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Vortragsausziige

J.R.STROOKER: Die Fundamentalgruppe der GL2 fiir einen K&rper

In einer gemeinsamen Arbeit mit Herrn Villamayor haben wir zu einem
links-exakten Funktor F _von Ringen nach Gruppen eine Fundamentalgruppe

7. F eingefiihrt, und wir zeigten, daB fiir die allgemeine lineare Gruppe GL

diese n]GL_ gerade der Milnorsche K,, also der Schursche Multiplikator

H2(E-,E) der elementaren Gruppe E ist.

Hier wird der Fall F = GL2 diskutiert, und zwar modifiziert fiir
Gruppenschemata iiber einen Kérper k.

satz: Fir k # F,, F,, Fy

gilt n|GL(2,k) = HZ(E(Z,k),E)
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W.L.J. VAN DER KALLEN, H.MAAZEN, J.STIENSTRA:
The < , >-presentation for K,

Let R be a commutative ti._ng with unit. By D(R) we denote the abelian
group with generators <a,b>, where a,b e R are such that 1 + ab ¢ R¥%,

subject to the relations
(@) <a,b> <-b,=a> =1

(D <a,b> <a,c> = <a,b+c+abc>

)

(D3) <a,bc> = <ab,c> <ac,b>

There always is a homomorphism D(R) - Kz(n,R) for n >,3 This is even

an isomorphism for semilocal rings, whose residue.classfields have 3 16
elements, for local rings whose residue classfield is a primefield and some

other cases.

Similarly, if I is a radical ideal of R, such that R + R/I splits,
then the kernal of Kz(n,R) > l;z(n,R/'I) is, for n » 3, isomorphic to

the abelian group with genmerators <a,b> where a or b 1is in I, subject

to the relations (Dl)’ (Dz) and (D3).

M.KAROUBI: The exact-sequence of a localisation in

hermitian K-theory

Let A be a ring with involution with 1/2 ¢ A. We define Ln(A) = “n(B:J(A))‘

where O(A/is the infinite orthogonal group. Then one proves an exact

sequence of the type

. - —l
I"n-ﬁ-lm) i Ln-tl.(AAs) - l’n(A’s) > [’n(é) > Ln(AS) ne 7, AS § A

where S 1is a multiplicative set of non zero divisors in A. The "relative

_ group" Un(A,S) is. nn' of a certain category built out of the cat:egory

of S-torsion modules provided by an hermitian form with values in AS/A'

This theorem has many applications, some of which are known:
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2.)

3.)

4.)

5.)

6.)
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1f 4=1ina and ’AS = S-IAS one has a Mayer-Vietoris exact

/sA
sequence '

~ Y
el g@®er ® L @ L@ L@ e Ln(A) 1 B+ .inez

If A is a Dedekind ring one has an exact sequence

0 ~» SK](A) > LI(A) > 7/2 x(A*/(A*)Z) x(z torsion cl(A)) >0 (Bass)
For any field k, put W''(k) = Rer(W/k) Eamk.disc.) 2y % [ 002 .

Then if A is a Dedekind ring such that W''(A/p) finite for any
maximal ideal p, one has SP(A)/ESp(A) Sp(A)] = § KI (a).
’

If A is any Dedekind ring, F the field of fractions the homomorphism
LZ(A) > LZ(F) is injective.

Assume A and F as above. Then one has an exact sequence

L .. (a) » (F) ~e U (A/P) > L ) ~ L, (F)
p

n+l n+l

If _A/p is finite of cardinality q, one has k+l

Ugis2 (A/P) = Ug 3 (A/P) = Ug , (A/p) = O, Ug, ((A/p) = B/ ( 4k+3_ )

(Alp) = 7/(q4k+1 1z,

Uak+6(A/P) = 7/2. # U8k+7(A/p) = 4, Ug = 2/2. (Friedlander-Quillen)

Assume A and F as in 5.); then one has an exact sequence

0 > W(A) » W(F) 5 @ W(A/p)
p

where coker a 1is in the exact sequence.

+ coker & »> cl(a)/ 2 + 0.

0> SeW/ [ ay, spay] -eL(a) L

Inparticular, if W''(A/p) is finite, one has

0> 5K (A > coker o + cl(A)/

2 s K (A) c1(a)? » o .

o




- : A.RANICKI: Geometric L~theory

In §17G6 of "Surgery on compact manifolds" Wall suggests. a reformulation

of surgery . obstruction theory in terms of quadratic forms on

chain complexzes. Misenko (Izo. Akad. Nauk SSSR, 1971) carried out this

progranme for bilinear forms on chain complexes, describing the bilinear

part of the surgery groups. It is possible to obtain the quadratic structure

in this way as well. Given a ring with involution A let Ln(A) be the bordism

group of suitably defined n-dimensional "algebraic Poincaré complexes" over A.
‘ Then Ln(ZGr]') is just the Wall surgery .gtoup I‘n(“) of a group w. Algebraic

surgery shows that
Ln(A) = Ln+4(A) .

However, the homogenous appearance of n as a dimension rather tham as a
residue mod 4 allows the definition of algebraic analogues of familiar -
geometric techniques (such as glueing manifolds together), justifying the
title of the talk. Algebraic glueing can be used to establish a &yer—Vietoris
sequence in L-theory .

. ) B) : ) . .

' werL @5 L@erL©@ L an b @ ...

- for a commutative square of rings with involution

a B B

W e

c -A'
° .

which ;'73 _c.artesian and such that
‘‘either: B'(& hence y) is onto (excision)

"'or: B = .'AS, C= 'A\, A' = ﬁg for .some multiplicative subset S&A of non-zero-

divisors (Localization & completion).
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M.R.STEIN: Estimates for the order of X, (ZG)

Let G be a finite abelian group and let a prime- pll6]. Write G = Hxm,

% cyclic of order pn, n > 1 with generatbr o. The K-theory exact sequence

R, (26) ~ K, (#6/p76) » SK, (26,pZ0) > SK, (Z8) ~ |

may be used to estimate the p-part of the order of kz(ZG). The crucial estimate
is that ofj-_Kz(ZG/pZG) which uses theorems of Bloch (p odd) and van der Kallen
®=2. : | :
. n . »
It is easily seen that 2G/pZG t:(Fp[H])(T)/(Tp ). Supposing for simplicity
that H is also a p-group and p is odd. the order of the p-part of: KZ(ZGIPZG)

may be computed from the exact sequences
1+ o, » KyR[T]/(rh). » KZ(R[T]/(T]‘—I)) 1

with R = wp[a] .

Since ord p(d)i') is known by Bloch's work when i # } mod p. The answer

depend® on  ord p(n'R) and the number of elements of “H of order dividing

L4

p,f>1.1If G itself is an elementary abelian p-group of rank m, the

estimate obtained is : .

- ord p(R,(Z6)) » (@D "1 - *'D )

using the results of Alpein-Dennis-Stein on ISKl (26)|. In particular

NLz(G) $#1 if m » 2.

T
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D.QUILLEN: Finite generation of K-groups for rings of S-integers

Bass has conjectured that the groups: K A are finitely generated if A

is a regular (connnutanve) ring finitely generated over Z.

"Theorem. Bass's. conJecture is true if Krull dim A < 1.

For the proof ofte must cons1det three cases:

i.) A = finite f1e1d (here the K-groups are f1n1te except. . for Ko

ii.) A = ring of integers in annmber field,

iii.) A = coardinate ring of an complete non-singular curve minus one point

@ . defined over qu'

The proof of ii.) appears-in the Seattle Proceedings on Alg. K-theory.

The same method- is used to reduce 1iii.) to the following

Theorem: A as in iii.), let P be a finitely gen. projective A-module,

let I(Fq‘l’) be the Steinberg module of the vector space FQA P (F=quotient
field of A). Then the gioup . Hi'(Aut(P),I(FeAP)) is finite for i > 0 and

finitely generated for i = 0.

On _Homology of General Linear Groups.
Theorem: Let A be any ring. Then for O < r §w
1lim lim

—3 H ((o oL, (A)) ?2) = —3 H*(G[;n(A),T)

Application: Hi(GL(wp),m =0! for 1i>0

o®
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J.L.LODAY: Multiplicative Structure in Algebraic K-theory -

Let A and A' be rings with unit. The tensor product @ : GLn(A)X GLm(A'), GLm(AQ A)

can be extended (with some cate) to GL(A) and then modified to give
a continuous map BGL(A) ABGL(A y*— BeL(A@A")’ .+ (BGL(A)* = Quillens space,

w (BGL(A) ) =K A) We define so K A)tKP(A')—b K . (Ag A'). The application has
all the properies we expect for a product: naturality, b11mear1ty, assoc1at1v1ty and
(graded=)comm. 1f A =A' = commit. ring. Moreover '

-#rcoincides vn.th Milnor' Sproduct in case n =1, p = I(cf. Introd. to Alg. K
- if {t} is the class of t e GL (?I-_t.t-l].) in K (Z[t t—l]) the product by

e} identifies K (a) with a du‘ect summand of K +I(A[t t ])

(this tesult was conjectured by Gersten and necessary for Karoubi's t‘heorem on *
penodlcu:y in Herm).tlan K-theory). In the case n = 2, p =1, we consttuct an expll.cl.t
homomorphism ﬂz(E(A) 2) % l‘l((:L(A) 7) » H3(St(A) +®) which coincides-with the

product*after the l.dentxf:.cauons with l( A (1 =1,2,3).
Example: Let a,B,y e GL(A) define {a}, {8}, {y} ¢ K,A, A comm.

Put I_)u = a®lel) & (a Ql@l) ® (Ioidl) @ (l@l@l)v
D} = (lsg@l) & (IBI®) 6 (185 '®1) @ (1 1)

D'= (1@1®y) 6 (I®1@1) 6 (1@i®1) 8 ey

. We have Du’ D!, D;' ¢ E(A). We Llift them in St(A), say 3(:’

8’ Dll
1 T -5 o107 b ‘
The elements o - - o
B'=7,60 "'e1ed
R U 8
. -~ -1
P=Bredred ' o1
Y. YUY

. u
commute in St(A) and define thus a homomorphism of groups 23 — St(A). The
product {a}# {8} {y} e K3A=H3(St A;?) is the image of the foudam class of the

torus in Hé(f;z) = Ha(s'xs'xs';i) by ;*: H3(73:7) + H,(StA;2).
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H.BEHR: (Further) Variations on Milnor's computation of K, Z
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Theorem: Let G be a Chevalleygroup, simply connected and of simple type with

A

root system - ¢ denote by ' St($, 2) the Steimberg-
group with respect to . One has the following exact

sequence.

1—>L (§, 2)—> St (§, 2)—>C (2)—>I
and L (§2) = 2, if § is of type AI or Ce

zlu otherwise.

sketch of a proof for this theorem was given, which consistg of two

parts: the first one is an elementary proof for the rank Z—gtoups,

the second one a reduction process to the rank 2-case.

1) The case 6 of type Az was done by Milnor (and classically by Nielsen)

in Milnor's Introduction to algebraic K-theory.
For the symplectdc - group Sp4 (2), one uses the operation of this
group on z" and has to dgfiﬁe a partial ordering on.Z", which -

. reflects the special properties of Sp4, and which is more conveniant

2)

than the usual norm, which was used in SL3. )
The problem for G2 (2) has been settled by Hurrelbrink and Rehmann,
who use the same basic idea. ‘

The reduction to rank 2-groups can be described in the algebraic
cagse ag follows: G (k) (k a field) is the amalgamated product of its

- rank 2-parabolic standard supgroups P, (due to Tits). Associate with

this product a connected and simply conmnected simplicial complex K

and let G (A) (A a ring, Ag k) operate on K. If A is a principal

ideal domain, thexe exists a simple"fundamental complex" for the
operation of G (A) and one gets: G (A) is the amalgamated product

of the éroqps P2 (A). From this one deduces easily a finite presentation
for the groups G (A), which determines also L (¢, 2).

%
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R.K.DENNIS: K2 of Local Rings

Let R be a commutative local ring. It has been conjectured for some time

that the groups Kz(n,R), n » 3, and K2R are all isomorphic. Dennis and Stein

have now shown this to be the case. This theorem is proved in a manner aﬁalogous

to that in which the corresponding theorem for fields was proved by Matsumoto.

A number of technical difficulties arise; their solution involves the proof

of a theorem of independent interest: Namely, a simpler presentafion for the
Steinberg group of an arbitrary ring is given. As in the case of Matsumoto's ‘
Theorem, a set of defining relations for K2R are simultanecusly derived (R a

commutative local ring).

J.B.WAGONER: Continuous Algebraic K-Theory for Local Rings and Fields

Let E be a loc'al field (complete with finite residue field) with O its ring.
of integers and? its maximal ideal. Then E and O are locally compact, to -

tally disconnected and one would like to determine that part of KiE (and Kio‘)
coming from continuous invariants of the p-adic group SL(f+1,E). Using the
affine BN pair structure of SL(f+1,E) we define topological groups

KEOP(E) and KEOP(E) and KEOP(O) so that there is a natural commutative diagram

K, (0) - K;(E)

KEoP
1

tOp
> K (E)
e top top : ) .
Theorem A: . K2 (E) = u(E) and K2 (0) = u(E)p where u(E) is the group of
roots of unity in E and ﬁ(E)p is p=.primary part (p = char 0/’5).

The construction is by the nerves of coverings of SL(£+1,E) by certain families

of open subgroups.

o top _ lim _top n
Theorem B: I(i (0) By Ki (O/f ).

Deutsche y
Forschungsgemeinschaft ©




- 11 -

Whatever the correct definition is Quillem has. conjectured that it should

satisfy

Conj. (Quillen) Let char E = 0, [E’Qp] = d.
0, i=12

(a) KEOP(E) /Torsion = - & .

2pel = -

(b) Torsion K§°p(E) = 2/ ()2, i =z

’ where wi(E) is the largest m such that Gal(E(um)/E) has exponent dividing i.

The motivation for (a) is the Lazard-Wegner—-Casselman Theorem that

HC(SL(E);Qp) = Exterior algebra over Qp with d genérators in each dimension

1,3,5,7,...: (b) is the analogue of the Lichtenbaum conjectures.

S.MAUMARY: Categorical L-theory

The L-theory as defined by Karoubi is related to K-theory by the forgetful map
F,: BO_(A)* — BGL(A)" and the hyperbolic map H,: BG1(A)'— B0, (). The

periodicity "theorem'" says that the homotopy fibre V, of F, is the loop space

on the homotopy fibre U; of Hy , up to m . In general, this theorem is unsettled,
but it is known by Karoubi in special cases.

Q Theorem: One has a categroy Q+(A) such that

i.) 2(Q,A) has the homotopy type of L_(A)7 xBOg(A)"

ii.) there is a forgetful functor,Q;(A) + Q(A) (= Quillen category of projective

modules)'wm".'ch, deloops. the above map F.
As a result, V; = ‘nw;, when W+ is the homotopy fibre of the lifting ,6;(A) > a(A)

to universal coveri‘.'ngS‘.Tbere is a canonical map.U, + W, which should be a

homotopy equivalence, at least up to a covering. -

DF Deutsche
Forschungsgemeinschaft
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H.BASS: Russian Progress on Serre's Problem

Let A = k[tl,....tn-_[, k a field, and let P be a projective A-module of rank r.

Serre's problem asks if P is free .. Recent progfess has been made by M. Roitman,
M.P. Murthy & J. Towber, and R.G. Swan, but the most far reaching results are
due to A. Suslin (Leningrad) and L. Vaseritein (Moscow). They prove P is free
in the following cases: ‘

a.) r>1 +% or 1 +n2;l if k is finite; b.) n € 3; ¢.) n = 4 and char(k) # 2;

d.) n = 5, char (k) + 2, and k finite. The main ingredients of the proofs are as' .

follows. Let A be a commutative ring and denote by Unr(A) the set of unimodular

elements in A”. Let SR(A) denote the least r such that, given

= M =
a (al,...,arﬂ) e Un (A),ﬂ aj = a; + bi a

: 1 ] .~
41 (1 si<r) s.t. (a),...,a)) e Un (A}

Then stably free A-modules of rank > SR(A) are free.

Theorem 1: a.) If A is noetherian of dim d, SR(A) < d + 1.

'b.) (Vaser¥tein) If A is affine over a finite field SR(A) < max(z,d).

Theorem 2: (Suslin) Let B be. comm noeth of dim d. Put A = B[tl,...,tn] .

Forn > 1, E (An) acts transitively on Unr+l(An) for

r+l
r » 1 + max (d, SR(1‘\'3‘1)/2)

Theorem 3: (Vaserstein) For any comm. ring A,H a natural map

®3 SL3(A)\Un3(-A)——-> W(A) =-Ker(KSp_(a) — K,(a)).

if Erﬂ(A)A acts transittively on Un__, (A) for r > 3, g is bijective

Theorem 4: (Karoubi) If 3 e A then W(A)S w(A[e]). :

Proofs of these results, with their apllications to Serre's problem, can be

found in the Seminaire_BOurbaki of June, 1974,

o®
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A.BAK: Strong approximation and Mayer-Vietoris sequences in

algebraic K-theory

Recall the classical strong approximation theorem for the special linear

group SLn .

Theorem: Let R be a Dedekind ring, F the field of fractions of R, R the finite
adéle ring of R, and ¥ the. finite addle ring of F.Then SL (K) is dense in
SL (K). ne= I,..., .

We used this result to motivate the following result. Call a fibred square

. of topological rings
A “»
ot ‘g
A ~
A<~ B
f

an appr&x—imation square of rings if (i) the image a and g are dense; (ii) B and £

are open; (#ii) the topology on A is determined by the inverse image of the

) topolégy on ﬁ' (iv) A and A have bases I(A) and I() of neighborhoodé of zero
consisting of 2-sided Ldeals such that if § e I(A) and & e I(ﬁ) then there is a
t e gancenter A such that t s,and e ? are open for all i » 0. We topologize
St(A) by lettmg S(A) = {ker(st(A)+St(A/g)/gel(A)} be a basis of neighborhoods
of 1. Topologue St(ﬁ) similarly by S(K) T0pologlze St(B) and St(a) by letting the
images of S(A) and S(ﬁ) be neighborhoods of 1. It is clear that St(A) and St@)
are topological groups, but one has to prove that St(B) and St(ﬁ) are topologxcal
groups.

Theorem (Strong ,approt'iniation for St) If

‘ - . ’ Sst(A) -+ St(B) .
4 ' ) + 4

st » se®

is the square of Steinberg groups associated to an approXimation square of
rings then St(B) is demse in St(ﬁ), .St'(ﬁ) = "se (&) “St-(B)", and St(A) maps ©onto
-‘the fibred product * (pullback) of St(A) and St(B) over sc(f).

'Corollary for all i g 2 there is an exact Mayer-Vietoris sequence

2
s K (8) — K(A)QK(B)—» x()-» i,

We have also a desrete anelogy. Here, no conditions are put on B and t, a and g are
assumed surjective, and we assume B(Mer(St(A) -+ St(ﬁ))xs normal in St(B). The analogy
of the theorem and corollary are true. There are also anologous theorems for quadratic
modules.

DF Deutsche .
 Forschungsgemeinschaft ©
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M.KNEBUSCH: Real closures of commutative rings

We consider pairs (A,0) consisting of a connected commutative ring A with I and

"a “signature" ¢ of A, i.e. a ring-homomorphism:from the Wittring W(A) of

symmetic inner product spaces to Z. If A is a field then the signatures correspond
uniquely to the orderings of A (Harrison, Leicht-Lorenz). Thus for fields our

theory will be identical with Artin-Schreier's Theory of real closures.

There is an evident notation of morphism ¢: (A,0) > (B,f). ¢ is called a

covering of (A,0), if ¢: A=> B is a covering in the sense of galois theory. ‘
A pair (R,g) is real closed, if (R,g) does not admit coverings expect

isomorphisms. Let covering (A,0) + (R,g) of (A,0) by a real closed pair is

called ‘a real closureof (A,c). By Zorn's Lemma every (A,0) has a least one

real closure (R,g).

Theorem l: Any two real closures of (A,0) are-isomorphic over (A,c).

. Theorem 2: (“fundamental theorem of algebra"). If (R,g) is a real closureof

(A,0), then the degree [K:RJ of the universal covering A of A over R is g 2.

If there exists a prime number p which is a unit in A, then [&:R =2, If 2 is a
unit then & = R[/-1]. '

Theorem 3: If A is semi-local, then g is thebunique signature of R, and

W(R) = Z ® NilW(R). The Wittring of the hermitian inner product: spaces over
(x,J) with J the involution of X/R coincices with Z. If 2 is a unit,

then W(R) = Z, but otherwise this must not hold true.

Remark: If A is the affine ring of non singular real affine curre, then also
W{A) = Z.

Theorem 4: If A is semi-local, then ¢ v J (see Th. 3) gives a I-l-correspondence .

between the signatures of A and the conjugacy classes of elements of order 2

of the Galdjis group G. (Probably G contains no other elements of finite order.)

J.CLAVENS: 0dd guadratic forms

Let A be a ring with anti-involution a:1 = {x+a(x) lxéA} Q(A) is the set Ax A/I

together with
&[]+ G = Gy, [enrax)y]) i) = ©, (2D

Ne,[ED =2+ a@ - a@x &, [D? = (xa, [a(2)za])

Deutsche
Forschungsgemeinschaft ©
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_Then we can consider the Grothendieck group MA of pairs A,u: A nonsingular a-

symmetric sesquilinear form on a module P
;: P + QA such that ﬁ(xa) = ;(x)aA
u(x+y) = ux + uy + ir(x,y) wu(x) = A(x,x).

For example there is an exact sequence O ->'L°A + MA -+ QA.

. W.SCHARLAU: On Subspaces of inner product spaces

Let K be a field of char $ 2, and I a finite partially ordered set with
involution *:i » i +. An I space is a tupel (V,b, Vi ¢ I) where b is a non-

singular form on V and the V, are subspaces such that i ¢ j implies v ch and
N . .
Via. = Vi . Some examples and results to the following questions were discussed:

1.) For which (I,%) do there exist only finitely many indecomposable I-spaces

(up to isomorphisms and multiplication of b by scalars).

2.) How can oné classify I-spaces, in particular for which I?

' . Christian Siebeneicher
Bielefeld
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