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Automata and Systems in a Hyperdoctrine

E.S. Bainbridge, University of Ottawa

“The loglc of the hyperdoctrme of set-valued functors prov1des

a two-dimensional generahzatmn of ordinary logic. This 2- loglc pro-

v1des an appropriate language for automata and system theory.

A transition functmn §: Qxx-bQ determmes an actmn of the free

) monoid X* generated by X, say §+:QxX*—(Q, A transition function equlpped .

with a read-in function a:I-Q and a read-out function B:Q-»J constitutes
a (Moore-type) automaton, and specifies a.computation '
. Coaxxt &% .
DXt —> QX Q]

xxb

. If T is’ the graph u—vw—»v a.nd T* is the free category generated by T,

"‘aQ B

_then an automaton is a functor '.o:'l"-ysets (I—Q —J). The computation is

u v ‘ -
obtained as- follows, where 1-T*e 1, u* = -ey,.v* = -ov, zu-cu", v Iv.

counit un1t
Lu u*d ————p> O —> Nlv v*d

vt Zu u*d ——————p v*¢
Conversely, given é:-v' .Zu 1->J we obtain QC:T'-’Sets whose computation

simulates C. S -

£
-l-_f—- Zu .f,’l’ fg/ v

. - \
Zu u* 0C--b ¢C—)Ilv v'QC

Forschungsgemeinschatft . © @
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Moreover, ¢c is a sub-quotient of any other such &. With suitable

u v

- other choices of U—»W«—V, &:W-Sets, the above scheme gives the stan-

dard minimal realization theory for 1~inear systems and algebra automata
(including many-sorted theories arising from grammars), among others.

Here we are using quantification along terms in the set-valued functor .
ﬁyperdoctrine .

A transition funi;tion together with an output function A:QxX->»Y con-

stitutes a (Mealy-type) system and specifies an input-output ‘behaviour
ST proj 8
A*: QxX*—»Y* defined below. The state gragh G of 6 Qxx-bQ is Q<—- Q<X =>Q.

proj by
The functmns QxX —> X, QxX-—+Y extend to flmctors from the free category

Ps« A* -

G* generated by G; X*«— G*—>Y*. The connection with the hyperdoctrine

Deutsche

structure is that Pgs is the dlscrete op-fibration 3551gned to 8*:X*-»Sets

by the comprehension schema. Moreover, Lawvere has observed that spans in

cat with one projection a discrete op-fibration are the analogue in this
ixyperdoctrine of partial functions in the subobject hyperd&ctrine of a topos. -
Such spans 3156 model Thatcher's generalilzed2 sequential machines, among other - ‘

Ppt g .
examples; so a system is a span U<— (149) —>V for some ®:U-»Sets. ‘

To each system &,f assign its characteristic profunctor M:VOPXU-oSets, :

M(v,-) = Zp«’ f*V[v,-]. ¢®,f can'be recovered up to isomorphism from M. The

construction of M has system theoretic significance, as does the bifibration

associated with M. Lawvere has observed that there is a classifier for such
. op

" profunctors viewed as U-)Setsv , analogous to the partial function classi-

fier of a tmos. The characteristic' profunctor of any interconnection of sys-
tems (parall.l, cascade, feedback) is computed by a coend formula from the -

component prafunctors, e.g.:

Forschungsgemeinschaft ) © @
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M:YPxixx -» Sets ) N:WoPxv Pxyxy -)Slet—s

ffM(y,w,-)XN(w, )= ,y):VoPXXXU-bSets

Moreover, -the proof of this fact is system theoretic. An approach to

the feedback .control problem is suggested by the existence of a right

u N
—>
,x—d,M;(_—_—‘~Y ‘
. ) il

. adjoint to profunctor composition.

hyperdoctrine provides a de'ductivelcalculus for system homomorphism:.

u .V

Finally, to a Moore automaton 1L —>T*<—1, $:T*-s»Sets, assign the

i:bsp.all'l’ I = (1+u*d)—(140) e (1¥v*d) = J obtained by pulling Back

Indeed, the logical formalism of the

po:(HQ)-'-vT‘ along u and v. Arbitrary interconnections (DO_OR_, DO_THEN ,

DO__WHILE._) can be obtained as colimits of suitiable diag:'fams«, e.g.-

y

If- > J=

R4

" The cospan I-»A«K, while not a Moore automaton, is what you want.

* to the Goguen intéfconnection-by-limit theory fot; systems.
. software are dual, e.g. looping is dual to feedback.

logical formalism like the 'preceding for systems seems possible using the

K.

/\/

(IW) (14"1’)

‘s

N A“,

vides an.interconnection theory for automata (special case :-programs) dual

' "highe: order logic of the hyperdoctrine.

DFG Deutsche
Forschungsgemeinschaft
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Categories of Games

Andreas Blass

We considerAgaﬁes in which two players (O and 1) éifernately
select elements from some set; depending on the (usually in-
finite) sequence of their choices, one of the players wins and

the other loses. In_[1] we proposed that such games be pre-
ordered by the relation .

(¢) A < B iff there is a strategy whereby player 1 can
win B if he is shown how to win A,

‘and we studied the lattices (¥ and ‘W ) that arise from two

natural ways of making this proposal precise.

By thinking of the strategies mentioned in (#) as morphisms
from A to B, we define a category S of games. The pre-ordered

-class associated to S is the lattice ¥ of [1], but, as might

be expected, the category S contains more information than f .

For example, § contains nontrivial retractions, so games can

be equivalent in ¥ without being isomorphic in S§. If we restrict
attention to games in which every play has finite lenth, we find'a.
nearly trivial sublattice of ¥ but a rather interesting sub-
category of S; a quotient of this'subcategofy is an "initial
caﬁegory with arbitrary products and coproducts."

The category S has a (symmetric monoidal) closed structure. .
Its tensor product is not the cartesian product; the difference

between the two products can be viewed, using ideas of Lorenzen .
[2], as reflecting the difference between the classical and
intuitionistic meanings of "or."

We defihe a cotriple (R,e,u) on S. The object part of R is the
operator called R in [1], and the Kleisli category W of this
¢otriple is related to the lattice ‘W of [1] as S is to ¥ .
From a natural isomorphism R(A x B) = R(A)®R(B) in §‘it follows
that W is cartesian closed.

n




W

We re-examine Lorenzeﬁ's idea of defining the basic loéical
connectives in terms of games [2]. Lorenzen and others have
producéd such definitions capable of yielding either classical )
or intuitionistic logic, but the definitions are fairly complex.
vwhen the problem is attacked using the concepts that occur natu-
rally in the study of S, two particularly simple approaches
present themselves. One has an intuitionistic flavor but leads

to nothing beyond lattice theory. The other comes very close

to producing classical propositional logic. In fact, we can

. get exacf;ly classical propositional logic by using the functor

UFG

R; if we refrain from using R, we get a weaker logic which may
be of some independent interest.

References

1. A. Blass, . Degrees of indeterminacy of games, Fund.
Math.  77(1972) PP- 151- -166

2. P. Lorenzen. Ein dialogisches Konstruktivitatskriterium,
in Infinitistic Methods, PWN, Warsaw, 1960
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An interpretation theory for "triple" cohomology

J. Duskin

A categorical, semi-simplicical interpretation theory for
"triplef cohomology is outlined which uses the groups

TORSE [X;n| of connected components of cértain_categories of
K(m,n)-torsors (higher dimensional analogs of locally trivial
principal fibre bundles) to interpret the higher dimensional
cohomology groups, i.e., TORSE |X;m] —> Hg(x;ﬂ), n > 1. A
Details of these results will appear in Memoifs A.M.S. and

a detailed outline may be found in Proc. Nat. Acad. Sci.  (USA)

.Vol 71 , No. 6 pp. 2554 - 2557 (June 1974).
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Equational Traduction Of Set Theoretical Notions

by René& Guitart

I. Involutive Monads.- The main problem is to find an “"equational”

context which exists in Sets and which would allows us to develop
in an equational way the theory of the definition (of the types
of structures).

Roughly spéaking we have to solve the equation
. "topos = finitely complete cat. + cartesian closed cat.' + 2"

Let us begin with an abelian sup-monoid A = (é, sup, k) that is
to say a complete iattice'(A, sup) and an abelian monoid (A,‘k)
(whose unit is denoted by e) where ‘the law is a sup-lattice »
morphlsm (examples of this 51tuation are dlstrlbutive lattices,
and, also, the set [0,1] with its usual order and multiplication).

For a set X let Ax be denoted by FX, and let i : X » FX and ¢

x*
dx: FX -+ sz be defined by
e if x = x' . C .
ixxx' = { S and dxpp' = sup k(px, p'x).
0O if x # x' % e X

The system (F, i,d) is a "contravar1ant standard constructlon

(c.s. c) over Sets, i.e. satisfies the 4 equations given in ( )
or ( )..It is a theorem that over each category C there is a
bijection between the set of c.s.c. over C and the set of

. involutive monads over '_g (we call involutive monad (i.m.) over
C a pair (P,I) where P is a monad over C and I an’ involution

on the Kleisli's category KLP of P).

A definition of a complemented i.m. (c.i}m;) is given in (2),
and an equivalent one can be found in (o). ‘n my talk at the
Open House on Category Theory organised at the University of
Sussex (July 74) I have given a lot of examples (on a topos, on
the category of relations, on the "special” category of compact
spaceé, on the category of "quasi-topologies", etc...). As many

- 12 -
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people here were last week in Sussex, I would not repeat this
list. Looking for some examples in Cat I have studies the notion
of a machine (cf. my lecture at the Amiens'Meeting on July 73);
actually this is studied now by R. Street (and exposed in his
lecture here) in the context of 2-categories, which suggests
how to extend the concept of involutive monad into the 2 dimen-
sional case. Let us notice that, in Cat, the case F = §g§§(-)
is not an example of an involutive monad only because of the
question of size. However, the case F = 2(—) is an example

of i.m. in Cat.

We denote by HA the i.m. over Sets exhibited at the beginning

of this paragraph. In the category of i.m. over Sets we have
A

the simplicial object U

> U < U < “oe

~which in fact is a category, #nd comes from the involutive

Notice

Deutsche

monad 2'7) over cat.

Everyone knows how to make use of U
matical notions.

1 and 92 to work out some mathe-

But the question is: what comes after 1 and 2 ?
A somewhat natural reaction would

U, and U

then make us think about using

3 4°

that if we add to HN the data of all the maps from QN to
itself coming from the maps €, o, B, u, K,... in the simplicial
A

object U, we obtain a system reacher than an i.m., which we

by ﬁN'

denote

II. Structural Equations.- Let C be a category and (F, i, d) = U

an i.m. over C. An equation for Err vee fn in U consists of

an identity "A = B" where A and B are composites in C of morphisms
of the form mei, FmiEpf. or Fmdef. . Clearly for every abelian
sup-monoid A, an equatio; E can be i;terpreted as a formula
written JAB(f1, cee o fn)' Hence, every such equation defines
a ‘theory TAE whose models are (by definition) n-tuples

(£ «ov s £) of maps verifying the identity

10 e fn) = B(f1, cee ,fn)" in Up-




“

Main problem: If T is a type of structure, could we find an
equation EAT(f1, cee fn) whose ‘solutions in QA are exactly
the models of T?

Such an equation, if it exists, will be called a "structural
equation of the theory T in the context gA“ (or simply a.s.e.
of T in A).

Nota.- If A and A' are two abelian sup-monoids then, giveh a
theory T, we can transform it into a new theory T' by "modifying
‘ the uhderlying logics” as follows:if T admits a structural
' equation E,T in A, then the interpretation JA’(EAT) defines the

A
new theory T'.

The following theories admit structural equations for A = 2:
the theory of the void set, the theory of the set 2", theories
of relations, of order relations, of congruences, of injections,

of surjections,_of complete atomic boolean algebras, of points
(elements) . '

When we work out the notion of a structural equation in. the
context of c.i.m., we get structural equations in A = 2 for
notions of filters, ultrafilters, compact spaces; we also get
new equations for the notion of a point. '

It is a fact that we cannot get structural equatidns in 2 for
the notion of a reflexxve relation and for that of a topological

space. However, these notions admit s.e. for U3

So, it is natural to try to measure "complexity" of. theories -
‘ according to the invariant

6(T) = inf {n / T admits a structural equation for gh} .

III. Related Functors.- Let U be an i.m. over a category C.

If RX is the set Hom,(X,FX) the function R: Co * Sets can be

extended to a contravariant functor R from C to Sets and also

to a covariant functor 5+ from C to Sets. In the same way. the
function EX = {r ¢ RX / E(r)} where the equation E(r) =

“r = Fr. in.r" is a structural equation in 2 of the notion
of an equivalence relation, gives rise to a contravariant functox

E from C to Sets.

Deutsche
DF Forschungsgemeinschaft © @
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If E is a structural equation of the notion of a point, and
if U satisfies some equations related to E, we can define a
functor V.: C * Sets, which assigns to each X E-C, the set

VpX of "points" of X ("points" being. solutions of E in U).

More generally, we can obtain functors !; or !; for E element

of a large class of equations (the functors 5&,_5- and E  are
of this form V., for some E).

Now, if we assume some supplementary properties to be satisfied
by some !E we obtain more precise theories than the theory of
c.i.m., and these .theories are of course a better approximation

of the theory of topoi.

In order to find which supplementary properties-are interesting,

we can look at the Ve

for "deductive categories", or perhaps for functors defining

as candidates for "concrete functors", or

"dogmas".

The method of structural equations may, of course, be used in

different contexts than the one of involutive monads. We could
start, for examples, with (in the Sets'case) the functor P(Ez)
instead of the functor P(E), and develop a parallel theory. We
call "typical system" such a context (cf. (5)).

I would like to conclude this talk by the following question:

Let E(f1, e ,fn) be an equation satisfied in 92. of course.E
is not necessarily satisfied in each involutive monad. But, if
T is an elgmenﬁary topos and U(T) the canonical involutive monad

™) over T, is it true that E is satisfied in u(T) ?

(7) Esq. Math. Paris VII, vol. 1 (June 70).

(') C.R.A.S. Paris, t 275 (July 72) p. 259.

(%) C.R.A.S. Paris, t 277 (Nov. 73) p. 935.
(3) C.R.A.S. vol. to appear (2 notes. presented on the 15% ana
Bth of July 74).

(") Monades involutives complémentées,_tq appear in "Cahiers
top. et géo. diff.".

(3 Systémes typiques (in preparation). -
Deutsche - 15 =
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(E,M) - dniversally Topological Functors
Rudolf-E. Hoffmann

A cone (C,X: C2 + T) in a category C is said to be V-co-identifying‘
(= "V-co-idt.") with respect to a functor V: C + D, iff whenever
(V*A)uz = V#n for some cone (X,n: xz + T) and some morphigm

u: VX » VC, then there is a morphism h: X + C in C being unique

with respect to the following properties

(1) Vh = u

(2) : n = Xhz

A functor V: ' C + D is said to be "topological®” provided that (1)
for every V-datum (T; D,y), i.e. for every diagram T: I + C

of "discrete type" (where I is assumed to be U-small and -
moreover - to:be discrete, i.e. a set; U = [fixed] universe)

and every cone (D,y: DZ + VT) in D there is a V-co-identifying

(= "V-co-idt.")lift (C,2;i), i.e. a V-co-idt. cone (C,A: Cz-*T)A
and. an isomorphism i: VC + D in D with yiy = V#}i, and (2) that

V satisfies the "smallness condition" for functors, i.e. whenever
M = Ob C consists of nonisomorphic objects, which-are>taken'by

V into objects'isomorphic to some Y € Ob D, then M is U-small.

[The relationship to O. Wyler's top categories is ¢larified as

.follows:

(a) V: C > D is {a projection from) ‘a top category, iff (1) it
is a topological functor and (2) it lifts isomorphisms uniquely;

(b) every topological functor is isomorphic to the composite of
(at first) an equivalence and (then) a projection from a top

vcategory.]

(Some fundamental ‘properties of ‘these functors are to be found
in the author's abstract for the Oberwolfach Kategorientagung
1972).

Topological functors abound:forgetful functors Top (topological

_ spaces and continuous maps) + Ens, Unif (uniform spaces and

uniformly continuous maps) + Ens, Preord (preordered sets and

- 16 -
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isotone maps) * Ens, ..., Top-Gr (topological groups and
continuous homomorphisms + Gr, ....

Since one is also interested in epi-reflective subcategories of
Top, etc.®) and their forgetful‘functors to Ens, H. Herrlich has
introduced the concept of (E,M)-topological functor:

(a) Let E be a class of epimorphisms in D with Iso D € E, which

is coﬁpositivé, ahd let M be a class of (not necessarily monic)

cones in D indexed by U-small sets, such that Iso D € M and com-
positidn of an M-morphism and an M-cone gives (whenever this is
defined) an M-cone. If every cone in D indexed by some U-small .
set factors uniquely (up to ...) over an E-morphism and an M-cone,

and if D is E-co-well-powered, then D is said to be an (E,M)-
category. ’

(b) Let D be an (E,M)-category. V: C + D is said to be (E,M)-
topological, iff

(1) every V-datum (T;D,¥) for every discrete, U.small graph
I with (D,y) € M has a V-co-idt. lift;

(2) v sétisfies the smallness condition [H.Herrlich;s defi-
nition drops assumptions on smallness and co-well-powered-
ness, but includes cones indexed by U-classes].

From an (E,M)-topological functor V: C + D H.Herrlich reconstruc-
ted a topological functor U: B + D and a full reflective embedding
F: C » B, such that (1) UF = V and (2) for the unit n(of the
adjunction given by F) holds UnB € Efor every B € Ob B (i.e.

"C is E_ -reflective in B" via F):

§)

Objects of B are pairs (e: D + VC,C) with e € E and C € Ob C, .
morphisms from (e,C) to (e': D' ~ VC',C') are pairs :

(f: D> D', g: C > C') with Vg e = e' f [of course, one has to

make the hom-sets disjoint to one anotherj; F is given by

C > (1VC,C);

We have discovered, that this construction has a nice universal
property: whenever T: X + D is topological, and K: C + X with

. *) E.g. T -, T1-,T2- spaces, regular spaces, completely regular

o
spaces (and continuous maps), but also posets (and isotone maps)

- 17 -
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’ V = TK takes those V-co-idt. cones (indexed by U-sets) into

T-co~-idt. cones, which are taken by V into M-cones, then there

is a unique {(up to ...) functor H: B » X with HF = K, U = TH

and -taking U-co~-idt. cones into T-co-idt. cones [in order to make
the statement correct, one needs coherence conditions for the
above isomorphisms]. Consequently, V "determines" U and F. Mere
important is, of course, the observation, that U "determines"

C (upto...): The objects of C are characterized (up to...) by
the fact that they are (U,M)-separated in B; here (U,M)-separated

. means that

(a) every set-indexed U-co-idt. cone in B with domain C is
taken by U into an M-cone; ‘

(b) every U-co-idt. morphism in B with domain C is taken by U
into an M-morphism; )

(c) every U-co-idt. morphism f in B with domain C, such that
Uf € E, is an isomorphism; .

(a), (b), (c) are pairwise equivalent, provided that U is an
(arbitrary) topological functor. Functors U obtained by the above
"universal® construction from an (E M)—topologlcal functor are
called ”(E M)-universally topological functors". ’

Examples (w1th the usual forgetful functors to Ens and, resp, Gr):
-Top reconstructs Top,

Sep Unif (separated uniform spaces) reconstructs Unif ,
Poset reconstructs Preord,...

‘ To-Top-Gr reconstructs Top-Gr,...

where E = {surjections}, M = {"point separating” families of maps}.
It turns out that many of the Ens-valued topological functors

are (E,M)-universally'topological'and that "separatedness" (the
name-here-is due to Brimmer) gives a natural analogue of Té'in

the case of Top (which often coincides with" Hausdorffsch").

There are Ens-valued topological functors which are not of the

DF Deutsche
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above described type; however, for the class of those Ens-valued
topological functors T: X + Ens, which are represented by a
terminal object, there is an approximation theorem:

There is a largest bi-reflective subcategory B of X, such that
T|B = U: B > Ens is (E,M)-universally topological. The (U,M)-
separated objects of B are exactly the non-cogenerators of X,
which can be described as follows:

Let ZC denote a T-co-discrete object of X with card T(2c)= 2

(X € Ob X is said to be T-co-discrete, iff for every X -object ‘
Y and every morphism f: TY » TX there is a unique morphism

g: Y > X with Tg = f): C ¢ Ob X is a non-cogenerator, iff every
morphism 2€ 5 ¢ is taken by T into a constant map. - B is the
bi-reflective hull of the class of non-cogenerators in X.

Finally, we want to mention some related results:

’ T-ll Tzl

1) The correspondence between "separation axioms": To

T3 A To' complete regularity A To' etc. and "regularity axioms":

Top itself, "Ro"f “R1", “RZ" (i.e. "T3 without TO“), "complete
regularity without To“, etc., which was described by A.S. Davis,
can be nicely translated into the context of (E,M)-universally

topological functors.

2) The relationship between normed linear spaces and quasi-normed
linear spaces can be analysed by separatedness and co-separated-
ness with respect to the obvious topological functor to linear
spaces [with~ (surjective-joint injective)—factorization]. .

3) Applying the above approximatioh theorem one can show the
following result on (extremal epi)-reflective subcategories of
top categories over Ens: Let T: X + Ens be a topological functor,
which is repfesented by a terminal object. An (extremal epi) -
reflective subcatedory Y of X is closed under coproducts (as e.g.

T, T1, T, is) iff card TY > 2 for some Y € Ob Y.

o 2

- 19 -
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Cohomologie non-abélienne et homotopie
André Joyal

I1 s'agit de comparer des notions et résultats de la Cohomologie
non-abélienne de Giraud avec les méthodes homotopigues. Si E est

un topos (élémentaire) on construit succesivement un objet caté-
gorie A (utilisant N) et son complété pour 1' adjonction de limites
4 droite finies 2 : cette derniére catégorie interne est celle des
"ensembles” simpliciaux de dimension finie. On définit sur A 1la
"classe" E des extensions anodines et on définit la catégorie homo-
topique 1nterne finie Ho comme é&tant I 1A/'b ou v est la relation
d'équivalence homotoplque On considere ensuite la categorie loca-
lement représentable Ind (Ho ) obtenue par completlon 1nduct1ve
filtrante interne de Ho . Le foncteur canoniaque ) U Ho posséde
u'

un prolongement canonique EAoPp = Ind(A) > Ind(Hoo).

Deflnltlon Un morphisme d'object 51mp11c1a1 (F f > G) EAopp

'U (f)

est une equlvalenqe faible si U' (F) > U (G) est un isomor-

phisme. On éeut alors définir la catégorie.homotopique Ho (E) - comme
-1_Aopp
E-

la catégorie de fractions T ou ' est la classe des équiva-

lences faibles. Définition Un complexe de Kan H est saturd .si le

foncteur EAOPP(- H)'(EAOPP)°pp + SethoPP. transforme les eaulvalences

faibles en equlvalence homotopique ordlnalre.

Proposition. Si H est un complexe éuelconque;'alorS'il existe
un complexe de Kan saturé ﬁ et une équivalence faible H + H.'

Cette proposition est valide sous l'hypothésé"que_E est un topos

. de Grothendieck. Si on considére les complexes d' Eilenberg-

° MacLane ordinaires K[n,n] alors les groupes de cohomologie

Deutsche
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H"(X,7) sont donnés par. PR o

né(HomE(x,K[n,n])) = B (X, 7). Siz 7 est un groupoide alors w est
un champ un sens de Giraud si et seulement si K[m,1] est saturé.
De plus on a K[n,1] = K[F,1] ou 7 est le champ associé & 7. »
Ceci montre que la théorie précédente peut englober la théorie
de Giraud en dimension 1. Si on considére des 2-groupoides 7 il
semble que la théorie de Giraud en dimension 2 puisse se ramener
4 la considération des complexes K[u,2]

- 20 -
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An application of Categoy‘Theory to Model Theory

Orville Kean

Let L be an elementary one sorted language with finitary opera-
tions and relétions, I be a theory with language L, and T be a

class of formulas in L. By C we shall mean the category whose

I,T
objects are the models for I and whose morphisms are the maps

between the models with preserve. the formulas in T. Let:

T = the set of all formulas in L preserved by all the maps in .
cI,T

If A(X) € T, then there is a set-valued functor:

A: CI,T + Sets

such that A(M) = {3 ¢ M" {M E A(3) for every M € Ob C; o
’

).

‘For representable K, there is a model MA and an n-tuple

Eie M: such that MAf=A(€); and given any M &€ Ob(CI'T) and n-tuple

be M satisfying MEA(b), there is a unique map M, + M with

@ +—> b. Such an M, is said to represent the formula A(X). A
familiar example of this is that given any topos E and object
X in E, the topos E/x is the topos which repfesents the formula

(B (x) = 1) A (8,(x) =X).

Henceforth we shall let T be the set of atomic formulas in L

and we shall omit T in the notation for the category of models.

If CY is complete and admits the standard cqnst;uction for pro- .
ducts and equalizers, ie:

(1) A( IM)= 1 (Xuvi))
a<fB o a<B @
(2) A(Eq(x,y)) = Eq(A(x,y))

for every atomic formula A(X) in L; then we have the following
characterisations. ’

Proposition 1: If CY admits the standard construction for pro-
ducts and equalizers, then there is a finitary one sorted
Gabriel-Ulmer theory T such that Cy = Fin.Cont (T, Sets).

- 21 -

Forschungsgemeinschaft . © @




- 21 -

A finitary one sorted Gabriel-Ulmer theory theory ‘T is a small
finitely complete category T with a distinquished object G such

that for every X € Ob () there is a natural number n and a monic
X >—> G" in .

Proposition 2: A category is a finitary one-sorted Gabriel-Ulmer
theory iff there is a simple Hom theory I such that C
Cont. (T, Sets).

Y=F1n.

An elemtary theory is a simple Hom theory if it logically
‘ equivalent to a theory with axioms of the form:

1. 2, (%)
2. A, (R) » B (R)
3.8, 3y BELY)

. where Ai and Bj are conjunctions of atomic formulas.

Theorem: An elementary theory I admits the standard construction
for products and equalizers iff:

(1) I has an extension by definition I' which is a simple
Hom theory.

(2) If A(X) is an atomic formula in L(I') which is not in L(I),
‘then the defining formula for A(X) in I' is of the form
A(X) <—> Jy B(X,¥) where B(X,y) is a conjunction of atomic
formulas in L(I). 4

References:

. (1] cohn, P.M., Universal Algebra. Harper and Row, New York, 1965

[2] Kean, O.E., Abstract Hom Theories, Dissertation, University
of Pennsylvania, 1971.

[3] schoenfield, J.R., Mathematical Logic, Addison-Wesly,
Reading 1967.
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Linear algebra and projective geometry in the Zariski topos

Anders Kock

What status may be given to synthetic geometry inside the

Deutsche

framework of abstract or generic algebraic geometry? Put
differently, we seek a framework in which certain geometric
"theorems" which admit different geometric interpretations

when a change of rings is performed, are actual theorems about
something, and not just. "theorem-schemes". (An example of such

a theorem-scheme is the one whose version over the reals says- .

that the altitudes of a spherical triangle intersect in one
point, and which for the ring of dual numbers gives a theorem
about (non-plane) hexagons in space-with all angles right; this
is a application of Study's transfer principle.)

A "generic" theorem, which specializes to the two mentioned
theorems (and whose proof is the same), exists: it is a theorem
about the the universal ring R in the Zariski topos 3 . The
Zariski topos Z is the category of sheaves on IR.OP, where 07.

is: the category of finitely presented commutative rings, equipped
with an easily described Grothendieck topology. The forgetful
functor

R = (R°P)°P > sets

is a commutativeAring'object R in Z,- and it is a lbcal ringi

object, and universal as such, by an important observation of

Hakim. Being a local ring object is a property which is preserved

by left exact left adjoint functors between toposes. However, R

has also some properties which are not preserved by such functors‘
it is a field object in the sense that it for each natural number

n satisfies the statement

n

. n
(%) . 1 (./\ Xy = 0) > \/ (x. is invertible) |
2 LY i
i=1 i=1 |
and also |
(a.q.) | (1 = 0) .

- 23 -
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(The meaning of objects in a topos satisfying ISt order state-
ments is by now well known. One explanation may be found in [2].

Being a field object in the sense (#) and (##) turns out to be
precisely what is needed in order to make standard linear algebra
work (remembering that deductions in 18 order logic in an ele-
mentary topos have to be intuitionistically valid). In particular,
we can prove that under the assumptions (#) and (a#a), we have

Theorem. For each mxn matrik A, the row Rank of A is > r if and
. only if the determinant Rank is > r. '

(Row-Rank being defined in terms of llnear independence of the
rows of the matrix; determinant-Rank_be;ng defined in terms of
“invertibility of rxr sub-determinants. In particular, we have
as a Corollary Row-Rank = Column-Rank).

Essentially because standard linear'algebre works, we can.deve-
lop projective geometry over a ring object R in .amelementary
topos, provided R satisfies (#) and (=s). This means that we

can construct a first order structure, "the projective'plane"

in the given topos: -an object of "points" and an object of )
"lines", and an “inc1dence relation between these two objects,
such that, for 1nstance, the following statements are satisfied:

‘Given two pointS'which are not equal; then there is a unique
line containing them". ’

" Given two lines which are not equal; then they intersect in a

. ~ unique point.”

- as well as, for instance, Pappus' theorem about plane hexagons
with vertices lying on two lines, and other theorems from syn-
thetik projective geometry. ’

To “"transfer" these theorems to $ (the category of sets) equipped
with the ring of reals, or with the ring of dual numbers over the

DF Deutsche
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reals, one has to use. the universal property of Z, R noted
by Hakim. But first, one has to change the theorems to be
transferred into transferable form, i.e. to a form which is
preserved by left exact left adjoints, in particular, the
form should be negatioﬁ-free. So I do not believe one get
geometric thebrems which one could not get by using Study's
transfer principle in its purely heuristic form.

References

1. Hakim, Topos anneles et schemas relatifs, Springer Verlag
1972, '

2. Kock, Lecouturier, and Mikkelsen, Some topos theoretic
concepts of finiteness, Aarhus Preprint 1973/74 No. 29

3. Study, Geometrie der Dynamen, Leipzig 1903
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Full Embeddings of Categories

3 Lud&k Ku¥era
|

I. Set-theoretical assumptions and full embeddings of categories

A category is called binding if any concretisable category can
be. fully embédded into it. In 1969 author and 2z. Hedrl{n proved
[3] that the category of graphs and compatible mappings is binding.
According to papers of V&ra Trnkova, 2. Hedrlin, J.Lambek, E.
Mendelsohn, J.Ne¥et¥il, A.Pultr, J.Sichler and others there are
‘ many binding categéries "from the life", e.g. the categories of

} ) sgmigroups, commutative groupoids, various categories of algebraic'

| and topological type.

| .

\

However, there is one set-theoretical difficulty in this full
| embedding theory. If we want to prove bindability of above
' categories we have to assume the next axiom (M):

(M) There is a cardinal number m such that any two-valued
‘m-additive measure is trivial. ’

As it was shown by author.and A.Pultr in 1971 ([4]), the role
of (M) is essential: The axiom (M) is even equivalent to the
o existénce-of a full embedding of set®P into the cateéory of

' graphs (or into any category of universal algebras). o

"Theréforéjwe shall call a category to be binding if above des-

- cribed full embeddings do exist under (M). If the existence of
those embeddings'can be proved in Gddel-Bernays set theory with-
out any set theoretical assumptions then the category is called

. universal. . s ‘

The difference between binding and universal categories is not
purely set-theoretical. E.g. if F: Set®P 5 Gra (6ra being the
category of graphs) is a full embedding then the cardinality of
a set of vertices of F(1) is at least the cardinal number m from
the axiom (M) (i.e. at least Ao if there is no measurable car-
dinal); on the other hand, changing Gra by a universal category,
F(X) can be an object of finite size for every finite set X.

- 26 -
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The first result to be referred to is that adding a locally
compact Tz-topology to many categories of universal algebras

we obtain universal categories. Especially, though the category
of semigroups is binding only,; we have the next theorem:

Theorem: The category of locally compact semigroups and their
continuous homomorphisms is universal.

ITI. Categories with O-morphisms

Any category, which is fully embeddable into the category of .

'semigroups with unity, is evidently a concretisable category

with O-morphisms, Using the technique based on ideas of [1]
we can prove the next theorem:

Theorem: Assuming (M), any concretisable category with O—mbrphismS'
can be fully embedded into the category of semigroups with unity.
Any Cconcretisable category with O-morphisms can be fully embeded
into the category of locally compact semigroups with ﬁnity.

ITI. Full embeddings of non-concrete categories.

No non-concrete category can be (fully) embedded into concrete
one. That is the reason for restricting to concrerisable catego-
ries in the definition of both binding and universal categories.

Now, -simple examples of categories, into which every (even non-
concrete) categories can be embedded, will be given. The main

lemma for the construction of them it is proved in [2] and says
that every category is a "homotopy-like"™ factorization of a con-.
crete one.

Definition: Let K be a concrete Category. Define a category X as
follows: objects of K are triples (o,e1,e2), where o is an object

of K, e,,e, are equivalences on the underlying set of o, morphisms

have a form (o,e1,e2) 2N (6,é1,é2), where f: o + & is a morphism

of K such that x e; vy implies f(x) éi fly), i=1,2.

- 27 -
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Let E be the smallest congruence on K such that

(i) if f,g:(o,e1,e2)-—+(6,é1,é2) are morphisms of XK such that

P

either xe,y implies f(x) &, g(y)

or X e, y implies f(x) é2 g(y)

then f E g.
(It can be proved that E is the smallest equivalence s.t. (i)
holds) . '

.Denote the factorized category f/ﬁ by K.

Theorem: Let K be a concrete category. If either K is binding
and (M) holds or K is univefsal then every category can be
fully embedded into ¥ . :

The theorem together with the list of binding and universal
categories, yields categories universal w.r.t. full embedding
of arbitrary category.

vReferences: . -
[1] 2z.Hedrlin, J.Lambek How comprehensive is the category
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[2] L.Ku¥era Every category is a factorization of a concrete
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From Types to Sets

J. Lambek

Dogmas are reléted to Lawvere's hyperdoctrines and Volger's
logical categories, as well as to the languages of Bénabou,
Coste and Fourman. They are categories with finite products
with a specified object @ which admits arbitrary exponents,
Moreover, g is a Heyting algebra object and the canonical
morphismh Q - QA has a right adjoint Vg and a left adjoint BA'
Finally, one postulates extensionality. The point of a dogma
is that it permits set abstraction (as a special case of‘A—
conversion): given any “propositional function" P(X): 1+Q
in the indeterminate x: 1 + A, there exist a unique morphism
f: A > @ (not depending on x) such that fx = p(x), its "name"
1 - QA is written {Xe€ A | ?(xf}. Moreover, -all sentences of
set theory involving constants from the dogma A appear as
"propositions" 1 + @ in A. Each dogma canonically generates
a toﬁos: its objects are "sets" f: 1 » QA and its morphisms
are relations (p,g,f) between sets f and g: 1 ~» QB which
happen to be universally defined and single valued.

(Take p < fxg = {<x,y> € AXxB| x € £ A y € g}, where x. € f is
the evaluation of £ at x in the polynomial dogma A[k].) This

result is due to Volger; in'fact, dogmas are his closed logical
categories. It allows one to regard topos as forming a reflec-

tive subcategory of dogmas.

- 29 -
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Cohomologie non-abélienne 4 coéfficients dans une 2-catégorie

R. Lavendhomme (Louvain - la - Neuve)

1., Catégories de 1- et de 2-cocycles.

Soit X une catégorie et A une 2-catégorie.

Un 1-cocycle de X & coéfficients dans A est un foncteur de X
dans la catégorie 502 des 2-fléches de A munie du produit de
Godement. Plus généralement, on definit la catégorie des 1~

cocycles de X & valeurs dans A par

1

2 (X,A) = Cat (§'502)f

La source et le but d'un 1-cocycle sont des foncteurs de X
dans la catégorie 501'des 1-fléches de A. Si H: X + A,
un foncteur, on désigne par z; (X,A) l'ensemble des 1-cocycles
de X & coéfficients dans A de but H.

est

Un 2-cocycle de X & coéfficients dans A’'est un triple (v,Q,c) ou

a) Y est une application de 1' ensemble X, des objets de X
dans 1'ensemb1e'l_\° des objets de A.

b) Q est une application de 1l'ensemble 51 des fléches de X dans
1'ensemble A1 des 1-fléches de A, qui @ x: Xy * X, de X associe

Qe Yixg) + vix,)
c) c est une application de l'ensemble X, x X,
: X
-0

des couples de fléches composables de X dans 1'ensemble A, des

2-fléches de A qui associe d x = X, i A x, la 2-fléche
cy'xzi nyA===> Qny‘.
Les données doivent satisaire aux conditions suivantes.

et

a) les conditions de normalisation: Si x 50, Q1x=1Y(

X)

si x on y est un identité& de g,cy x €st une identité.
’

-30—
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g) la condition d' associativité. Si zyx est défini dans X, le
diagramme suivant est commutatif;

Q >

Zyx 0.0
., yx zZ7yx
Czy,x Qz*cy,x
> .
szQx < 0 QzQny . »
z,y "X

morphisme de (y,Q,c) vers (Y,Q',c') consiste en la donnée pour
chaque x de X d'une 2-fléche @yt => Q' telle que: si x

Soient (y,Q,c) et (y',Q',c') deux 2-cocycles avec y=y'. Un
| est neutre,? est neutre; si yx est def1n1 on a
|

(‘(’y* ?x) ° cy x cly, ° (Pyx -
On obtient donciine catégorie de 2-cocycles notee ZZ(X A). Son
ensemble d'objets est noté Z (X,A). Si on identifie deux objets
isomorphes, on obtient une catégorie de 2—cohomolog1e, notée
H (X,A) dont 1l'ensemble d'object est notée H (X,3). on peut
aussi considérer un ensemble de 2-cohomologie plus mince formé
de l'ensemble des composantes connexes de EZ(K,Q): nogz(g,é).
On dira qu'un 2-cocycle (y,Q,c) est neutre si cy,x est une
identité quels que soint x et y. On a alors une bijection entre
1l'ensemble des 2-cocycles neutres de X d coéfficients dans A et
l'ensemble des foncteurs de X dans. A,,. Plus généralement un
2-cocycle (y,Q,c) est neutralisable par un foncteur F: X > A

=01
s' il existe un morphisme a de (Y,Q,c) vers le 2-cocycle neutre

associ& &F. On a alors a(yx) = (a (y) #a (x)oc . On dit que o

YX
est une neutralisation de (y,Q,c). Si on travaillait dans

nogz(g,A), il n'y aurait pas lien de distinguer entre 2-cocycle
neutre et neutralisable.

- 31 -
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2.-Suites exactes.
Une suite C L A N B de 2-catégories et de 2-foncteurs
est une suite exacte courte de 2-catégories si

SIS

et le foncteur P

b) €51 = B4y 1% Boq > Byy est plein et surjectif.
I2 P
c) La suite de catégories C,, > B,, est une

—> 42 Bq2

suite exacte courte oppréfibrée, c est-a-dire que pour toutmorphis
me?:F = F1 de 812 et pour tout objet G1 de 212 au-dessus de
F,, il existe un morphisme opcartésien £ au-dessus de ¢ de but
G1. [E est op-cartésien signifie qge pour tout morphisme n de
projection ¢ et de but G1, il existe un gnique morphisme n' de
tel que nen' = £]. '
o

o I ’ -
Soit ¢ —> N B une suite exacte courte de 2-categories.

projection 1

=

1

Soit G: X > A,, = C,; un foncteur et posons H = P oG X~ By, -
On définit une application :

s : 2l x.B » H(X,0

de la maniére suivante. 801t B € Z (X,B) et soit k un opclivage
normalisé de 1°' oppreflbratlon A12 > 812. On définit (Y,Qk,ck)
par y(x) = G(x) = H(x); Q (x) est la source du 2-morphisme
opcartésien de 1l'opclivage k de projection B(x) et de but G(x);
enfin comme ak(yx) et uk(y) # uk(x) ont mdme projection, on a

une féctorication c; x ° Q;x =D Q Q . Il est trivial que
(y,Q ,c ) est une 2-cocycle et qu un changement d'op-clivage
k.en k' détermine un isomorphisme entre les 2-cocycles corres-

pondants. On a donc bien défini 1'application 6.

Théoréme:

La suite 2l(X,0) » zl(x,8) » z2;(x,B) > v (x,0) » w?(x,2) -

2
H” (X,B) est G-exacte au sens suivant:

1) en Zé(g,g): un 1-cocycle dans A provient d'un 1-coc§c1e dans

- 32 -
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C si et seulement si son image est neutre dans B.
2) il en est de méme en Hz(ﬁ,é) pour les classes de 2-cohomologie

3) un element de H (X C) provient d'un 1-cocycle de z (X,B) ssi
son image dans H (X,A) est neutralisable par G, le morphlsme
de neutralisation é&tant opcartésien.

4) En z;(z,g) on a:

a) un 1-cocycle B8 ae z;(g,g) provient d'un 1-cocycle opcar-
tésien ssi 8(B) est neutre. ‘

b) B provient d'un 1-cocycle ssi la neutralisation par G de
§(8) dans A

se factorise par une neutralisation dans C.
(Notons que si on avait pris la cohomologie mince
nogz(g,-) la formulation serait plus simple mais moins fine)

" 3.- Examples.

a) On obtient un exemple trivial en associant & chaque groupe.
1= 1, gz = A. On
retrouve alors la cohomologie 3 coéfficients dans un groupe

abélian G la 2-categorie G avec G, = 1, G

abelien.

b) Si on se limite 4 des 2-groupoides d un seul objet qui
correspondent & des groubes croisés on retrouve la théorie de

P. Dedecker. Pour des 2-groupoides plus généraux on a la théorie
de I. Valdenama %) et I.C. Donai ¥).

c) A une suite cofibrée de catégories C + A + B on peut associer ‘

une suite exacte de 2-catégories C + A » B opérant sur C, A, B.
La 2-cohomologie s' interpréte alors en termes d' extensions
de X par (C, C).

*) Das (handgeschriebene) Manuskriptlwar stellenweise schwer
lesbar. Uber einzelne Schreibungen, insbesondere von Eigen-
namen, lieB sich keine  Sicherheit gewinnen. (R.-E.Hoffmann)
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Relative functorial semantics, IIX Triples vs. theories.
F.E. J. Linton :

1. The construction of Kleisli associates with each triple

T = (T,n,u) on a category A a category K1{I) (cf. [1] and [3]),
having the same objects as A, and a functor £ :A - K1(T),
working as the 'identit'y on the objects and having a right adjoint

being the ideni:itx maps

k1D (£a, B) = K1(M (A, B) == A(A, TB) = A(A, W'B).

u that, on objects, works like T, the adjunction isomorphisms
def
|
|

2. This note récords a simple and informat.ive conceptual argument
for the complete i.dentificatior.i (announced in [2] and arduously

| established in [3]) of the Eilenberg-Moore category ﬁT of algebras
| over T (cf. [O]) with the ca'tegory.of Lawvere-style algebras over
the Kleisli category K1 (). It will be recalled that the former

is equipped with a ca_nonical "underlying A -object" functor

u¥ . ér-r A . and that the latter is, by definition, any

A -valued functor serving as a pullback of the diagram

k1 (M
§ -
. i fT
)] s .

v

A —y > 8

[Ed

in which Y is i:he Yoneda embedding and the functor category -

‘ 3. To see that UT serveé as pullback of k1) , use is first made

" of the Yoneda Lemnia and the ‘category (_s_-l'-\-) of Eilenberg-Moore
coalgébrés over the "composition with the ingredients of T" cotriple.

1’ = (’f‘,x,ﬁ') on the ‘(cAontravariant functor) category §é . Here

v v
T(X) = XeT, 0

N v
X-Xun, ux-Xou.

\

|

|

notation is used to indicate éategories of contravariant functors.
Each Eilenberg-Moore T—algebra B= (B,B) becomes [3] a coalgebra
| ;

| .
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v v T B
Y®) = (YyB,8) = (A (-,B), A(-,B) —>A (T-,TB) —> a (T-,B))

over the cotriple f . In this way, there arises a functor

?:év A

lifting Y over UT : I_AI + A and Uﬁ,: (§5) > §é . The Yoneda Lemma
now indicates: first, that a f-coalgebra structure on a represented
functor YB "is" nothing more than a T-—algebra structure on B; next,
that !‘? is fully faithful; and last, that ¥ makes UT: ;;[r > - A

| 1 ®
(2) l )
U
i
S s .
4. For U to be the pullback of diagram (1), therefore, it would

KL(T)

the pullback of the diagram

be nice if s and ( SA )‘]f' were 1somorph1c as categories over

¥

T
§— . It is nice: they are. The .adjointness betweem 4 and u ’

with adjunction triple T on A , provides an adjunction making

T : T

u A

right adjoint to sf , with adjunction cotriple )ﬂ/- on S— .

T - ‘ T
Moreover, §f is easily seen to create equalizers of Sf° -split

s

pairs, fv being a bijection on the object classes. Thus, Beck's
Theorem (cf. [3] ), in its cotriple version, completes this p;oof

and ends the argument. Of course, Beck's Theorem could have been
applied dimrtly to the pullback of (1), but checking its hypotheses
would have been more tedious, and the isomorphism of this paragraph
would have escaped notice. ) X . .

5. P.S.: The reader whom our notation (and references) succesgfully
misled into assuming, comfortably, that Aé referred to his favorite
category of sets and functions is hereby invited to choose an arbi-
trary multilinear category s and to place himself in the cosmos

of §-categories, where, bearing in mind that, even though K1(T)
remains (cf. [5]) an s -category when T is an § -triple on the

T

. § —category A, the constructions of A" , the functor categories,
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the pullback of (1), and ( §é )ﬁ' may force him to enter the larger

cosmos (cf. [7]) of pro- S -categories (so that Street's suggested

procedure [8] isn't readily applied), he may nevertheless assure

himself, using [4] and [5] for the Yoneda Lamma and Beck's Theorem,

that the argument here presented remains entirely valid.
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Categorical Shape Theory )

John L. MacDonald

Let K:P + T be a functor. The shape category SK of K is defined
by [sK| = |T| and Sg(X,¥Y) = Nat (T(Y,K-), T(X,K-)). There is an
obvious canonical functor D:T - SK Furthermore using Yoneda we
have SK = S for L = DK. The Kan extension F of F:P » C along K
factors as FK FLD where FL is the Kan exten51on of F along

L = DK. If K is the inclusion of a full subcategory then (a) L

is codense (i.e. L = 15), (b) S (X,¥) ¥ T(X,Y) if Y € |P| and .
. K .

L

(e) |Sgl = |T|. Furthermore Sk is determined up to isomorphism
by (a), (b) and (c). ' I

For many functors the shape morphisms S (X,Y) or the coshape
morphisms S (x,Y) = Nat (T (K-,X), T(K—,Y)) can be described
more explicitly. For example if K:P +- T is the inclusion of

a full coreflective subcategory with right adjoint R:T -+ P,
then §K(X,Y) = P(RX,RY). The shape morphisms SK(X,Y) can be
described as 1lim T(X,KYG) under the moie general condition than
being reflective that (Y#Ya) is a cofinal subcategory of YIP
for some inverse system {Ya}'

The shape theories of Borsuk and Mardesic - Segal for compact

spaces each lead to shape categories which are isomorphic to

the restriction of s to compakt spaces for K:P -+ T the inclusion,

T the homotopy category of topological spaces and P the full sub-
category of spaces of the homotopy type of a polyhedron. We

mention that P is coreflective and although not reflective does . '
satisfy a cofinality condition of the type described in the
preceding paragraph.

We haven seen that the Kan extension is shape invariant, i.e.

it factors through SK’ Under what circumsgances are shape invariant
extensions of functors simply Kan extensions? We examine this
question in the topological céntext of Mardesic-Segal by using
their results to construct a shape invariant extension F:C » A

of any functor F:ANR -+ A where C is the category of compact spaces,
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ANR is the full subcategory of compact absolute neighborhood
retracts and A is any category in which ljm exists. Using a
cofinality condition it can be shown that this shape invariant
extension F:C + A is the Kan extension in much the same way
that Dold shows that the Cech and Kan extensions are equivalent.
We note that inany of the preceding results are gue to Hilton or
Levin.
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Cc*-algebras in a topos .

Christopher Mulvey.

Any C%-algebra A (with identity) adxﬁits a compact representation
in a ring Ax in the category of sheaves on the maximal ideal space
X of the centre Z(A). The representation is classified by the
quotient map

Prim A » X

which intersects each primitive ideal of A with the centre of A. ‘
Under the representation the centre Z(A) becomes isomorphic to

the sheaf of continuous complex functions on X, since the ‘induced
representation is the Gelfand representation of the commutative
C*-algebra z(A). )

Approaching the representation from the viewpoint using the
language of toposes one feels that the representation should

yield a q*-algebra in the category Top(X) of sheaves on X. The
effect of the representation would then have been to have converted
the C¥-algebra into one in Top(X) having centre the complex numbers.
The problem arising is that of defining the concept of a C¥-algebra,
or more dgenerally a normed algebra, in a topos.

Generalising the usual definition of a normed algebra to the case
of an algebra over the ring C of complex numbers in a topos IE one
might be tempted to require the existence of a map

p el

from an algebra B to the (Dedekind) reals in E satisfying the .
axioms ‘

(o] and [lall=0<=>a=0

0 lall >

i) [la+b| < flall+ |lb]
iii) 1] =1

iv) |leal]l = |af ||a]|

v} |lab]| < llall-IIb!]

- 39 -
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r

for all a,b€ B and a € C where |-|{:C > R is the modulus map.

In the case of the algebra A, obtained by representing a C* -

algebra over the maximal idezl space of its centre, the cano-

nical candidate for a norm unfortunately assigns to a section

a real function which although upper semi-continuous is not in
general continuous. The algebra A would therefore fail to, be

a C¥-algebra through not admlttlng a map to R satisfylng the

required conditions.

The difficulty may be resolved by remarking that the presence
of a norm is needed essentially to describe a topology of a
particular kind. Indeed the definition of a normed algebra is
equivalent for the case of sets to the existence of a map

B

+_N 0B

R

from the object of positive reals to QB}satisfying

i) (Vr>o a€ N(r)) <> a =0 and r> —> N(r) > N(s)

ii) a € N(r) A be N(s) —> a + b € N(r + s)
iii) 1 € N(r) <=> r > 1

iv) a € N(r) <> ea N(|a|. 1)

v) a€ N(t)a be N(s) —> ab e N(rs) -

to which one ought to add the additional axiom

vi) 3,0 2€ N

where r,s range over the positive reals and a € C is such that
a] > O.

According to this definition it may be verified that the aigebra
obtained from a C¥-algebra A is indeed a normed algebra in the
¢category of sheaves on the maximal ideal space of Z(A). It is

complete with respect to this norm and admits an involution #
which satisfies the condition

ata € N(r ) <=> a € N(r)

for it to be a C¥*-algebra internally. Further the norm and
involution induced on the centre are the canonical ones.
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AFinally, remark that in the case of “the topos of sets, a hormed

algebra defined in the above way admits a map

e

B > R

defined by the formula

ll all = inf {re R" | ae N(D))}
which yields an element of R since in this case R is inf-com-

plete. In a general topos R may fail to be inf-complete, in

which case the formula determines an element of the inf-com-
pletation of R, which in the case of Top(X) is of course exactly
the sheaf of upper semi-continuous real functions on X.

- 41 -

Forschungsgemeinschaft

o®




. Topos theory < many-sorted intuitionstic set theory. %)

Gerhard Osius

Elementary topoi serve as a generalization of "the" category of
sets, and our aim is to investigate to which extent topos theory
actually "is" set theory. We will work within the theory ET of
elementary topoi.

To discover that topos theory ET is contained in some kind of

. set theory we first introduce the set theoretical (or internal)
language L(SET) which goes back to W. Mitchell. L(SET) is a many-
sorted firstorder language whose terms x (called: elements) have
objects A of the topos (i.e. terms of ET) as types. We write
”xeA‘ instead of "x is of type A". The terms and their types are
simultaneously given by

- theré éte cougtéble many variables of eaéh gype

- 0e1 is a constant (1 is the terminal object)

- any map A>é£7>ﬂ3~induces a.unary operation: xeA }—> fxeB.

- thefe is an brde;ed pair obefatbr: xeA, yeB +—> <x,y> € AxB.
The only primitive‘prédicate.of ﬁ(SET) is equality "=" which may
hold 6n1y beetween terms of the same type. The formulas are formed

from the étomic ones using the cqnnectives =, A, Vv, => and N
._quantifiérs‘ Jx (or Ixen if xen), Vx.-

The language L(SET) admits an internal interpretation in topos

. theory ET in.the following sense. For any formula presp. term
teB of L(SET) with free variables among x1eA1, ey xneAn one
can define :

a subquect (<xgp..x > | 1}z AgxeoxA ——> @

resp. a map {<xgpeex > > £} @ Agx.oxA —>'B

By induction 6n the length of resp. t. ‘
) This is an abstract of the author's paper "Logical and set theo-

retical tools in elementary topoi" (to appear in Springer Lecture
Notes). .
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A formula ¢ having exactly the free variables Yqe-e¥y is called B
internally valid, denoted E (f , iff’ {<y1 veeY > | (p} factors
through 1.-true o o . ’

The language L(SET) together with internal validity as a notion
of truth will be called the set 'théory SET defined over topos
theory ET. The axioms and rules of intuitionistic logic hold in

SET (i.e. are internally valid), however the modus ponens

}=<f and | (p==>¢) imply =

requires the additional assumption that all free variables of P .

occur free in ¢ .
The atomic formula x=y with x,yeA admits a realization

{<x,y> | x=y } : AxA —> @

and since Q is a complete Heyting-algebra, SET may be viewed

as an intuitionistic many-sortéd Heyting-valued theory. In fact,
SET is a set theory since for xeR, ‘YePA a membership predicaﬁe
"e "._ can be defined" )

N4 true

X €Y : <—> (PAXA —Y > Q) <¥,x> = (1 > Q) (0) .

For a subobject A RN Q we put o= (1 BN PA) (B) and write

simply x € M instead of x e f.

With the above def'inition~of membership the following akioms of
(many-sorted) set theory hold in SET: Extensionality, Empty Set,

Sinletons, Binary and Arbitrary Unions, Powersets, and Sepérations-
- scheme. ' ’

To explain and establish the title of this note it remains to

show that all considerations in topos theory ET might as well be
carried out within the set theory SET. This will be done by inter-
nally characterizing all fundamental notions of ET within SET.

First, the maps A L> B are (via their graphs) in 1-1-corres-
R >0 4, i.e.

pondence with functional relations AXB

= Vxea JiyeB <x,y> € R, such that the composition of maps
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corresponds ' to relational composition. Second, equality of
maps can be characterized internally by

A-f>p=-a-95 8 iff | VxeA fx'= gx .

Hence the category structure is characterized and for the internal

characterization of the remaining topos structure of ET we only

give some examples:

1. "A is a terminal object _iff ElxeA X=X.

o

2. A commutative square . ———————> B
o ' 'hl 9],
. o > C

A

is a Eullback

iff | VxeA VyeB (fx = gy —> J1ueD (hu =x Aku = ¥)).

3. C —£—> PA is the exponential adjoint of CxA R, Q

iff | VxeC VyehA (y € fx <—> <x,y> € R) .

4. 12> n -2 Ni is a natural number object iff‘ﬁhe axioms of

Peano are internally valid, i.e. B .

= — JneN o= sn
= \/m,néN' ( sm = sn —> m=n) »
= VXeEN (0 € X A VneN (néx——>sn€X)‘=>Vn€.'Nnéx)

Having thus qharacterized all primitive notions of ET withinfSET,
any statement a of topos theory ET may be translatedAinto a set
theoretical statement as of SET such that a holds in‘ET if and
only if o#* holds in SET. However it should be pointed out that _

. "= a#(i.e. a# holds in SET) is by definition of internal ;vélidity
‘a statement of ET, so that we are not really leaving topos theéory -
ET but rather look at if from a different point of view, the set
theoretical- one.

This set theoretical method of establishing results in topos
theory is extremly useful since it reduces the arguments and
constructions to their set theoretical nature (which we use in

heuristic ideas anyway).
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Oon different logical tools in elementary topoi

Gerhard Osius

In addition to our abstract "Topos theory < Many-sorted intui-
tionistic set theory" (which is presupposed here) let us describe
another natural interpretation of the set-theoretical language
L(SET) of elementary topoi. This interpretation, called Kripke-
Joyal-Semantics, goes essentially back to A. Joyal and has been
used extensiwly in topoi by A. Kock and Ch. Mikkelsen.

Starting with the interpretation, maps X + A in an elementary ‘\.
topos are called “"elements of A at the stage (or: time, place) X".
With respect to a fixed stage X we interprete the primitive ope-

rations of L(SET) : - X+ 1 is the interpretation of the constant
Se1 : :

—FPor A-f>B: f(x2>a)=x-2>a-f>p

- For x 2> a,x 2> B: (a,b)> := x S8:P)_, aAup.

Now let (P(x re Xy ) be a formula of L(SET) with free variables
) a;

among xy e:A ‘and let X > A be elements at stage X (i=1,..n).
We define by induction on the length of formulas what it means
that " go(a.l,..an) holds (at stage X)", written l———x f(a1,..an)":

.
© g x-2>a=x-2—-n iff a=a' .

(1 by —plags.ay) iff

_t . : i (=1
For all ¥ —> X: |=Y plajt,..a t) implies Y = O.

(2) |=x tp(a1,..an) A w(a1,..an) iff,
Ex @, ..a) and |y w(a1,..aﬁ) .

(3) |=x plag,..a)) vW(a1,..an) iff

There exist jointly epic maps Y —t—> X, 2 —£ 5 X such that
|=Y plast,..a t) and f=, vla;s,..axs) .
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. 4 By plaj,..a)) == ¥lag,..a) iff
For all ¥ —> Xx: }=Y plat,..a t) implies [=Y vlast,..a t)
(5) =y (VyeB) oly,a;,..a)) iff
For all ¥ —£> x, v 2> B: Fy Plbiagt,..at) .
(6) i=x (3yeB) ply,ay,..a) iff

. t . b A
There exist Y —>> X epic, Y —> B such that E=Y tp(b,af...‘ant) .
For an intuitive understanding of this definition, the maps
. S 4 > X (and 2 2> X) should be viewed as a passage from the
"later" stage Y (and Z) to the "present" stage (time) X. Thus (5)

t

can be read " (YyeB) (f(y,a1,..an) holds at stage X iff for all

passages Y 5N X from later stages Y to X, ¢(b,a1t,..ant) holds

at Y for all Y 2> B",

The important connection between this Kripke-Joyal-~Sematics and
the internal interpretation of the language L (SET) is given by
the well-known (amqng specialists)

Metatheorem: = x ‘Plag,..a) if and only if » I
<a,,..a_> {<x.,00x > | px,,..%x )} ;
X —— . n_ Ryx..xB 1 n P n_.q = truey .

Concerning the definable predicate (-)&M for a subobject A LN Q
which is the characteristic map of B PN A, we get in particular

for X a

> A: = x A€M iff a factors through m .

. According to the metatheorem Kripke-Joyal-Semantics and the in-
ternal interpretation of the language L(SET) provide "equivalent"
logical tools in élemtary topoi and since each method has some
advantage over the other both should be used (in some situations
one may be more appropriate than the other).

Let us finally observe how Kripke-Joyal-Semantics can be simply-
fied if the topos is generated by a class G of objects which is
closed under subobjects. Then we can restrict the stages X, Y, 2..

above (i.e. the domains of elements) to objects in the class G,
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and all previous results hold unchanged if we only change (6) into

(6) ¢ |=X (IyeB) (p(y,a,1,..an) ' iff

There exists a subclass G' < 6, a jointly epic family
t b
Y . X)Y e ¢ and a family of elemen.ts (Y b4

(Y

> Bly ¢ g
such that for all Y € G' : | y Pplbyrajtys..a ty) .

The important example is of course G = {open objects} for well-
qpened topoi. We note, that in this particular case (6)G can
again be replaced by the original (6) if in addition "Support
splits". One further example is ¢ = {0,1} for well-pointed topoi.
In both examples the definitions (0)-_(5),(6)G can be simplified
because of the particular nature of G.
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Model-theoretic methods in the. theory of topoi

Gonzalo E. Reyes.

This paper (written in collaboration with Michael Makkai) makes
more explicit and further develops the connections between
coherent topos (in the sense of SGA4, Exp. VI) and certain first
order theories which we call coherent. These latter are defined
to be sets of formal expressions of the form ¢ —> ¢y , where

Yy ,¥ are formulas of a (many-sorted) language obtained (from

+ (false), = (equal) as logical connectives. The logic of this

. the atomic¢ ones) by using A (and), v (or), 3 (there is), *(true),

language can be considered as the "geometric" (41 st order) logic

of topoi inasmuch as the concepts expressible in it are preserved

by (inverse image of) geometric morphisms.

We define the category of models of such a theory T in any pre-

topos P (in particular in a topos), Mbdo,(T) and we obtain:

0) (Existence of classifying topos) -

If T is coherent, there is a coherent topos £ (T) and a model
Mof T in € (T) such that the functor induced by this model
ﬁ: Top(:{,E(T))OP > Modjx(T) is an equivalence, for every topos
X. (Here Coh(f) is the pretopos of coherent objects of £. The
topos £ (T) is called the classifying topos. for T.

i) If £ is coherent, then there is ‘a coherent theory T such that
Ty ——> €, i.e., any coherent topos is the classifying topos
of some coherent theory.

. 2) ("Points are enough for classifying”).

Let T be a coherent theory, let £ be a coherent topos and let
M be a model of T in Coh({) which induces an equivalence

o . op v - .
M : Points (£) > MOdSets (T)

There £ is the classifying topos for T.

A new proof that the Zariski topos classifies local rings is
quickly obtained, as well as a description of the coherent
theory of the &tale topos. '
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In order to prove the existence of points in (coherentf topoi,

the first 2 results assure us that we need to construct models
only for the coherent theory associated. We set'up a formal system
(whose details will appear elsewehre) and prove a completeness
theorem. We combine this theorem with the method of diagrams of
Tarski-Robinson to obtain some new and old results in a uniform
manner:

2) above is thus obtained.

Delignes theorem (i.e., every ccherent topos has a surjectivé -
boolean point Sh(2x) L > £ for some set X, where surjective .
means p® faithful).

A coherent topos € has a surjective point iff for all coherent
objects A,X,B,Y such that A >—> X, B >—> Y, if

A XxXYv XxB=XXxY, then A = Xor B=Y (This gives a
characterization of classifying topos. which are cotripleable over
Set) .

Existence of enlargements in the sense of Robinson.

Joyal's Theorem (unpublished, 2 years ago).

Let ¥ bé a pretopos with Y. Then there is a small P Mod(]'}g |)
where Mod (| |) is the category of functors from'd into Set

€V 5 set P is a
conservative functor preserving the pretopos structure and v,

preserving the pretopos structure such that "%

There is an infinitary generallization of the completenes theorem
(changing Set to Sh(B), i.e., a cate‘gory of sheaves for a complete
B.A. with the canonical topology) .

As a corollary, we obtain: ’ .
Barr's Theorem.

Every topos has a surjective boolean point.

Let-W¥ be a pretopos with V . Then there is a complete Heyting
algebra H and a conservative functor M: ¥ —>sh H) preserving

the pretopos structure, 4 , all (possible infinite) stable v and
all infs which exist in ¥ .

- 49 -
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A Categorial Problem in Group Duality.

J. E. Roberts.

The classical Tannaka duality theorem for compact groups tells
us that a compact group G can be recovered from the symmetric
monoidal category ZﬂG) of finite-dimensional continuous unitary
representations (G-modules) as the group of monoidal natural
unitary transformations of the forgetful functor of 7/(G) into
the category of Hilbert spaces.

It is pdssible to construct categories which apparently have the
same abstract structure as Z/(G) but  without recourse to a group
G. This raises the quenstion of whether one can.improve on this

- classical duality theorem by characterizing symmetric monoidal

.categories_of the_fornx-f/(G) without referring explicitly.to a
forgetful functor into’ the category of Hilbert spaces:

The COnsfrﬁction arose during the course of investigations>into

- the superselection structure of elementary particle physics [1]

and for this reason -cannot be described adequately here. However
some_idea of the construction and the results can be gained from

_the following simplified mathematical setting.

Let M be a von Neumann algebra. Consider the category EndM whose
objects arevendbmorphisms of M, i.e. normal identity-preserving
#-homorphisms of M into M. The arrows of EndM are defined by

“'Hom(p,p.‘): {teM : tp(x) = p'(x)t, x €M}. EndM has a lot of

structhre; Hom(p,p') inherits algebraic structure from M and EndM
becomes a strict moﬁoidal category if we define

(p®p') (x) = pp' (x), x_eAM
set = so(t)‘.= c'(t)s, s ¢Hom(o,0'), teHom(p,p"').

The identity objeét is the identity automorphism ~ of M. The
monoidal structure is best understood by considering M as a
category with a single object and endomorphisms as endofunctors
of M. :
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We are interested in certain full monoidal subcategories Y .
of EndM which allow a (coherent) symmetry € with €(p,p') " =
e(p',p). The coherence of ¢ associates with any object p of J

(n)

a representalon e of the permutation group P . The main line

of attack is to analyse the chain of representat1ons s(n), n=1,2...
One condition which allows such an analysis is to suppose that

set = O implies s = O or t = O; this might be useful in quite
different contexts. More complete results follow by supposing

that p has a left inverse ¢ . This is a positive linear mapping

of M into M such that ¢(1) = 1 and y(p(x)y) = x ?(y), X, yEM. A
What is important is the way P acts on the arrows of J ‘'we have .

V(Hom(pp1,ppz)) c Hom(p1,pz). Mappings of this nature arise in
symmetric monoidal categories whenever there is a p such that the
«perations of tensoring by p and - ? are adjoint functors. We may
then compute a class function of positive type

? e H Pn -+ Hom(~n,n) .

It is multlpllcatlve on disjoint cycles and takes the value

y( ?(e(p,p) ) on a k+1 -cycle. Suppose now that M is a factor,
i.e. Hom{(~, ) = ¢1m and that p is irreducible, i.e.

Hom(p,p) = €1 _. Then ?(e(p,p)) = A1p where .
Ae{O}lind-1 : d integer}, A determines the irreducible represen-
tations contained in the chain e;n), n=1,2,... and [A]”"

called the dimension of p, d(p).

In our context the full monoidal subcategory J% of ] generated
by the finite dimensional irreducibles has a structure like
the monoidal category generated by the continuous unitary irredu-

cible representations of a compact dgroup. The dimension function
can be extended to Jf so that

d(pp') = d(p)a(e"), d(p@p') = d(p)+d(p').

Every object has a decomposition as a direct sum of irreducibles.
The sign of A is impertant in the physical context (it gives the
difference between Bose and Fermi statistics) but has little
relevance for the structure of J;. In fact it is possible and
convenient to adjust the symmetry so that A > O.
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. Ohjects p with d(p) = 1 are automorphisms and possess an
inverse p~! in j}. As a consequence every object p has an
adjoint p so that the functors of tensoring by p and p are
adjoints. Once the symmetry has.been adjusted as above, p may
be constructed by following the group theoretical recipe. One

takes subobjects p' and y of pd'1 and pd respectively, d = d(p)},
which correspond to total antisymmetrization. One computes that
d(y) = 1 so that y has an inverse and then shows that 0'7-1 is

an adjoint for p.

This completes the descrlptlon of the basic striucture of él

. although there is much further structure of -a derivative nature. -
.For example we have a bitrace on the arrows of :4 and an anti-
Vunitary involutory functor on :E commuting with #, the Hermitian '
conjugation, and mapping objects into their adjoints EZ].

To date is has been possible to prove that (4 is associated
with a compact group G only in the case where G is Abelian.
One way of tackling the problem would be to show that C7 allows
a monoidal embeddlng into the category of Hllbert ‘spaces.
This reduces to showing that a certain 3—cocyc1e in a non-Abellan
cohomology theory is a 3-coboundary.
) . 4 .
[1] -S. boplicher,lR. Haag and J.E. Roberts. Local Observables
' and Particlé Statistics. Commun. Math. Phys. 23, 199-230
+ 4 (1971)  and 35;-49-85 (1974). ' :

[2] 3.E. Roberts. Statistics and the Intertwiner Calculus
Proceedings of Varenna Summer School 1973 on C®-Algebras
. .and their Applications to Statistical Mechanics and
Quantum Field Theory. ’ :
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Extensions of full embeddings and binding categories

J. Rosicky

Given categories M, C, A and full and faithful functors K: M » C,
T: M +~ A, it is often important to know whether there is a full
and faithful functor S: C > A with SK = T. When K is dense, then
a good candidate for S is a pointwise left Kan extension LanK(T)
of T along K and in some papers it was (implicitely) used for
this purpose. Under some restrictive suppositiohs it can be shown
that LanK(T) is full'and faithful whenever a full and faithful
functor S with SK = T exists. This result has applications for

proving that there is no such S. In the general case the rdle of
LanK(T) plays a new functor LQ(T) which can be pointwise defined
by a suitable.colimit construction using the transfinite induction.

.-

Theorem 1: Let M be small, A éocomplete and co-well-powered.

Then LR(T) exists and L;(T)K = T. If K is dense and cogenerating,
then L§(T) is full and faithful whenever a full and faithful
extensiqn S exists.

Moreover, let'FM‘be a full subcategory of ;he functor category AM
consisting of full and faithful functors T having a full and
faithful extension S such that the family {h: Tn > T'm/n € M} is
M and m € M, F éhe>full_subcategory
of the functor category Ac consisting of all full and faithful
functors S with SK € Fy

composing with K on the right. Then L§: FM + F is a functor left

adjoint to AX. @

If the existence of S is replaced by the codenseness of K, then

and AK: F > FM the functor given by the

the first part of Theorem 1 remains true. Another result ensuring
L%(T) to be full and faithful, which is convenient for the follo-
wing application to binding categories, can be proved by means
of more elaborate arguments orjginated from Is].

A category is binding if any full category of algebras can be

- 53 -
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- fully embedded into it. Any small category can be fully embedded

into a binding category (see [1]) and the same holds for any con-
crete category under the following assumption (M): There is a
cardinal a such that every ultrafilter closed under intersections
of a elements is trival. It was proved by Hedrlin and Kufera and
communicated in [2]. In [5] it was found a three-object category
M full embeddability of which into an equational class A of unary
algebras make A to be binding. This testing category M was taken
as a full subcategory of a suitable binding category C of graphs
and LanK(T) yields a fuIl embedding C - A. Using the functor

L%(T) the following result can be obtained.

Theorem 2: Let b a regular infinite cardiﬁal. Then there is a
three-object category Mb such that an equational class A of alge-
bras having less than b-ary operations is binding iff Mb can be
fully embedded into it. - . ' -

Under non (M) there is a non-binding monadic caﬁegory cohtaining
any small category as a full subcategory.

References:
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Double categories as a 2-topos

Ross Street

Our purpose is to find some axioms for the elementary theory of
the 2-category CAT of all categories from which a large part

of category theory can be developed in a natural way, and yet

weak enough to be satisfied by a topos, the 2-category of 2-
categories, and other hyperdoctrines. Size considerations should
appear in the development of the theory in an eleméntary catego-

by an elaborate meta-set-theory.

Let K denote a 2-category with finite 2-limits. Then each object .
A is an object of objects for a category object

do
Arr A —— > A
—
. ) 1 ) ‘

in K, where K(B,Arr A) = K(B,A)z; so that Arr A is the cotensor
of 2 with A in K. This allows us to define the 2-category [B,K]
of internal functors from B to K as the 2-category of algebrés

for the 2-monad on K/B obtained by pulling back along

do . d
> B and using Arr B

1

Arr B > B to .get an arrow into B.

An Object Q in K is called an ideal classifier when there is an

internal functor Q —I—> K satisfying the following two axioms:
I C 1. the functor J:K/Q + K obtained from T has a right Z-Adjoint;

I C 2. for each object B, the functor K(B,Q) + [B,K] obtained by .
"composing"” with T is fully faithful. The internal functors in
the image of the functor in I C 2. are called B-ideals. If

5 )
X > @ is the value of the right 2-adjoint of the 2-functor

of I C 1 at X then I'X represents partial maps defined in terms
of ideals in the appropriate way. An object U is called small
when U + 1 is an ideal. Exponentiation to small powers exists.
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Moreover, -xB: K + [B,K] has a right 2-adjoint and takes the
ideal classifier in K to an ideal classifier in [B,K].

A 2-topos is a finitely 2-complete 2-category K with an ideal
classifier Q satisfying:

2T 1. each identity arrow is an ideal;
2T 2. a composite of ideals is an ideal;
2T 3. ideals are closed under cotensor with 2 in [B,K].

Pérhaps we- should also suppose K 2-cartesian closed (not just.

. exponentiatioﬁ to small powers, but to all powers). In a 2-topos
the theory of ‘cocomplete objects works well and Q is internally
cocomplete modelling internally the sub-Z-category of K consis-
ting of the small objects. h -

A topoé,provides an example 6f a 2-topos by extending to the
2-category of ordered objects therein; the ideal classifier is
the subobject classifier. Also the 2-category CAT'is the moti-
vatihg example of a-2-topos'with Q = Cat, the category of small
categories. L

. \
The main example presénted in our lecture is the 2-categofy DBL i
of double categories; that is; category objects in CAT. Here ‘
Q= 2-Cat, the 2-category of small 2-categories apprbpriately
regarded as a double-category. There are many ways . in which a
2= -category can be regarded as a double category. Making use of
-his observation and the fact that DBL is a 2—topos, we are able .
to turn much 2-category theory into formal category theory.

. It would be good to internalize this example and, we conjectufe
that if K is a 2-topos then so is Cat(K) with a natural ideal
classifier.
- 56 -
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Monadic Functors and Convexity

Tadeusz Swirszcz

The well-known Theorem of Linton can be strengthened as follows:

Theorem. Let U: % +  be a functor having a left adjoint, let
OL have kernel pairs of retractions and let & have kernel pairs
and coequalizers. If ‘

(1) for each morphism f in £, f is a coequalizer iff Uf is . E
a coequalizer, '

(11) for each parallel pair (£,9) in -g, (f,9) is a kernel pair
iff (Uf Ug) is a kernel pair, )

' then the canonical comparison functor @: Jﬁ Cl is an equivalence

Deutsche

Forschungsgemeinschaft

of categories. (Cl is the Eilenberg-Moore category of the monad

. T determined by the functor U and its left adjoint.)

The assumption that each epimorphism in d is a retraction in a
is superfluous. :

The above Theorem is proving very useful in functional analysis.
For example, using this Theorem we can prove that the forgetful

‘functor

U: Compconv + Comp

is monadic.Compconvis_the category of compact convex sets and
continuous affine maps. Comp is the category of compact spaces
and continuous maps.,

The functor ' : .

" &’ comp + Compconv
left adjoint of U, is defined as follows: éiven a compact space X,
Z (X) is the set of all probability measures on X, convex and '
compact with the #-weak topology. If f: X + Y is a continuous map,
Lt Hx) + LAY) is defined by LE(y) (B) = u(£ '(B)) for y in
Z(X) and a borel subset B of Y.

The monadicity of the functor U gives the following axiomatic
characterization of the centroid of a probability measure on a
compact space:

- 57 -
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Theorem. Let X be a compact space and let Y . J(X) - X be a
continuous map satisfying the following conditions:

(1) Y(&i) = x for each x in X, where éi is the Dirac measure at Xx,

(2) if A, A,, A, are elements of £ (X) and y(A,) = Y(},)

17,72

B

then y [(1-t) A,+tA] = y[(1-t) A +tA] for 0 < t < 1.

7
Define the convex combinations of elements of X as

- ) . n x

i1=1 agxg = Y022 ay & ).
Then .X becomes a compact convex set such that y()) is the centroid
of X for each A in Z(X).

on the other hand, the category Conv of convex sets and affine
maps is not monadic over the category of sets, in particular the
forgetful functor U: Conv -+ Ens ist not monadic.

Let X be a set and let ( () : XxX - X)g ¢ g < ¢ be a family of

binary operations satisfying the following axioms:

X

@  x@x
®  x@y=y(@3x

() x@y) ®z = x Gtt-sD .
x

(D) 1@y—x2@y —> x, =

for all x, XqrXys Y42 in X, 0 <s < 1, O< t < 1.

Define the convex combinations of elements of X as (1-t)x+ty= x(:)y
for x,y in X, O < t < 1. Then X becomes a convex set.

Thus a convex set can be regarded as an abstfact algebra; The
axioms (A)-(C) are of an eduational type, where as the axiom (D)
is not. Since Conv is not monadic over Ens, there is no system
of axioms of an equational type aefining a convex structure on
a set.

The Eilenberg-Moore category Enér of the monad I determined by
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fhe forgetful functor U: Conv + Ens and its left adjoint is the
smallest category of equationally defined algebras over Ens
containing the category Conv. The category I:':ns"‘"1 will be denoted
by Sconv and its objects will be called semi-convex sets. It turns
out that the pair (X, (())o<s<1) is a semi-convex set iff the
family ( s )
(a)-(C).

o<s<1 of binary operatlons in X satisfies the axioms

It can be proved that Conv is a full and reflective subcategory

of Sconv. ‘

The semi-convex sets can be also described as follows:

Let XK be a convex set and let p: K> S be a surjection satis-

fying the following condition:

if plx,) = plxy), X €K, O<tel, then @[(I-tixy+ex] = p[(1-t)x, +ex]

Define the "convex combinations" of elements of a 'set S as
a;s; ( a, i%; ) 3
i=1 1 RS

where Y(xi) = si for i=1,...,n. Then S becomes a semi-convex set.

On the other hand, each semi-convex set can be obtained in a such
a way. ' '

Bibliography:

[1]. semandeni, Z.: Banach spaces of continuous functions,
Vol. I, Warszawa 1971. ) . .

[2]. Semadeni, Z.: Monads and ‘their Eilenberg-Moore algebras
in functional analysis, Queen's Papers in Pure and Applied
Mathematics - No. 33, Queen's University, Kingston, Ontario
1973.

[3]. Swirszcz, T.: Monadic functors and convexity, B.A. Polon.
Sci. 22 (1974), 39-42.

[4]. Swirszcz, T.: Monadic functors and categories of convex

sets, Institute of mathematics, Polish Academy of Science
1974, preprint (to appear).

- 59 -

o0&




UF

Deutsche

Forschungsgemeinschaft

- 59 -

¥ltrafilters, ultrapowers and finiteness in a topos.

Hugo Volger

Alan Day raised the following question: wﬁat is the correct
definition of an ultrafilter and an ultrapower in an elemtary
topos in the sense of Lawvere and Tierney? To be more precise,
we arevlooking for a generalization of the sét—theoretic
ultrapbwer constructionvwhich is internal, i.e. which can be
described within the topos.

Thus an internal filter on an object X in a topos E should -

be a subobject‘of Qx with appropriate closure properties, which
will be given as preservation properties of the characteristic
function u: ﬂx + Q. In particular, an ultrafilter will be a
Heyting algebra morphism from Qx to Q. On the other hand, an
external filter on X is a filter oh gll,nx), the set of sub-
objecfs of X. o

Consequently, the construction of the ultrapower AX/U'should
use the internal power AX rather than the external power

A§(1'x) which might not even exist without further assumptions

on external limits. However, there are severalvways of defining
the ultrapower. Usually the ultrapower Ax/U of a set A with
réspect to an ultrafilter U on the set X is defined as the quo-
tient of Ax, obtained by identifying two functions if they agree
on a subset in.the filter. Okhhma observéd in.Ultrapowers in
categories (Yokohama Math.J.14(1966) , 17-37) that the ultrapower
may be viewed as ﬁhe filte;ed‘colimit of the psrtial powers AY
with Y in U. This can be rephrased as follows. The ultrapower

is defined as the quotient of AX|U, the set of partial functions
with domain in U, obtained by identifying two functions if they
agree on a subset in the filter. Therefore we will distinguish
in an arbitrary topos between Ax/U and Ax//U, where the latter
is the filtered colimit of the partial powers. However, we have
not found yet an example to show that AX/U and Ax//U can be
different.
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It will be shown that a filter U on an object X is an ultra-
filter iff Q is isomorphic to Qx//U ersp.~9x/U. Combining the
preservation properties of the ultrapower functor we will prove

that in every topos with the internal axiom of choice the ultra-

power functor (—)x//U is a first order functor, i.e. it is left

exact and preserves the propositional operations and the existen-

tial and
lization
that the
.bedding.
also the

universal quantification. This is an éppropriate genera-
of the bésic result on ultraﬁowers of sets which states
diagonal morphism from A to Ax//U is an elementary em-
It should be remarked that in the set-theoretic case
axiom of choice has to be used. Therefore, Ax//U.will

‘be regarded as the cor;eét generalization of the set-theoretic
ultrapower construction.

Ary property which characterizes finite sets in the categor& of
sets can be used to define a concept of -finiteness in an arbi-

trary topos. We are interested in the. following two variants
which depend on ultrafilters. An object will be called ultra-
finite iff it is isomorbhic to all its ultrapowers. It will be

called principally. finite iff every ultrafilter on it is prin-
‘cipal. Ultrafinité objects in categories with external ultra-

powers in the sense of Okhuma have been.studied by Day and Higgs

(A finiteness qondition in categories with ultrapowers, manus-
cript Lakehead Univ., Thunder Bay, 1973). We will prove that in
a topos the class of ultrafinite resp. principally finite objects

contains

Q and is closed under finite limits. However, we dot not

know whether these classes are closed under the power set opera-

tion 9(-). As a side result, we obtain the description of the

subtopos

generated by a single object, which permits to generali

-W. Mitchell's results on free'ﬂbolean topoi in the J. of Pure
and Applied Math. 3(1973) to the non-boolean case. -
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Algebraic Theories in Topoi

G.C. Wraith

An object A of the object classifier E[U] of a topos E may be
identified either with i) a map of E-topoi A: E[U] +E[u]

. or ii) functors A €-: F » F for every E-topos F, commuting with in-
verse image parts of maps of E-topoi. In consequence,AEIU],Obtains
a monoidal structure (E[U], ®, U). We identify the cétegory of
monaids for (E[U], ®, U) with the category of finitary algebraic
theories in E. P. Johnstone has shown that if A is such a fini-

' tary algebraic theory in E, then the category of algebra for the
monad A* on E[u] is equivalent to the category of internal func-
tors FA + 'E, where FA'ig the internal category of finitely free
A-~algebras in E. -

For any object T of E[U] we show how to construct the free
monoid on T in (E[U], ®, U), and we use this construction to
show that given a diagram of E-topoi

€. o
o > E[u]—2——

. E > E[U]

there exists a unique

B ——"-——> E[U]

up to natural isomorphism, making the diagram

s -
By > B/y

‘l’ ' ‘;QT\\;; 4 Q
JE'[U] r E.,[U]

" commute.

If E is the fundamental locally internal'category of E (see
| J. Penon 'Catégories localement internes') then an algebraic
} theory. on E may be defined to be a map E + E of locally internal
i categories with a monad structure. Roughly speaking, this means
| that an algebraic theory on E is given by a strong monad on E/X
| for each X in E, commuting with pullback. We deduce that an alge-
braic theory is finitary if and only if this monad can be extendeg
to all E-topoi, not just those of the form E/X.
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Low dimensional cohomology of topoi

G.C. Wraith

If'§ is a Grothendieck topos, and Ab(E) denotes the category

of abelian groups in E, then Ab(E) is an abelian category with
enough injectives (cf. work of Van Osdol). The cohomology functors
H*(E -): Ab(E) + Ab are defimed to be the right derived functors
of HomE(1,-)- Ab(E) + Ab. We have’

g (E,A) = HomE(1,A) = TopE(E.E/A),

so A may be taken to be any object here. The well known inter- .‘
pretation of H1(§,A) in terms of torsors allows us to interpret
this.for any group object A; we sketch this interpretation

briefly:-

We identify a group object G in E with category object (Gz1).
An internal functor G + E is then just a right G—object (X,£)
where the action XxG £ X satisfies the usual laws. Such a -
functor is flat iff (X,{) is a right G-torsor, i.e

i) X » 1 is epic,
<p1,g>
ii) X x G ——— X x X is iso.

. ° . -
Denote by TORSE(G)ﬁthe full subcategory of EG of left G-torsors.

The following results are well known: -

. G
1. TORSE(G) = Topg(g,g ).
2. . TORSE (G) is a groupoid, . .
3. G +—> TORSE(G) is a product preserving functor Gp(E) -+ Cat.

‘For any category C we denote the class of connected components

of C by woc. As a corollary of 3. we have that if A € Ab(E) then
noTORSE(A) has a natural abelian group structure. We call a
G-torsor trivial if it is isomorphic as a G-object to G itself
with' action given by multiplication.

4. A-torsb; is trivial iff it has an element.
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Theorem. For A € Ab(E), H1(§,A) = w TORS(A) is a natural
isomorphism.
The proof proceeds in two steps; (i) for any exact sequence
O+A->B=>C=~>0
in Ab(E) one constructes an exact sequence
. 8 .
o - 'HomE(T,A)-.r...+ITIom§(1,C) _ TroTORSE(A)—*...—»noTORS(C).

The connecting map 8§ is given as follows: given 1 < c,
form the pullback

®

>>

W< g

Oiey =

One shows that PxA >—> ﬁXB + B factors through P >—> B
making P an A-object. Then one shows that P is an A;ﬁorsor,
~-whose class we definé to be §(c). Simple dlagram cha51ng .argu-
ments establish the exactness of the sequence.

(ii) One shows fhat thé functor A —> L TORS (A) is effaceable,
i.e. for any a € m TORS (A) there is an. injectlve homomorphlsm

A >—> A! such that a ‘——> O under the induced map

n TORS (A) > W TORS (A%) .

ThlS may readlly be proved by taklng A'- 'AT where T is an
A-torsor reprgsent;nga.It ;s an immediate consequence that

ﬂoTORSE(A) = {0} for any injéctive A. ,Standard comparison theorems .

of homological algebra now give the result.

.‘. The purpose of this’.{:valk is to suggest an analogous interpretation
for HZ(Q,A). The idéas were suggested by a (very) partial under-
standing of some‘of Girauds’ ’Cohsmologié non-abélienne'
Unfortunately 1 have not yet been able to give the effaceablllty
part of the proof.

Diaconescu's theorem has a consequence that the functor

Cat(E) - TopE : C > Eg
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preserves products. Hence if A £ Ab(E), E _A is an abelian group in
TopE, and we may consider E-Topoi w1th E ~action and EA-equlvarlant
maps. We denote this category by T0pE To give an E-topos I an
QA-action amouts to choosing for each object of I an A-action in
such a way that all maps of I are A—equivariant Multiplication

AxA -+ A makes EA into an object of TopE in a canonical way. We say )
that two objects I Iy 1, of TopE are locally equivariantly iso-
morphic if there exists an epic K -+ 1 in E and an EA/K-equlvarxant

isomorphism 11/K.~——> IZ/K of E/K - topoi. Call an object I of

Topg an A-extension of E if it is locally equivariantly isomorphic.

to Ea; we denote the full subcategory of Topg of A-extensions by
EXTE(A). We call an A-extension of E trivial if it is isomorphic

to §A. The following results are analogous to those for torsors.

1. EXT(A) is a groupoid.

2. A p—> EXTE(A) is a produc£ preserving functor.

3. An A-extension is trivial iff it has an eiement, i.e a

I
map of E-topoi E » I.

4. For any geometric morphism E' —£—> E, if I is an A-extension
of E, then E' xE I is a f*(A)-extension of E'.
Conjecture. There is a natural,isomorphism H 1§,A)_= L EXT (a).

If O » A + B+ C > 0 is exact in Ab(E), we define the connecting
map &u' (E,C) » 7 EXT (A) as follows: represent yeii(E C) by

a map of E-topoi E x, g ‘and from the pullback ' .
z > E?
‘ ,

(1]
\'l‘
]

(e}

Since any two C-torsors are locally isomorpﬁic, and we have a
pullback diagram
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EA' —_—

[ XS]
(2] 'mm

we get that I is an A-extension of E, whose class denote by 6(y).

The establishment of the exactness of the appropriate sequence
proceeds in much the same way as for torsors, except that we
have ptillback diagrans of E-topoi rather than of objects in E.
Assuming the conjecture, we get the following:

Corollarx Let E' i> E be a geometrlc morphism, and let
“ a € H (E,A) be represented by an A-extenSJ.on I —2—> E. Then

f factors through p iff a +—> O under u2 (E,A) > H (E',£*(n))
¢ —> 0 <=> s in

-Proof. .. . . I xE ————>

P die'g‘ram

M ————

N .
E' —m—m—>

This generalizes the situatlon well-known in the cohomology of :
. ) groups, whereby elements of H (G,A) classify extensions
1 > A -+ F >G> 1,

and F » G is universl for homomorphisms into G annihllating o,
the element of H (G A) represented by the extension.

Problem: Does there exist a universal A-extension over an E-topos
KA,2), so~thatf'ﬂz('§,A) = w_Top, (E, KA,2))? ’ :
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Doctrines on 2-categories

V. Zdberlein

This is a summary of my doctofal thesis, which has been presented
to a small audience already a year ago by F. Ulmer. 2-catégories
are denoted by 5, its objects by X, t-morphisms by X —E—-> Y
and 2-morphisms by F 25 F' (just think of the 2-category ;él
of categories)‘. ‘ ‘

A doctrine (= 2-triple up to isomorphism) D = [D,E,M,a,b,c]

on X consists of a 2-functor X ——> X, of 2-transformations ’)
(natural up to isomorphism) 4éi>ﬁ <«——D-D and of trans-
lations (= modifications) a, b, c, satisfying four nonobvious
coherence-conditions, such that the usual triple-laws hold up

to the isomorphisms a, b, c¢. In an obvious manner one defines

~ D-algebras (up to isomorphism), 1-homomorphisms (u. t. i.) and

2-homomorphisms (six nonobvious coherence-conditions). One has
an Eilenberg-Moore-» and a Kleisli-decomposition of D .

A doctrine P is called quasi idempotent (1ax-1dempotent) iff
in the diagramm of 2-transformations

_DE
D<—H—DD

| TR
M is adjoint to E-D (that is iff M is coadjoint to I) E).
There is a dual notion of coguasi- ldempotent doctrines.

For a doctrine there are equivalent:

a) D is coquasi-idempotent. . ) .

b) For every D-algebra X = [X,M,®,4] the multiplication i
M is coadjoint to the unit EX .

c) For every P-algebra Y = [ITM,a.,g.] and for every 1-morphism
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is "the" Kan-coextension of F along E
d) There is a translation D-E —f—> E:D , satisfying two
coherence-conditions.

o

There is an almost coherence-free presentation of coquasi-
idempotent doctrines, their algebras and homomorphisms by "bases".
A base consists of D, E like in a doctrine and of a family of

coreflections _DK(——l;- D(DX) to DX —D&-—F D(DX) ,

X € é with some (coherence-free) properties. These data are

equivalent to a coquasi-idempdtent doctrine. An object X admits’
O a D-algebra-structure iff there is a coreflection XG—M—“DX_

to X-—l) DX . A 1-morphism is a Y -algebra-homomorphism
iff the usual diagram commutes u. t. 1. (no coherence). In this
way one eliminates 16 of 19 coherence-condltions. '

S1mp1e examples are the coquasi- J.dempotent doctrines of coproducts,
~ whose algebras and 1-bomomorphlsms are Just coproduct-complete
‘categories and coproduct-continuous functors. These doctrines -

are defined on SA respectively on the 2-category of preaddltlve

categories. There is an idempotent doctrine on QAI ' whose
algebras are just categories with enough split equalizers.

_ More complicated is the general colimit-doctrine on "CAT , whose
ralgebras and 1-homomorphisms are Just U-cocomplete categorles
and :J-cocontinuous functors, - where 3 1s ‘a given class of (small)
:mdexcategories. In- order to get a strlct 2-functor I) one has
to look at thé category J/X of indéxcategories over X € CAT .
" The final (= confinal) functors between indexcategoi:_ies_over X
form a calculus 2 of left-fractions and DX = TNT/X) is v

- the correspond:.ng category of fractions. D)_(_ is equlvalent (not
‘ isomorphic) to the: Gabr1el-Ulmer-comp1et1on of 5 under- :]-co-

" limits. Because the canonical functor P +J/X—> DX in general -
has no -adjoint (P .is only a partially coadjoint of some functor
in a higher uruverse) , one has to work with "locally ad)omts“ ’
of P. defined on small full subcategories of DX..
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