Sober spaces form a reflective subcategory of Top.

Proof.: The reflector takes a space to the open set lattice,
and then to the reflectimg sober space of the above Proposition.
One may their define a map between sober spaces to be an adjoint

pair, with left exact left adjoint, between the open set lattices.

A map between elementary toposes is defined to be just such a pair

We have for toposes a factorization of maps: Lawvere Tierney

»

Ee————>5>F

* ~ /7/ o
. a. b .
cotripleable a* p/i>///b¥ tripleable
. S, 3 - . .
i.e a reflects iso's GY¢ i.e b fully faithful

—

1 1

—— f, is cotripleable iff f

reflects isos, if f is surjective; and tripleable iff b, is

For spaces, the adjoint pair f

fully faithful if f is a subspace embedding, and hence we obtain

an identical factorization theorem for maps between sober spaces.

The analogy between spaces as categorieSover 2, i.e lattices, and

toposes as categories over sets, is madeclear by the final.

Theorem Sober spaces is a coreflective subcategory of Topos/Sets.

Proof The inclusion is the sheaf category construction, The

co-reflection is to examine the image in Sets &f the subobject
cléssifier, a cocomplete distributive lattice, which hence has a
sober space associated to it. The end adjunction is an iso, whence
the inclusion is fully faithful. The front adjunction is given

by examining the local sections of an object or a sheaf and re-

constructing from them the corresponding sheaf or object.
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Deleanu, A.: Localization in homotopy theory and a construction

—

of Adams.

A construction, due to J.F. Adams, for completing a space

with respect to a homology theory by using categories of
fractions is generalized to triangulated categories. It is
shown that the Adams completion generalizes both the locali-
zation and the profinite completion of a space in the sense

of D. Sullivan. In fact, the completion of a space with respect
~to a ring, in the sense of A.K. Bousfield and D.M. Kan, is
shown to be a particular case of the Adams completion. It is
proved that the Adams completion functor is a reflector. The
relation between the Adams completion and the Kan extensions

- of homology theories is also discussed.

Duskin, J.: A representability-interpretation theorem for

triple cohomology.

Let B be a category with finite inverse limits and U: A + B
a tripleable functor. Under these 1imit.assdmptions, the
classifying complex construction W(K) - W(K) of MacLane is
defined as well as the augmented k coskeleton triple Coskk
for augmented compléxes in A and B. 1In particuiar, for any
abelian group object m in A, the Eilenberg-MacLane complex
K(m,n) exists. Let SSA[K],KZ] be the set of homotopy classes
and G°(X) be the standard

of simplicial maps of K, into K

1 2
co-triple resolution of an object X in A so that the triple
cohomology groups HE(X;H) are defined.

Remark 1. (homotopy representability);

Hy (X3m) 5 ssA [6° (X) ,K(m,n)] .

Definition: A simplicial fiber space F - E » K(m,n) in A will

be called a K(m,n)-torsor above X (relative to U) provided it

" satisfies the following conditions:
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(a) E is*augmented above X and is U-contractible

(b) U(E) 3 [Cosk™ 2(U(E))] x W(R(U(T),n-1)). If TORS (X;m)

is the group of connected component classes of K(w,n)~-torsors,
then we have the following theorem (interpretation):

HE(X;W) et IORSE(X;n). The proof is based on the construction
of a "standdrd" K(m,n)-torsor in each class defined by a given
n-cocycle £ using a theorem of Beck and the following Lemma:
(applied for k = n~1). There exists a canonical homomorphism
leave in OK, the theory outlined hence links with Extn(X;w)

in the following fashion. If A has kernels, then the Moore
complex of the fiber of a K(m,n)-torsor gives rise to an
"n-fold extension of X by " o + 7w » N > .. > X > X > 1 which
will satisfy certain compatibility conditions (e.g. Whitehead

crossed modules in the case of groups).

It links with obstruction theory as follows: let
F»>E % K(m,n) be a K(r,n)-torsor and Tr" be the "truncation
at level n" functor. Given a map

£: TR™ (6% (y) - R (F) (¥ TR™ 1 (E)). The V-contractibility

of E defines a map f: G*(Y) » E whose composition with P is o

iff f extends to the entire fiber F. The class IPEW e H(y,m)

is the desired obstruction. For the example, the fiberes of
K(n,2)-torsors are gronpoidé, cohomology ﬁitdgroupoid coefficients
is then applicéble and'SSé(G°(X),F)+ TORSy (¥;F),

Ehrig, H.: Automé%ﬁeory in Monoidal Categories

The theory:of automata in monoidal categories will be sketched
-and the main theorems concerning reduction and minimization will
be stated.

l.Def. A (Mealy-)automatOR is a diagram of the form
0 P Sal TN S in a monoidal category (K,m) with unitobject

E not I (=Inputobject).

2.Examp. In (Sets,x), (Rel,kx), (PD,x), (gg,x),(Stoch,x), ModR,a)r

(Top,x), (GG-Haus,x) one will get the classical definitions of

Deutsche
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determ., relational, part. def. nondeterm., stochastic, linear

and topoiogical automata. (x=cart. pr.)

3. Def. Morphisms in the cat. Aut of automata are 3-tup.
(£, ,f5) satisfi. | ] ;
0 <——— SgI ——> §

fo = fsnf = f

v
0'<

S
_— S':I' —_—> g'
1' d

. Serialcomposition A'e A can be defined for I' = O in categories:

with diagonal-morphisms. This makes Aut a hypercategory -and

allowes DECOMPOSITION - THEORY (cf. Budach-Hoehnke, Eilenberg).

4, Prop. Def. d!: SmTI - S (TI free monoid over I) by do =rg,
n+l d =l d
n

.= - >
dn+l := Sml >SaI S, then
(s,d!) RactTI (=rightf actions).
5. Theor. I fixed, L:= RactTI v > .[_(. -BI? E implies:

- Aut (I) = (z+ K). Objects 1: §S 5 0 (1 € K) are called apparats.

If (K,a) is closed monoidal abeiian, then Aut(I) is abelian:

COHOMOLOGY of automata is treated by Budach-Hoehnke.

Reduction and mipimization theory in closed monoidal cat. with

(€. -factor. Let I be fixed (or restrict fI to retractions) and
€a ide £ , Aut:= Aut(I)

' .
SaTlar —318L | gq1 —!

> 0 implies M(A): S » [TIaI,o] Ract,,,

this implies:

~

6. Theor. There is an isomorphism M: Aut(I) 5 (RactTI v [TIuI,-])
~ Idea of proof: -aTl — V —j [TI,-] : K » Ract has to be

—TI1
applied.
7. Def. Let the behaviourcat. B def. by objects m: B-—>£ﬁ1 ® I,d]
with m€ ¥l and m € Ract:TI and morphisms i € K with

m: m

> [Tr® 1,0]

B
=7
i , = m'
V. .
B behaviourfunctor B: Aut — B

A \— n

with

Forschungsgemeinschaft - 14 @ @




> [TI-I 0]

DN

8. Theor. Let A € ]Autm| <> M(A) YT , Autmg Aut d€ull then

a) there exists § : B 3 Aut (EQUIVALENCE PROBLEM)
b) there exists a reflector R: Aut » Aut™ (MINIMIZATION PROBLEM)

c¢) The.corresponding special problem to b) is solvable
(REDUCTION PROBLEM)

) B — 3§ : B —=—> Aut™ L aut, BJ] =

: ’ N
(MINIMAL REALIZATION) (Goguen) .

9. Def. Let Auts# be the category of automata with initial state

(initial state def. by a: E + S, E unitobject) behaviourcategory

> 0
)0' ’

objects b ¢ K;behaviourfunctor

B# : TIal

B* : Aut*_, E_* .
A > bi= TIal —2%234 5 gar1er —412L | gar > 0

A € Aut, 1s called (-connected, if (EaTI YT i SaTl —g7—> S)é{

'10. Theorem: Let A ¢ |Autl| <—> M(A)EN , A€ |Aut*| <—> A
£ - connected,.lAutﬁ’mI |Aut*|n |Aut*| Aut;f, Aut Aut{’

full subcategories of Aut :

a) there exists E: Aut, - Autf coreflector with B,E = B,

(up to restr.)

b) there exists R,: Aut, -+ Aut: reflector with B_R,= B,

(up to restr.)
c) there exists up to isomorphism a unique functor M,: Aut -+ Autg’m
with ByM, = B,. Such a functor can be given by My:=R_E, = E R,

(MINIMIZATION PROBLEM in Aut,)

DF Deutsche ’
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d) there exists F — By: Auty + By with ByF = lB (FREE REALIZATION

R PF -3
e) Ba ?—_i_-> Aut*’m is an equivalence of cat., with .
BuJds
Ju Aut.f’In > Autg inclus. (EQUIVALENCE PROBLEM)

4

£) M, := J4R4F : By + Auty is a minimal realization in the sense

R
of Goguen, that is : By — M with ByM_ = |

R R B
(MINIMAL REALIZATION PROBLEM) .
Remark: f) is a corollary of b) and e).
‘. H.-G. Ertel and H. Schubert: Universal topological algebra.

The algebraic theories considered here are skeletons of Kleisli
categories for arbitrary triples over Ens (the category of sets
" of some universe). Let X be a top category over Ens in the sense
of Wyler (= Initialkategorie of Wischnewsky), e.g., topological
'spaces, and let A be an algebraic theory. Let <A,X> be the cate-
gory of those algebras over Ens whose carrier is given a
"topology" and whose operations satisfy a given class of partial
continuity conditions; morphisms are homomorphisms which map the
carriers continuously. Then the forgetful fuﬁctor
<A,X> + X is tripleable and <A,X> has nice properties (e.g., is
complete, cocomplete, well powered and co-well-powered). The same
. holds if continuous actions of a fixed X-object on algebras are
taken into account, e.g., modules over a topological ring or

continuous action of a topological group on spaces.
In the above, X can be replaced by an epireflective subcategory Y.

If Y is co-well-povered and products of epis are epis, then
corresponding results hold for continuous algebras over a epi-
reflective subcategory Z of Y, e,g., X= topological spaces, Y

completely regular spaces, Z = compact spaces.

Functors which forget a part of the continuity conditions (in the

case of X or Y) are tripleable, and so are functors which are

_]6_
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induced by top functors, by the inclusion Z & Y « X, or by

theory - morphisms (algebraic functors).

The proofs use a pullback of forgetful functors, Mane'$ result
on Birkhoff subcategories (slightly generalized), and Dubuc's

adjoint triangles.

Fakir, Sabah: a-injective objects in locally o-presentable

categories

Let o be an infinite regular cardinal and A be a locally o -
presentable category (Gabriel-Ulmar, Lecture Notes N: 221). Let _
Mono (A) be the full subcategory of Mor (A) whose objects are the .

monos of A. Prop. Mono(A) is a locally a-presentable category
and its a-presentable objects are the monos A >—> B such that

A is o-generated and B is a-presented.

Def.: An object E is called a-injective if it is injective rela-

tively to these monos.

Theorem: 1) If A has enough a-injectives then monos are couniversal.
. N

2) If o = él o and monos are couniversal then A has enough <2§o-

injectives.

Examples: ModA , c" - comm.algebras, Bool (category of Boolean

algebras). : .

Counter examples: Groups, Monoids, Cat, Comm.Rings, due to the

existence of simple objects.

Prop (due to Sabbagh): if in a category monos are couniversal,

then every subobject of a simple object is a simple object.

Prop: If o =<89’ then <Y&B-inj => absolutely pure in the sense

of P.M. Cohn. The converse is true iff monos are couniversal.

Definition: a category is called locally g-coherent if it is

locally a-presentedand if every a-generated subobject of an e-

presented object is a-presented.

Deutsche
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Theorem: Let A be locally a-presented and with enough a-injectives.
The following conditions are equivalent

1) A is locally a-coherent.

2) Every a-cofiltered colimit of a-injective objects is a-injective
3) Every a-reduced product (and in case a= €%p every'ultraproduct)

of a-injectives is a-injective.

Examples: ModA where A is a coherent ring, ModA\N where N is a
coherent object in ModA . Finally we characterize small a-cocom-

plete category such that Conta.(Uo,Ens) is a-coherent. .

Fletecher, R.W.: Casimir elements for functors

The natural transformations from the identity functor to an-

~endofunctor are called Casimir elements and those from an endo-

functor to the identity functor Co-Casimir elements. A Casimir

element u and a Co-Casimir element € act on map f: FX - FY, to

‘give a map efu: X + Y. The natural transformation eu is called

the value of the Casimir and Co-Casimir elements.

If (H,e,A) is a cotriple we consider the action of a Casimir
element of H and the Co-Casimir element €. If S > R is a ring
extension and H = Ra_, - (on left R-modules) then Casimir elements

S

are multiplication on the left by elements a of Ra_R satisfying

ra = or for all r in R (the classical Casimir elemints). If (K,u,M)
is a triple we consider Co-Casimir elements and the Casimir element
u. In the case, C is a coalgebra and K = -aC (on right C-comodules)
Co-Casimir elements are given by elements o in the linear dual

(caC)® such that

CrC 1aA > CraCmC
Aml ozl
A4 v
CaCmr(C > C
1 sa

commutes where A is the comultiplication of the coalgebra C.

o®




If a cotriple H has a Casimir element with invertible value

(with the Co-Casimir element €) all objects are H-projective.
Dually for triples. As the space of integrals of a Hopf algebra
is a direct summand of the Casimir elements and the space of in-
tegrals of the dual of a Hopf algebra is a di.rect summand of the
Co-Casimir elements we can deduce Sweedler's results on the semi-

simplicity of Hopf algebras.

If the endofunctor F is both a triple and a cotriple an object
A is F-projective if and only if there exists f: FA » FA such
that €fu is the identity on A. (For example F = Ra_.-, when S - R

. S
is a Frobenius extension, which gives the Gaschiitz - Ikeda - Kasch

theorem). . : .\

If (R,S) and (S,T) are adjoint pairs of functors the Casimir

elements of the cotriple RS are isomorphic to the Co - Casimir
elements of the triple TS. Further, if f: SA -+ SB, the action

of a Casimir element on Rf gives the same map A + B as the action
.of the corresponding Co-Casimir element‘on Tf. An example of such
a system of functors is given by a ring extension S - R where the
functor'R is Ras -, T is Homs(R,-) and the functor S is the for-

getful functor from left R-modules to left S-modules.

Freyd, Peter: Aspects of Aspects of Topoi, Section 5.6 of ‘.

Aspects of Topoi (Bul. Austral. Math. Soc. Vol 7(1972), 1-76)

is all wrong.

The error occurs earlier, namely the stupid assumption that a
colimit of functors, each of which preserves epimorphic families,

does the same. The lines about preserving epimorphic families
in 3.21, through 3.24 should be struck. Fortunately we didn't
use those lines untill 5.6 where the results though false are

the answers to the right questions.

Deutsche
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There exist bicomplete topoi, even Boolean and 2-valued, with
no exact functors into the category of sets. Nothing like a
stalk functor. On the other hand, every countable exact subto-
pos of any bicomplete topos is exactly embeddable in a power
of the category of sets. Perhaps nothing better demostrates
the utility of the elementary version of topoi. The way in which
one would likely use the existence of enough exact set-valued

functors is to verify elementary assertions. Knowing that the

countable subtopoi allow enough exact set-valued functors is,

of course, sufficient for this use.
We say that a topos is N-STANDARD if it has a natural numbers
object N and the maps I—&»N, through the standard natural

numbers; forman epimorphic family.

Theorem: Every countable N-standard (Boolean) topos is eractly

(logically) embeddable in a product of N-standard wellpointed

topoi.

Theorem: There exists a Boolean 2-valued N-standard topos of

the power of the continuum with no exact functors to the cate-

gory of sets.

There exists a Boolean 2-valued bicomplete topos with no exact

functors to the category of sets.

Gray, John: 2-Cate§ories and Broich group.

In the category of 2-categories, the N-dimensional cube QN
in the 2-category described by the following generators and
relations: the objects are sequences I = (11""’1N) where
1, = 0,1. Odenotes the sequenes with all O's and 1 the one

k
with all 1's. If I Has a O in the m'th place, then I(m) is the

o®




sequence agreeing with I except in the m'th place, where it
has a l. In this case, there is a basie l-cell tm,I: I » I(m)
and the undgrlyiﬁg category of QN is freely generated by these
basic 1-cells. If I has zeroes in the m'th and n'th places,

m < n, there is a basic 2-cell as indicated in the diagram

t
I m,l > I(m)
ta,1 t, 'n I 3 tn,I(m)
v v
I(n) - > I(m,n) = I(m)(n)
m,I(n)

The 2-cells of QN are the required compositions of the 2-cells
with each other and with l-cells, subject to the axioms of a 2-

category together with the relations for all m < n < p,

Y. ( (t t )

t t
n,I(m,p) mop’I) m,n,I(p) pP,I

) «(

t
(tn,p,I(m) m,I

= ( ‘m,p,I(n) t:n.I») (tm,l(n.p) ‘n,p,I).

(This says that a 3-dimensional cube commutes.)
|

t - t
p,I(m,n) m,n, I

Theorem: QN is locally partially ordered. (I.e,,its hom cate-

gories are partially ordered.)

Proof.: (Sketch). By induction, it is sufficient to treat the
category C = QN (0,1). The objects in C can be represented by
permutions A = a; eeen aN of 1,...,N where am represents the

basic l-cell

m’p-(am-i-l,...,aN )

There is a morphism in C formed by composing a single basic
2-cell with I-cell from A to B iff A and B agree exept at two
a = b ,

m+1’ “m+l m

N < . . . .
k a a +1 ° Call this morphism GmAB' Thdmorphlsms of C consist

succesive places, say m and m+l, and a = b

of all composible words in there subject to two types of relations:

DF Deutsche
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R1. If is defined, then there exist

°%2¢cp °m+1 B C "mAB

L ' ' i d . .
unique B' and C' with °m+lC'D cmB'c' °m+lAB' defined and these

are equal.

. . . _ > .
R2. If Och onAB is defined with lm n| > 2, then there 1s a

unique B' with o defined and these are equal.

B'C ’mAB'

Lemma: There is a faithful representation C z By where B,

is the braid group on N-strings.

Proof: Take GmAB to the generator o of BN'

These generators satisfy

=
m m+l %m Tm+1 °n  m+l

Om 0n = c"'n Om lm—n‘ > 2 .
The hard part is to show that equality of words in the braid

group implies commutati¥ity of the corresponding diagrams in C.

This is accomplished by two steps.

1. Words in the image of P can be brought into canonical form

" . remaining entirely within the positive semi - graup of BN'

2. Regard the symmetric group SN as the quotient of BN by adding

the relations o; = ] for all m. Then there is a section of

N N

words in the image of P.

B. - S. whose values consist precisely of the canonical forms of

Applications.1., The structure of the 2-theory of moniods (as well

as of other 2-theories) can be deduced from this. This yields
the usual cokernel theorem formmonaitdal categories (which are

models of this theory) as well as all cokernel properties for

- 22 -
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morphisms between such categories.

2, The <coherence for the m-product of 2-categories corres-
ponding to the internal hom given by F un (-,-) requires the
details of the structure of QA.Onnenthis is established, one

gets Qn = L R ) a 2

-_ n

where 2 is the usual arrow category regarded as a locally disc-

rete 2-category.

N

Hoffmann, R.-E.: The Categorial Idea of Initial and Final Topology.

The starting point of the investigation was the definition of
initial and final topology in the work of BOURBAKI: these concepts
(being non-categorial until 1965) are used to define products and
coproducts in Top. - The come - out of my investigation are
several types of functors ( — denoting inclusion of classes)

amb - idt. triangles

not introduced (Z-)semi - idt. )7 topological functoa
™ idt.triangles .~ r
here triangles ps.-topological

-idt.tri
ps—-idt.triangles functors

(ps = pseudo, idt = identifying);

the most interesting ones being "idt. triangles" and "topological
finctors". The concept of (Z-) idt. triangle is related to thosé
of
Colimit functor having a fibration in and to the
full and faithful left adjoint the sense of
Grothendieck 61:- and
Gray 65

Deutsche
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varions definitions of something like "topological functor"
occuring in the literature: c.e.s. compléte of ANTOINE (Bull.
Math. Soc. Belg. 66), initial functor of ROBERTS (J. of Algebra
68), initial completeness of BRUMMER (Thesis, Cape Town 71) -
Husek's s-categories (Comment.Math.Univ.Carol. 1964 sqq.) and
the "projective generating" of the Praque school: all these
definitions have turned out to be (nearly) equivalent to the
concept of Top-category of Wyler (!. Archiv d.Math. 71, z.Ge-
neral Top 71), which has been earlier defined by Kennison (65)
(parts of this result ore due to SHUKLA, thesis KANPUR/INDIA 71
and WISCHNEWSKY, Diss. Miinchen 72; the whole result is due to
the author). '

Examples of topological functors are e.g. the forgetful functors
Top-, proximity apaces, measurable spaces, Dynkin-systems. pre-
ordered sets, sets with a relation inscribed + Ens; also topo-
‘logical groups, rings etc. + groups, rings. Idt. triangles and
(the dual concept) co-idt. triangles (= amb-idt. triangles) at

the same time are e.g.: Mod (=category of all modules, see GRAY)
4tudtary, ass. Rings, Object: cat » Ens and directed graphs + Ens,

all of them not being topological functors.

Definition: V: C »D a functor, (A,A) a cone in C with domain
T: Z+C: (A,A) V-idt. (V-identifying :*

" for every cone (n,B) in C with domain T and every morphism
u: VA »> VB in D,
so that uy V+\X = Vxn, there is just one morphism f: A -+ B,

so that Vf = u and fzk = n (Ctest-situation").

If the test-situation can be satisfied (at least) for isomor-
phisms u: VA —=—> VB, then (A,A) is called V-pseudo-identifying
(V-ps-idt).

Examples: 1. V = forget: Top + Ens, then (A,A) is V-idt, iff . A
has the "final" or "identfying" topology
2. D=1: (A,&) V-idt. ¥ (A,A) colimit

- 24 -
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T2 - - )
3. Z = 1: (A,A) is just a morphism in C, let ns say 1!
4. L = ¢: - (XA,A) can be replaced by A:

(A,A) V-idt% : A V—discrete* (V): Hom(A,-) + Hom(VA,V-)
is an isomorphism
if V= forget: Top + Ens, the "discrete spaces" are so charac-

terized; if V = Object: cat + Ens: "discrete categories".

A V-date (T;¥,D) consists of a diagram T: £+C, and a cone
5 (A,A; i: D —= > VA) is called a V-idt. lift of the
V-date (T; ,D) iff.

1. A has domain T, 2. iz'P = V=2, 3. (A,A) V-idt.

V is called an idt. triangle, iff every V-date of type I, I
being V{-small, has a v-idt. lift (C co-complete, then C + 1|

is an idt. triangle, other examples you find above). If V = W
V idt. triangle, then W idt. triangle (therefore i in the 1lift
is assumed to be notlnecessarily an identity). An idt. triangle
has a full and faithful left adjoint and it respects colimits
(not necessarily being itself left adjoint); its domain is co-

complete iff its range 1is.

Theorem: D co-complete, V: C - D a functor:

V idt. triangle 34 1. C co-complete
2. V respects colimits
3. V

has a full and faithful left adjoint .

By this criterion e.g. Object: cat - Ens is recognized to be

an amb-idt. triangle (= idt. + co-idt.).

Definition: V: C - D is a "topological functor" iff

1. every V-date of type I, I discrete and Vl-small, has a V-idt
lift
2. for every D €0b D {GeobC| VC & D}/ has Y-small cardi-
. . =C
lity -
if V 1ifts isomorphisms (not necessarily unique), 2. can be

replaced by 2'. the V-fibre of D has a Ursmall skeleton
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Theorem: Vy: €C + D topological, then

a) V is faithful, b) every V-date (I map be not discrete and
card £ >, =, < card Y) has a V-idt. lift (this suggests a nother
definition of "topological"), c¢) V°P: EOP = 2?p is also topolo-

gical ("duality theorem") ( ¢) is still known under the assumtion

that V 1lifts isomorphisms).

a) generalizes Freyd's result onl/small complete categories

(consider C + 1).

Remark:if every V-date has at least a V-ps.-co-idt. lift and
"2." is satisfied, V is called ps.-topological: V has a full
and faithful left adjoint and is faithful: forget: T, -spaces

+ Ens is ps.-topological, but not topological.

Let V: C —D be topological: V has a full and faithful left
adjoint and a full and faithful right adjoint; C is (co-)com-

plete, iff D is; C is (co-)wellpowered, iff D is

Theorem: let D be co-well powered and co-complete, V: C D a

functor: V topological §$

1. C is co-wellpowered and co-complete

2. V has a full and faithful left adjoint and a full and faithful
right adjoint

3. V is faithful.

Remark: for any category C there is at most one topological

functor (up to isomorphisms) C * Ens.

For the following result remember the construction of

"pseudo-functor”" in GRAY'S paper (La Jolla Conference 65):

Theorem: Let V: C , D lift isomorphism (!)

V co-idt. triangle % V is a fibration and

(i.e. V°P j4¢. 1. the fibres are complete categories
triangle) 2. the functor between these fibres, which are
induced by the morphisms of D, preserve
limits
_26-
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V is topological, iff furthermore the fibres are preordered U-
classes with small skeleta; if V 1lifts isomorphisms uniquely, v
then the inducing "pseudo-functor" is just a "topological theory"
in the sense of WYLER.

Herefrom "forget": Mod - Rings is see_n to be an amb-idt. triangle,
and especially Mod(= all modules) (see e.g. GRAY) is seen to be

complete and co-complete.

(1)

Jensen, C.U.: A survey of the latest results about lip

The lecture gives a survey of some results about lim(l) found

jointidly with L. Gruson.

Definition: For a left R-module M define L- dim M as the length

of a minimal pure injective resolution of M.

Theorem}: If L-dim M = n < «», then lim(;)(AaaM) = o for any pro-
: R
jective system of finitely presented right R-modules Aa and all:

i > n.

Theorem 2: Let R be right coherent and P a flat left R-module.

For an integer n the following are equivalent:
1) L-dim P < n .
2) lim(i)(Aa @P) = o for any projective system of finitely
presented right R-modules Ac and all i » n
3) lim(i)(Fu aP) = o for any projective system of finitely gene-
rated free right R-modules A and alli > n

4) Extl

R (Q,P) = o for all flat left R-modules and all i » n.

Remark: 1 => 4) holds without assuming the coherence condition

. on R.

Remark: If L-dim P £ n for any flat R-module P, then the projec-

tive dimension of aﬂ& flat left R-module < n.

Deutsche
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Theorem 3: For any (not necessarily coherent) ring R of car-

dinalety Eit one has L-dim M < t + 1 for all R-modules M.

Corallary: For R as above any flat module has projective

dimension < t + | and (1. gl. dim R- v.gl. dim R) St + 1.

Theorem 4: Let R be right Noetherian of finite Krull-dimension

( in the sense of Gabriel) d. Then the L-dimension of any flat

left R-module is < d.

dimension < d.

. Results about lim

Theorem 5: Assume R and R [[x]] cohersmt. Then L-dim R =

L-dim R [[x]]

If A is a flat R-module the modules of the form Exté(A,R)»are
the same as those of the form lim(l)Fa, Fu finitely generated
free.

(1) give information of "Whitehead-like"
probleme for various classes of rings. As typical results we

mention.

Theorem 6: Let R be a countable Dedekind domain. Then the-

following conditions are equivalent:

1) For any countable torsion-free R-module A Ext;(A,R) is

compact (in a suitable topology)

2) For any maximal ideal m of R, R/m is finite.
In the uncountable case the following result is useful.

Theorem 7: Let R be Dedekind ring with quotient field Q and

write
Extp(Q,R) ¥ Q¥

Then the d's which can accur are

1) any infinite cardinal number

-28 -
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Y preserves elements (i.e. homE* (l,Y) + hom
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2) among the finite cardinal numbers exactly those of the

form EP - 1,p being a prime number.

Corallary: There exists a principal ideal domain R and torsion-
free A such that Ext;(A,R) g Q/R.

Kock,A. and Mikkelsen, C.J.: A factorization Theorem for

first-order'pteserving functors between toposes.

Theorem: Given a functor between elementary toposes,yp : E » Eo

which "preserves 1. order logic", then ) can be factored

Vel

e > &,
7
PN e

when g* is a topos and 7 and Y are 1. order logic preserving,

and when further

y preserves higher order logic (exponentiation)

(1, Y) is

Eo

bijective).

The factorization is motivated by non-standard analysis,'when

higher order properties of extensions in some sense (namely ; ‘D

are preserved, and in some sense (namely'Y) are not preserved.
The key word in this contradiction is the word "internal", as
used in higher order non-standard analysis. There one changes
the logic by inserting the word "internal" on the quantifiers;
"change of logic" in topos theory should be replaced by "change

of topos"”. This is what our shift from E  to E" does.

There are some different ways to interpret the phrase "first
order logic preserving '"; we shall take it to mean: "preser-
ving finite inverse limits, epies, and Q". The theorem is also

true if to this we add "preserves universal quantification".
P q

- 29 -
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Construction: Since P preserves products, it has a natural

structure as closed functor:
A

7A,B

s pafh

(1) ¥ (8%)

maps B +» P A, whose name 1 > ¥ B rA factor through )’3 will be
called internal maps. A subobject Ao >—>p A is called an

internal subobject, provided its characteristic mappA » Q 3 P Q

is an internal map. The objects of E' are now taken to be triples
a . . .
(Ao,a,A} where Ao >—>Y A is an internal subobject. Maps from
(Ao,a,A) to (Bo,b,B) are maps f: Ao > Bo such that "the graph"
<1,£>

A >

o > A_XB_ e—nnurn = ¥ (AxB)

is an internal subobject.

The only hard thing in the proof is that E has exponentiation.

We get help from the

Lemma: A category with finite inverse limits and a subobject
classifier 2 has exponentiation if it has exponentiation of

form Qx.

The form of the theorem involving universal quantification

depends on the following "extensionality" statement:

Proposition: For a left exact, Q-preserving functor ¥ : E *’Ed’

the following are equivalent
(i) ¥ preserves universal quantification

(ii) ?A g (as in (1)) is monic for all A,B.
9’

Further details may be found in "Non-standard extensions in

the theory of toposes'", Aarhus Universitet, Preprint-seried

no 25 1971/72.
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the category of presheaves over a small category (and an ana-
logous situation for elementary topos), and various categorie
of pre-ordered sets, the latter by B. BALLINGER.

If we look at the category B = éopp and choose a projective

with respect to regular epis in B, let U = (P,-):and F be its
left adjoint Ens + B, and put = (UF,n, UeF) for the associated
triple. Then one considers the EILENBERG - MOORE category Ens¥,
the comparsion functor K: B -+ Ens¥, and the left adjoint M of

K. One calculates MK = Q, thus obtaining another interpretation
of localization on A (colocalization on B). As a corollary one
obtains the following variant of LINTON's Thearem: B is equa- .
tional with respect to (P,-) if and only if B is cocomplete

and has kernel pairs, Q is the identity, and every equivalence
relation is a kernel pair. It follows, for example, that the
opposite of every GROTHENDIECK category is equational, in view
of the GABRIEL ~ POPESCU theorem.

‘Laudal, O.A.: Obstructions for the existence of sections of

functors.

Let Jl: R+ S he a surjective homomorphism of commutative rings
and assume (kerII)2 = 0, We may then consider the functor

. 1 1 . . §
I: Cp » ES defined by II(A ) A B S with Cz (resp gs) denoting l.

one of the categories R-(resp S-) modules, R-(resp S -) algebras,

Let ¢ be any subcategory of gs and let C be the full subcategory
of H-l(g) given by the objects A‘ for which Toqu(Al,S) = 0,

Consider the obvious restricted functor JI: C + c. Given any
motphismy: A + B of C let HI(Y) denote either Ext: (A,B?’kern)
or the Andri cohomology group Hl(S,A; Bgekerll) according to the

choice of category gs .

Then H' is a contravariant functor on the category Mor c defined,

- 3 ] -
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Lambek, J. and Rattray, B.: Localization at injectives in

complete categories

Consider an object I in a complete category A. Following FAKIR,
we define a functor Q: A + A and a natural transformation

k: Q » § = I(-’I) as the equalizer of the two canonical natural

transformations S -+ SZ. We call X k-injective if, for any object

A of A, every map Q(A) -+ I can be extended to a map S(A) -+ I.
Let Fix Q be the full subcategory of A consisting of all objects
A for which the canonical map A + Q(A) is an isomorphism. Then
Fix Q is the limit closure of I in A if and only if I is k-
injective. This result depends on Fakir's Theorem, which.says
that Q is idempotent if and only if S(k(A)) is mono, and on a
lemma which asserts that k(A) is the joint equalizer of all
pairs of maps S(A) 3 I which are equalized by the canonical

map A + S(A). If I is injecgive with respect to all regular

monos, the reflector A + Fix Q preserves all regular monos.

Example 1: TIETZE's Theorem assures that the interval lo,1] is

k-injective in the category of topological spaces. Q(A) is the

STONE - CECH compactifications of A, and this is essentially Cech's

original construction. In the category of uniform spaces, [Q,l]
is even injective with respect to all regular monos and Q(A)

is the SAMUEL compactification.'

Example 2: If A = Mod R, R an associative ring, and I is any

injective R-module, Q is the usual localization functor asso-
ciated with I. This agrees with the localization of GABRIEL -
BOURBAKI, if one takes the filter D of all right ideals D for
which HﬁmR (R/D,I) = 0 and defines Q(A) = lim Hom(D,A/T(A)),

where T(A) = {a e A | a~!

of right ideals D gives rise to an injective which is the product

0 € D}. Conversely, any Gabriel filter

of all injective hulls of modules R/K, K rangig over those right
. . -1 '

ideals K for which V're g T K ¢ D.

Other examples that have been studied are:

the oppbsite of Mod R, the category of bimodules a4 la DELALE,

o®
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by: the objects are the morphisms of ¢ and the morphisms

Y, +¥, are the commutative diagrams of the form

<

¥,
71 < #
v v
'b—‘—‘
¥ 2
The main result is then the following,
Theorem: There exists an obstruction [ lim Hz
' ° Mor ¢
s.t. if 0 = o there exists an obstruction 9, lim(l) gl s.t.
Mor ¢
if 91 = 0 there exists a set of
obstructions 02‘5 lim(z)uo s.t.
Mor c¢

Qo = o, 91 = 0, 6 € gz is nessecary and sufficicient for the

existence of a section o of .

Corellary: If X is an S-scheme of finite type then there exists

an obstruction 0o € H°(x,a§) s.t. 1f 20 = o0 then these exists an

obstruction 91 € H'(x,tl) s.t. if 21 = o there exists an obstruc-
2 o A .

2 H (X,®) s.t. go = o, 91 = o0, gz = 0 is nessecary

and sufficient for X to be liftable from S to R.

tion O

Several other applications were mentioned, as was the relationship
with the work of Lichtenbaum - Schlesinger, Grothendieck and

Illusie.

The proofsare found in the Preprint Series - Mathematics, No. 12
(may 1971), Department of Mathematics, University of Oslo, Oslo,

Norway.

Deutsche
Forschungsgemeinschaft

o®




oF

Deutsche

Linton, F.E.J.:Algebren iiber Tripel bzw. iliber Theorien im Rahmen

relativer kategorieller Algebra

We deal in the framework of V-categories, where V is closed, or
monoidal, or a full subcategory of any such. Where M in the
strctly associative monoidal category describing the multilinear-
structure on V, we oftenopeed to expand our framework to V-

A

categories, where V = S;‘, a complete, cocomplete, closed monoidal

category containing V as a full subcategory.

Given a !tuple'¥<on a Vcategory A, we may form the category Ag
of ¥-algebras in A; while é? is not in genera%t a V-category i
unless V has certain equalizers, it is canonically a i-category,
as are also all V-valued contravariant functor categories XESOP,
where X is an arbitrary V-category. The two instances of X we
need areX = A and X = K1(%), the Kleisli category built out of

the V-tuple ¥ , a Vcategory in a natural fashion.

Operational-style algebras over the tuple ; are described in
terms of functors on K1(¢) precisely as the following pullback:

op
pullback‘ e —— l(xl(y))

A
(among V-categories)

A°P

g < —

\
A Yoneda >

The fundamental identifikation theorem asserts that A’ is this

pullback, on the nose.

The proof uses as an intermediaﬁy stage the category of coalgebras,
oF oP”,
in Vv », over the cotuple on !é arising from composition- in -

advance with the structure of ;'.

More precisely, referring to the diagram
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op . K1(3)°P
a¥ > wty, e N6
vV B
\VZ N \;Op \Géop
A Yoneda - _ - ?

one sees, by use merely of the V-Yoneda Lemma, that square PB
is a pullback diagram, and, by examination of the nature of the
two kinds of data, that the arrow (¥) is an isomotphism of

categories. Further details will be omitted here.

If is worth pointing out the curiosity that the trileable
situation A‘? g A on the }Peft is the pullback gpf the _ggtripleable .

K1(7)°" A’
situation (y_A )-8¥ +«:<y_A (or V &) v )

on the right. This seems paradoxical ... Oder?

MacLane, S.: A Survey of Rece®lit Results an Coherence

A coheeence theorem specifies conditions when two parallel
canonical arrows must be e qual. A typical case is that of
monoidal categories which are categories with a m-product ,

and structure arrows
a : A®(B2@C) ~+ (A®B)® C

B : IDA » A, Y : A% B > BG&A

which made certain basic diagrams commute. The canonical

arrows are thep ' instances of &, B and Yy, closed under @ and

category (monoidal plus -® A has a right adjoint), proved by
Kelly-MacLane (Coherence in closed categories, J.of Pure and
Applied Algebra 1 (1971), 91-140). The essential method used

|
|
|
|
composition. The basic coherence theorem is that for a closed .
is that of cut-elimination. We report here on several extensions

qf such results.

First, G. Lewis has found g, similar coherence theorem for a closed

Deutsche -~ . © @
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functor @:_V * V' between two closed categories. However,
canonical arrows are not allways equal; for example there

are two different arrows ;3'1 —>§I @%I.

Next, Voreadou has in her thesis (Chicago) extended the results
of Kelly-MacLane. They proved that canonical arrows between
proper shapes are equal if they have the same graph. She

treats certain improper shapes as well by using an extended

graph, which links not only variables but the constants I.

Also, Kelly-MacLane extend then a coherence theorem from
a closed category V to the case of a natural transformation
®: F.* G, where F,G: A —>B are functors between two
v.-

categories A and B.

Finally LaPlaza.tteats the coherence prebtem for
distributivity: Functors® and ® , with ® distributive on both
sides over © . He obtains the following complete result:

Two canonical arrows are equal if they have the same distortion,

where the distortion is obtained by mapping the whole situation

‘to a certain standard category with @ and < . This problem

had previously been solved in unpublished work of Benabou.

A general setting for any coherence problem has been developed
by Kelly. He introduces a non-symmetric product in Cat/P
where P is the category of permutations (objects, natural
numbers, arrows n + n, permutations of n). A club is a
© -monoid in Cat/P. Kelly shows that eaeh suitable coherence
problem has a characteristic club (where the objects over n
are all the functors of n variables). He extends the original

Kelly~MacLane cut-elimination theorem to this case.

All the results cited (except those of Voreadou and Benabou)
will appear in the Springer Lecture Notes Volume 281: '

Coherence in Categories.
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Malraison, P.J., Jr.: Ho-equivalences of topological categories

Notations:

Top = compactly generated spaces

Top/A = spaces over A, U:Top/A + Top sends an

object to its domain as a map in Top.

Ho (Top/A) = category of fractions with respect to maps f: X + Y
such that U(f) is a weak homotopy equivalence, i.e. it induces

an isomorphism on all homotopy groups.

TopG = G-spaces = triple algebras for the triplev- x G, where

.G is a topological monoid. V:TopG + Top is the canonical for-

getfﬁl functor.

Ho(TopG) = category of fractionss with respect to maps f£:X + Y

such that V(f) is a weak homotopy equivalence.

If G is a topological monoid such that1B(G) is a group under

the induced multiplication, BG is its Dold-Lashof classifying
space. If A is a space, OA is the Moore loops on A and thus a
topological monoid. (Moore loops = maps w: RY » a together with

a length parameter r, such that w(t) = the basepoint for t > r.

‘Multiplication is juXtaposition and adding length parameters.)

Results:

1: Ho(Top/A) ~ Ho (zgggf) for A connected, with a given basepoint.
2: If £f: A > B is a weak homotopy equivalence for A,B € lIﬂElv
basepoint preserving, and A or B (and. hence both) connected, then

Ho (Top/A) ~ Ho(Top/B) |
3: Ho(Top/BG) ~ Ho(zggﬁ) for G a topological monoid, with

ﬂo(G) a group.

Remérks:

1. 2: follows from 1: via the following special case of a

theorem of Beck: If h: G - G' is a homomorphism, and as a map

o®
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of topological spaces a w.h.e., then

Ho(TogG) :'Ho(ToEG').

2. An intermediate category in 1: is the category of regular,

tramsitive fibrations over A with a fixed path lifting.

That category is denoted Fib/B and is tripleable over Top/B
as well Ho-equivalent. (Weak homotopy equivalences being maps

which are so when forgotten to Top/B).

3.3: follows from 1: by replacing the s.h.m..map from G - OBG

by a homomorphism which is still a w.h.e, from a new monoid

UG + OBG. UG is a homotopy associative cotriple,-and also has

a natural UG » G a hpmomorphism and a homotopy equivalence. So

applying Remark 1 twice yields the desired result.

Mikkelsen, C.J.: Characterisation of an Elementary Topos.
Lawvere and Tierney defined an elemtary topos to be a category
E satisfying the following axioms.

(i) E has finite inverse limits.

(1i)

(iii)

has finite direct limits.

|t

has a subobject classifier 1 _true . n |

|t

(iv) E has exponentiation.

Theorem: An elementary topos is a category E satisfying the
axioms (i), (iii) and (iv) above (i.e. the finite direct limits

can be construeted).

The proof is based an universal quantification, internal inter-

section and the universal property of the subobject classifies.

1) The initial object is the domain of g&l(true)

2) The image of f: A - B is Im(f) =’g€3 D (internal intersection)
wheteB=-{D+B|f€D}.

Deutsche
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3) The coequalizer of an equivalence relation is the image
of the exponential adjoint of the characteristic morphism

of the equivalence relation.

4) The coequalizer of a pair A —£—; B is the coequalizer of
the equivalence relation g
= R generated on A by the relation R = Im (f,g,. =R is
y%ptetnal . . :
constructed as the)intersection of all equivalence relations

an A containing R.

5) The union operator v: Q x Q + Q is defined by means of the
equation (avB) => y = (a => ¥Y)A(B => y) where a,B,YeE Q

using the universal property of the subobject classifiers. ’

6) The coproduct of two objects A, B in E can now be constructed

as the union of A and B imbedded in the product QA X QB by

o] B
N ox )
Foa " T
< { }n‘ fatse > 7 {1, >
‘ = =
-
H o F? v B G - e e 8
eﬂ £ ©
The theorem is a joint work with F.W. Lawvere.
Mitchell, B.: The Mapping Theorem. ' : _ . '.

One can generalize a great part of noncommutative homological
ring theory By replacing rings R by ringoids C (small preadditive
categories), where the category Mod C of "left C-modules" is |
interpreted as the category of covariant functors M: C + Ab.

One has the usual bifunctors.

Hom, : (Mod C)* x Mod C » Ab

® . : Mod C* x Mod C + Ab

c

and their derived functors TorE and Extc .

DF Deutsche '
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Now suppose given a map of ringoids (additive functor) U: C » D,

fixed right C and D-modules Qc and QD respectively, and a map

(natural transformation) Y: Qc > QDo U. Such a situation induces

a map

g: Qg ® ¢ D( LU D= Qp

which in turn induces maps

U,

FU: TorS(q ,MU) » Tor> (Q,M). M € Mod D

F.: Ext_ (Q

U D ,N) T Ext (QE, NU), N€ Mod D .

c

D

. U . .
Mapping Theorem: In order that F be an isomorphism for all M,

it is necessary and sufficient that
(i) g is an isomorphism
. s C ’ ‘
(i1) Tor; (Qc, D( ,U(C)) = o for n > o.
In this case Fy is also an isomorphism for all N.

The construction of the map g, FU; FU’ and the proof of the
theorem is exactly as in Cartan-Eilenberg, page, 149. However

the statement of the theorem is more general, not only because

V rings have been replaced By ringoids, but more important because
the notion of an "augmented ring" has been elimfn;éted from the
picture. Witﬁ this generality, one can deduce immediately the
following corollary on the derived functors of the inverse

functor.

Corollary: Let R be a ring, and let U: C +» D be a cofinal

functor between small categories where a cofinal functor between
small categories where C (and hence D) 1is filtered. Then for
” — —

any N € (Mod R)E-, we have

lim kN = 1lim k NU.

?f

Now define the R-cohomological dimension of a category C

ot

cdp C = sup {Kx]| ;%g_k # o}.
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Then the above corollary enables one to reduce the following
theorem to the case where C is a totally ordered set, in which
case the proof can be carried out using results of Barbara

Osofsky on the homological dimension of a direct module.

Theorem: Let C be a directed set and letzgn be the smallest
cardinal number of a cofinal subset. Then
cd C_=n+l

R

for all nonzere rings R.

Miller, H.: Uber Epimorphismen in der Kategorie der kleinen

Kategorien.

Sind A, B kleine Kategorien und ist py: A+ B ein Funktor,

so bezeichne
V? :'fE)Meng] *A[é ,Meng] den Funktor mit
F b—————> Foy
a —_— | ()
V . 3
G b————> Go°¥ wobel [A,Meng] die Kategorie

aller Funktoren von A in die Kategorie Meng der Mengen und der
Abbildungen,

.

Eine Unterkategorie C einer Kategorie K nennen wir strikt voll,

wenn sie eine volle Unterkategorie von K ist und gegeniiber Iso-

morphismen in K abgeschlossen ist.

Eine Unterkategorie C einer Kategorie K heiBt reflexive (kore-

- flexive) Unterkategorie von K, wenn der Inklusionsfunktor C— K

Deutsche
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Theorem 1: A sei eine kleine Kategorie; es gilt dann:

(n

(2)

Ist C eine strikt volle sowohl reflexive als koreflexive
Unterkategorie. von [Q,Meng], so gibt es eine kleine Kate-
gorie und einen Epimorphismus ¥ : A~B in der Kategorie
der kleinen Kategorien, so daB V, : [-E,Mengj'—>£ ein Iso-

morphismus ist und ¥ auf Objekten bijektiv ist.

Ist A-ZL>§.ein Epimorphismus in der Kategorie der kleinen
Kategorien, so ist Vy L-E,Meng]“> [é_,Meng] eine volle

Einbettung, die einen Links- und Rechtsadjungierten besitzt.

Theorem 2: A sei eine kleine additive Kategorie; es gilt dann:

(1)

(2)

Ist Ceine strikt volle sowohl reflexive als auch koreflexive
Unterkategorie von (A ;Ab), der Kategorie aller additiQen
Funktofen von A in die Kategorie Abider abelschen Gruppen,
so gibt es eine kleine additive Kategorie B und einen Epi-
morphismus ¥ : A—>B in der Kategorie der kleinen additiven
Kategorien, so daB Vy : ( B,Ab) —C ein Isomorphismus ist

und ¥ auf Objekten bijektiv ist

Ist A —£—> B ein Epimorphismus in der Kategorie der kleinen
additiven Kategorien, so ist Vo (B,Ab)—/>(A ,Ab) eine
volle Einbettung, die einen Links- und Rechtsadjungierten

besitzt..

Theorem 2 beweist man analog wie Theorem 1.

Mylvey, C.: Rings in a Topos.

In a topos E, as in any category with finite limits, the

Deutsche

concepts of ring ﬁnd'of module may be defined. However, the-

internal logic of the topos also allows the consideration of

those concepts which ivolve logical predicates. Thus a field

in E man be defined by the sentence.’
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Y x € R (n(xe€e U(R)) = x = o)
for a ring R, where U(R) is the subobject of R defined by

{xe Rl;yﬁR(xy-lAyx-l)}

Similarly a local ring is defined in E by

Vxe RVye R (x+ty € U(R) => (x € U(R) vy € U(R))).

Although the logic of E is intuitionstic, it may be that a

o

- proof in standard ring theory may be valid in E provided that

the definitions involved are made appropiately in the topos

and that any non-standard conditions which are necessary for

the proof to be valid in E are added. The Theorem in the topos
E may possibly then externalise to an extended theorem in the
category of sets S, for example concerning the rings of sections
of certah rings in E, once again provided that some conditions
on the ring may be needed in order that this externalization can

take place.

For the ring module theorist interested in algebra in the

category of sets the progrémme might be described diagrammatically
by

Ring Theory ¢o-o--o-______ 7  Ting Theory

in § in E
Sections

that is represent ring in the category of sets and “heir theory
by rings in a topos E and their theory. Then relate this theory
in E to the theory in S by taking sections. Hopefullv in this

may, by suitable choice of represantion standard the:rems in §

may give use to extended theorems in §S.

An example to illustrate the principle is the followin¢: the

theorem that over a local ring every projective module is free

when interpreted in the topos Top(X) of sheaves on a topological
space X yields extended theorems which when interpreted include
Swan's theorem on vector bundles an a compact space and a theorem

of Pierce on projective modules over commutative regular rings.

-43_
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To extend the theorem one needs that the ring R considered is
not only local but als a field. (In a topos a field need not be
a local ring). Further in Top (X) the ring R must be compact:
that is, that x be compact and that for x, y € X distinct there

exist a section f of R over X with fx = | and fy = o0, Then

Theorem: If R is a compact local fiel& in Top (X), then for a
finitely generated module A the following are equivalent:
i) A projective
ii) A free
the proof being essentially that obtained by internalizing

that which proves that over a local ring every projective is

free. *

To externalize the theorem one notes that R compact implies
that the functor
Mod R—>Mod R(X)

obtained by taking sections is an equivalence of categories.
Then noting that a free module in Top(X) is externally describable

or a locally free module, one obtains:

Corollary: For a compact local field R in Top (X), the section

functor establishes an equivalence between the categories of
finitely generated locally free R-modules and of finitely

generated projective modules over the ring R (X) of sections of R.

In the case that X is a compact space, the ring ﬁ in the topos

Top (X) is a compact local field. The finitely generated locally
‘free R-modules are externally exactly the real vectorbundles on X.
The theorem then externalizes as Swan's theorem, extablishing

an equivalenuve between the categories of vectorbundles on X.

and of f.g. projective C(X)-modules.

In the case that X is the spectrum of a commutative regular ring,
the affine scheme‘R in Top(X) is a compact local fields. The
tTheorem obtained in this case, in particular describing
Grothendieck ring of a commu_tative regular ring, is that due

to Pierce.

Deutsche
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Osius, G.: A characterization of the category of sets

Let us state main result first and explain the notions involved
later:
Metatheorem: The CZ-topoi (i.e. models of topos-theory CcZ) are

up to equivalence the categories of sets in the models of the
set-theory Z. This result still holds if we simultaneously the
"same" axioms to CZ and Z (e.g. axioms of infinity, replacement,
choice) thus getting in particular the topos-theory CZF and

Zermelo~-Fraenkel's set theory ZF.

" The set-theory Z is a first order theory with one binary relation

satisfying (i) the axioms of extensinality and regularity, .
(ii) the following axioms of set-existence: empty set unordered
pair-set, powerset PM, union set UM, limitea seperation - schema -
i.e. for formulars U (x) with bounded quantifiers the set
{x € M|Ol(x)} exists for any M -, and (iii) the following two

axioms:

(T) Any set is a subset of a transition set.

(TR) Any extensional well-founded relation <A,R> can be represen- ¢
ted by restriction of the € -relation to a (unique) tran-

sitive set T: <A,R> = <T,¢ >

The set theory Z plus the axiom of infinity and the replacement-
schema is Zermelo-Fraenkel's theory ZF (which doesnot include "
the axiom of choice). We note that Z is finitely axiomatizable

and that (T), (TR) follow from the replacementscheme and the axiom

of infinity.

The topos-theory CZ is the first order-logic-formalization of

Lawvere-Tierney's theory ET of elementary topos plys the follo-
wing axioms: Non-triviality (0%1), 1 is a separator (generator),
and (RM)

(RM) For any object C there is an RM-object A +» PA (this will be

explained below) and a monomorphism C + A.

Deutsche
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Adding the axiom of infinity - i.e. there exists a natural
number object - and the categorical version of the replacement-
schema we get the topos-theory CZF. We note that "strange'" axiom
(RM) is a consequence of the axiom of choice (i.e. epis split)

which we do not include in CZF.

Let as now just touch the proof of the metatheorem. Starting

with set-theory Z we get a model of CZ, namely the topos of sets

in Z and conversely, starting with tqpos—theory CZ we can construct

within CZ a model of set-theory Z:

category of sets
models of ~models of
set-theory 2

< : topos-theory cz
set-theoretic model

Now the performance of both constructions one after the other
gives a model which is equivalent to the original one. By '"models'
we actually mean "inner models'" given by an interpretation of one

theory within the other which makes over method prely syntactical.

Finally let as define RM-objects in topos-theory ET with the aid

> PA is called an

of the (covariant) power-functor P: An A

RM-object iff r is monic and recursive i.e. has the property that

for any PB -4 5> B there is a unique (recursively defined) A ,f > B
that .
A £ > B
r q
v v
PA L2 SEY

commutes. The RM-objects in the topos of sets in Z are up to iso-

- morphism precisely the inclusions T , PT for transitive sets T.

The main idea behind the construction of the set-theoretical
model in CZ is that the€& -structure of a set M can be fully re-

covered only in a transitive setgéontaining M, so that a set is

Deutsche
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actually equpped with a "structure" T. Accordingly a set in the

r.> PA, A M, 2> where r is an

model in CZ will be a pair <A
RM-object. The definition of equality and € between sets in the

model will not be given here.

‘Pfender, M.: Monoidale Theorien und monoidale Algebren

Beschreibung von Algebren in monoidalen Kategorien durch -
bewahrende Funktoren von monoidalen Theorien in die monoidale
Grundkategorie. Hierarchie von Kategorien von Theorien (= monoi-

dale Kategorien mit Zusatzstruktur). ’ ‘

Methoden: Theorie der monadischen Algebren. Zahlen beziehen s1ch

auf den Preprint "Monoidale Theorien"

Primo¥dale und monoidale Kategorien

2.5 Definition: B #(B,®) = (B,(@h : B > B) « N ) heiBt prémono-

o

noidale Kategorie.

A: T 5 B vertridglich mit ® heiBt primonoidaler Funktor.

2.9 Definition: des freien ® -Magmas (I) iiber I Meng der "beklam-

merten Worter" iliber I. Beispiel: fiir I = {1}: ((11)1) e ({f})-:ﬁ.

Fir v € (I) sei |v| die Anzahl der Buchstaben von v.

2.11 rekursive Definition von<&n: B'nl+ B (ne N):

. 2ln.|
® . e . ) i
((n.,)._ ) : ®m Xm(®n ). ¢ B —> B.

i’i<m’m

Beis’pie1:® (a®b)o®c.

(G (2abse) =

2.13 Definition: Kategorie Sub der formalen Substitutionen:

Sub = N (Objekte) Sub(n,m) = {(n,B,m)} © Meng(|m|,|n|)} ("Sub-
stitution von |m| Variablen durch jn| Variable"). Unterkategorien:
S = Ass (b=l_lnl, Assoziativititen), = Sym (Vb bijektiv), =Diag,

= Term.

. - 47 - .
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2.14 Def. Kategorie ¥V B: B E———-li-——; n

B
T u
3
N Y
B
Fir B = (B,® ) gilt VB € Pmkat (prdmon.Kat.).

2.15 Def. B = (B,®,can), can: S * (VB,®) primonoidal, heiSt

monoidal fiir S = Ass, symmetriesch fiir S = Sym, ... , substitu-

tiv fiir S = Sub, halb S, falls die Familie canbd (b€S) die

—p—

Funktortransformations-Eigenschaft nicht verlangt wird.

‘ . Monoidale Theorien

4.1 Def-"ThI 1= Pmcat(l) = I-stellige primonoidale Theorie (pri-

monoidale Kategorien mit festem Objéht-Magma (1) ).

4.2 Kategorien von mehrstelligen formalen Substitutionen: -

V—) D1ag C—\___5

<
Ass_ ——> Sym I Sub in Th._.
: -7
I I Q\‘.} TermI [ B I I
. 45 Theorem. In
LTh'] :Dfﬂg Thy ——> SymTkl- —_— HJ’“‘T‘U
\‘r l . ’ /-1 :
SubTh1 . > Teven Thy y \l’
"" = - [R—— v — G hT
\'f /"'D\‘o?_,l‘r‘\'j : \l’ — §ym3é/n:' —_— ﬂul \‘Tkl > -n‘,' > arapny
SubiThy > Teim 4 Th, AT

alles stark monadisch.

4.8 Satz. Sei T € 4.5, F —| U: T » Graph(I), Qecraph(l)
(Operationen), G'S’FQ" X'FQ € T (caftes.Quadrét der Morphismen-
mengen bei fester Objektmenge). Zur Gattung (n,G) gehbrige Theo-

-48-

Deutsche
DF Forschungsgemeinschaft © @




-48-

rie D(Q,G) := dcok(pfl,przz G + FQ) rel, U. Dies definiert Funk-

tor D: Gatt-T -+ T. Die Konstruktion ist méglich wegen 4.5.

Monoidale Algebren

.2 Satz. B monoidal miti/ » ® distributiv rel._’! [imd mit Dcok's
von Kernpaaren mehrstellig vertauschbar] = U: Alg(a,B) » BI
[%tark] monadisch. (A F— (A;); , £ }—> (£,); ).

5.3-5.5 Sdtze. Alg(q,B) = Funkt. . (FQ,B) natiirlich in'Qe.Graph(I) ’

3
B€ [h] Spmkat, F —| U: Sy + Thy » Graph ;) . DabeiWFunkc&._s :

<=> A respektiert can: S -+ YF Q.

5.7 Theorem. (Q,G) € Gatts + Th algebraisch (d.h. Coaritit 1),
I 1

B € [H] SPmkat mit Eigenschaften wie in 5.2

- VergiB8funktor I
Alg((a,6),B) stark monad > Alg(q,B) stark monad. > B

stark monad.

Damit Konstruktion von Limites und Colimites in Alg((Q,G),B).

5.8 Satz. B wie in 5.7. £:(9,G) ~ (2',G') Morphismus von alge-

braischen Gattungen => algebraischer Funktor

FunkgsS(Df,B) : Funkgss(D(Q',G'),B) - FunthS(D(Q,G),B)'

stark monadisch.

Rattray, B.A.: Torsion Theories in Non-Additive Categories

The following is intended to describe the common fea.tures of

classical torsion theories in abelian categories, sheaf reflectorS

-49_
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in functor categories and the:separated completion reflector in

uniform spaces.

Let A be a complete, cowell powered category with finite colimits
in which each map factors into an epi followed by an r-mono

(i.e. equalizer). Let r-injective object, r-essential extension,
r-injective hull be defined as usual but using r-monos. We call

a (full, replete) subcategory of A a TFD subcategory if it is the
limit closure of a class of r-injectives. Adjoining all r-subob-

jects to a TFD subcategory we obtain a TF subcategory.

Theorem 1: A limit closed subcategory B is TFD iff:

. (i) it has r-injective extensions in A and (2) the inclusion

B * A reflects r-monos.

Theorem 2: A limit closed subcategory C is TF iff (1) as above

and (2) any r-subobject of an object of C is in C.

Theorem 3: If C is TF then there is an epi-reflector T: A
and T(M(A)) © M(A), where M(A) is the class of r-monos of A.

Theorem 4: If E is TF then:

(1) there is a unique TFD subcategory B such that C is the

category of r-subobjects of B;
. ' (2) there is a reflector D: cC + B,

(3) D(M(A) n C) = M(B).

Theorem 5: If B TFD then- there is a reflection Q: A + B and

Q preserves r-monos, i.e. Q(M(A)) « M(B).

If A has r-injective hulls then the converses of Theorem 3

and 5 are true.

The following concepts play basic roles in the proofs: dense
and closed r-subgects, closure of an r-subobject, complete (or
divisible) object. Objects in C are called separated (or torsion

free).
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Semadeni; Z.: The category of logical Kits (Summary)

Definition: A logical kit short_ly a kit, is a quintuple
(X,A,V,f,p) where X,A,V are sets and

f: X x A >V and p: V> A

are functions such that the diagram

is a commutative, where m is the second coordinate projection.

First motivation. In educational experiments in kindergarten

one uses various kits to teach elements of logic_and set theory.

In such a kit one can distinguish:

a set X of things,

a set A of features, B
if ae A, a set Va of values of the feature:a,
if ae A and x€ X then f(x,a) is the value of feature a at the

thing x Moreover, we set V =:; Va (disjoint union), p: V > A -
| acA

canonical projection. The most popular is the classical kit of

Dienes in which:

A = {shape, color, size, thickness},

'Vshape = {square, oblong,‘trlangle, discl,

color = {red, ?ellow, bluel}, etc.

X = Vshape X vcolor X vsize X vchickness,

f : X » v, is the a-th coordinate projection.

The notion of a kit originated from some classification problems
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for logical kits already used in kindergarten and kits to-be-

invented.

Second motivation. So e mathematicans working in computer

science (e.g., Z.Pawlak) claim that the notion of a logical kit

recognizing shapes by computer). Yet, no particular results are

knovn to me.

THE CATEGORY OF KITS is defined in a natural way. It was investi-
géted by A. Wiweger and me. Also F.W. Lawvere made some interesting
observations about it; in fact, the definition of an kit written

should be very useful in the. theory of classification (e.g.,
above is Lawvere's modification of the definition originally

. proposed.

The category is - as one may expect - both complete and cocomplete.
Yet, coproducts and coequalizers - when written explicity - are
somwhat strange. Left and right adjoints of some functors can

also be given in an explicit form.

f . Street, R.: Abstract. Two universal properties for the category

of sets in the 2-category of éategories.

For simplicity in this abstract, sizelconsiderations will be

ignored.

Let K be a 2-category in which 2-pullbacks and comma objects
exist. The commaobject of A

. ' r/s
| A B determinesa span
N s — 1_/ \
A B

S™p &

Those span from A to B which appeadas commaobjects are called

distributors from A to B. Let Dist (A,B) denote the category of

distributors from A to B as a full subcategory of the category
Spn(A,B) of spansfrom A to B. By pullback Dist (A,B) becomes

2-functorial in B.

. . - . it .
The first universal property of A is thatlshould 2-represent
Dist (A,-) up to equivalence. That is, thele should be a 2-
natural equivalence of categories

) ' - 52 -
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K(B,TA) & Dist (A,B).

Y
The representation arrow is defined to be the arrow A ———é——> ra

which corresponds to the distributor

A/A
| y w
A K NoA .

Theorem: The functor K(B,rA) -+ Dist (A,B) which takes

B

Y, /h :
A . . .
> TA to ' is an equivalence of categories.

A s econd universal property for TA was developed in joint work
with R.F.C. Walters for the case K = V - Cat and A = [A°P, V] .
This property is that there should be an arrow YA: A »> TA

satisfying the following condition.

SW Given any arrow f£f: A » B, there exists an arrow Cgt B + rA

(the characteristic arrow of f£f) and a 2-cell

A —Ef > B

V¢ .
Ya /.“>/°f
b .

TA
uﬁique up to isomorphism of such with the property that, for
LN A, the 2-cell.

any arrow X

: X
ft//// \\\\YAU
RN
% VAN
v
) B ——:————> TA
f

exhibits f u as a left lifting of YA u through Cg- Furthermore,

17 exhibits ce as a left extension of YA along f.

Deutsche
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Theorem: The representation arrow satisfies SW

In this setting a great deal of theory can be developed which
results are familiar for K = V-Cat. For example, the hom-set

version of adjointness, pointwise left extensions, cocomplete
objects, the relations.betweenzK2eisli and Eilenberg-Moore

algebra constructions, an embedding in K (K,rK)-Cat,....

Thiébaud, M.: Algebras associated to an arbitrary functor

Every functor U: B 5 A considered as a B-A-bimodule U_ has a
canonical coadjoint U” ( Ug is A considered as a B-A-bimodule via
' u, u¥ is A considered as an A-B-bimodule.) The composite U*oU*

(= A®A) is an A-A-bimodule canonically equipped with a comonoid
B )

structure. Sending U to U*oU* defines a functor, which we call
the structure functor, from the category (Cat, A) of categories
over A to the category Com (A) whose objects are A-A-bimodules
equipped with a comonoid structure. A functor in the other di-
rection is defined by associating to an object G in ggg (A) a
category A(G) over A, extendiﬁg the Eilenberg-Moore construction.
(The objects of Atc) are the set-like, or group-like, elements
of the coalgebra G.) We call this functor the semantics functor.
Structure is adjoint to semantics and by-composition they define
. on (Cat,A) a monad AlgA whose value at a category U: B =+ A over
A we denote by U: A(U) + A. A(U) is the category of U-algebras.
If U has an adjoint F (or a coadjoint R) there A(U) = QT, the
category of algebras associated to the induced monad T = FU on
A (resp. A(U) = Ag » the category of coalgebras associated to
the induced comonad G = RU on A). If U is the inclusion of a full
subcategory of A them A(U) is the smallest full subcategory of
A containing B and cldsed under retracts. If U: B + 1 is the
unique functor to a terminal object in Cat (in those examples. we
are considering categories based~on sets) then 1(U) is no(g), the

discrete category of connected components of B.
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If U is a fibration (or an oﬁfibration) then U is the fibration

(resp. the opfibration) with discrete fibres associated to it.

We call an algebra in the sense of Eilenberg-Moore over the monad

AlgA a category algebraic over A. In all of the above examples,

but not in general, a category U: B > A is algebraic over A if

and only if B = A(U). Thus, in particular, in the presence of an
adjoint (or a cbadjoint) algebraic and monadic (resp. comonadic)
mean the same. Exponentiation and pulling back of algebraic cate-
gories are algebraic i.e. given U: B > A algebraic over A then,

for any D, UB : ER »> 52 is algebraic over 52 and, for any functor

g: A' + A, the pUullback of U along g is algebraic over A'.

Tierney, M.: Foundations of Analysis in Topos

Let E be a topos with natural numbers object N. Mimicing the
ordinary constructions in the category of sets S one obtains the

objects 7 and Q of integers rational numbers respectively. The

internal theory of order on @ is uncomplicated, since the intuitio-

nistic and classical theory of the rationals coincide. To define
the reals R, we have a syﬁmetric definition of Dedekind cut: a

cut inQ) is a pair <c,c'> with ¢' >—> @ » ¢ >>0) , ¢' a lower
cut c an upper cut, ¢'A ¢ = 0 and ¢ - ¢' = the upper cut deter-

mined by o. Expressing these conditions internally yields

R >—> QQ‘x a® . If E = sheaves (T) then IR in the sheaf of germs

of continuous real valued functions on T. IfJ is an intuitionistic
first order theory, then one can consider the classical notion of

a model of J whose truth values are open subsets of T - call these
> s,

topological models of . Then the adjoint pair sheaves(T)<

where ' (F) = global section of F, and X = constant
sheaf of x, yields a | - 1 correspondance between constant models
of T in sheaf (T) and topological models of °J in S. Consideration

of work of Dona Scott's on topological models of intuitionistic

analysis together with the previous computation of R in sheaf (T)

showe that topological models cannot capture intuitionistiec

_55-
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notions of developement.

In an arbitrary topos E one can show that R is an intuitonistic
field ond one can consider the category of internal finite
dimensional vector over R. In sheaves (T) this category is equi-

valent to the category of finite dimensional vector bundles on T.

Volger, H.: Abstract, Logical categories, polyadic categories

and topoil

In 1965 Lawvere suggested a definition of an elementary theory
as an application of functorial semantics to mddel theory. As
suggested by Lawvere a completeness theorem has been proven for
elemtary theories and the more general logical categories. In
particular, one obtains a coﬁpleteness theorem for higher order

logic, if one considers logical categories with exponentiation.

Polyadic categories are certain regular'categories (in the sense
of Barr), where quantification can be defined means of direct
image. A polyadic categofy with exponentiation is a boolean topos.
Now the free polyadic category resp. free boolean topes over a
logical category resp. a logical category with exponentiation

can be constructed using the functional relations. It should

be remarked that the same construction works élso in the non-
boolean case i.e. if 2 is a Heyting-algebra object rather than

a Booleansalgebra object.

As an application one can obtain the factorization of a first-
order functor between two toposes of Kock and Mikkelsen. Moreover
this result should be useful for the construction of the free

topos over an arbitrary category.

Wick-Negrepoints, J.: Duality of Functors in BAN

Let BAN denote the category of all Banach spaces over R and
linear contractions between them. BAN is a closed monoidal
category, its internal hom!:x,y] being given by all linear

continous morphisms from X to Y, for X, Y € BAN. We denote by
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Qx the functor [?,-] and by zx its left adjoint. Explicitly,

zx(Y) = xéY, where XéY is the complétion of the algebraic ten-
sor product X@?Y'with respect to the greatest crossnorm. We let
[?,G] denote the Banach space whose unit ball is the set of natural
transformations from F to G, where F,G: BAN > BAN are BAN-functors,
whenever this forms a set. We remark that [?,zx] is a set for

every X € BAN. The dual of an (BAN-) endofunctor on BAN, in the
sense of Fuks-Svarc-Mityagin, is defined as follows: there is a

BAN)°p to BANBAN which associates to each

functor D from (BAN
functor F the functor DF (called the dual functor of F) defined .
for X € BAN, f € BAN(X,Y) by

 DFX = [F,Zx 1, DF(E)(y) = z(f) e vy,

for ye [F,2_]. If a: F > G, then Da: DG + DF is the natural

transformation Da_ (y) = v a, for v elG,le. It can easily be

seen that D is self-adjoint on the right.

Definition: F: BAN + BAN is said to be reflexive if F = DzF,

under the morphism which corresponds to IDF under the above

adjuncticen.

(isomorphic

Definition: F is said to be finite dimensional if F~g,

but not isometric),where A is a finite dimensional Banach space.

Let A be the full subcategory of BAN consisting of all Banach
spaces X which satisfy the metric approximation property (lx is

the limit of a directed set of finite dimensional operators).

Definition: A functor F is said to be computable if for every

X &€ BAN, FX = lim FY, Qhere Y runs through the finite dimensional

subspaces of Y.
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The following lemma is crucial the proof of the main theorem.
LEMMA. Let F: A 5, BAN be finite dimensional.

Then F is computable.

Theorem: Let F: A 5 BAN be finite dimensional. Then F is reflexive.

Propgsition: Let F:

if and only if D F

- A » BAN be any functor. Then DF is reflexive
R = D3F2m under the canonical morphism.

For computable functors we obtain the following representation

theorem.
Theorem: DF(X*) = F(X)*.

Using the above theorem, we are able to compute the duals of certair
concrete functors. As an example of this, we derive a categorical
definition of the integral operators from one spaces to another

as the dual functor of a certain computable functor.

Wischnewsk&, M.: Universal Aigebra in Initial-Categories

Initial functors F: K - L, the categorial generalization of
Bourbaki's notion of an "intialiobject", reflect a lot of
properties (as e.g. (co)-completeness, (co)-wellpoweredness,

the existence of projective or injective objects, (co)-generators,
or bicategory-structures) from the base cat. L to the initial-
cat. K. Especially all important theorems of universal algebra

are valid in algebraic categories over K (and even in (epi)-

‘reflective or coreflective subcategories) iff they are valid in

the corresponding algebraic cat. over the base cat. L. Examples
of intial-cat., are(with obvious intial functors) : the cat. of
topological, measurable, locally convex, limit, compactly gene-

rated, or zero dimensional spaces.

An algebraic theory (C,C) consists of a small cat. C together
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with a set C of diagrams S: Dg » C, having limits in C (gene-
ralization of an equationally defined theory in the sense of
Lawvere). A theorymorphism f: (c,€) , (D,D) is a functor £:
f: C » D, which preserves all C-limits and which is compatible
with C and D i.e. if S € C, then f£S: RS + D € D. Let K be a
complete cat.. The full subcat. Alg(C,K) of all C-limitpreserving
functors from the functor cat. (C,K) is called a K-algebraic cat..
If £f: (C,D)+ (D,D) is a theory-morphism then the functor Alg(f,K):
Alg(g,g) + Alg(C,K), induced by f, is a K-algebraic functor. The
complete category K is called universal-algebraic iff for all
theories (C.C), the inclusion I: Alg(C,K) » (C,K) is adjoint
(i.e. has a left adjoint)

» [

Theorem 1.: Let K be a bicomplete, universal-algebraic category.
Then

1. Every K-algebraic functor is adjoint,

2. Every evaluation functor VC : Alg(C,K) » K : A +—> AC is

adjoint.

For example every locally presented category in the sense of

Gabriel-Ulmer is bicomplete and universl-algebraic.

Theorem 2.: Let F: K > L be an initial functor over a complete

category L. Then the canonical induced functor

F := Alg(C,K) » Alg(C,L) : A }—> FA is again an intialfunctor. ‘.

Especially it is adjoint and coadjoint and preserves and reflects

monos and epis.

Corollary: Let F be as in Theorem 2.

1. Al1g(C,K) is (co)-complete, (co)-wellpovered iff Alg(c,L)

has these properties.

2. Alg(g,g) possesses generators, cogenerators,..., Oor is a

(cokernel, mono-) bicat. iff the same is true for Alg(C,L).
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Theorem:3; Let F: K » be an initial functor over a universal-

= |
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w

alg. category L. Then universal-algebraic.

Examples:

1. Every initial cat. over a locally presented cat. is univer-
sal-alg., as e.g. every initial cat. over S, the cat. of sets.

(Top, Meas, Unif,...)

2. Every coreflective subcategory of Top, Meas, Unif, Locconv

is universal-algebraic, (Examples are the categories of com-
pactly-generated, locally path-connected, finite generated

spaces...)
’ The restriction of a more general theorem yields the following

Theorem 4: Let K be an initial category over S. Then every epi-

reflective subcategory of K is universl;algebraic.

Examples: The categories of To’TI’T spaces, completely

2073

regular, or zero dimensional spaces.

Since the notion of an initial category is selfdual, F: K +- L

is an initial functor iff F°P : k°P o EOP i8 an initial functor.

Since the algebras A: C + EOP are exactly the C-coalgebras over

. K, the results can immediately be applied for coalgebras.

Wraith, G.C.: Enrichment of Algebras over Coalgebras

Let k be a field, and let A be the category of either

i) k vector spaces, ii) graded k vector spaces or iii) differential
graded k vector spaces. Then A is a closed monoidal category with
its appropriate Hom and ® . The category Coalgebra of coassociative

cocomuutative coalgebras over A is Cartesian closed, and the
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category Alg of associative commutative algebras over A is

enriched over Coalg, i.e. is a tensored, cotensored Coalg-cate-
gory. I heard the following non-constructive proof of the existence
of the exponential in Coalg from Jon Beck: Sweedler proves in his
book on Hopf algebras that every coalgebra is a direct limit of

its finite type subcoalgebras; these form a set. It is easy to see
that products disfibute over colimits, so one may apply Freyd's
adjoint functor theorem. The coalg-valued hom functor on Alg is

just Sweedler's '"measuring" functor.

If A is an algebra, Alg/A is also enriched over Coalg. The cate-

gory Ab(Alg/A) of abelian group objects in Alg/A is equivalent

to the category of A-modules, and is strongly tripleable over .)
<4

Alg/A. Hence, it too is enriched over Colag. Unfortunately, the

enrichment is trival. If M, N are A-moduls, the coalgebra hom

from M to N is just the coproduct of the terminal coalgebra k

over the set HomA (M,N).

Let HoCoalg, HoAlg denote the categories of fractions obtained

by inverting those mérphisms which are chain homotopy equivalences
in A. So long as we consider positive (cochain type) coalgebras
and negative (chain type) algebras we may construct derived
functorsd\R, é of the structural functors m, ®, by usual method

of taking free resolutions of algebras and cofree coresolutions

of coalgebras. Thus HoCoalg is almost Cartesian closed and HoAlg

is almost enriched over it. The interpretation of Hn(XﬁPY) and ‘.

Hn(x®LY) remains an open problem.

In a Cartesian closed category (this condition is stronger then
necessary) call an object D a tangent object if it has a map 1> D
which is a vector space object in the dual category over 1, and
if there is a commutative associative map D x D - D making the

diagram

Dv, D > D

b
o

- <
v
o<

a pushout.
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A category having such an object admits a formal interpretation
of many notions of differntial geometry (see Lawvere 'categorical

dynamics"). For an object M, DAM » M is the tangent bundle of M.

For anpoint 1

> M, the pullback Te

T, —> |
e

v . v
pAM — —> M

is the tangent space at e, If M is a monoid with unit e, Te has

a natural Lie algebra structure. For any object A, we get a Lie
algebra object Tr%1 of vector fields on A, by considering the
monoid AN A. The object A is Euclidean if DA A= A x A, and so on.
Coalg is a category with a tangent object. Cofree coalgebras are
Euclidean. H is an open question whether the converse is true.It
seems likely that the derived functors mentioned above will have

a geometrical interpretation in the light of the above ideas of

"formal differential geometry".

Th. Thode (Diisseldorf)
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