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Automata and Systems in a Hyperdoctrine

. E.S. Bainbridge. University of Ottawa

The legie ef the hyperdoctrine of set-valued functors provides

a two-dimensional generalization of ordinary logie. This 2-1ogic pro-

~, vides an appropr.iate language· for automata and system theory.

Atransition function ~:QXX"Q determines an action of the free

monoid X* ,generated by X, say eS* :QX X*4 Q. A transition. function equipped .

with a tead-in ftmct'ion a: I"Q and a read-out function ß :Q ....J eonstitutes

a (Moo,re-type) automaton, and. spe'cifies a· computation

axX* . 6* ß-.
IxX*--+ QxX*--+Q-+J

, ~.' 'a' 5X b .
1fT is'the graph 'u-!w~v and T* is the free category generated by T,

'-an ß
then an auto~aton is a functor,t:T*-+Sets (I--+Q ~J). ~e ,computation is

u ·v
obtained aso follows, where 1-+T*4-1, u* = _.U,"·v*· = -ov I tu ... u*, v*-t TIv.

counit . unit
tu u*t --+ t --.. ßv ,·*t

v* Iu u*~ ---~-....tr v*t

Conversely, given C:'v* tu I-:,.J we obtain ~c:T*.... Sets whose computation

simulates t.
. C .

v· Iu I-+J

f

&!
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~toreover. ~C is a sub-quotient,of any other suc~~. ~ith suitable

u v
- other choices of U-.W....-V. ~:W.+Sets,· the above scheme gives the stan-

dard minimal realization th~ory f~r linear systems and. algebra automata

(including many-sorted theories arising from grammars), among others.

Here we are using quantification along terms in the set-valued functor

hyperdoctrine.

A transition fun~tion together with an output funet'ion A:QxX_~y con­

stitutes a (Mealy~type) system and specifies'an input-output -b~haviour

proj ö
A*:. QxX*-.y* defined belo~. The ~state g"raph G of .ö:QxX-.Q is QoE---- QxX ~Q.

proj A
The functions QxX --"X, QxX--.y extend to fWlctors from the free category

Pö* A*
G* generated by G; X*+- G* '-"Y*. The eonneetion with the hyperdoctrine

structure is that pö* is the discrete op-fibration assigned to ö*:X*-'Sets

by the comprehension schema. Moreover, Lawvere has observe~ that spans in

cat with one projection a diserete op-fibration are the 'analogue in this

hyperdoctrine of partial functions in the subobject hyperdoctrine of a topos.
. 2

Such spans also model Thatcher's generalized s~quential machines, amang other

p~ .. f-

examples; so a system is a span UrtI-- (li-~)-""'V for some t:U-.Sets.

To each system ~,f assign its characte~istic profunctor M:VoPxU-.Sets,

M(v,-) = rp~ f*V[v,-]. ~,f can"be recovered up to isomorphism from M. The

construction of M has system theoretic significance. as does the bifibration

associated with M. Lawvere has observed that there is a classifier for such

vop .
. profunctors viewed as U-'~ets • analogous to the partial function classi-

fier of a t~~os. The charaeteristic'profunctor of any interconnection of sys-

tems (parall~'l, cascade, feedback) iso computed by a coend formula from the-

component prcifunctors, e. g. :

.- 7 -
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yw - '. opf !M(y,w,-)XN(w,-,-,y):V xXxU-..Sets

Moreover, ·the ~roof of this fact is system theoretic. An approach to

the feedback controlproblem is suggested ~Y the existence of a right

adjo~n~ to profunctor composltion. Indeed, the-logical formalism of the

hyperdoctrine provides a deductive calculus for system homomorphism.•

u '. v
Finally, to a Moore automaton lL~T*+-l, ~_:T*~Sets~ assign the

cospan~ I c- (l~u*~)-+(l~~)f-(l.v*~)= Jobtained by pullingback

.Pt:(l~~)~T* along U and v. Arbitrary int~~connections (DO_OR_, DO_THEN_,'

DO_WHILE~ ca~ ~e obtained as col~mit~ of suitable diag~~ms. e.g.·

The cospan I....A~K, while not a Moore' automaton, is what you want. This pro­

vides an.interconnection theory fOT automata'(special case ::programs) d~l

to the Goguen interconnection-by-limit theory for systems. Hardware and

software are dual, e.g. looping is dual to feedback. A translation tO'a

.logical formalism like the preceding for systems seems possible using the

highe~ order logic of the hyperdoctrine.
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Categories of Games

Andreas Blass

We consider .games in which two players (0 and 1) älternately

select element:;s from some set; depending on 'the (usually in­

finite) sequence of their choices, one of the.players wins and

the other loses. In. [1] we proposed that su~h games be pre-.

qrdered by the relation ~

(.) A < B iff there is a strategy whereby player 1 can

win B.if he is shown how to win A,

'and we studied the lattices ('i and ')() that a'rise from two

natural ·ways of making this proposal precise •.

By thinking of the ~trategies rnentioned ~n (*) as morphisms

from A to B, we define a category ~ of garnes. The pre-ordered

. class associated to ~ is the lattice j of [1J, b~t, as might

be expeeted, the category ~ contains more informatipn than f .
For example, ~ contains nontrivial retractions, so games ean

be equivalent in ~ without being isomorphie in ~. If we restriet

attention to games in wl:lich every play has finite lenth, we .._find'a-:

nearly trivial sublattice of ~ but a 'rather interesting sub­

category of !; a quotient of this·subcategoiy is an "initial

category with arbitrary pr~ducts and coproducts."

The eategory S hasa (symmetrie monoidal) eloseu strueture. ~

Its tensor product 15 not the cartesian product; the difference

between the two products .can be viewed, using ideas of Lorenzen

[2], as reflect1ng the ~ifference between the classical and

intui~ionistic meanings of "or."

We define a cotriple (R,E,~) on ~. The object part of R i5 the

operator called R in ~], and the Kleisli category W of this

cotriple is related to the lattice 1(. of [1J as ~ i5 to f .
From a natural isomorphism R(A x B) ~ R(A)&R{B) in S it followS

that W 1s cartesian closed.

- 9 -
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We re-examine Lorenzen's idea of defining the hasic logical

connectives in terms of games [2]. Lorenzen and others have

produced such definitions eapahle of yielding either classieal

or intuitionistie logte, hut the definitions are fairly eomplex.

When the problem is attacked using the eoncepts tha~ oeeur natu­

rally in the study of ~, two particularly simple approaches

present them~e~ves. One has an intuitionistie flavor hut leads

to nothing ~eyond lattice theory. The other comes very elose

to producing classical propositional logie. In faet, we can

9~t exactly classieal propositional logie by using the functor

R: if we 'refrain from using .R, we get a weaker logiewhieh may

be of some independent interest.

References

1. A. Blass,.Degrees of indeterminacy of games, Fund.

Math. 77 (1 912 ) pp . 15' -166

2. P.-Lorenzen. Ein dialogisches Konstruktivitätskriteriuin,

in· tnfinitistic Methods, PWN, Warsaw, '1960
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An interpr~tation theory for "triple" cohomology

J. Duskin

A categorical, 5emi-simplicical interpretation theory for

"triple" cohomology i5 outlined which uses the group5

TORS~ IXinl of connected components of certain.categories of.

K(n,n)-torsors (higher dimensional analogs of locally trivial

principal fibre bundles) to interpret the higher dimensional

cohomology groups, i.e., TORS~ IXinl ---> nHG (X;7T), n .::. 1.

Details of·these results will appear in Memoirs A.M.S. and

a detailed outline may be found in Proc. Nat. Acad. Sci." (USA)

Vol 71 , No. 6 pp. 2554 - 2557 (June 1974).
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Equational Traduction Of Set Theoretical Notions

by Rene Guitart

I. Involutive Monads.- The main problem is to find an nequational"

context' which exists in Sets and which would allows us to develop

in an equational way the theory of the definition (of the types

of structures).

Roughly speaking we have to salve the equation

"topos = finitely complete cat. + cartesian closed cat. + ?"

Let us begin with an abelian sup-monoid A = (~, sup, k) that is

to say ~ complete ia.ttice' (~, sup) and an abelian monoid (~, k)

(whose unit is denoted by e) where 'the law is a sup-lattice

morphism (examples of this situation are distributive lattices,

and, also, the set [O,lJ with its usual order and multiplication).
. .

For a set X let A
X be denoted by FX', and let i x: X -+ FX and ~

dx= FX. ~ F2X be. defined by

{
e if x = x'

o .if, x :; x'
and dxpp' sup k(px, pIX):

x E X

The system- (F,i',dl is a "contravariant standard construction"

(c.s.c) over Sets, i.e. satisfies the 4 equations given in (1)

or (2) •. It is~heorem that over each category f tJ:lere is a

bijection between the set of C.S.C·. over fand the set of

involutive monads over·f (we call involutive monad (i.m.) over

f a pair (P,I) where P is a monad over C and I an.' involution

on the Kle'isli' s category KLP of P).,

A definition cf a complemented i.m. (c.i~m.) is given in (.2),

arid an equivalent one can be found in (0). ::~n my talk at the

Open House on Category Theory organise~ at the University of

Sussex (July 74) I have given a lot of examples (on a topos, on

the category of relations, on the "special" category of compact

spaces, on the category of IIquasi-topologiesn, etc .. ~). As many

- 12 -
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people here were last week in Sussex, I would not repeat this

list. Looking for some examples in Cat I have studies the notion

of a machine (cf. rny lecture at the Amiens'Meeting on July 73);

actually this 1s studied now by R. Street (and exposed' in his

lecture here). in the context of 2-categories, which suggests

how to extend the concept of involutive monad into the 2 dimen­

sional case. Let us notice that, in Cat, the case F = Sets(-)

is not an exarnple af an invalutive monad only because of the

question of size. H~wever, the case F = 2(-) is an example

of i.m. in Cat. ~

We denote by QA the i.m. over Sets exhibited at the beginning

of this paragraph. In the category of i.m. over Sets we have
1'\

the simplicial object 0

1\

U U <__E:_
-1

<__Ci_

~2 -_u->!!3 <__K_

<__6_
<---

•
which in fact is a category, cl.nd comes fram the involutive

rnonad 2(-) over Cat.

Everyone knows how to make use of g1 and ~2 to work out some mathe­

matical nations. But the question is: what comes after 1 and 2 ?

A somewhat natural reaction.would then make us thi~k about using

!!3 and !!4·

Notice that if we add to ~N the dat~ of all the maps from ~ to

itself coming fram the maps E, n, ß, u, K, ••• in the simplicial
A

object g, we obtain a system reacher than an i.m., which we 4It
denote by !!N.

11. Structural Equations.- Let f be a category and (F, i, d) = U

an i.m. over ~. An equation for f 1 , ... , f n in !! consists of

an identity "A = B" where A and Bare composites in f of morphisms

of the form Fmf
i

, FmiFPf . or FmdF~f.. Clearly for every abelian
1 1

sup-monoid A, an equation E can be interpreted as a formula

written J AE(f
1

, ••• , f n ). Hence, ever~ such equation defines

a ·theory TAE whose models a~e (by definition) n-tuples

(f
1

, ••• , f n > of maps verifying the identity

"A (f 1 '
- 13 -
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Main problem: If T i5 a type of structure, could we find an

equation EAT(f 1 , ••• , f
n

} whose ·solutions in ~A are exa~tly

the models of T?

Such an equation, if it exists, will be called a "structural

eguation of the theory T in the context gA" (ar simply a.s.e.

of T in A) •

Nota.- If A and AI are two "abelian sup-monoids then, given a

theory T, we can transform it into a new theory T' by "modifying

the underlying logics" as follows:if T admits a structural

equation EAT in A,then the interpretation JA' (EAT) defines the

new theory ~ I •

The following theories admit structural equations for A = 2:

the theory of the void set, the theory cf the set 2n , theories

of relations, of order relations, of eongruences~ of injections,

of surjections, of complete ~tomic boolean algebras, of points

(elements) •

When we work ou~ the nation of a structural equati~n ~n.the

context of c ~ i.m.• , we get structural equations .in A = 2 for'

notions of filters, ultrafilters, compact spaces; we also get

new.equations for'the notion of a point.

It is a fact that we cannot get structural equations in 2 for

the nation of a reflexive relation and for that of a topologic~l

space. However, these nations admit s.e. for ~3.

So, it 15 natural to ·try to measure "complexity"of. theories

according to the invariant

ölT) inf {n / T admits a structural equation for U }-n

111. Related' Functors.- Let U· be an i.m. over a category f.
If RX is the set HomC(X,FX) the function ~: fo ~ Sets can be

extended to a contravariant functor R- from C-to Sets and also

to a covariant functor ~+ from f to Sets. In the same way. the

function ~X = {r E ~x / E(r)} where the equation E(r) =
"r = Fr.iFX.r" 1s a structural ~quation in 2 of the nation

of an equivalence relation, gives rise to a contravariant functOI

~ fram C to- Sets.

- 14 -                                   
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If E is a structural equation of the notion of a point, and

if ~ satisfies some equations re~ated to E, we can define a

functor YE : f + Sets, which assigns to each X €'fo the set

YEX of "p~ints" of X ("points" being· solutions of-E in !!) .

+ -More generally, we can obtain functors YE or YE for E element

of a large class of equations (the functors ~+" R- and ~ are

of this form YE for some E).

Now, if we assume. some supplementary properties to be satisfied

by some Y
E

we obtain more·precise theories than the theory cf

c.i.m., and these ·theories are of course a better approximation

of the theory of topoi.

In order to find which supplementary properties-are interesting,

we can look at ~he Y
E

as candidates for "concrete functors", or

for Udeductive categories", or perhaps for functors defining

"dogmas".

The method of structural equations may, of course, be used in

different contexts than the one of involutive monads. We could

sta~t, for examples, with (in the Sets' case) the fti,nctor P (E 2
).

instead of the functor P{E), and develop a parallel theory. We

call "typical system" such a contex~ (cf. (5».

I would like to conclude this talk by the following question:

Let E(f 1 , .. ~ ,fn) be an equation satisfied in g2. Of cour~e E

is not necessarily satisfied in each involutive monad. But, if

T is an elementary topos and g(!) the canonical involutive monad ~

ji-) over !, is it true that E is satisfied in g(!) ? ~

(0) Esq. Math. 'Paris VII, val. 1 (June 70).

(1) C.R.A.S. Paris, t 275 (July 72) p. 259.

'(2) C.R.A.S. Paris, t 277 (Nov. 73) p. 935 •.

(3) C.R.A.S. vol. to appear (2 notes. presented on the 1st. and
th8 of July 74).

(4) Monades involutives complimenties, to appear in "Cahiers

top. et g~o. diff.".

(5) Systemes typiques (in preparation) . -
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(E,M) - Universally Topological Functors

Rudolf-E. Hoffmann

A cone (C,X: CE ~ T) in a category ~ is said to be V-co-identifying

(= nY-co-idt. "") with respect to a functor V: f ~ Q, iff whenever

(V*A)uE = V*n for some cone (X,n: XE ~ T) and some morphism

u: VX.~ VC, then there is a morphism h: X ~ C in C being. unique

with respect to the following properties

(1 )

(2)

Vb.= u

n = Xhr
A functor V:'C ~ D is said to be "topologieal" provided that (1)

for every V-datum (Ti D,W), i.e. for every diagram T: E ~. C

of ndiscrete typen (where L is assumed to be ~~small ~nd ­

moreover - ~o.:be discrete, i.e. a seti!! = [fixed] uni~erse)

and every cone (D,$: DE ~ VT) in Q there is a V-co-identifying

(= "V-co-idt.n.)lift (C,Aii), i.e. a V-eo-idt .. eone (~,A: CE ~T).

and· an isomorphism i: VC ~ D in .Q. with "'ir = V*A., and (2) t.hat

Y sat~sfies the "smallness condition" for functor~, i.e. whenever

M S Ob f eonsists of nonisomerphic objeets, wnich are taken' by

V into objects' isomorphie to same Y E Ob Q, ·then M is U-srnall.

[The relationship to o. Wyler's top eategories is clarified as

.fellows:

(a) V: f ~ D is (a projeetion'from) 'a top eategorYJ iff (1) it

is a topologieal functor and (2) it lifts iso~rphisms uniquelYi

(b) every topological functor is isomorphie to the composite af

(at first) an equivalence and (then) a pr~j~ction from a top

category.]

(Some fund~ental ···properties. of 'these functors areto be faund

in the author's abstract for the Oberwolfach Kategorientagung

1972)-.

Topological funetors abaund:forgetful functors Top (topological

spaces and continuous maps) ~ Ens, Unif (uniform s~aces and

uniformly continuous maps) ~ Ens, Preord (preordered sets and

- 16 -
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isotone maps) ~ Ens, ... , Top-Gr (topological groups and

continuous homomorphisms ~ Gr,

Since one is also interes~ in epi-reflective subcategories of

Top-, etc. *)- and their forgetful 'functors to Ens, H. Herrlich has

introduced the concept of (E,M)-topological functor:

(a) Let E be a cl~ss of epimorphisms in Q with Iso Q f E, which

is compositive, and let ~ be a class of (not necessarily manie)

cones 1n g indexed by Q-small sets, such that Iso Q ~ M and corn­

position of an M-rnorphism and an M-cone gives (whenever thi's is

defined) an M-cone. If every cone in-g indexed by same ~-srnall

set factars unique1y (up to .•• ) over an E-morphism and an M-cone,

and if 0 is E~co-we1l-powered, then Q is said tobe an (E,M)­

category.

(b) Let Q be an (E,M)-category. V: f ~ Q is said to be (E,M)­

topologieal, iff

(1) every V-datum (T;D,~) for every discrete, U_smaLl graph

I with (D,~) E M has a V-co-idt. lift;

(2) V s~tisfies the smallness ~ondition ~.Herrlich~s defi­

nition drops assumptions on smallness and co-well-powered­

ness, but includes cones indexed by ~-classes].

From an (E,M)-topological functor V: C ~ Q H.Herrlich reconstruc­

ted a topological functor U: ~ ~ D and a full reflective ernhedding

F: 'f ~ !!~ such that (1) UF = V and (2) for the unit n (of the

adjunction given by F) holds unB € Efor every B E Ob B (i.e.

"f is Eu-reflective in !!" via F) :

Objects of !! are pairs (e: 0 ~ VC,C) with e t E and C t Ob f,
morphisms fram (e,e) to (e': D' ~ VC',e') are pairs

(f: D-~ 0 ' , g: C ~ C') with Vg e = e' f [of course, one has to

make the horn-sets disjoint to one anotherj; F is given by

C 1---> ('VC ,C) .-

We have discovered, that this construction has a nice universal

property: whenever T: ! ~ Q is topologieal, and K: C ~ X with

*) E.g. To -' T,-,T2- spaces., reg'u1ar spaces, completely regular

spaces (and continuous maps), but also posets (and isotone rnaps)
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v ~ TK takes those V-co-idt. cones (indexed by g~sets) into

T-co-idt. cones, which are taken by V into M-cones, then there

is a unique (up to ••. ) functor H: ~ ~! with HF ~ K, U ~ TH

and·taking U-co-idt. cones into T-co-idt. cones [in order to make

the statement correct, one needs coherence c~nditions for the

above isomorphisms]. Consequently, V "determines" U and F. More

important is,' .af course, the observation, that U "determines"

~ (upto ••• )~ The objects of f are characterized (up ta •.. ) by

the fact that they are (U,M)-separated in ~; her~ {U,M)-separated

means that

(a) every set-indexed U-co-idt. cone in ~ with domain C· i5

taken by U into an M-conei

(b) every U-ca-idt. morphism in ~ with d6main C is taken by U

into an M-morphismi

(e) ev~ry U-co-idt. morphism f in ~ with "domain C, such that

Uf E E, is an i~omorphismi

(a), "(b), (e) are pairwise equivalent, provided that U is an

(arbitrary) t~pological functor. Functors U obtained by the above

"universal" co~struction frolI.l an (E,M)-topologicai functor are

called."(E,M)-universally topological functors".

Examples ~with the us~al forgetful functors to ~ and, resp~'9~):

~o-Top ~econstructs ~,

Sep Unif (separated uniform spaces) reconstructs Unif

Poset reconstructs Preord, •.•

TO-TOp-Gr reco~structs Top-Gr, •••

where E = {surjections}, M = {"point" separating n families of maps}.

It turns out that many·of the Ens-valued topological functors

are (E,M)-unlversally topologf.cal"and that "separatedness" (the

name-here~is due to Brümmer) gives a natural analogue of Tc' in

the case of Top (which of~en coincides with" Hausdorffsch").

There are Ens-valued topo199ica1 functors which are not of the
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above described type; however, for the class of those Ens-valued

topological functors T: ! ~ Ens, which are represented by a

ter~inal object, there is an approximation theorem:

There is a large~bi-reflective subcategory ~ of !, such that

TI~ = U: B ~ Ens is (E,M)-universally topological. The (U,M)­

separated objects of ~ are exactly the non-cogenerators of !,
which can be described as follows:

Let 2c denote a T-co-discrete object of X with card T(2 c
)= 2

(X E Ob ! is said to be T-co-discrete, iff for every ! - object e
Y and every morphism f: TY ~ TX there is a unique morphis~

g: Y + X with Tg = f): C ~'Ob X is a non-cogenerator, iff every

rnorphism 2c
+ C is taken by T into a constant rnap. - ~ is the

bi-reflective hull of the class of non-cogenerators in X.

Finally, we want to mention sorne related results:

1) The correspondence between "separation axioms": ~o' ~" ~2'

T3 A Ta' complete regularity A. Ta, etc. and "regularity axioms 11 :

Top "itself, nRon~ (IR,", "R2 " (i.e. "T3 without To ")' "complete

regularity without Ta n, etc., which was described by A.·S. Davis,

can be nicely translated into the context of (E,M)-universally

topological functors.

2) The relations~ip between normed linear spaces and quasi-normed

linear spaces can be analysed by separatedness and co-sepaLated­

ness with respect to the obvious topological functor to linear

spaces [with. (surjective-joint injectivel-factorization). ~

3) Applying the above approximation theorem one can show the

following result on (extremal epi)-reflective subcategories of

top categories over Ens: Let T: ! + En$ be a topological functor~

which is -represented by a terminal object. An (extremal epi)­

reflective subcategory ! of ! is closed under coproducts (as e.g.

To' Tl' T2 is) iff card TY > 2 for some Y E Ob Y.
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Cohomologie non-abelienne et homotopie

Andre Joyal

11 s'agit d~ comparer des nations et resultats de la Cohomologie

non-abelien~e de Giraud avec les methodes homotopiques. Si E est

un topos (elementaire) on construit succesivement un objet ~ate­

gorie ~ (utilisant N) et san complete pour l' adjonction de limites

a droite f~nies ~ : cette derniere categorie interne est celle des

"ensembles" simPl:iciaux de dimension finie. On d~finit sur ~ la

"classe" r des extensions anodines et on definit la categorie homo­

topique i~terne finie HOo comme etant L-1~/~ ou ~ est 'la r~lation

d'equivalence homotopique. On consid~re.~nsuite la cate~ori~ loca­

lement representable Ind (Ho ) obtenue par completion inductive

filtrante interne de Ho . Leofoncteur canoniaue ~ ~> 'Ho possedeo -,0

un prolongement canonique E60pp Ind(~) __"_U_'_> Ind(~oo).

Definition: Un ~orphisme d'object simplicial (F ~>, G) EAopp

est une e~uivalen~e faible ,si U' (F) ?I (f} > U1(G) est un isomor~

phisme. On peut alors definir la categorie~homotopiqueHo(E) comme

la categorie de fractions r-1E~oPP ou r est ~a classe des equiva­

lences faibles. Definition Un cornplexe de Kan H est sature .si le .

fonc~eU:r E~OPP(-;H): (EßoPP}~PP ..... Set60PP 'tran~forme les equivalences

faibles en equivalence homotopique ordinaire~

Proposi tion. Si H est un complexe quelconque, alors 'il existe

un cOrripiexe de Kan s~ture i! et. une equivalence· faible ~ .:.. H.

~ Cette proposition est valide sous l'hypothese"que E est un topos

de Grothendieck. Si on consi~ere les complexes ~I Ei~enberg­

MacLane ordinaires K[n,n] alors les groupes de cohomologie

Hn(X,n) sont donnes par.
~.. n

n~(Ho~(X,K[n,n]» = H (X,n). 5i2 nest un groupo~~e alors TI est

un champ un sens de Giraud si et seulement.° si K[n,1] est sature.
"..--- • 0 •

De plus on a K[u, 1] = K[i, 1] ou';y est le champ associe ci 1T.

Ceci montre qu~ la theorie precedente peut englober ia theorie

de Giraud en dimension 1. Si on considere des 2-groupoides TI il

semble que la theorie de Giraud en d.imension 2 puisse se ramener
• "...---..' °

ci la consideration des complexes K [lT ,2J
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An application of Catego~ Theory to Model Theory

Orville Kean

Let L be.an elementary one sorted language with finitary opera­

tions and relations, I be a theory with language L, and T be a

class of formulas in L. By CI,~ we shall mean the category whose

objects are the models for land whose morphisms are the maps

between· the models with preserve. the formulas in T. Let:

T = the set of all formulas in L preserved by all the maps in ~
eI,T

If A(X) ~ T, theP there is a set-valued functor:

A: CI,T -+ Sets

such that A(M) = {a € Mn IM F"A(a) for every M E Ob (CI T).

For representable A, there is a model M
A

and an n-tuple' .

e E M~ such that MAt=-A(e); and given any M E Ob(CI,T) and n-tuple

b E ~ satisfying M FA (b), there is a unique map M
A

-+ M 'wi th

e ~> b. Such an MA is said to represent the formula A(x). A

familiar example of this is that given any topos E and object

X inE, the topos E/x is the topos which represents the formula

(6.
0

(x) = 1) "(6,(x) = X) •.

Benceforth we shall let T be the set of atomic formulas in L

and we shall omit T in the notation for the category of models.

If Cy is complete and admits the standard construction for pro­

ducts "and equalizers, ie:

Eq (A{X,y»

(1)

(2)

II M .)
a<ß a

A(Eq(x,y) )

TI
a<ß

(A(M »a

for every atomic forrnula A{x) in L; then we have the following

characterisations.

Proposition 1: If Cy admits the standard construction for pro­

ducts and equalizers, then there is a finitary one sorted

Gabriel-Ulmertheory ryr such' that Cy ':::! Fin.Cont nr, Sets).
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A finitary one sorted Gabriel-Ulmer theory theoryT is a small

finitely complete categaryTwith a distinquished object G such

that for every X E Ob Mr) there is a natural number n and a manic

X >-> G
n in "Ir.

Proposition 2: A category is a finitary one-sarted Gabriel-Ulmer

theory iff the~e is a simple Horn theory I such that C; ~ F in.

Cont. (Ir, Sets).

An elemtary the9ry 1s a simple Horn theory if it logically

equivalent to a theory with axioms of the form:

,. A, (x)

2~ A
2

(x)- ~ B
1
(~)

3 • A
3

(x) ~ly B(X,y)

. where Ai and Bj are conjunctions of atomic formulas.

Theorem: An e~ementary· theory I admits the standard construction

for products and equalizers iff:

(1) I has an extension by definition 1 1 which i5 a simple

Horn theory. :

(2) If A (it) is an atomic formula in L(I') which -i5 not in L (I) ,

-then the defining .formula for A(x) in I' i5 of the form

A(X) <-> 3y B(X,y) ~ ..)

where B(x,y) is a conjunction of. atomic

formulas in L(I).

References:
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Linear algebra and projective geometry in the Zariski topos

Anders Kock

What status may be given to synthetic geometry inside the

framework of abstract or generic algebraic geometry? Put

differently, we seek a framework in which certain geometrie

"theorems" which'admit different geometrie interpretations

when a change of rings is performed, are actual theorems about

something, and ~ot just. "theor~m-schemes". (An example of such

a theorem-scheme is the one whose version over the reals sayS'

that the altitudes of a spherical triangle intersect in one

point, and which for the ring of dual ·numbers gives a theorem

about (non-plane) hexagons in space·with all angles right; this

is a application of'Study's transfe~ principle.)

A IIgeneric" theorem, which specializes to the two mentioned

theorems (and whose proof is the same), exists: it isa theorem

about the the universal ring R in the Zariski topos b . The

Zariski topos i is the category of sheaves on tR.0P , where ~ -

is- the category of fin1tely presented commutative rings, equipped

with an easily described Grothendieck topology. The forgetful

functor

{R, = (6l op) op -+ Sets

is a eommutative ring'object R in b,' and it is a Ioeal ring

objeet, and universal as such, by an important observation of

Hakim. Being a Ioeal ring objeet is a property which is preserved

by left exaet left adjoint functors between topases. However, R

has also some properties which are 'not preserved by suchfunctors~
it is a fleld objeet in the sense that it for eaeh natural number

n satisfies the statement

and also

n
, (-/\ xi

1=1

n
0) => V (xi is invertible)

1=1

., (1 0) •
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(The meaning of objects in a topos satisfying 1st order state­

ments is by now weIl known. One explanation may be found in [2].)

Be~ng a field obje?t in the sense (0) and (*.) ·turns out to be

precisely what is needed in order to make standard linear algebra

werk (remembering that deductions in 1st order logic in an ele­

mentary topos have to be intuitienistically valid). In par~icular,

we can prove that under the assumptions (0) and (.*), we have

Theorem. For each mxn matrix A, the row Rank of ~ is > r if and

4It only if the determinant Rank i5 > r.

(Row-Rank being defined in terms of linear ~ndependence of the

rows of the matrix; determinant-Rank.be~n9defi~ed in terms ·of

invertibility of rxr sub-determinants. ~n particular, ~~ have

as a Corollary Row-Rank = Column-Rank).

ES'sentially because standard linear· algebr~ works, we can deve­

lop projective geometzy over a ring object R in.anelementa~y

topos, provided"R satisfies (0) and(**). This means that we

can construct a first order structure, nthe projective plane"

in the given topos: ·an object of·points" and an object of

f1lines", and an "incidence" relation between these two 9bjects,

such that, for instance, the following .statements are satisfied:

dGiven two points ·which are not equal; then there is a unique

line containing them".

I1 Given two lines which are not equal; then they intersect in a

unique point."

- as weIl as, for instance, Pappus' theorem about plane hexagons

with vertices lying on two lines, and other theorems fram syn­

thetik proje~tive geometry.

To "transfer f1 these theorems to $ (the category of sets) equipped

with the ring of reals, or with the ring af dual numbers over the
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reals, one has to use.the universal property of ~, R noted

by Hakim. But first, one has to change the theorems to be

transferred into transferable form, i.e. to a form which is

preserved by left exact left adjpints, in partieular, the

form should be negation-free. So I do not believe one get

geometrie theorems which one could not get by using Study's

transfer principle in its purely"heuristic form.

References
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Full Embeddings of Categories

Lud~k Ku~era

I. Set-theoretical assurnptions and tull embeddings of categories

A category is called binding if any concretisable category can

be. fully embedded into it. In 1969 author and Z. Hedrl{n proved

[3J that the category of .. graphs and compatible mappings is binding.

According to papers of V~ra Trnkovä, Z. Hedrl{n, J.Lambek, E.

Mendelsohn, J.Neletfil, A.Pultr, J.Sichler and others there are

many binding categories "from the life", ~.g. the categories of

semigroups, commutative groupoids, various categories of algebraic

and topological type.

Howeyer, there i8 one set-theoretical difficulty in this full

embedding theory. If we want to prove b1ndability of above

categories we have to assume the next axiom (M):

(M) There i8·a cardinal number m such that any two-valued

"rn-additive measure-is trivial.

As it wa~ shown by author.and A.Pultr in 1971 ([4J>, the role

of (M) i8 essential: The axiom (M) is even equivalent to the

existence"of a full ~mbed~ing of SetOP into the category of

graphs (or into any category of universal algebras).

Therefore.·we shall call a category to be binding if above des-

. cribed full embedd~ngs do e~ist under (M). If the existence of

those embeddings· can be proved in Gödel-Bernays se~ theory with­

out any set theoretical a~8umptions then the category is called

universal •.

The difference between binding and universal categories ~s not

purely set-theoreticai. E.g. if F: SetOP ~ Gra (Gra being the

category of graphs) is a full embedding then thecardinality of

a set of vertices of F(l) is at least the cardinal number m from

the axiom (M) (i.e. at lea~t ~ if there i8 no measurable car­

dinal)i on the other hand, changing Gra by a universal category,

F(X) can be an object of finite size for every finite set X.
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The first result to be referred to is that adding a locally

compact T2-topology to many categories of universal algebras

we obtain universal categories. Especially, though the category

of semigroups is binding onlYi w~ have the next theorem:

Theorem: The category'of locally compact semigroups and their

continuous homomorphisms is universal.

Ir. Categories with O-morphisms

Any category, which is fully embeddable into the category of e
semigroups with unity, ~is evidently a concretisable category

with O-morphisms, Using the technique based on ideas of [lJ,
we can prove the next theorem:

Theorem: Assuming (M), any concretisable category with O-morphisms'

can be fully embedded inta the category of semigroups with unity.

Any ~oncretisable category with O-morphisms can be fully embeded

into the category of locally compact semig~oups ~ith unity.

Ir!. Full embeddings of non-concrete categories.

No non-concrete category can be (fully) embedded into concrete

one. That is the reason for restricting to concrerisable catego­

ries in the definition of both binding and universal categories.

Now, ·simple examples of categories, into which every (even non­

concrete) categories can be embedded, will be given. The ~ain

lemma for the construction of them it is proved in [2] and says

that every category is a "homotopy-like" factorization of a con-e

crete one.

Definition: Let K be a concrete category. Define a category K as

foliows: objects of Kare tripies (0,e 1 ,e
2
), where 0 is an object

-of K, e 1 ,e2 are equivalences on the underlying set of 0, morphisms

h f ( ) f (~~ ~.) ~ have a arm 0,e 1 ,e2 ~ o,e"e2 ' where f: 0 ~ 0 is a morp ism

of K such that x e i y implies fex) e
i

f(y), i=1,2.
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Let E be the smallest Longruence on K such that

(i) .if f, g: (o,e
1

, e
2

) ---+(0 ,e
1
,e·

2
) are morphisms of K such that

either x e
1

y implies fex) e
1

g(y)

or x e
2

y implies f(~) e2 g(y)

then f E g.

(It can be proved that E is the smallest equivalence s.t. (i)

holds) •

.Denote the factoriz~d category i/B by K.

Theorem: Let K be a concrete category. If either K is bindi~g

and (M) holds or.K is universal then every category. can be

fully embedqed into K .

The theorem together with the list of binding and universal

categorie$, yields cat~gories.universalw.r.t. full embedding

of arbitrary category~
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From Types to Sets

J. Lambek

Dogmas are related to Lawverels hyperdoctrines and Volgerls

logical categories, as weIl as to the languages of Benabou,

Coste and Fourman. They are categorie$ with finite products

with a specified object.n which admits arbitrary exponents,

Moreover, n is a Heyting algebra. object and the canonical

morphismm n ~ nA
has a right adjoint VA anda left adjoint ]A" ~

Finally, one postulates extensionality •. The point of a dogma

is that it permits set abstraction (as a special case of A­

conversiop): given any "propositional function" f(x): 1 -+ n
in the indetermi!1ate x: 1 -+ A, there exist a unique morphi'sm

f: A -+ n (not depending on x) .such that fX = y>(x,)., 'its "name"

1 -+ o,A is wri tte-n {:x € A I Y' (x',l"}. Moreover,' all sentences of

set theory involving constants from the dogma A appear as

"propositions" 1 -+ Q in A. Each dogma canonically generates

a topos: its objects arel-Sets" f: 1 -+ nA and its mörphisms

are relations (p,g,f) between sets f and'g: 1 -+ nB which

happen to be universally defined and s~ngle valued.

(Take p ~ fxg = {<x:,y> ~ AXBI x ~ f " y ce g}, where x' E f is

the evaluation of f at x in the polynomial dogma A [je.] .) This

result is due to Volgeri in fact, dogmas are his closed logical

categories. It allows one to regard topos as forming a reflec­

tive subcategory of dogmas.
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Cohomoloqie non-abelienne a coefficients dans une 2-cateqorie*)

R. Lavendhomme (Louvain - la - Neuve)

1. Categories de 1- et de 2-cocycles.

Soit ~ une categorie et ~ une 2-categorie.

Un 1-cocycle de ! a coefficients dans a est un foncteur de ~

dans 1a categorie Ao2 des 2-fleches de a munie du produit de

Godement. Plus ~eneralement, on definit 1a categorie des 1­

cocycles de X a valeurs dans ! par

La source et le but d'un l-cocycle sont des foncteurs~·de !
dans "la categorie Ac," des '-fleches de A. 51 H: X +~, est

" ,
un foncteur, on deslqne par ZR (!,~) l'ensemble des '-cocycles

de ! a coeffi~ients ~ans ! de but H.

Un 2-cocyc1e de ! i coefficlents dans !~est un triple (Y,O~c) ou

a) Y'est une application de l' ensemble "!o des objets de X

dans I 'ensemble 'Ac des objets de!.

b) 0 est u~e application de l'ensemble !, des fieches de ! dans

I'ensemble A, des l-fleches de ~, qui i x: Xl. + x 2 de ! associe

0x: y(x,) + Y(x2 )

c) c est une app11cat1on de I'ensemble !, x !,
~

des couples de fieches composables de ! dans ·1 'ensemble !2 des

2-fleches de ~ qui assoeie a Xc -!-> x, -l-> x 2 la 2-fleche

cy,x: ~ °yx, "> QyQx.·

Les donnees doiverit satisaire aux conditions suivantes.

a) les conditions de normalisation: Si x !O' Q1X='y(x) et

si x on y est un identite de !,Cy,x est une identite.

- 30 -

                                   
                                                                                                       ©



- 30 - .

ß) la' condition ~' associativite. Si zyx est d~fini dans !, le

diagramme suivant est commutatif.

c z,yx

c zy,x

Soient (Y,Q,c) et (Y',Q',c') deuK 2-cocycles avec y=y'. Un

morphisme de (y,Q,c) vers (y,Q',c') c9nsiste en la donnee pour

chaque x de X d'une 2-fleche W : Q ==> Q' teIle que: si x
- Ix X x

est neutre,v>x est neutre; si yx est defini on a

(<fy * lfx) 0 cy,x = C'y,x 0 <fyx •

On obtient doncUnecategorie de 2-cocycles notee Z2(X,~). Son

ensemble d'objets est note z2(!,A). Si on identif~e de~x 6bj~t~
isomorphes, on obtient une categorie de 2-cohomologie, notee

~2(!,ß) d~nt I 'ensemble' d'objeet est notee ~2(!,ß). ~ peut

aussi considerer un ensemble de 2-qohomologie plus mince forme

de l'ensemble des eomposantes eonnexes de Z2(X,~): TI Z2(X,~).
\ --- 0---

On dira gu'un 2~eocycle (Y,Q,c) est neutre si cy,x est une

identite gueis que soint x et y. On a ~lors une bijection entre,

l'ensemble des 2-cocycles neutres de ! a eoefficients d~n~ ~ et

l'ensemble des foncteurs ode !'dans. ~1. Plus generalement un

2-cocycle '(y,Q,c) est neutralisable par un foncteur F: ! ~ Ao1 ~

s' il existe un morphisme a de (Y~Q,c) vers le 2-coeycl~ neutre

assoeif! ii':-P. On a alors a (yx) = (a ('V) -Cl (x»oc . On di t que a., . y,x
est uneneu~alisation de (y,Q,e). Si on travaillait dans

TI Z2(X,A), il n'y ~urait pas lien de distinguer entre 2-cocycle
0- -=

neutre et neutralisable.

- 31 -

                                   
                                                                                                       ©



31 -

2.-Suites exactes.

Une suite ~ __I_>'~ ~> ~ de 2-categories et de 2-foncteurs

est une suite exacte courte de 2-categories s'i

a) ~ A
=0

b) ~1 = ~1- et le foncteur P 1: ~1 .. ~~1 est plein et surjectif.

1 2 P 2
c) La suite de categories ~12 ----> ~12 ----> ~'2 est une

suite e~acte courte opprefibree, c'est-ä-dire que pour toutmorphis

me~~o ==> F, de ~12 et pour taut objet G, de ~i2 au-dessus de

F" il existe un morphisme opcartesien ( au-dessus de, de hut

G,. [( est op~cartesien signifie q~e pour tout rnQrphisme n de

projection ~ et de hut G" il existe un unique rnorphisme n, de

projection 'F" tel que non' = (J.
o "~

Soit ~ ~> ~ ~> ~ une suite exacte courte de 2-categdries.

Soit G: X .. ~1 = ~1 un foncteur et posons H = P, 0 G: X -+ ~1 •

On definit une application

6 : Z~(!,~) .. H2 (!,S) "

de la maniere suivante. Soit. ß E Z~(X,~) et soit k un opclivage"

norm,alise de .l"opprefinration ~'2 .. ~'2" On definit (Y,Ok,c
k

)

par y(x) = G(x) = H(x); Qk(x) est la" source du 2-morphisme

opcartesien de l'opclivage k de projection ß(x) et de hut G(X)i

enfin comme a k (yx) et a k (y) ... a k.(x) On t m~me projection, on a

une factorlcation c k : Qk ==> Ok Qk. 11 est trivial que
k k y,x yx y x

(Y,O ,c ) est une 2-cocyc1e et qu'un changement d'op-clivage

k .·en k, determine UD isomorphisme entre les 2-cocycles corres­

pendants. On a' donc bien defin,i l'applicatien 6.'

Theoreme:

1 .
1) en ZG (!,~): un r-cocycle dans ~ provient d "un l-cocycle dans
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C si et seulement si son image est neutre dans ~.

2
2) il en est de meme en H (!,~) pour les classes de 2-cohomologie

3) un element de H2(!,~) prOVi~nt d'un 1-cocycle de Z~(X,~) ssi

son image d~ns H2(~,~) est neutralisable par G, le morphisme

de neutralisation etant opcartesien.

r
!

b) 8 provient d'un 1-cocycle ssi la neutralisation par G de

0:(8) dans ß: se factorise par une neutralisation dans ~.

(Notons que si on avait pris la cohomologie mince

no!2(!,-) la formulation serait plus simple mais moins fine}

4) En z1 (X,B) on a:
H -.=

. l
a) un 1-cocycle ß de ~H(!'~) provient d'un 1-cocycle opcar-

tesien ssi ö(6) est neutre.

3.- Examples.

a) On obtient un exemple trivial en associant a chaque groupe.

abelian G" la 2-cate~orie ~ avec ~ = J, g1 = 1, g2 = A. On

retrouve "alors"la cohomologie a coefficients dans un groupe

abelien."

b) Si on se limite a des 2-groupo1de~ a un seu! obje t qui

correspondent ades groupes croise~ on retrouve la theorie de

P~ Dedecker. Pour des 2-groupoides plus generaux on a la theorie

de I. Valdenarna *) et I.C. Don~i *).

c) A une suite cofibree de categories C ~ A ~ B on peut associer~

une suite exacte de 2-categories ~ ~ ~ ~ ~ operant sur f, ~,~. ~

La 2-cohomologie s' interprete alors en termes d' extensions

de ! par Cf, ~).

*) Das (handgeschriebene) Manuskript war stellenweise schwer
lesbar. Uber einzelne Schreibungen, insbesondere von Eigen­
namen, ließ sich keine" Sicherheit gewinnen. (R.-E.Hoffmann)
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Relative functor1al semantics, II~ Tripies vs. theories.

F.E. J. Linton

1. The construction of'Kleisli associates with each tripie

B = (T,n,~) on a category ! a category KIff) (Tf. [1] and [3]),

having the same objects as ~ , and a functor f : ~ .. KI <T) ,
workinq as the identity on the objects and having a right adjoint

u
T

that, on Obj·ect·s, w?rks like T, the adjunction isomorph15ms

being the identity maps

KÜr) (fTA, B) = Kl (T) (A, B) def ~(A, TB) ="" ~(A, JfB) .

2. This note records a simple and informative conceptual argument

for the complete i,dentification (anno~nced in [21 and arduously

established in [3]) of the Eilenberg-Moore category ~T of algebras

over T (cf. (0) with'the category.of Lawvere-style algebras over

the·Kleisli category RIef). It will b~ recalled. that the former

is equipped with a canonical "underlyin.9 ~ -object." functor

uT ·: AT .. A , and that the~atter is, by definition, any

A -valued functor serving as a pullback of the diagram

(1 )

KI (Ir)
s
-. fT

12
'+/ A

. --y-.-> . §,-

in which Y is the Yoneda emhedding and the functor category ­

notation is used to indicate ~ategories of contravariant functors.

3 ~ Ta see that U1r serves as pullback of (1), use 1s fir'st made

of the Yoned~ Lemma and the"category (~~)t of Eilenberg-Moore

coalgebrasover the "composition with the ,ingredients ofT". cotriple.

f = (~',n,t') on 'the .(c·ontravariant functor) category ~~. Here

". v
X G,T, nx = X 0 n, lJx = X 0 lJ.

Each Eilenberg-Moore T-a 1gebra E = (B, ß) becomes (3] a coalgebra
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v v T ß
YOB> (YB,ß) = (~(-,B), !(-,B) -->~(T-,TB) --> ~(T-,B»

over the eotriple f . In this way, there arises a funetor

--> s~ )
- l'

ulf : ~1f -+' ~ and Ut: (§.~)"f -+' §.~ • The Yoneda Lemma

first, thata f -coalgebra structure on a represented

nothing more than a ,- -algebra structure on Bi next,

fai thful i and last, that Y makes UT: AT ~ . A

the diagram

l :

lifting Y over

now indicates:

functor YB "is n

v
that Y is fully

the pullback of

A

(2)

(S~)- f

1Uit
A

---~y----> ~-

4. For U1r to be the pullback of diagram (1), therefore, i t would

be niee if SKL(Y) and ( s!) were isomorphie as eategories over
- - f

S~ • It is nice: they are. The .adjointness betweem fT and ~1r
wit~ adjunction triple T on ~. , provides an adjunction making

y ~ ~
s u right adjoint to S , with adjunction cotriple U on §.~ •

fY fT
Moreover, S is easily seen to ereate equal~zers of S 0 -split

pairs, fV being a bijection on the objeet elasses ..Thus, Beek's

Theorem (cf. [~),' in its eotriple.version, completes this p~oof

and ends the argument. Of course, Beck's Theorem could have been

applied dim::tl.y to the pullbaolt of (l), but checking i ts hypotheses

would have been more ted~ous, and the isomorphism of this paragraph

would have escaped notice. 4It
5. P.s.: The reader whom our notation (and references) successfully

misled inta as'suming, comfortably, that S referred to his favori te

category of sets and functions is hereby invited to choose an arbi­

trary multilinear category §. and to place himself in the cosmos

of 2. -categories, where, bearing in mind that, even though Kl ( T )

rernains (cf. [5]) an S -eategory when 1r is an S -tripie on the

. ~ -category ~, the ~nstructions of A1f , the functor categories,
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the pullback of (1), and { ~~ )t may farc~ hirn to e~ter the larger

cosmas (cf. [7J) of pra- ~ -categories (so that Street' 5 suggested

procedure [8J isn't re~dily applied), he may nevertheless assure

himse1f, using [4] and [6J for the Yoneda Lamma and Beck's Theorem,

that the argument here'presented remains entirely valid.
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Categorical Shape Theory

John L. MacDonald

Let K:P ~ T" pe a functor. The shape category SK of K i5 defined

by IsKI ITI and SK(X,Y) = Nat (T(Y,K-), T(X,K-» _ There is an

obvioU5 canonical functor D:T ~ SK- Furthermore using Yoneda we

have SR ~ SL for L = DK. The Kan extension,FK of F:P ~ C along K

factors as FK = FLD where FL is the Kan extension of F along

L = DK. If K i5 the inclusion cf a full subcategory then (a) L

is codense (i.e. LL = 'SK)' (b) SK(X,Y) ~ T(X,Y) if Y E Ipl and~,

(e) IsKI = ITI. Furthermore SK is determined up to isomorphi5m

by (a), "(b) and (c).

For many functors the shape morphisms SK(X,Y), or the coshape

morphisms §K(X,y) = ~at (T(K-,X)~ T{K-,Y» can be described

~ore explicitly. For example if K:P ~-T is the"inclusion of

a full coreflective suhcategory with right adJoint R:T ~ P,

then SK(X,y) ~ P(RX,RY) - The shape morphisms SK(X,Y) can be

described as l!m T(X,KYa ) under the mo~e general condition than

being 'reflective' that (Y~Ya) is a cofinal subcategory of Y~P

for some inverse system {y }.
, a

The shape theories of Borsuk and Mardesic - Segal for compact

spaces each lead to shape eategories which are isomorphie to

the restrietion of SK to compakt spaces for K:P ~ T the.inclusion,

T the homotopy category of topological spaces and'P the full sub­

category of spaces of the homotopy type of a polyhedron. We

mention that P is coreflective and although not reflective does ~

satisfy a eof~nality condition pf the type described in the

preceding paragraph.

We haven seen that the Kan extension is .shape invariant, i.e'.

it factors through SR. und~r what circumstance5 are shape invariant

extensions of functors simply Kan extensions? We examine this.

question in the topological context of Mardesic-Segal by using

their results to construct a shape invariant extension F:C ~ A

of any funetor F:ANR ~ A where C is the category of compact spaces,
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ANR is the full subcategory of compact absolute neighborhood

retracts and A is any category in which 11m exists. Using a

cofinality condition it can be shown that this shape invariant

extension F:C ~ A is the Ran extension in much the same way

that Dold shows that the Cech and Kan extensions are equivalent.

We note that many of the preceding results aredueto Hilton or

Levin.
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C*-algebras in a topos

Christopher Mulvey.

Any C*-algebra A (with identity) admits a compact rep~esentation

in a ring Ax in the category of sheaves on the maximal ide~l space

X of the eentre Z(A). The representation is classified by the

quotient map

Prim A ..... X

whieh interseets each primitive ideal of A with the centre of A. ~

Under the representation the centre Z(A) beeomes isomorphie to .-,

the sheaf of continuous complex funetions on X, since the "indueed

representation is the Gelfand representation of the commutative

C*-algebra Z (A) •

Approaching the representation from the viewpoint using the

language of toposes one feels that the represent~tion should

yield a ~*-algebra in the category Top(X) of sheaves on X. The

effeet of the representation would then have been to have converted

the C*-algebra into one in Top(X) having centre the complex number&

The problem arising is that of defining the concept of a C*-algebr~

or more generally a norrned algebra, in a topos.

Generalising the usual definition of a normed alge~ra t6 the case

of an algebra over· .the ring ce. of complex numbers in a topos fE one

might be tempted to require the eXlstence of a map

B _'_'·_,_r_> :IR

fram an algebra B ta the (Dedekindl reals in IE satisfying the e
axioms

i) 11 a 11 > 0 and 11 all = 0 <=> a = 0

ii) 11 a + b 11 < 11 a 11 + 11 b 11

iii) 111 11 1

iv) 11 aa II lai IlaJ'
v) 11 abll < Ilall-l!b!1
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for all. a,b E Band a E ([ where I· 1:([ -+ :IR is the modulus map.

In the case of the algebra AX obtained.by representing a C* ­

algebra over the maximal idealspace of its centre , the cano­

nical candidate for a norm unfortunately assigns to a section

areal function which although uppe~ semi-continuous is not in

general continuous. The algebra AX would therefore fail to. be

a C*-algebra through not adrnitting a map to:IR satisfying the

required c9nditions.

The diff~culty may be resolved by remarking that the presence

of a norm is needed essentially to describe a topology of a

particular kind. Indeed the definition of a normed algebra is

equivalent for the case of sets to the existence of a map

]R+ __N_> 'nB I

from the object ~f positive reals to gB .satisfying

i) (V r>o aE N (r» <=> a = 0 and r>s,=> N(r) ~ N(s)

ii) a E N (r) Ar. b E N(s) => a + b E N(r + 5)

iii) 1 E N (r)· <=> r > 1

iv) a E N (r) <=> aa N{I~l.r)

v) a E N (r) A b E N(s) => ab E N(rs)

to which one ought to add the additional axiom

vi) a E N(r)

where r,s range over the positive reals and aE C is such that

Inl > o.

According to this definition it may be verified that the algebra

obtained from a CO-algebra A is indeed a norrned algebra 1n the

category of sheaves on .the maximal ideal .space of Z (A). It 1s

complete with respect to'this norm and admits an involution *
which satisfie$ the conditlon

a*aE N(r2 ) <=> a E N(r)

for it to be a C*-algebra internally. Further the norm and

involution induced on the centre are the canonical anes.
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Finally, remark that in the case of-the topos of sets, a. no~med

algebra defined in the above way admits a map

B __11_-_"_> lR

defined by the formula

11 a 11 inf {r E JR+ I a E N (r) }

which yields an element of R since in this case ~ is inf-com­

plete. In a general topos lR may fail to be inf-complete, in

~hich case the formu~a determines an element of the inf-com­

pletat~on of E, which in the case of Top(X) isof ~ourse.exactlY~

the sheaf of upper semi~continuous real functions on X. .-.
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Topos theory c many-sorted intuitionstic set theory. *)

Gerhard Osius

Elementary top<?i serve as a generalization of "the" category of

sets, and our aim is to investigate to which extent topos theory

ac~ually "is". set theory. We will work within the theory ET of

elementary topoi.

Ta discover that topos theory ET is contained in some kind of

set theory we first introd~ce the set theoretical (or internal)

language'L(SET) which goes back to W. Mitcheli. L(SET) is a man~­

sorted firstorder lanquage whose terms x (called: elements) have
. .

obje~ts A of the topos (i.e. terms of ET) as ~. We write

'.lxEA" instead of "x is of type An. The terms and their types are

simultaneously given by .

- there arecountable many'variables of e,ach type

- Ö&l is a co~stant(l is the terminal object)

. " f ".
- any map A ---;>';B-'1nduces a,'.unary operation: xEA 1--> fXEB.

-there 1s an 'ordered pair operator: xEA, YEB t--> <x,y> E AxB.

The'only primit;ive 'predicate ,af L(SET) is equality "="which may

hold only beetween terms of the same type. The formulas are formed

from the atomic anes us.ing the cc:>nnectives I, ", Y, => and.
quantifj.ers . 3'x (or 3XEA if xe:A) , Vx ..

The language.·L (SET) admits an internal interpretation in topos

theory ET in, the following sense. For any formula r ~esp. term

tEB of L'(SET), with free variables among x,e:A" •• , XnEAn one

can define

a subobject

resp. a map

A,x .• XAn ---> Q

A
1

X •• XA
n

--->' B

By induction on the length of resp. t •

• ) This 1s an abstract of the author "5 paper "Logical and set theo­
retical tools in elementary topoi" (ta appear in Springer Lecture
Notes) •
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A formula ~ having exactly the free variables Yl' •• Yn is called

internally valid, denoted F 'f ' iff' {<Yl'· ·Yn > I rpl factors
through 1· true > n

The language L{SET) together with inter~al validity as a notion

of truth will be called the set ·theory SET de'fined over topos

theory ET. The axioms and rules of intuitionistic logic hold in

SET (i.e. are internally valid), however the modus ponens

and'F (1=> llJ) imply F=
requires the additional assumption that all.> 'free var'iables of 'f
~ free in llJ •

The atomic formula x=Y wLth x,YEA admits a realization

e·

.'

{<x,y> I x=y 1 A x A ---> n

___t_r_u_e__> n) (Ö) •

and since n is a complet~ Heyting-algebra, SET may be viewed

as an intuitionistic many-sorted Heyting-valued t~eory. In fact,

SET is a set theory since for xEA, ~EPA a membership predicate

" E n canbe defined"'

x ~ y : <=> {PA><A ev > nj <Y,x> = (1

M o'MFor a subobject A ---> n we put M := (1 ---> PA) (~)" and'write

simply x E:. M instead of x E A.

With the above definition"of membership the following axioms of

(many-sorted) set theory hold in SET: Extensionality, Empty Set,

Sinletons, Binary and Arbitrary Unions, Power'sets, and Separations­

scheme.

To explain and establish the title of this note it remains to e
show that all considerations in topos theory ET might as weIl be

carried out within the set theory SET. This will be done by inter~

nally characterizing all fundamental notions of ET within SET.

fFirst, the maps A ---> B are (via their graphs) in 1-1-corres-

pondence with functional relations AXB ~> n , i.e.

F VxEA 3!yEB <x,y> ER, such that the composition.of maps
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corres.ponds· to relational composition. Second, equality of

maps can be characterized internally by

A -!-> B = A -S->.B iff F 'VxEA fx·= gx

Hence the category structure is characterized and for the internal

characterization of the remaining topos structure of ET we only

give some examples:

1 • -A is a terminal object iff F 3IxEA x=?C.

2. A conun~tative square D k > B is a pullback -

e h 1 g 1
A f > C

iff f:=' V'xEA VYEB (fx = gy '> 3IUED (hü. =x A ku

3. C -!-> PA is the exponential adjo'int ofCxA l> n

iff F ,VXEC .V'YEA· (y ,e fx <=> <x,Y> E R) •

Y» •

•

4. -2->E -!-> E' is a natural number object iff' the axioms of

Peano are internally valid, i.e.

t= --, 3'ntE' 0=' sn

t= V'm,nEE' ( sm = sn => m=n)

F= VXe:EN (~€ X "V.nEE (n t:= X => sn E X) .-> 'inEN n E X)

Having. thus characterized all primitive notions of ET within'.SET,

any statement a of topos th~ory ET'~ay be translated into a set

theoretical statement a* of SET such that a holds in ET if and

only if a* holds in SET. However it should be pointed out that

F= a~(i.e. 'a* holds in SET) is.by definition' of internal ~validity

a statement of ET, 50 that we are not really leaving topos theory·

ET but. rather ~ook at it from a different point of view, the set

theoretical-one.

This set theoretical method of establishing results in topos

theory is extremly useful since it reduces the arguments and

constructions to their set theoretical nature (which we use in

heuristic ideas anyway).

-,44 -

                                   
                                                                                                       ©



- 44 -

On different logical tools in elementary topoi

Gerhard Osius

In addition to·our abstract "Topos theory C Many-sorted intui­

tionistic set theory" (which is presupposed here) let us describe.

another natural,interpretation of the set-theoretical language

L(SET) of elementary topoi. This interpretation, called Kripke­

Joyal-Semantics, .goes essentially back to A. Joyal and has b~en

used extensi~y in topo~ by A. Kock andCh. Mikkelsen.

Sta~ting with the interpretation, maps X ~ A in anelernentary

t'opos are called "elements of A at the .stage (or: time, place) X".

With respect to a fixed stage X we interprete the primitive ope­

rations of L(SET): - X ~ , 1s the interpretation o~ the constant

Now let f(x" •• xn ) be a formula of'L(SET) with free variables
a. . '

among x'!E:A. 'and let X __1._> A. be elements at stage x (i=', •. n) •.1.1.
We define by induction on the length of formulas what it means

that .. tp(a" • •a n ) holds (at stage X)" I written "I='x r(a" .. a n )":

.(0) Px X -!-> A = X ~;'A 1ff a=a'

(, ) F=x --, real I • • an) iff

For all y'~> X: Fy YJ(a,t, .• ant) implies Y~O.

(2) FX 'f'(al' • · an) 1\ '" (a, I • • an) i f f .

Fx e.p(a,," •• a n )· and" Fx 1JJ(a" •• a n )

(3) iff

There exist jointly epic,maps Y ~> X, Z --.s_> X such that

Fy tp(a,t, •• arit ) and Fz $(a,s, .. ans) •
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(4) F= x rp{a l ,· .an ) => 1JJ (al'· .an ) iff

For all Y -..!-> X: F y <r(a,t, .. ant) implies Fy 1JJ (a,t, .. ant)

(S) Fx (Vye:B) y>(y,a" .. a n ) 1ff

For all Y-..!-> X, y ~> B: f=y ~(b,a,t, .. ant) ·

(6) F=x (3 ye:B) f(y,a" • • a n ) 1ff

There exist Y ~» X epic, Y l> B such thatF y tp(bp.fi.~ant).
For an intuitive understanding of this definition, the maps

y --!-> X (and Z' _5_.> X) should be viewed as a passage frorn the

"later" stage Y (and Z) to the "present" stage (time) X. Thus (5)

can be read U(Vye:B) ~(y,a" .. an) bolds at sta~e X iff for all

passages y -..!-> X from later stages Y to X, f(b,a,t, .. a t) holds
b n

at Y for all Y --> Bit

The important connection between this Kripke-Joyal-Sematics and

the internal interpretation of the language L(SET) is given by

the well-known (among specialists)

Metatheorem:

X

if and only if

<p (x, , .. x )}
n > n

Concerning the definable predicate (-) €. M for a subobj·ect A -.!:!.->. n
which is the characteristic map of B >~> A, we get in particular

for X .-!.....> A: t= X aEM iff a factors through m •

According to the metatheorem Kr~pke-Joyal-Sem.anticsand the in­

ternal interpretation of th~ language L(SET) provide Itequivalent lt

. .
logical tools in elemtary topoi and since each method has some

advantage over the other both should be used (in some situations

one may pe more appropriate than the other).

Let us finally observe how Kripke-Joyal~Semanticscan be sim.ply­

fied if ~ topos 1s generated ~ ~ class G of objects which is

closed~ subobjects. Then we can restrict the stages X, Y, z.•
above (i.e. the domains of elements) to objects in the class ~,
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and all previous results hold unchanged if we only change (6) into

(6)4; F X (3yEB) r.p(y,a'1,··an ) iff

There exists a subclass C' c ~, a jointly epic family
t y b y

(y ---> X)y €. GI and a family of elements (Y --> B}y c: G'

such that for all Y € GI

The important example is of course G = {open objects} for well­

opened topoi. We note, that in this particular case (6)a; can

again be replaced by the original (6) if in addition "Support ~

splits". On~ further example is G = {O,1.} for well-pointed topoi.

In both examples the definitions (O)-~5), (6)G can be simplified

because of the particular nature of G.

- 47 -                                   
                                                                                                       ©



- 47 -

Model-theoretic methods in the_ theory of topoi

Gonzalo E. Reyes.

This paper(written in collaboration with Michael Makkai) makes

more explieit and further develops the connections between'

eoherent topos (in the sense of SGA4, Exp. VI) and certain first

order theories which we call coherent. These latter are defined

to be sets -of formal express ions of the form ~ ==> $ , where

~,$ are formulas of a (many-sorted) language obtained (from

the atomic ones) by using A (and), v (or), 3 (there is), +(true),·

+(false), ~ (equal) as logical connectives. The logie of this

language can be eonsidered as the "geometrie" (~ st order) logic

of topoi inasmueh as the concepts expressible in it are preserved

by (inverse image of) geometrie rnorphisms.

We define the category of models of such a theory T in any pre­

topos IP (in particular in a topos), Mod IJ (T) and we obtain:

0) (Existenee cf ·classifying topos)

If T is coherent, there is a coherent t~pos E(T) and a model

M of T in E (T) such that the functor induce~ by this model

M: Top ( X,E:(T»oP -+ Mod:x.(T) is an equival~nce, for every· topos

X. (Here Coh (E) is the pretopos of coherent objects of E. The

topos t(T) is called the elassifying topos. for T.

1) If E is coherent, then there is 'a coherent theory T such that

f(T) ~> E, i.e., any eoherent topos ·is the elassifying topos

of some.coherent theory.

e 2) ("Points are enough for classifying").

Let T be a c~herent theory, let E be a coherent topos and let

M be a model of T in Coh(E) which induc~s an equivalence

There f is the classlfying topos for T.

A new proof that the Zariski topos elassifie~ Ioeal rings is

quickly obtained, as weIl as a description ~f the coherent

theory of the etale topos.
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In order to prove the existence of points in (coherent) topoi,

the first 2 results assure us that we need to construct models

only for the coherent theory associated. We set up a formal sys~em

(whose de-tails will app~ar elsewehre) and prove a completeness

theorem. We combine this theorem with the method of diagrams of

Tarski-Robinson to obtain some new and old results in a uniform

rnanner:

2) above 1s thus obtained.

Delignes theorem (i.e., every coherent topos has a surjective

bo~lean point Sh (2
x

)....E.....> E for some set X, where surjective e
means p* faithful).

A coheren~ topos E has asurjective point iff for all coherent

objects A,X,B,Y such thatA ">--> X, B >--> Y, if

A x Y v X x B ~ X x Y, then A ~ X or B = Y (This gives a

characterization of classifying topos-which are cotripleable over

S~t) •

Existence of enlargements in the sense of Robinson.

Joyal's .Theorem (unpublished, 2 years ago).

Let tJe, be a ·pretopos" with V. Then there is a small P -+- Mod (I~ I)
where Mod ( I tel( I) is -the category of functors from rat into Set

preserving the pretopos structure such that ~~> S~t P is·a

conservative functor preserving the pretopos structure and V •

There is an infinitary. generallization of the completenes theorem

(changing Set to Sh(B), i.e., a category of sheaves for a complete

B~A. with the canonical ~opology) •

As a corollary, we obtain:

Barr's Theorem.

Every topos has a surjectlve boolean point.

Let·'de, be apretopos with V. Then there is a complete Heyting

al:gebra E and a conservative functor M: t;J[~ Sh (0) preserving

the pretopos structure, V , all (possible infinite) stable v and

'all infs which exist in 'Je. •
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A Categorial Problem in Group Duality.

J. E. Roberts.

The classical Tannaka duality theorem for compact groups teIls

us that a co~pact group G can be reeovered from the symmetrie

monoidal category t/(G) of finite-dimensional continuous unitary

repre~entations- (G-modules) as the C]roup of monoidal natural.

unitary transformations of the forgetful functor of t/(G) into

the category of Hilbert spaces.

It is possible to construct categories whi~h apparently have the

same "abstract .structlire as lj(G) but'without recourse to a group

G. Thi·s raises "·the quenstion of whether one can _improve on this

. classical duality theorem by ~har~eterizing symmetrie monoidal

.categories,of the.form "1f(G) without referring explicitly.to a

forgetful fun~to~ inte' ~~e category of Hilbert spaees:

The construction arose ~uring the course of investigations into

the supe~selection'"structureof elemen~ary particle physics '[l}
and. for" tbis reason 'C?an~ot be-.described adequately h.ere. However

some 1dea of "t~e construction and the results can be gained from

the following simplified mathematical setting.

Let'M be a von ~euma~n algebra. consi~er t~e category En~ whose

objects are, endoinorp~isms of M, i.e. normal identity-preserving

*-homorp~isms of M" into ·M. The arrows of EndM are defined by

···Horn(p,p'),= {tEM : tp(x) = p'(x)t, ~EM}. EndM has a lot of'

structu~e; Horn(p,p') inheritsalgebraic structure from M and EndM

~ becomes astriet monoidal eategory ifwe define

(pep') (x) = pp' (x), x ~M

SGltt = sa(t) = 0' (t)s, s 6Hom(o,a'), tEHom(p,p').

The identity object is the identity automorphism ~ of M. The

monoidal strueture .i5 best understood by considering M as a

category with a single object and endomorphisms as endofunc~ors

of M.
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We are interested in certain full monoidal subcategories ~

of EndM which allow a (coherent) symmetry E with E(P,P')* =

E(P·,p) .. The coherence of E associates with any object P of J
a repres~ntaion E(n) of the permutation groupP . The main line

p n (n)
of attack is to analyse the chain of representat~ons Ep , n=1,2 •.•

One condition·which allows such an analysis is to suppose t~at

S&t = 0 implies s = 0 or t = 0; this might be. useful in quite

different contexts. More complete resultsfollow by supposing

that p has a lef~ inverse ~. This is a positive linear mapping

of M into M such that €f(l) = land Cf(p (x)y) = x y>(y) '" x,yt:=. M. .•

What is important is the way 'f acts on the. arrows of lJ; 'we have _

r(HO~(pPl,Ppi» C Hom(P 1 ,P2 )· Mappings'of this nature arise in

.synunetric monoidal categories wheneve'r there 1s a P such that the

c:perations of tensoring'by P and·p are adjoint functors. We may

then compute a class function of positive type

<r nE (n) : P ~ Horn (rv, rv) •
o . P n

It is multiplicative on disjoint cycles and takes the value
. k
'f( ..tf(E(P,P) ) on a k+1 -cycle. Suppose now that M is a factor,

i.e. Hom(rv,rv) = ~lrvand that P is irredu~ible, i.e.

Hom(p,p) = ~1 • Then ~(E(p,p» = Alp where
-l P r

A E {O} u{±d : d integer}. Adetermines the irreducible represen-

tations contained in the chain E(n), n = 1,2, ••• and !AI-1 is
p

called the dimension of p, d(p).

In our context the ful~ monoidal subcategory Jf of J gen~rated

by the finite dimensional irreducibles has a structure like

the monoidal category generated by the continuous unitary irredu­

cible representations of a compact group. The dimension function. ~
can be ~xtended to Jf so that

d (p p ') '= d (p ) d (p • ) , d ( pep' ) d ( p) +d (p , ) •

Every object has a decomposition as a direct sum of irreducibles.

The sign of A is important in the physical context (it gives the

difference between Base and Fermi statistics) but has little

relevance for the structure of Jf . In fact it is possible and

convenient to adjust the symmetry so that A > O.
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Objects P with d{p) = are automorphisms and possess an

inverse p-l in Jf oo As a consequence every object p has an

adjoint p so that the functors of tensoring by p and P are
. .

adjointsoo Once the symmetry has ,been adjusted as above, P may

be constructed by following the group theoretical recipe. One

takes subobjects p' and y of pd-l and pd respectively, d = d{p),

which correspond to total antisymmetrization. One·computes that

d{y) = 1 so that y has an inverse and then shows that p'y-l is

an adjoint for p.

This completes the descriptiori of the basic structure of ~
although there is much further structure of ·a derivative nature.'

,For example we have a bitrace on the arrows.of ~ and an ,anti-'

unitary lnvQlutory functor on J
f

commuting with ... , the Hermitian

conjugation, .and .mapping objects into their adjaints [2].

Ta date is has been possible to prove that .~ is associated

with a compactgroup G only in the case where G i·s Abelianoo

One wayof t~cklin9the ~roblem ~ould .be to '.show th~t· ';Jf allOWs~

a monoldal embedding inta the category of Hilhert ·spaces.

This reduces to showing that. a certain 3-cocycle ·in a. non-Abeiian

cohomology theory is a 3-coboundaryoo

[lJ ·S. Doplicher, 'R. H~ag a.nd J .. Eoo Robe~tsoo LocalObservables

and Particle Statistics. Communoo· Mathoo Physoo 23, 1"99-230

'.' .:. .'. (1 9 7 1) , and :3 5 ~ ." ·4 9 -:" 8 5 (1 9 7 4) •

[2] J.Eoo Roberts. Statistics and th~ Inter~winer Calculus

Proceedings of Varenna Summer Schaol. 1973 on C*-Algebras

.. and their Applications to Statistical"Mechanics and

Quantum Field Theoryoo
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Extensions of full embeddings and binding categories

J. Rosicky

Given categories M, C, A and full and- faithful functors K: M -+ C,

T: M + A, it is often important to know whethe~there is a full

and faithful functor S: C ~A with SK = T. When K is dense, then

"a good candidate' for S is a pointwise left Kan extension LanK(T)

of T along K and in same -papers it was (implicitely) used for

this purpose. Under sqme restrictiye suppositions it can be shown

that LanK(T) is full and faithful whenever a full and faithful ~
functor S with SK = T exists. This result has applications for

proving ~hat there is no such S. In the general case the role of

LanK(T) plays a new functor L:(T) which can be pointwise defined

by a suitable.colimit construction using the ~ransfinite induction.

Theorem 1: Let M be small, A cocomplete and co-well-pow~red.

~hen L:(T) exists and L:(T)K = T. If K ~s dense and cogenerating,

then L;(T) is full and faithful whenever a "full and faithful

extension S exists.

MMoreover, let- FM be a full subcat~gory of the functor category A

consisting of full and faithful functors T having a ful~ and

faithful "extension S such that the family {~: ~n_ + ~~m/n E M} is

jointly epi for any T,T' E FM anq m E M, F the full .subcategory

of the functor category AC consisting of all full an~ faithful

functors S wit~ 'SK E FM and AK: F -+ FM the functor given by the

composing with K on the right. Then L;: FM -+ F is a functor left

"adjoint to AK~

If the existence of S is replaced by the codenseness of K, then

the first part of Theorem 1 remains true~ Another result ensuring

L:(~) to be full and faithful, which is convenient for the follo­

wing application ta binding categories, can be "proved by means

of more elab?rate arguments originated fram 151.

A category is binding if any full category of algebras can be
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fully embedded into it. Any small category can be fully embedded

into a binding category (see [lJ) and the same holds for any con­

crete category under the following assurnption (M): There is a

cardinal ~ such that every ultrafilter closed under intersections

of ~ elements is trival. It was proved by Hedrl!n and Kucera and

commtinicated in [2]. In [5J 1t was f~und a three-abject categary

M· full embe~dability of which inta an equational class A of unary

algebras make Ä to be binding. This testing category M was taken

as a full subcategory of a suitable binding category C of graphs

and LanK(T) yields a full embedding- C ~ ~. Using the functor

L:(T) the following result can be obtained.

Theorem 2: Let ~ a regular infinite cardinal. Then there is a

three-object category Mb such that an equational class A of alge­

bras having less than ~=ary ~perations isbinding i~~ ~ can be

fully emb~dded into it. -

Under non(M) there is a non-binding ·monadic category containing

any small category as a full subcategory.
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Double categories as a 2-to~os

Ross Street

Our purpose is to find some axioms for the elementary theory of

the 2-category CAT of all categories from which a large part

of cat~gory theory can be developed "in a natural way, and yet

weak enough to be satisfied by a topos, the 2-category of 2­

categories, and other hyperdoctrines. Size considerations should

appear in the development of the theory in an elementary catego­

rical way and should not be imposed from outside the 2-category 4It
by an elaborate rneta-set-theory.

Let K denote a 2-category w1th finite 2-lirnits. Then each object

A is an object of objects for a category object

AArr A

Arr B

d
___0__>
--,,---->d,

in K, where K(B,Arr A) =K(B,A)li so that Arr A is the cotensor

of 1 with A in K. This allows us to define the 2-~ategory [B,K]

of internal functors.from B to K as the 2-category of algebras

for the 2-monad on K/B obtained by pulling back along

do d,
------> Band using Arr B > B to ·get an arrow inta B.

An Object g in K is called an ideal classifier whert there is an

internal functor n -!-> K satisfying the following twa axioms:

I C 1. the functor J:K/n ~ K obtained from T has a right 2-adjoint;

I C 2. for each object B, the functor K(B,n) + [B,K] obtained by~
"composing R with T iS,fully. faithful. The internal functors in

the image of the functor in I C 2. are ~alled B-ideals. If

Ö
TX x > n is the.value of the right 2~adjoint of the 2-functor

af I C 1 at X then rx represents partial maps defined in terms

of ideals in the appropriate way. An object U is called small

when U ~ 1 is an ideal. Exponentiation to small powers exists.
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Moreover, -xB: K ~ [a,K] has a right 2-adjoint and takes the

ideal classifier in K to an ideal classifier in [a,K].

A 2-topos is a finitely 2-complete 2-category K with an ideal

classifier n satisfying:

2T 1. each identity arrow is an ideal;

2T 2. a composite of ideals is an ideal;

2T 3. ideals are closed under cotensor with 2 in [a,K].

Perhaps we· should also suppose K 2-cartesian closed (not just,

exponentiation to small powers, but to all powers). In a 2-topos

the theory of 'cocomplet~ objects works weIl' and g is internally

cocomplete 'model'ling internally the sUb-2-category of K consis­

ting of, the small objects.

A topos.provides an example of a 2-topos by extending to the

2-category of ordered objects therein; th~ ideal ~lassifier is

the subobject classifier. AIs~ the 2-ca~egory CA~ 'is the moti­

vating example of a- 2-topos with n .= Cat, the category of small

categories.

The main ex~ple presented in our lecture is the 2-category DBL

of double categor.ies; that is, cate90ry'objects in CAT. Here

n = 2-Cat,.the 2-category ~f small 2-categories appropriately

regarded as a douple:category. 'There are many ~ays.in wh~ch a

2-category can be regar~ed as a do~ble category~ Making use of

-his observation and the fact'that DBL is a 2-topos, we are able

to turn much 2-category theory into formal category theory.

It would be good to internalize this'example and, we conjecture

that if K is a 2-topos then so is Cat(K) with a natural ideal

classifier.
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Monadic Functors and Convexity

TadeU5Z Swirszcz

The well-known' Theorem of L1nton can be strenqthened as follows:

Theorem. Let U: ~ ... a be a functor havin'g a left adjoint, let

(j(, have kernel pairs of retractions 'and let i!f. have kernel pairs

and coequalizers. If

(1) for each morphism f in ~, f is a coequallzer 1ff Uf i5
a coequalizer, •(ii) for each parallel pCi:ir (f ,~) ,in $, (f ,q) is a kernel pair

iff (Uf,Ug) 1s a kernel.pair;

then the canonical comparison functor~: :& .....a'liis an equivalence'1' . ,
of cateqor1es. (ct 1s the E11enberq-Moore cateqory of the monad

T, determined by the functor U and its left adjoint.)

The assumpt10n tha:,t each epimorphism in t1 1s a retraction in a
i5 super.fl~ous.

The above Theorem i8 provinq very useful in functional analysis.

F~~ example, us1nq th~s Theorem we can prove that the forqetful
'functor

U: Compconv ... Comp

15 manadic. compconvis the cateqory of compact convex sets and

continuous affine maps. Co~p i5 the cateqory of compact spaces
and continuous·maps.

The functor

~: Comp ... Compconv

left adjoint of U, 'is defined as follows: qiven a compact space X,

~(X) is'the set of all probability measures on,X, convex and

compact with the *-weak topoloqy. If f: X ... Y 1s a continuous map,. .,
~f: ~(X)'" ~(Y) is defined by ~f(~) (8) = ~(f- (8» for ~ in

~(X) and a borel subset B of Y.

The monadicity of the functor U qives the followinq axiomatic

characterization of the centroid of a probability measure on a

compact space:
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Theoren. Let X be a compact space and let y : ~cX) ~ X be a

continuous map satisfying the fo~lowing conditions:

(1) Y(Ö~) = x for each x in·X, where ö~ is the Dirac measure at x,

(2) if A, . Al' A2 are elements of lex) and Y(A 1) Y(A 2 )

then y [( l-t) A1~tA] = y[(1-t) A2+tAJ for 0 < t < 1 .

Define the convex combinations of elements of X as

~
n

öX
aixi y( L: a. ) .

.1. x .i=1 i=1 1.

Then.X becomes a compact convex set such that Y(A) 'i5 the centraid

of A for each A in Z(X).

On the other hand, the category Conv of convex· sets· and affine

maps is notmcnadic ~ver the. category ,of sets, in particular the

forgetful functor U: Conv ~ Ens ist not monadic.

Let X be a ~et and let (@: XxX ~ X) 0 < s < , be a family of

binary operations satisfying the following axioms:

,(A) x®~ x

(B) x@y y(8x

(C) (x @ y) ® z = -X Q+t-s:D (Y~~~ z)

(0) x, @ y = x2 @ Y => x, = x2

for all x, x"x2 , y,z in X, 0 < s < 1, 0< t < 1.

Define the convex combinations of elements of X as (l-t) x+ty= x ® y

for x,y in X, 0 < t < 1. Then X becomes a convex set.

Thus a convex set can be regarded as an abstract algebra. The

axioms (A) - CC) are of an equational type, where a~ the axiom (0)·

is not. Since Conv is not monadic over Ens,. there is no system

ofaxioms of an equational type defining a convex structure on

a set.

The Eilenberg-Moore category EnsT of the monad Jr determined by
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the forgetful functor U: Conv ~ Ens and its left adjoint is the

smallest category of equationally defined algebras over Ens

containing the category Conv. The category EnsT will be denoted

by Sconv and its objects will be called semi-convex sets. ~t turns

out that the pair (X,(~ )0<5<') is a semi-convex set iff t~e

family ( s )0<5<1 of binary operations in X satisfies the axioms

(A)-(C) .

It can be proved that Conv is a full and reflective subcategory

of Sconv.

The semi-convex seGcan be also described as follows:

Let K be a· convex set and let y>: K -+ S be ci surjection satis­

fying the following condition:

Define the "convex combinations" of elements of a 'set S as

n
.L
i=1

a.s.
1 1

n
co( L: ci.x.)
I 'i=l 1 1

where ~(xi) = Si for i=1, .•. ,n. Then S beeomes a semi-eanvex set.

On the other hand, each semi-convex.set can be obtained ina such

a way.
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Oltrafilters, ultrapowers and finiteness in a topos.

Hugo Voiger

Alan Day raised the following question: What is the correct

definition of an ultrafilter and an ultrapower in an elemtary

topos in the sense of Lawvere and Tierney? To be more precise,

we are looking ~or a generalization of the set-theoretic

ultrapower construction which is internal, i.e. which can" be

described within the topos.

Thus an internal filter on an object X in a topos E should '

be a sUbObject' of gX with appropriate 'closur~ prop~rties, which

will be given as preservation properties of the ch"arac"teris't'ic

function u: gX ~ O. In particular, an, ultrafilter will be a.
X' .

Heyting 'algebra morphism f~om n to o. On ~he other hand, an

external filter on X is a filter on ~.(1.,nX), the 'set of s~­

objects of x..

Consequently, the construction of the ultrapower AX/U 'should
". . X ."

use the internal power A ' rather than' the e'xternal power

A!(l,X} ~hiCh might not eve~'exist without further assumptions

o~ ~xternal limits. Howeyer, there are several ways of defining

the ultrapower. Usually the ~lt~apower AX/U of 'a ~et A with

respect to an ultrafilter ti on the set X is defined as"the quo­

tient OfAX, o~~ained by identifying two .functions if they ag~ee

on a subset in the filter. Okhuma observed in Ultrapowers in

categories (Yokoh~a Math.J.14 (1966), 17-37) 'that the' ultrapower

may be viewed ~~ the filte!ed 'colimit of'the p~rt~al ~owers AY .

with Y in U. This can be rephrased as foliows. The ultrapower
. , X . '. ~,

is defined as the quotient ~f A.l u' ~h~ ~et of.partial functions

with domain in U, obtained by identifying two functions if they

agree on a subset in the filter. Therefore we will distinguish

in an arbitrary topos between AX/U and AX//U, where the latter

is the filtered colimit of·the partial powers. However, we have

not found yet an example to show that AX/U and AX//U can be

different.
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It will be shown that a filter U on an objeet X is an ultra­

filter iff n is isomorphie to n~/Iu ersp.-OX/U. Combining the

preservation properties of the ultrapower funetor we will prov~

that in every topos with the internal axiom of choice the ultra­

power funeto~ (- ),X/ Iu is a first oTder functor, i. e. i t is -left

exact and preserves the propositi~nal operations arid the existen­

tial and universal quantification. This is an appropriate genera­

lization of the basic result on ultrapowers afsetswhich states

that the diagonal morphism fram ~ to AX//U is an elementary em-

. bedding. It should be remarked that 'in the set-theoretie case ..~.

also the axiom of choice has to be used.' Therefore, AX//U,will ~. '

,be regarded as the cor~ect generaliz~tion of the set-theoretie

~ltrapower· construction.

~property wh~ch characterizes finite sets in the category of

sets can be used to def~ne a eopcept of ·finiteness in an arbi­

,t~ary topos. We areinterested in the.following two variants

which depend on ultrafilters. An object will be ealled ultra­

finite iff it .is i,somorphic to all its ultr~powers. It will be

called prineipally.finite iff e~ery ultr~fi~ter on it is _prin­

cipal. Ultrafinite objects in ~ategories with external .ultra­

powers in the sense of Okhuma have been.studied by Day and Higgs

(A fi~iteness ~?ndition in catego~ies with ultrapowers,' manus-

cript Lakehead Univ., Thunder Bay, 1973) .. We will prove tJ:1at in

a topos the class of ultrafinite resp. principally finite objects

contains n and .is.clos~d under finite limits. However, we dot not

know whether·these classes are closed under'the- power set opera­

tion g(-). As ~ side result, we obtain the description of the

s~topos generated by a Singel~. object, which permits to generalie

'w. Mitchell's results on f~ee'bbolean topoi in the J. of Pure

and Applied Math. 3(1973) to the non-boolean case.
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Algebraic Theories in Topoi

G.C. Wraith

An object A of the object classifier E[U] of a topos E may be

identi.fied either with i) a, map of E-topoi A: OE [U] ? E [U]

or ii) functors A 9-: F ~ F for every E~topos P, comrnuting with in-

verse image part's of maps-of E-topoi. In consequenc~, "EtU] obtains

a monoidal structure, (E[U], 0, U). We identify the c~tegory of

monaids for (ErU], 8,'U) with the category of fi~itary algebraic

theories in E. P.:Johnstone has shown that if A is such a fini­

tary algebraic theory in E; then the category of algebra for the

monad A* on E(U] is equivalent tothe category of internal fune­

tors FA_~'E, where FA'i~ the internal category of finitely free

A-algebras iri E. .

For any obje~t T 'of E[U] we show how' to constr~et the free

monoid on -T _~n (E IU] ~ 9, U),' and we 'use this construetion to­

show that giyen a diagram of E'-topoi

__X_o_;-> E [u] T_->'E Eu]

there exists a ~1que

__.....;X > E[U]

up to natural isom~rphism, making-the ~iagram

> EIN

Ix
v

__T__> E,[U]

If ~ 1s the fundamental locally internal category of E (see

J. Penon "Categories -localement internes') then an algebraic

theory- on E may be defined to be a map E ~ E of locally i~ternal

categories with a monad structure. Roughly speaking, this means

that an algebraic theory on Eis. given by astrang monad on E/X

for each X in E, commuting with ·pullback. We deduce that an alge­

braie theory is finitary if and only if this monad can be extended

to all E-topoi, not just those of the form E/X.
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Lew dimensional cohomology of topoi

G.C. Wraith

If" E is a Grothendieck topos, and Ab(~) denotes the catego~y

of abelian groups in ~' then Ab(~) is an abelian category with

enough injectives (cf. work of Van Osdol). The cohomology ftinctors

H*(~,-): Ab(~) 7 Ab are defined to be the right derived functors

of HO~(',-): Ab(~) 7 Ab. We have'

o. '
J.I (~,A) = Ho~("A) TOPE(~·~/A).,

so A may be taken to be any object here. The weIl known inter­

pret~tion of H'C!,A) in terms of torsors· allows us to interpret

this for any group object Ai we sketch this interpretation

briefly:-

We identify a group object G in ~ with category object (~1).

An internal functor G 7 E is then just a right G-object (X,~)

where the action XxG ~- X satisfies the usual laws. Such a

functor is flat iff (X,~) is a right G-torsor, i.e

i) X 7

ii) X x G

is epic,

<P".(>
X x X is iso.

GO
Denote by TORSE(G)_~he full subcategory of E of left G-torsors.

The following results are weIl known:-

,.
2.

TORS
E

(G)

TORSE(G) i5 a groupoid,

3. G ~> TOR~E(G) is a product preserving functor Gp(~) 7 Cat.

'For any category C w~ denote the class of connected components

of C by noC. As a corollary of 3. we have that "if A E Ab(~) then

noTORSE(A) ~as a natural abelian group structure. We call a

G-torsor trivial if it is isomorphie as a G-objeet to G itself

with'action given by mul~iplication.

4. A ·torsor is trivial iff it has an element.
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Theorem. Für A ( Ab (~), H1 (~,A)

isomorphism.

TTOTORS(A) is a natural

The proof proceeds in two steps; (i) for any exact sequence

o ~ A ~ B ~ C ~ 0

in Ab(~) one constructes an exact sequence

o ~ .HO~ ("1 ,A) ~ •••~HO~ (1 ,C) _0_> TToTORS~(A)~••• ~lToTORS·(C) .

The connecting map 0 is given as follows: given 1 ~> C,

form the pullbaek

P --->> 1
'[ ,r
""

x·
B --->> C

One shoW$ that pxA >--> BxB + B faetors through P >--> B

making P an A-object. Then one 'shows that P is an A-torsor,

-whase class we define to be,o(e) .. Simple diagram chasing .argu­

ments establish t~e exactness of the sequence.

(ii) One shows that the funetor A --> lToTO~SE{A) is effaceable~

i.e. for any.a € lToTORSE{A) there is 'an injeetive homomorphi~m'

A >--> A~ such that"Q =-> 0 u~der the induced map

'";OTORS
E

(A) ~ ~oTORSE (A •. ) •

This may readily be .pr:oved. by taking A" = 'AT where ~ is an

A-torsor repr~5ent·j..nga. It ~s' an immediate consequ~n'ce that

TToTORSE.(A) = {Ol t:o~ any .injective A...Standard compar.ison theorems

of' homological algebra'now give the result.

The purposeof t~is talk is to suggest an analogous interpretation

for ~2(!,A). The ,id~~s ~ere ~uggested by a (very) part~~l under­

standing of same' of· Girauds' •Cohomologie non-abelienne' '.

Unfortunately I have not yet been able to give the effaceability

part of the proof.

Diaconescu's theorem has a consequence that the functor .

Ca t (~) + TOPE f. t-> Ef.
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preserves produets. Hence if A ~ Ab(E), EA is an abelian group in

TOPE , and we may consider ~-Topoi wi~h ~A-action and ~A-equivariant
maps. We denote this eategory by TOP~. Ta give an ~-topos ! an

~A-aetion amouts to ehoosing. for eaeh object of ! an A-aetion in

such a way that all maps of I are A-equivariant. Multiplieation

AxA + A makes ~A into an Obj~ct of TOP~ in a canonical way. We say

that two obiects 1" 12 'of TOP~ are locally equivariantly iso­

morphie if there exists an epic K'~ 1 'in E and an ~A/K-equivariant

isomorphism ..!,/K, --> .!2/K of ~/K - topoi. Call a~ objeet ! o.f

TOP~ an A-extension of ~ if it is locally. equivariantly isomorPhic~)

A· Ato ~ ; we denote the full subeategory of TOPE of A-extensions by

EXTE(A). W~ call an A-extension of ~ trivial-if it is isomorphie

to ;A. The following results are analogou5 to those for torsors.

1. EXTE(A) 15 a gr6upoid~

2. A ~> EXTE(A) is a product preserving functor.

3. An A~extension ! i5 trivial iff it has an element, i.e a

map of ~~topoi .~ ~ I.

4. For any geometrie morphism .~ '_ ....1-> ~, if ! is an A-extension

of~, the'n ~'XE! is a f~«A)-extension of ~'.

Conjecture. There is a natural_ isamorphism H2'(~,A) _~ 1T
o

EXT
E

(A).

If 0 ~ A ~ B ~ C ~ 0 is exaet in Ab'(~), we define the conneeting
1 1

ma~ &'H (;,C) ~ lroEXTE(A) as follows: represent yeH(!,C) by

a map of ~-topoi E -Y-> ECand from the pullback ~

I >. E
B

-
f
,l... y tCE >

Since any two C-torsors are locally isomorphie, and we have a

puIlback diagram
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EA. ::> Ec
B

E
0 ':'C

> E

we get that! i5 an A-extension of~, whose class denote by ö(y).

The establishment of the exactness of the appropriate sequence

proceeds in much the same way as for torsors, except that we

have pullback diagrans of ~-topoi rather than of objeets in E.

Assuming the con]ecture, we get the following:

. f .
Corollary. Let ~' ---> ~ be a geometrie ~orphism, and let

2 ..
a E H (~,A) be represented by an A-extension I -2-> E. Then

f factors through p iff a r-> 0 under H2(~,A) + H2(~"f*(A»

l

. Proof. I ~~' > I CI ~ 0 <=>: S in
1; -

s ; 1 ~ diagram

fE' > ~

This generaliz·es the situation well-known in the cohomology of

groups', whereby elem~nts of H
2

(G,A)- elassify extensions

1 '+ A -+ F +. G ..... 1,'

andF -+ G 15' univ'ersl for' homomorphis~s Jnto G ~nnihilating Cl,
. 2 '-

the el~ment of H (G,A) r~presented by the extension.
. .

Problem: DoeS there exist a universal A-extension over an ~-topos

lK{A, 2) i so ·that "82 (~,A) ~ 1T~TOPE (!, lR(A, 2) )?
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Doctrines on 2-categories

v. Zöberlein

This 'is a summary of my doctoral thesis I which has been presented

to a small audience already a year aga by F. Ulrner. 2-categories

are denoted by ~, i ts obj ects ,by X, 1-morphisms by 6~ 'i
and 2-morphisms by F~ F' (just think of' the 2-category CAT

. c=:::::::=:::=

of categories).

A doctrine (= 2-triple up to isomorphism) f) 111 [1). t: .M. 0.. b I C]

on X consists of a 2-functor X -}- Y , of 2-transformat1ons __D
-= ca G ~.M.'

(natural· up to isomorphism) If~~!) +-=-=-1)·IJ and of trans-

lations (= modifications) 0.., b, c, satisfying four nonobvious

coherence~conditions, such that the usual· triple-laws hold up

to the isom~rphisms a.. I b, C.- In an obvious manner one defines

D-algebras (up to isomorphism), l-homomorphisms (u. t. i.) and

2-homomorphisms (six nonobvious coherence-conditions). One has

an Eilenberg-Moore-' and a Kleisli-decomposition of ~ .

A doctrine f) is called quasi-idempotent (lax-idempotent) iff

in the diagramm of.2-transformations

1) 4-1(----Pti~--D-1)
~

s·%)
.M. is adjoint to E-n (that is iff .M is coadjoint to n·e: )_,
There is a dual notion of coquasi-idernpotent doctrines_

For a doctrine %) there are equivalent:

a) .1) is coquasi-idempotent.

b) For every 1)-algebra ~ ca [X.M.O(...tJ
M is coadjoint to the unit E: X ·

c) For every f)-algebra' X 11:1 [Y.~MIcx..1]

X~ Y. the l-morphism M:CF

the rnultiplication

and for every l-morphism
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is n~then Kan-coextension of F along' E~ .
d) There is a translation n·s~ s:n , satisfying two

coherence-conditions.

There is 'an almost coherence-free presentation of coquasi­

idempotent doctrines, their algebras and homomorphisms by "bases"'.

A base consists of 1)." S like in a doctrine and of a family of
MX . e. '

coreflections 1)X'" - 1)(D~) to:DX j)X ... D<:OX) , ,
~ E ~ with some (coherence-f~ee) properties. These data are

equivalent to a coquasi-idempotent doctrine. An object ~ admits·

~ f)-algebra-structure 'iff there is a coreflection' X~';nxe - -
to X' ~)r nx . A l-mo'rphism is a 1) -algeb~a-homomorphism
iff the usual diagram commutes u. t. i. (no coher~nce). In this

way one eliminates 16 of 19 coherence-cpnditions.

Simple examp~es are the coquasi:idempotent doctrines of coproducts,

whose algebras and 1-homomorphisms ar~ lust coproduct~co~pl.ete

'categories and coproduct-continuous functors. These doctrine~

are defined on CAT ,respective~y.on the i-c~tegorYo~ preadditive

categories. There isan idempöteritdoct-rine 9n CA T , ·.whos~
algebras are just categories ~ith enough split equalizers.

More complicated isthe general coiimit-doctr1ne' on . C'A T " whose
c::=:=:=.' .

,al~ebras and l-homomorphisms are. just ·O·-cocomplete· categories

an~ :J-c"oco~tinuous·functors,"wher'e :l is.·a given "c~ass ~f .(small)'

index~a~e~ories."In:orde~to get a striet 2-functor n',one has

to look at 'the category' :J/~ cf ind~xca'tegories"ove~ .X E' CAT
The final (= confi~al) 'functors ~etween ind~xcategor:~es.over~.. "

form a ·.c2lleulus ,~of"left-.fractio"ns and DX - .L-4 (::J/o.l i5

the eorresponding categoryof fractions. 1>~ .i~ equivale~t: (not

isomorphie) to' the· "Gabriel-Ulmer-eomple·tion of ~ under' :J ~co­

l·imits. Beeause' the ~anoni~al functor 'P·~·;J/X----+ 1J~ . in general

has no ,adj,oint (- p..i5 only a partially coadjoint of som~ funetor

in 9- higher universe) , one has towork with. "'locally aqjoints" .

af p. d-efined. on small füll subcategories of 1lX,.
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