$$
\text { Tagungsbericht } 37 \mid 1976
$$

Non－archimedean Analysis
29．8．bis 4．9． 1976

Tagungsleiter：L．Gerritzen，Bochum

 R．Remmert，MünsterThis conference on non－archimedean analysis was a meeting of ： people who were all interested from some point of view in p－adic theory．So there have been talks on many different themes like non－archimedean function theory，functional analysis，the applications in number theory etc．．All talks． have been done in English．

List of names

Amice，Y．，Montrouge，F
Angermüller，G．，Erlangen
Barsky，D．，Paris，F
Bartenwerfer，W．，Bochum
Bezivin，J．－P．，Paris，F
Bosch，S．，Münster
de Grande－de Kimpe，N．，Brüsse1，B
de Mathan，B．，Talence，F
Dwork，B．，Princeton，USA
Escassut，A．，Talence，F
Fieseler，K．，Münster
Fresnel，J．，Talence，F
Frey，G．，Saarbrücken Gerritzen，L．，Bochum Güntzer，U．，München

Haifawi，M．，Ankara，T Hèinrich，E．，Bochum Herrlich，F．，Bochuṃ Katz，N．M．，Princeton，USA Lütkebohmert，首．，Münster Martens，G．，Erlángèn a
Meh1mann，F．，Münster Nastold，H．－J．，Münster
Remmert，R．，Münster Robba，．P．，Paris，F ． Schikhof，W．，Nijmegen，NL Schneider，Th．，Freiburg Springer，T．A．，Utrecht，NL van der Put，M．，Groningen，NL van Rooij，A．C．M．，Nijmegen，NL

Reports of talks

数
I. DWORK., B..:-Ordinary p-adic linear differential equations with analytic coefficients
(Joint work of Dwork and Robba)
Let Ω be an algebraically closed $n .-a$. complete valued field of characteristic 0 and residue characteristic p. For Δ $=\{x \in \Omega, b \leq|x|<1\}$ let W_{Δ} be the ring of bounded analytic functions on Δ provided with the sup-norm and W the inductive limit of the W_{Δ} as $b+1$, with the norm $\left\|=\sup _{\Delta}\right\| \|_{\Delta}$ Let $M \subset W$ be a subfield and $\tau: M \rightarrow W_{t}^{1}$ for some $t \in \Omega$ be an isomorphism into W_{t}^{1} preserving differentiation and norm. ($W_{t}^{1}=$ functions analytic and bounded in $D\left(t, 1^{-}\right)$).

Then the extension of τ to field extensions of M in W is discussed. Furthermore comparison theorems are stated: Let $L \in M\left[\frac{d}{d x}\right]$ and L^{τ} be its image in $\tau(M)\left[\frac{d}{d x}\right]$.
i) The dimension of the kernel of L in the quotient field of W is bounded by the dimension of the kernel of L^{\top} in W_{t}^{1}.
ii) The dimension of the kernel of L in O_{Δ} (= ring of functions analytic in Δ, not necessarily bounded) is bounded by the dimension of the kernel of L^{τ} in $O_{t}^{1}(=$ ring of functions analytic in $D\left(t, 1^{-}\right)$.

At last the order of growth of the solutions of L is estimated. Example: $M=K(X), K$ a subfield of $\Omega, t \in \Omega$ such that \tilde{t} is transcendental over \hat{K}, and τ the restriction to $D\left(t, 1^{-}\right)$.

- BARSKY, D.: p-adic interpretation of Kummer's method

A new method is presented to obtain congruences between the Taylor's series coefficients of a certain class. Let p be a prime number. If a serie $\sum a_{n} \frac{X^{n}}{n!}, a_{n} \in C_{p}$ can be put in the form $\sum b_{n}\left(e^{c X}-1\right)^{n}$ for some constant $c \in C_{p}$, then
$\Sigma a_{n} X^{n}=\Sigma \frac{b_{n} n!c^{n} X n}{(1-c X), \ldots,(1-n c X)} \cdot$ If $\Sigma n!b_{n} T^{n}$ is an analytic element in Krasner's sense on the maximal ideal of C_{p}; then $\Sigma a_{n} c^{-n} X^{n}$ is also a p-adic analytic element in the same domain. This result is, by mean of the p-adic Mittag-Leffler Theorem, equivalent to congruences between the numbers $a_{n} c^{-n}$. Applications are made to Bernoulli numbers (theory of Kubota-Leopoldt), Bell numbers and to Bernoulli-Hurwitz numbers.

BARTENWERFER, W.: The first "metric" cohomology group of a smooth affinoid space

For every real number $\rho>0$ and every admissible affinoid covering U of an affinoid space $X C_{\rho}(U)$ is defined to be the complex of alternating cochains with values in the structure sheaf, which have spectral norm < . Let $H_{\rho}^{1}(U)$ be the first cohomology group of this complex and $H_{\rho}^{1}(X)$ the inductive limit of the $H_{\rho}^{1}(U)$ where U runs over all admissible coverings U of X.

Two theorems are stated:
Theorem 1: For the unit polycylinder E^{n} one has: $H_{p}^{1}\left(E^{n}\right)=0$ and more precisely $H_{P}^{1}(U)=0$ for every rational covering. U of E^{n}. Theorem 2: Let X be a smooth (= absolutely regular) affinoid space. Then there exists an element c in the base field,
$0<|c| \leq 1$, such that $c \cdot H_{\rho}^{1}(X)=0$ for all ρ.
For the proof of Th. 1 one uses essentially the existence of a projector, which for coverings U of type 2^{n} will split up the sequence $0 \rightarrow T_{n}+C^{0}(U) \rightarrow B^{1}(U) \rightarrow 0$ very well in a certain metric sense.

For Th. 2 then a result of Kiehl on projections for smooth spaces is needed.

LOTKEBOHMERT, W.: Vectorbundles over non-archimedean holomorphic spaces

Let $\left(X=S p(A), O_{X}\right.$) be a k-affinoid space in the sense of Tate, Kieh1 etc., $E^{n}=\left\{\left(z_{1}, \ldots, z_{n}\right)\left|z_{i}\right| \leq 1\right.$ for all indices $\left.i\right\}$ and $\partial E^{n}=\left\{\left(z_{1}, \ldots, z_{n}\right),\left|z_{i}\right|=1\right.$ for at least one index $i,\left|z_{i}\right| \leq 1$ for all i\}.

Theorem 1: For every vectorbundle F on $X \times E^{n} \times \partial E^{1}$ there exists a rational covering $\left(U_{1}, \ldots, U_{r}\right)$ of X, such that for all i $F_{\mid U_{i} \times E^{n}}{ }^{2} E^{1}$ is the trivial bundle.
Corollary: Finitely generated projective (= f.g.p.) modules over the Tate algebra $\left.T_{n}=k<X_{1}, \ldots, X_{n}\right)$ are free.

More generally one can prove: Every f.g.p. module over the ring of Laurent series $L_{n, m}=T_{n}\left\langle Y_{1}, Y_{1}{ }^{-1}, \ldots, Y_{m}, Y_{m}^{-1}\right\rangle$ is free.
Remark: Let A be a regular complete local ring such that char (A) $=\operatorname{char}(A / m)$. Then every f:g.p. module over the polynomial ring $A\left[z_{1}, \ldots, z_{n}\right]$ is free.

In the following let the affinoid algebra A be without zero divisors. For an affinoid subdomain $U \subset X=S p(A)$ let H_{n} be the Hartogs figure $H_{n}=\left(X \times \partial E^{n}\right) \cup\left(U X E^{n}\right) \subset X \times E^{n}$.

Theorem 2: For every line bundle L on H_{2} there exists a rational covering $\left(U_{1}, \ldots, U_{r}\right)$ of X, such that $L_{U_{i} \times \partial E^{2}}$ is trivial for all i. Corollary: Let $M \subset H_{n}$ be a k-holomorphic set, $\operatorname{dim}_{x} M \geq \operatorname{dim}(X)+1$ for. ail $x \in M$. Then there exists a k-holomorphic set $\bar{M} \subset X \times E^{n}$ with $\overline{\mathrm{M}} \mathrm{H}_{\mathrm{n}}=\mathrm{M}$ and $\operatorname{dim}_{\mathrm{x}} \overline{\mathrm{M}} \geq \operatorname{dim}(\mathrm{X})+1$ for all $\mathrm{x} \in \overline{\mathrm{M}}$.

Theorem 3: Let $X=S p(A)$ be smooth and the base field k algebraically closed. Then for every vectorbundle F on H_{2} there

For the proof of Th. 3 one needs:
Theorem 4: Let X be a Cohen-Macaulay affinoid space, $Y=\left\{\left(z_{1}, z_{2}\right)\right.$ $\in \mathrm{P}_{1} \times \mathrm{P}_{1},\left|\mathrm{z}_{1}^{-1}\right| \leq 1$ or $\left.\left|\mathrm{z}_{2}^{-1}\right| \leq 1\right\}, \mathrm{p}: X \times Y \rightarrow X$ the projection. Then for every vectorbundle F on $X \times Y$ the direct image $p_{*} F$ is a cohorent sheaf of O_{X}-modules.

ROBBA, P.: Schwarz's lemma and approximation lemma
Let K be a $n .-a . v a l u e d$ complete field, locally compact; $q=\#$ R̂. Let $\lambda>1$ such that $\left|K^{*}\right|=\langle\lambda\rangle$ and $\|a\|=\max \left\{\left|a_{i}\right|\right\}$ for $a \in K^{d}$, . We assume that f is an analytic function in $B\left(O, R^{+}\right), f=\sum_{n} a_{n} \dot{x}^{n}$. For $r<R$ let $|f|_{r}=\sup \left\{\left|a_{n}\right| r|n|\right\}$, then we have $\sup \{|f(x)|, n d \leq r\}$ $\leq|f|_{r}$ Let $\Gamma \subset B\left(0, r^{+}\right), r<R, r \in|K|$, be a finite set, $h=\%$ and $\delta=\inf \left\{\theta \gamma-\gamma^{\prime} \theta^{\prime}, \gamma \neq \gamma^{\prime}, \gamma, \gamma^{\prime} \in \Gamma\right\}$, s the integer such that $\frac{r}{\delta}=\lambda^{s-1}$. Necessarily we have $h \leq q^{s d}$; in the case of equality we
say that Γ is well distributed (W.D.) in $B\left(0, r^{+}\right)$.
We know that $|f|_{r} \leq|f|_{R}$. We want to improve that estimate when it is known that f is zero in Γ (resp. small).

Theorem 1: (Schwarz's lemma) If f has multiplicity $\geq m(\gamma)$ in

Theorem 2: Let $\varepsilon=\sup \left\{\left|D^{n} f(\gamma)\right|,|n| \leq k-1, \gamma \in \Gamma\right\}$, then $|f|_{r} \leq \max \left\{\left(\frac{r}{R}\right)^{N}|f|_{R}, C \varepsilon\left(\frac{r}{\delta}\right)^{N-1}\right\}$ with $N=\frac{h k}{q(d-1) s}, C=\left.\sup _{n}\right|_{<k-1} \quad\left\{\frac{\delta|n|}{n!}\right\}$ ($\mathrm{C}=1$ if $\delta \leq \mathrm{p}^{-1 / \mathrm{p}-1}, \mathrm{p}=\operatorname{char}(\tilde{K})$).

Theorem 3: Assume that Γ is W.D. and let ε be as in Th. 2. Then $|f|_{r} \leq \max \left\{\left(\frac{r}{R}\right)^{h q}{ }^{s}|f|_{R}, C \varepsilon \lambda^{\sigma}\right\}$ with $\sigma=\left(q^{s}-q / q-1\right) k-s-1$ and $\sup _{\|x\| \leq r}\{|f(x)|\} \leq \max \left\{\left(\frac{r}{R}\right)^{h q^{S}}|f|_{R}, C \varepsilon\right\}$.

The results are used to prove properties of p-adic transcendance, diophantine approximation etc..

KATZ, N. M.: Some applications of p-adic measures
Let K be a p-adic field, O_{K} its integers. Suppose given a 1 -parameter formal group G over O_{K} of finite height h and a parameter X, such that the coordinate ring $A(G)$ of G is $O_{K} \mathbb{I X} \mathbb{I}$. Let D be the unique translation-invariant derivation of $A(G)$ into $A(G)$ with $D X(0)=1$. Given a function $f \in A(G)$ one can form the sequence $c(n):=D^{n} f(0)$ of numbers in O_{K}.

Then in the cases $h=1,2$ estimates are given for the divisibility of $c(n)$ as a function of n like $c(n) \equiv 0 \bmod p^{*(n)}$ and congruences between the various $c(n) / p^{\#(n)}$ are proved for variable n.

The principal applications of this are to the p-adic interpolation of Bernoulli numbers and Hurwitz numbers.

DE MATHAN, B.: p-adic Fourier analysis
Let K be a complete extension of Q_{p}, which contains roots of unity of all orders, and G be an abelian compact totally disconnected group, \mathcal{G} the group of all continuous characters $G \rightarrow U, U$ the group of roots of unity of K. Denote by $L^{1}(\mathcal{G})$ the algebra of all functions $f: \tilde{G} \rightarrow K$, which tend to zero at infinity, with the convolution as product $f * g(\gamma)=\sum_{\delta \in \mathcal{G}} f(\delta) g\left(\gamma \delta^{-1}\right)$ and normed by $\| f=\sup |f(x)|$. Now let \hat{f} be following continuous function on $G: \hat{f}(x)=\Sigma f(\gamma) \gamma(x) ; F: L^{1}(\tilde{G}) \rightarrow C(G, K), f \rightarrow \hat{f}$ is an algebra homomorphism. It is known by Schikhof that the maximal ideals of $L^{1}(\hat{G})$ are the $\underline{m}_{x}:=\{f \mid \hat{f}(x)=0\}, x \in G$. So the kernel of F is the intersection of all maximal ideals and it is shown that this equals the closure of the nilradical. For the further study of F it is sufficient to laok at pro-p-groups G. Such groups are always of the form $H \oplus Z_{p}^{I}$, where H is the smallest closed. subgroup such that G / H has no elements of finite order other than 0 .

Theorem: F is injective if and only if $G=H . F$ is surjective if and only if H is finite.

FRESNEL, J.: Topological tensor product of valued fields
Let k, L, M be subfields of C_{p}, L and M linearly disjoint extensions of. k. If LM is the closure of the compositum $L M$ in C_{p},
there is a conjecture: The canonical map $f: \hat{L Q}_{k} M \rightarrow \widehat{L M}$ is sur- jective and the quotient $L \hat{\mathbb{Q}}_{\mathrm{k}} \mathrm{M} / \operatorname{ker}(\mathrm{f})$ isometrically isomorphic to $\widehat{L M}$. Now it is sufficient to consider the case, where L and M are algebraic over k.

Proposition: $\hat{Q}_{\mathrm{k}}^{\mathrm{M}}$ is a local ring with maximal ideal ker(f). In the next let $K_{\infty}=U_{n} K_{n}, K_{n}=Q_{p}\left(\sqrt[P]{n^{\prime}}\right)$.
Proposition: The tensornorm and the absolute value on $\mathrm{L} \otimes_{\mathrm{K}} \mathrm{K}_{\infty} \stackrel{\tilde{\rightrightarrows}}{\mathrm{H}} \mathrm{LK}_{\infty}$ are equivalent if and only if the different $\mathrm{D}_{\mathrm{L} / \mathrm{K}_{1}} \neq$ (0).

Theorem: In the case $D_{L / K_{1}}=(0) f$ is not injective but surjective. Moreover $L \hat{Q}_{k} K_{\infty} / \operatorname{ker}(f)$ is isometrically isomorphic to $\widehat{L K}_{\infty}$. This theorem is a consequence of the surjectivity of the Fourier transform in the case $G=Z_{p}$.

FREY, G.: Some application of tori to number theory
Let K be a p-adic field, E an elliptic curve defined over K with absolute invariant j and Hasse-invariant γ. If $v(j)<0$ and γ trivial then the theory of Tate implies that there is an element $q \in K^{*}$ with $j=\frac{1}{q}+\sum_{i=1}^{S} a_{i} q^{i}, a_{i} \in Z$, and with $E(K) \cong K^{*} /\langle q\rangle$, i.e. E can be viewed as an analytic torus.

Applications: Let K_{o} be a number field, then the Tate theory together with Néron's reduction theory helps to get information about the torsion points of elliptic curves defined over K_{o}, so the following deep result could be proved: If $K_{o}=Q$, then $\left|E(K)_{t}\right| \leq 12$.
ii) As Fund (E) = 2 we conclude: any elliptic curve over any field with complex multiplication has an absolutely algebraic invariant j, that is an integer with respect to all real n.-a. valuations of K_{o}.
iii) Using the isogeny theorem for E we describe the Galois group of the maximal unramified abelian extension of the function field F. Using function theory (θ-functions) and the generalized Jacobian we describe moreover the maximal abelian extension of F unramified outside a finite set S of places of F in a very explicit manner; by going to the limit we get the Galois group of the maximal abelian extension of F.

This theory can be generalized to curves C of higher genus with split degenerated reduction in the sense of Mumford (ie. the Jacobian of C is a torus again) by using techniques developed by Gerritzen, Mumford, Mann, Drinfeld.

ESCASSUT, A.: The ultrametric spectral theory

Let K be an algebraically closed complete ultrametric field and let A be a commutative unitary Banach algebra. In A proceedings of holomorphic functional calculus are defined, using. a class of Banach algebras $H(D ; P)$, which extends the class of Krasner's algebras.

The three principal seminorms $|\cdot|_{s a},|\cdot|_{s},|\cdot| s_{i}$ are defined, they satisfy $|\cdot|_{s a} \leq|\cdot|_{s} \leq|\cdot|_{s i}$. Then the properties $|\cdot|_{s a}=|\cdot|_{s}$ and $|\cdot|_{s}=|\cdot|_{\text {si }}$ are compared.

Let $x \in A$ and $s(x)$ be the spectrum of x. If the number of the infraconnected components of $s(x)$ is finite, one can define some idempotents u of A associated to everyone.

If K owns the strongly valued property, the maximal spectrum of A is in a one-one-correspondance with the set of the multiplicative seminorms of A whose kernel is a maximal. ideal. Then one has harmonic synthesis results which can be compared to the complex analysis results.

GERRITZEN, L.: p-adic automorphic forms
Let Γ be a subgroup of $\mathrm{SL}_{2}(k)$, k groundfield with a n.-a. complete valuation which is assumed to be algebraically closed. We consider Γ to be acting on $P_{1}(k)=k \nu\{\infty\}$. Γ is called a Schottky group if all elements of $\Gamma \neq$ id are hyperbolic.

Then there is an unbounded Stein-domain X of $P_{1}(k)$ such that the quotient space $S=X / \Gamma$ is a compact analytic manifold and a projective curve the genus of which is the rank of r .

Theorem 1: Any meromorphic function f on X has a product decomposition

$$
f(z)=\text { constr. } z^{r} \cdot \prod_{i=1}^{\infty} \frac{z-a_{i}}{z-b_{i}}, a_{i}, b_{i} \in k_{1}
$$

and where $\lim _{i}\left|a_{i}-b_{i}\right|=0$.
Let $c \in G=\operatorname{Hom}\left(\Gamma, k^{*}\right)$ and f a meromorphic function on $X . f$ is called automorphic form of degree c, if $f(\gamma(z))=c(\gamma) f(z)$ for all $\gamma \in \Gamma$. Let $\theta(a, b ; z)=\underset{\gamma \in \Gamma}{\prod} \frac{z-\gamma(a)}{z-\gamma(b)}$, where $a, b \in X$.

Then $\theta(a, b ; z)$ is an automorphic form of some degree.
Theorem 2: If f is an automorphic form, we have a decomposition $f(z)=\underset{i=1}{r} \theta\left(a_{i}, b_{i} ; z\right)$. Th. 2 allows to show that the Jacobian variety of S is an analytic torus: $J_{S}=G / L$ where L is some lattice in the algebraic torus G.

Theorem 3: Let N be the normalizer of Γ in $\mathrm{PGL}_{2}(\mathrm{k})$. Then N / Γ is the automorphism group of S.

The proofs for these theorems can be given by elementary function theoretic methods. An example with N isomorphic to the classical modular group $\mathrm{SL}_{2}(\mathrm{Z}) /(\pm 1)$ has been given:

BOSCH, S.: On the reduction of rigid analytic spaces
Let X be a (reduced) rigid analytic space (in the sense of Kiehl) over an algebraically closed field k and assume that X admits a formal covering U. Then dependent on U one isociates to X the "reduction" \tilde{X} which is a scheme of locally finite type over the residue field \tilde{k}. For $x \in X$ denote by $X_{+}(x)$ the fibre at x with respect to the projection $X \rightarrow \tilde{X}, x \rightarrow \tilde{x}$. Proposition: Let $X=S p(A)$ be affinoid. Then the following is equivalent:
i) X is non singular in x.
ii) There exists functions $f_{1}, \ldots, f_{d} \in \underline{m}_{x} \cap \AA ; d:=\operatorname{dim}_{x} X$, such that the morphism $X \rightarrow B_{d}=S p\left(T_{d}\right)$ which is defined by the homomorphism $T_{d}=k\left\langle X_{1}, \ldots, X_{d}\right\rangle \rightarrow A, X_{i} \rightarrow f_{i}, i=1, \ldots, d$, induces an isomorphism $X_{+}(x) \xrightarrow{\sim} B_{d}^{+}(0)$.

Theorem: Let X be separated and quasi-compact. Then $\operatorname{dim}_{k} H^{q}\left(X, O_{X}\right) \leq \operatorname{dim}_{k^{\prime}} H^{q}\left(\hat{x}, O_{\chi}\right)$ for all q. Corollary 1: i) X is affinoid, if \tilde{X} is affine.
ii) A formal morphism $\phi: X \rightarrow Y$ is finite if and only if $\tilde{\phi}: \tilde{X} \rightarrow \tilde{Y}$ is finite.

Cor. 1 is true without any special assumption on k and X, Y. Cor. 2 applies in particular to the case where X is a complete curve. In case \tilde{X} is an elliptic curve, it follows that X is an elliptic curve with good reduction.

BEZIVIN, J.-P.: Interpolation of bounded analytic functions
Let K be a complete ultrametric algebraically closed field and D be the open unit disk. Let $B=\left\{\sum_{n=0}^{\infty} a_{n} x^{n}, \sup _{n}\left|a_{n}\right|<\infty\right\}$, the space of bounded analytic functions on $D ; x_{n}$ be a sequence of points in $D, x_{n} \neq x_{m}$ for $n \neq m$ and b_{n} some sequence of elements of K.

Proposition 1: There exists a function $f \in B$ with $f\left(x_{n}\right)=b_{n}$ if and only if the sequence $b_{n}^{(n)}$ is bounded:

$$
b_{n}^{(n)}=\Sigma \frac{b_{k}}{\pi_{k n}} \text { where } \pi_{k n}=\prod_{\substack{j \leq n \\ j \neq k}}\left(x_{k}-x_{j}\right)
$$

As a corollary of this proposition one gets the results of van der Put on interpolation sequences. Furthermore, a question of van der Put is answered:

Proposition 2: There exists in B closed, not maximal, prime ideals, which are stable under differentiation.

HAIFAWI, M.: On Non-Standard aspects in certain n.-a. normed spaces

Let K be a n.-a. complete valued field and E a n.-a. normed space over K. Let " K and "E be enlargements of K and E respectively (in the sense of Robinson). E is considered as a subpace of ${ }^{*} E$. Define ${ }^{*} E_{\text {fin }}:=\left\{x \in{ }^{*} E,\left\|_{\|}\right\| \leq r\right.$ for certain $\left.r \in R\right\}$ and ${ }^{E} E_{\text {inf }}:=\left\{x \in E^{*}\|x\|<r\right.$ for all $\left.r \in \mathbb{R}\right\}$ and ${ }^{*}:={ }^{*} E_{\text {fin }}{ }^{\#} E_{\text {inf }}$ *E is a normed space with the usual inf. norm. Non-Standard proofs of the following theorems are given:

Theorem 1: (Hahn-Banach) E has the extension property if and only if E is spherically complete.

Theorem 2: * \mathbb{E} is spherically complete.
Theorem 3: For every normed space E there is a spherical completion E_{S} of E contained in $\#$.

Def.: An element $x \in E$ is said to be a best approximate of

Theorem 4: E is spherically complete iff every $x \in E_{f i n}$ has a best approximate in E.

Theorem 5: E has the orthogonal complement property iff there
is at least one $x \in E_{\text {fin }}$ orthogonal to E. The nonstandard techniques developed can be used to handle non-standard proofs for a variety of interesting results in non-archimedean theory.

VAN DER PUT, M.: Cohomology of constant sheaves
For a holomorphic space X it is tried to calculate the cohomology groups $H^{i}(X, F)$ where F is a constant sheaf with respect to the Grothendieck topology on X. Following results are stated:

1:) $H^{i}(X, F)=0$ for $i>\operatorname{dim}(X)$.
2.) Let X be a hyperelliptic curve of genus g. Then $0 \leq \operatorname{dim} H^{1}(X, F) \leq g$.

The extreme cases $\operatorname{dim} H^{1}(X, F)=0$ and $\operatorname{dim} H^{1}(X, F)=g$ seem to occur when X has a good reduction resp. the reduction of X consists of projective lines.

Following methods are used: A good class of sheaves is introduce, namely constructible sheaves. For those sheaves cohomological dimension of spaces can be computed. Moreover, constructible sheaves satisfy a "base change" theorem.

DE GRANDE-DE KIMPE, N.: Structure theorems for locally

K-convex spaces

Let K be a n.-a. valued field with a dense valuation under which it is spherically complete. A characterization is given for all the subspaces (locally K-convex) of c_{o}^{I} with the product topology, for some power I. $\left(c_{0}=\left\{\left(a_{n}\right) \mid a_{n} \in K, \lim _{n} a_{n}=0\right\}\right.$
with $\left.\left\|\left(a_{n}\right)\right\|=\sup _{n}\left|a_{n}\right|\right)$. Every Schwartz space and every space which has an orthogonal basis, is a subspace of c_{o}^{I}. Let S_{0} (resp. S, S_{ω}) denote the class of all subspaces of c_{o}^{I} (resp. of all Schwartz spaces, of all locally convex spaces with the property that all the operators to c_{0} are compact). Then $S_{o} \mathrm{~S}_{\omega}=S$. Other characterizations of the elements of S_{ω} are given.

VAN ROOIJ, A. C. M.: Open questions on Banach spaces
Let K be a complete n.-a. valued field. If E is a Banach space over K and if D is a closed linear subspace of E, a "complement" of D is a closed linear subspace F of E, such that $D \cap F=0$, $D+F=E$. A Banach space E is said to have the "complementation property" (CP), if every closed linear subspace of E has a complement. Question: Which Banach spaces have the CP? If the value group is discrete, every Banach space does. (In the proof one uses the fact that. on every Banach space. E one can define a norm $\|_{0}$, equivalent to the given one, such that $\left.\|E\|_{o}=|K|\right)$. Question: Is the discreteness of the valuation crucial for this?

Henceforth assume the valuation to be dense.
Let. E be a Banach space. If E has a base, then every closed subspace of countable type has a complement. (Question: Is the converse true?) On the other hand, c_{o}^{N} has no complement in b^{N}. There exists a continuous linear surjection $c_{o}^{K} \rightarrow b^{N}$. It follows that c_{o}^{K} does not have the CP. However, if a Banach
space E has the $C P$, then it is a quotient space of c_{o}^{K}. Thus, spaces with the CP cannot be too large.
(A Banach space over R or C has the $C P$ if and only if it is linearly homeomorphic to a Hilbert space!)
K. Fieseler (Münster)

