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This conference on non-archimedean analysis was a meetiI)g_~o! ~

peop1e who were all interested from some~point of view ,in
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analysis, the applieations in number theory etc .. All ,t'~lk?· ,r
~.... . l : ... ; _. .. 4, ~.....

have been done in English.
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~ :~Rep9·r;ts :of; talks
\j '.•.• ~.-';' '.- "

~ • t}\... '~l

i.~DW.ORK.,_B·.~:-:Drdinary p-adic linear differential equations with

analytic coefficients

(Joint work of Dwork and Robba)

Let n be an'algebraically closed n .. -a. complet~ valued field

of characteristic 0 and residue characteristic p. For ä

= {x E n,b~lxl<l} let W6 be the ring of bounded analytic function~

on ä provided with the sup-norm and W the inductive limit of the

Wß as b ~ " with'the norm I 1= s~p II ß • Let M C W be a subfield

and T:M + w~.for some t E n be an isomorphism into wi preserving

differentiation and norm .. (Wi= functions analytic and bounded

in O(t,' )).

Then the extension of L to field extensions of M in W is dis-

cussed. Furthermore comparison 'theorems are stated: Let

L E M(~] and LL be its image in T(M)(~] ..

i) The dimension of the kernel of L in the quotient field of W

is bounded by the dimension of the kernel of LL in wi ..
ii) The dimension of the 'kernel of L in 0ä (= ring of functions

analytic in 6, not necessarily bounded) is bounded by the dimen-

sion of· the kernel of LT . in : O~( = ring of functions analytic e
in D(t,'-)}.

At last the order of growth of the solutions of L is estimated.

Example: M= K(X), K a subfield of 0, t E 0 such that ~ is

transcendental over ~, and T the restrietion to D(t,'-).

f
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~ BARSKY, D.: p-adic interpretation of Kummer's method

A new method is presented to'obtain congruences between the

Taylor's series coefficients of a certain class. Let p be a

p~ime number. I f a serie Ea ~, an E Cpo can be put in the formn n.
Lb (ecX_,)n for same con5tant c E C , then

n 'b n!cnxn P
La X

n = .Lei_nX) . (1- X). If En!b T
n

i5 an analytic element inn·· c, ..• t nc . n _.
Krasner's sense on the m~ximal ideal of C ; then La c-nXn ii'. p n

also a p-adic analytic element in the same domain.'Th{s ~~~cilt

is, by mean of the p-adic Mittag-Leffier Theorem, equivalent
J '-nto ~ongruences between t·he number-s- anc;; . Applications are made

to Bernoulli ~umbers (theory of Kubota-Leopoldt), Bell numbers

and to Bernoulli-Hurwitz numbers.

BARTENWERFER, W.: ·The first "metric" cohomology group of a

smooth affinoid space

For every real number p>O and every admissible a-ffinoid cover-

ing U of an affinoid space x..Cp(U) is definedt~ be the complex

of alternating cachains with value5 in the structure sheaf,

which have spectral n~rm <pe Let H'tU) be the- first C~~b~61ogy. p

group of this complex and'H~CX) the inductive" limit of ~h~~

H~ CU) where U runs over all admiss'ible coverings U of X.

Two theorems are stated":

Theorem 1: ·For the uni t po·lycylinder En one has: H~(En) =.0 and

more precisely H'(U)='O ·for 'every rational coverin~U o~ En .p

Theorem 2: Let X be a smooth (= absolutefy: r~gular) atfinola:

space. Then there exists an element c in the base fieId,
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o<lcl_<', such that c.H'CX)= 0 for all p.p ,

For the proof of Th. , one uses essentially the existence of a

projector, which for coverings Uof type Zn will split up the

sequence 0 + T + CoCU) + B'(U) ~ 0 very weIl in a'certainn

metric sense.

For Th. 2 then a result of Kiehl on projections for smooth

spaces is needed.

LOTKEBOHMERT, W.: Vectorbundles over non-archimedean holomorphic

spaces

Let (X= Sp(A),' 0X) be a k-affinoid space in the sense of Tate,

',Kiehl etc., En=·{(Z" •.. ,Zn)IIZil~l fp,r all indices i} and

elEn =,' {(z l' . · · ,zn),1 zi I= 1. for at least one index i., I zi I~'

for'all i}.

Theorem':- For every vectorbundle F on XxEDxdE 1 there exists

a .rational covering' (U" •.. , Ur) of X, such that for all i

FIUixEnxdEl is ~he trivial bundle.

Corollary: Finitely generated. projective (= f.g.p.) modules

over the Tate algebra Tn= k(X" •.• ,Xn) are free.

More generally one can prove: Every f.g.p. module over the ring
-, -1'

of Laurent series L = T (Y, J Y1 ' • • • ,"'f.m, Ym ). is free.D,rn n'

Remark: Let A be a regular cornplete loeal ring such that char CA)

= cha·r" (Alm). l'hen every f ~ g.• p. module over the polynomial

ring" Al Z, , ••• ,Zn] i s f re e .
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In the following let the affinoid algebra A be without zero

divisors. For an affino1d subdomain U C X= Sp(A) let Hn be the

Hartogs figure Hn= (XXaEn)U(U~n)CXxEn.

Theorem 2: For every lin~ b~n~le L on ~2 there exists a rational

covering (li1 , ••. ,Ur ) of X, such that L)u.xaEZ is trivial fOT all i.
1

COTollary: Let M C Hn be a k-holomoTphic set', dimxM~dim(j{)+1 fOT.

all x E M. Then there exists a k-holomorphic set MCXxEn with

MnH = M and dirn M>dim(X)+l for all x E M.n x-

Theorem 3: Let X= Sp(A) be'smooth and the base field k alg~~­

raically clos~d. Then for every vectorbundle F on HZ theTe
- 2 -

exists a coherent sheaf F·on.XKE With.FIH2~ F.

FOT the proof of Th. 3 one needs:

Theorem 4: Let X be a Cohen-Macaulay affinoid space, y'= '.{ (zl', zZ)

EP1~Pl'lz111~t OT Iz2.1I.~tl, .p: XxY '+ X the projectibn. -Then·frfor"

every vectQrbundle F on xxy the direet image p.F is a eohoTent

sheaf of o~:modules~'

ROBBA, P.: Schwarz' s lemma and approximation lemma ,.'

Let K be a n.-a. valued .compi·ete field, loea'lly' COinpac·t,;':··q~~~.

Let A>l such tha t IK* 1= <A> and aaD = max{ I*a. I} fOT :ae: Kd~' .:.~i.
" : 1

We aS5ume that f is an ana-lytic function in B.(O;R+) ,.f= ':La~ 'Xn _. . . . . n n

For r<R let Iflr= sup{lanlrlnl}, then we ·havesUI;{lf(i:'j'I:T~n~r}

~Iflr· ~et J;'CB(O,r'+),. r.<R, ,.r elKI, be Ci. finite set,

h= t· r arid ö= 'irif toy '- y' '0' YrY', y'y I~ r'}' th· '.* ... h
, " .' 5 e 1nteger ;suc that

r A5-1' ' . 'sd·· ..l= · Neces5ar11y we have h~q ; in the case of equality we
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say that r is weIl distributed (W.D.) in B(O,r+).

We know that Iflr2lflR. We want to irnprove that estimate when

it is known that f is zero iri r (resp. small).

Theorem 1: (Schwarz's lemma) If f has multiplicity ~m(y) in

y E r, then Iflr~C~)NlfIR with N= q(d~l)Sy~~CY).

The"o rem 2 : Let E = S UP { IDn f ( y) I , In 12k- 1, y Er}, t he n

Iflr~ max{ci)N 1fIR, CECf)N-l} with N= q(~~')S' C=I:Y~k_l
(e= 1 if ö2P- 1/ p - 1 , p= char (K)). -

Theorem 3: Assume that r is W.D. and let E be as in Th. 2.

Then I f l r2 max{(i)hqSlfIR,CE~a}with a= {qS-q!q-l)k-s-l
h 5 .

and sup{lf(x) I}< max{(~) q IfIR,CEl.
o xU.::r -. "

The results are used to prove properties of p-adic transcen­

dance, diophantine approximation etc .•

KATZ, N. M.: Same applications of p-adic measures

Let K be ·a p-adic field, 0K i ts integers. Suppose given a

1-parameter formal "group G over 0K of finite height hand a

parameter X, such that the coordinate ring A(G) of G is 0K[X].

Let D be the unique translation-invariant derivation. of A(G) ~
into A(G) with DX(O)= 1. Given a function f E A(G) one can

form t~e sequence c(n).:= nnf(O) of numbers in 0K.

Then in the cases h= 1, 2 estimates are given for the divisi­

bility of c(n) as a function of n like c(n)= 0 mod p.(n) and

congruences between the variou~ c(n)/p·(n) are proved for

variable n.
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The principal applicatiQns of this are to the p-adic inter­

polation of Bernou11i numbers and Hurwitz numbers.

DE MATRAN, B.: p-adic Fourier analysis

Let K be a comp1ete extension of Qp' which contains roqts of

unity of all ord~rs, and G be an abelian compact tota11y· dis-

~ connected group, ~ the group of all continuous characters

G + U, U the group of roots of unity of K. Denote by Ll(~) ~he

algeb!a of all functions f:~ + K, which tend to zero at infinity,

with the convolution as product f*g(Y)=·E~f(o)g(YO-1)~and normed
oEb '

by UfO= suplf(x) I. Now let f be fo11owing continuoU5 functio~

on G: f(x)= Ef(y)y(x); F:'~ (~) .+ C(G,K).,f + f .i5 an alge~t:a

homomorphi5m. It i5 known by Schikhof that the maximal ideals

of Ll(~)are the ~x:={fl-f(X)= ü}, XE G. So the kernel of F
i5 the inters~ction of all ma'xi~a1 i'deals ·and i t is s-hown:"t'hat

this equals the ~los~re of the nilradica1. For the further study

of.F it is 5ufficient t6 look ~t pro~p~groups G. Such groups are

always of the form H ~ z~, _",here H is the smallest closed-

•5ubgroup .such that G/H has no elements of· fi.ni·te orde~ ·other

than o.

Theorem: F i5 injective if and on1y if G= H. F i5 5u~iec~ive

if and only if H i5 finite.

FRESNEL, J.: Topologica1 tensor product of va1ued fields

Let k,L,M be 5ubfie1d5 of C ,L and M linear1y disjoini exten-
A P

sions of k. If LM is . the c10sure of the compositum LM in cp '
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.A
there is a conjecture: The canonieal m~p f: L~kM + LM is sur-

'"
jective and the quotient L~kM/ker(f) isometrically isomorphie

""" .
to LM. Now it is sufficient to consider the tase, where L arid M

are algebraic over k.

Proposition: L~kM is a loeal ring with maximal ideal ker(f).
n

In the"next let Koo = ~Kn,Kn= QpePrT(.

Proposition: The tensornorm and the absolute value on

LekKoo +LKoo are equivalent if and only if the different

DL/ K,1 (0).

Theorem: In the case DL/K = (0) f is not injective but surjective.
" . 1 "

Moreover LikKoo/ker(f) is .isometrically isomorphie to LK
oo

•

This theorem is a consequenee 'cf the surjectivity of the

Fourier transfarm in the case G= Zp.

FREY, G.: Same application of tori to number theory

Let K be a p-adic field, E an elliptic curve defined over K

with absolute invariant j and Hasse-invariant y. If v(j)<O

and y trivial then the theory of Tate implies that there is
• 1 s .an element q E K* with j= -+ E a.ql, a. E Z, and with

q i=' 1 1

E(K}~ K*/<q>, i.e. E can be viewed as an analytic torus.

Applications: 'Let K be a number field, ·then the Tate theory
o

tcgether with Neron's reduction theory· helps to get information

abaut the torsion. points cf elliptic curves defined over Ko '

so the fol16wing deep result could be proved: If Ko= Q, then

IEeK)tl.~.12.
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ii) As Fund CE)= Z we conclude: any elliptic curve over any

field with complex multiplication has an absolutely algebraic

invariant j, that is an integer with respect to all real n.-a.

valuations of Ko .-

iii) Using the isogeny theorem for E we describe the Galois

group of the maximal unramified abelian extension of the

function field F. Using function theory CG-functi?ns) and the

generalized Jacobian we describe moreover the maximal abelian

extension of F unramified outside a finite set S of places of

F in a very explicit manner; by going to the limit we get the

Galois group of the maximal abelian extension of F.

This theory can be generalized to curv~s C of higher genus

with split degenerated reduction in the sense of Mumford

(i.e. the Jacobian of C is a torus again) py usi~g techniques

developped by Gerritzen, Mumford~ Manin, Drinfeld.

ESCASSUT, A.: The ultrametric spectral the~r!

Let K be an algebraically 'closed cornplete ultrametric field

and let A be a commutative unitary Banach algebra. In A pr~cee-

~ dings of holomorphic functional calculus are defined, using .

.a class of Banach algebra~_ H(D~P), which extends the class of

Krasner's algebras.

The three principal seminorms I- I , I· - 15 , I- 15. are defined,- sa. 1

they satisfy I~I <I- I <I~I' .. Then the properti~s I -I = I- Isa- s- S1 sa s

and I-I s = I-I si are compared.
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Let x E A and.s(x) be the spectrum of x. Jf the number of the

infraconnected components o.f 5 (x) iso fini te, one can define

same idempotents u of A associated to everyone.

Jf K owns the strongly valued property, the maximal spectrum of

A is in a one-one-correspondance with the set of the multipli-

cative seminorms of A whose kernel is a maximal. ideal. Then

one has harm~nic synt~esis results which can be compared to

the complex analysis results.

GERRJTZEN, L.: p-adic automorphic forms

Let r' be a subgroup of SLZ(k), k groundfield with a n.-a.

complete valuation which is assumed to be algebraically closed.

We consider r to be acting on P, (k)= kv{oo}. r is called a

Schottky group if all elements of r f id are hyperbolic.

Then there is an unbounded Stein-domain X of P,Ck) such that

the quotient space S= X/r is a compact analytic manifold and

a projective curve the genus of which is the rank of Y.

Theorem 1: Any meromorphic functlon f on X has a product

decomposition
r 00 z-a if(z)= const.z • TI ~, a i , b i E k

li=l z-oi

and where l~mlai-bil= o.
1

Let c E G= Hom(r,k*) and f a meromorphic function on X. f is

called automorphic form of degree c, if f(yCz))= c(y)f(z) for

. ~yaall y E f. Let 8(a b·z)= TI - where a, b E X.
" yer z- y ,
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Then S(a,b;z) is an automorphic form of some degree.

Theorem 2: If f is an au~pmorphic form, we have a decomposition
r

f(z)= TI S(a.,bi;z). Th. 2 allows to show that the Jacobian
i= 1 1

variety of S is an analytic torus: JS= G/L where L is same

lattice in the algebraic torus G.

Theorem 3: Let N be the normalizer of r in PGL 2(k). Then N/ r is

the automorphism group of s.

The proofs for these theorems can be given by elementary

function theoretic methods. An example with N isomorphie to

the classical modular group 5L 2(Z) l(,:!:.l) has been given:.

BO~CH, s.: On the reduction of rigid analytic spaces

Let X be a (reduced)' rigidanalytic space' (in the sense 'of

Kiehl) over an algebraically closed field k and assurne that

X admits a forma~ covering U. Then.dependent on,U ?ne as~o­

ciates to X the""reduc-tion 11 ~ which is a seheme of locally
• ': . -,' ,- '!:\J' -

finite type over the residue field K. For x E X denote by

X+ (x) thEi fibre at'x with ~.~spect ~o the proj~ction X -+- .(~- -+ ic.

Propositio~: Let ~~ Sp(A) be' affinoid. Then the following is

equivalent:

i) .X ~ ~ 5 . non s ingular in x ~

ii) There exists funetions f1!~ .. ,fd E ~xnX;;d:= dimxX, s~eh

that the morphism X ~ Bd= Sp(Td) which is defined by the

homomorphism Td= k<Xl~ .•• '~d> +.A,X i +.fi ,i=l, ... ;d, induces

an isomorphism X+ (x) ~ B~ (0) ~.
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Theorem: Let X be separa~ed and quasi-compact. Then

4imkHq(X,Ox)~dim~Hq(~,O~) for all q.

Corollary 1: i) X is affinoid, if ~ is affine.

ii) A formal'morphtsm ~: X + Y is finite if and only if

~: ~ + ~ is finite.

Corollary 2: HO(~,~)= ~

Hq (~, O~) = 0, q>2'

oH (X,OX~= k

~ HqCX,OX)= O,q>2

dimkH
1

(X, ?x)

diml<H1c~,O~) •

Cer. is true without any special assumption on k and X,Y.

Cer. 2 applies in,particular to the case where X iS'a com­

plete cur've." In case ~ is an elliptic curve, i t follows 'that

X is an elliptic curve with good reduction.

'BEZIVIN, J.-P.: Interpolation of bounded analytic functions

Let K be a complete ultrametric algebraically closed field

and D be the open unit disko Let B= (nioanxn, s~planl<-~ the

space of bounded analytic functions on D~ xn be a sequence

of points in D, xnr xm for nr m and bn some sequence of ~

elements, of K.

Proposition 1: There exists a function f E B with f(xn)~ bn

if and only if the sequence b~n) is bqunded:

b(n)= Ebk
n where nkn = n (xk-x.).

nkn j<n ]
jfk
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As a corollary of this proposition one gets the results of

van der Put on interpolation sequences. Furthermore, a question

of van der Put is answered:

Proposition 2: Th~re exists in B c1osed, not maximal, prime

id~a1s, which are .stab1e under differentiation.

HAIFAWI, M.: On Non-Standard aspects in certain n.-a. normed

spaces

Let K be a n.-a. complete valued field and E a n.-a. normed

space over K. Let *K and *E be enla!gements of K and,E r~~pec­

tively (in the sense of Robinsön). E is considered as ~ ~~~~

pace of *E. Define *Efin : =' {x E *E, *0 xO.::r for certain r E RJ

a~d *E inf := '. {x E ~E, *0 xD <r for all r E lR} and *~: = *.Efinl~E .
• ". '•• 1 . ..; _,' 1nf

*~ is a normed space with the usua1 inf. nörm. Non-Standard

proofs of the fo11owing theorems are given:
'. , ~: ~ :

Theorem 1: (Hahn-Banach) E has the extension property ~f a~d
~.' ...'.:.~... ' ::.

only if E is spherically comp1ete.

Theorem 2: *~ is spherically comp1ete'.

Theorem 3: For every normed space E there is a spherical ~om~

~ pletion Es pf E contained in *~.

Def.: An element x E E is said to be a best approximate of

y E E f i n i f .*0.x. - yD = in f { *ny - e n fee ~ S } ·

Theorem 4: Eis" spherically complete iff every x E Efin has

a best approximate in E.

Theorem 5: E has the orthogo~al ~omplement property iff there
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is at least orex E Efin orthogonal to E. The non-standard

techniques developped can be used to handle non-standard proofs

for a variety of interesting results in non-archimedean theory.

VAN DER PUT, M.: Cohomology of constant sheaves

For a holomorphic space X it is tiied to calculate the cohomology

groups Hi(X,F) where Fis a constant sheaf with respect to the ~

Grothendieck topology on x. Following results are stated:

1~) Hi(X,F)= 0 for i>dim(X).

2.) Let X be a hyperelliptic curve of genus g. Then

.O~di~ H1(X,F)~g.

The extreme cases dirn H'(X,F)= 0 and dirn H~(X,F)= g seem to

occur when X has a good reduction resp. the reduction of X

consists of projective lines.

Following methods are used: A good class of sheaves is intro-

duced, namely constructible sheaves. For these sheaves coho-

mological dimension of spaces .can be computed. Moreover,

constructible sheaves satisfy a "base change" theorem.

DE GRANDE-DE KIMPE, N.: Structure theorems for locally'

K-convex spaces

Let K be a n.-a. valued field with a dense valuation under

which it is spherical1y complete. A characterization is given

for all the subspaces (locally K-convex) of cl with the pro­o

duct topology, for some power I. (C
0

2 {(an) lan E K,lim ~n= O}
n
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with I Ca )8= supta. I). Every Schwartz space and every space
n . n n

1which has· an orthogonal basis; is a subspace of co. Let So
I(resp. S,Sw) denote the class of all subspaces of Co (resp. of

all Schwartz spaces, of all locally convex spaces with the

property that all the operators to Co are compact). Then:

Sonsw= S. Other characterizations of the elements of Sw

are given.

VAN ROOIJ, A. C. M.: Open questions on Banach spaces

Let K be a complete n.-a. valued field. If E is a Banach space

over K and if D is a closed linear subspace of E, a "complement"

of D is a closed linear subspace F of E, such that Dnp=.o,

D+F=. E. A Banach space E is said to have the "complementation

property" (CP), if every closed linear subspace of E has a

complement. Question: Which Banach spaces have the CP? If the

value group is discrete, every Banach space does. (In the

proof one uses the fact that. on ~very Banach space.E one

can define a norm O-U o '. equiyalent to the given one, such that

DEO o= IKI). Question: Is the discreteness of the valuation .

crucial for this?

Hencefo·rth assume the valuation to be dense.

Let.E be a Banach space. If E has a base, then every clesed

sub~pace ef countable type has a complement. (Question: Is

the converse true?) On the other hand, cN has na complement ino .

bN. There exists a continuous linear surjection cK ~ bN.
0

KIt fellows that Co does not have the CP. However, if a Banach

                                   
                                                                                                       ©



- 16 -

Kspace E has the CP, then .it is a quotient space of co. Thus, ~

spaces with the CP cannot be too large.

(A Banach" space over R or C has the CP if and only if i t is

linearly homeomorphic to a Hilbert space!)

K. Fieseler (Münster)
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