MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Math Forest
risen rorsenungsinstitut
Uperwolfach
IE 20 10 10 0

Tagungsbericht 37 1976

Non-archimedean Analysis

29.8. bis 4.9.1976 sa ni ritel 5. 8 5 mo r (t⊈ ∖2 Tagungsleiter: L. Gerritzen, Bochum R. Remmert, Münster in Maria Sea No. 1 Inc. to Bath This conference on non-archimedean analysis was a meeting of people who were all interested from some point of view in p-adic theory. So there have been talks on many different themes like non-archimedean function theory, functional operation analysis, the applications in number theory etc.. All talks have been done in English. and on the

List of names

**

Amice, Y., Montrouge, F Angermüller, G., Erlangen Barsky, D., Paris, F Bartenwerfer, W., Bochum Bezivin, J.-P., Paris, F Bosch, S., Münster de Grande-de Kimpe, N., Brüssel B de Mathan, B., Talence, F Dwork, B., Princeton, USA Escassut, A., Talence, F Fieseler, K., Münster Fresnel, J., Talence, F Frey, G., Saarbrücken Gerritzen, L., Bochum Güntzer, U., München

ts bounde Haifawi, M., Ankara, T Heinrich, E., Bochum Herrlich, F., Bochumana Katz, N.M., Princeton, USA Lütkebohmert, W., Münster Martens, G., Erlängen 🎫 Mehlmann, F., Münster Nastold, H.-J., Münster Remmert, R., Münster Robba, P., Paris, F -Schikhof, W., Nijmegen, NL Schneider, Th., Freiburg Springer, T.A., Utrecht, NL van der Put, M., Groningen, NL van Rooij, A.C.M., Nijmegen, NL

G Deutsche Forschungsgemeinschaft Reports of talks

__DWORK,_B.:-Ordinary p-adic linear differential equations with

analytic coefficients

(Joint work of Dwork and Robba)

Let Ω be an algebraically closed n.-a. complete valued field of characteristic O and residue characteristic p. For Δ = { $x \in \Omega_{l} b \le |x| < 1$ } let W_{Δ} be the ring of bounded analytic functions on Δ provided with the sup-norm and W the inductive limit of the W_{Δ} as b + 1, with the norm $|| = \sup_{\Delta} ||_{\Delta}$. Let $M \subset W$ be a subfield and $\tau:M + W_{t}^{1}$ for some $t \in \Omega$ be an isomorphism into W_{t}^{1} preserving differentiation and norm. $(W_{t}^{1} =$ functions analytic and bounded in $D(t, 1^{-})$.

Then the extension of τ to field extensions of M in W is discussed. Furthermore comparison theorems are stated: Let $L \in M[\frac{d}{dx}]$ and L^{τ} be its image in $\tau(M)[\frac{d}{dx}]$.

i) The dimension of the kernel of L in the quotient field of W is bounded by the dimension of the kernel of L^{T} in W_{+}^{1} .

ii) The dimension of the kernel of L in 0_{Δ} (= ring of functions analytic in Δ , not necessarily bounded) is bounded by the dimension of the kernel of L^{τ} in 0_t^1 (= ring of functions analytic in D(t,1⁻)).

At last the order of growth of the solutions of L is estimated. Example: M= K(X), K a subfield of Ω , $t \in \Omega$ such that \tilde{t} is transcendental over \tilde{K} , and τ the restriction to $D(t,1^{-})$.

BARSKY, D.: p-adic interpretation of Kummer's method

3 -

A new method is presented to obtain congruences between the Taylor's series coefficients of a certain class. Let p be a prime number. If a serie $\sum a_n \frac{X^n}{n!}$, $a_n \in C_p$ can be put in the form $\sum b_n (e^{CX}-1)^n$ for some constant $c \in C_p$, then $\sum a_n X^n = \sum \frac{b_n n! c^n X^n}{(1-cX), \dots, (1-ncX)}$. If $\sum n! b_n T^n$ is an analytic element in Krasner's sense on the maximal ideal of C_p , then $\sum a_n c^{-n} X^n$ is also a p-adic analytic element in the same domain. This result is, by mean of the p-adic Mittag-Leffler Theorem, equivalent to congruences between the numbers $a_n c^{-n}$. Applications are made to Bernoulli numbers (theory of Kubota-Leopoldt), Bell numbers and to Bernoulli-Hurwitz numbers.

BARTENWERFER, W.: The first "metric" cohomology group of a smooth affinoid space

For every real number $\rho>0$ and every admissible affinoid covering [] of an affinoid space $\chi C_{\rho}([])$ is defined to be the complex of alternating cochains with values in the structure sheaf, which have spectral norm $<\rho$. Let $H_{\rho}^{1}([])$ be the first cohomology group of this complex and $H_{\rho}^{1}(X)$ the inductive limit of the $H_{\rho}^{1}([])$ where [] runs over all admissible coverings [] of X. Two theorems are stated: Theorem 1: For the unit polycylinder E^{n} one has: $H_{\rho}^{1}(E^{n}) = 0$ and

Theorem 1: For the unit polycylinder E one has: $H_{\rho}(E) = 0$ and more precisely $H_{\rho}^{1}(\bigcup) = 0$ for every rational covering \bigcup of E^{n} . Theorem 2: Let X be a smooth (= absolutely regular) affinoid space. Then there exists an element c in the base field,

DFG Deutsche Forschungsgemeinschat $0 < |c| \le 1$, such that $c \cdot H_0^1(X) = 0$ for all ρ .

For the proof of Th. 1 one uses essentially the existence of a projector, which for coverings || of type 2^n will split up the sequence $0 + T_n + C^o(||) + B^1(||) + 0$ very well in a certain metric sense.

For Th. 2 then a result of Kiehl on projections for smooth spaces is needed.

LÖTKEBOHMERT, W.: Vectorbundles over non-archimedean holomorphic

spaces

Let $(X = Sp(A), O_X)$ be a k-affinoid space in the sense of Tate, Kiehl etc., $E^n = \{(z_1, \ldots, z_n)_i | z_i | \le 1 \text{ for all indices } i\}$ and $\partial E^n = \{(z_1, \ldots, z_n)_i | z_i | = 1 \text{ for at least one index } i, |z_i | \le 1 \text{ for all } i\}.$

Theorem 1: For every vectorbundle F on $X \times E^n \times \partial E^1$ there exists a rational covering (U_1, \ldots, U_r) of X, such that for all i $F_{|U_1 \times E^n \times \partial E^1}$ is the trivial bundle. Corollary: Finitely generated projective (= f.g.p.) modules over the Tate algebra $T_n = k(X_1, \ldots, X_n)$ are free. More generally one can prove: Every f.g.p. module over the ring of Laurent series $L_{n,m} = T_n(Y_1, Y_1^{-1}, \ldots, Y_m, Y_m^{-1})$ is free. Remark: Let A be a regular complete local ring such that char (A) = char (A/m). Then every f.g.p. module over the polynomial

ring $A[Z_1, \ldots, Z_n]$ is free.

FG Deutsche Eorschungsgemeinsch In the following let the affinoid algebra A be without zero divisors. For an affinoid subdomain $U \subset X = Sp(A)$ let H_n be the Hartogs figure $H_n = (X \times \partial E^n) \cup (U \times E^n) \subset X \times E^n$.

5

Theorem 2: For every line bundle $\lfloor \text{ on } H_2$ there exists a rational covering (U_1, \ldots, U_r) of X, such that $\lfloor |U_1 \times \partial E^2$ is trivial for all i. Corollary: Let $M \subset H_n$ be a k-holomorphic set, $\dim_X M \ge \dim(X) + 1$ for all $x \in M$. Then there exists a k-holomorphic set $\overline{M} \subset X \times E^n$ with $\overline{M} \cap H_n = M$ and $\dim_X \overline{M} \ge \dim(X) + 1$ for all $x \in \overline{M}$.

Theorem 3: Let X= Sp(A) be smooth and the base field k algebraically closed. Then for every vectorbundle F on H₂ there exists a coherent sheaf \overline{F} on X×E² with $\overline{F}_{|H_2} \cong F$.

For the proof of Th. 3 one needs:

Theorem 4: Let X be a Cohen-Macaulay affinoid space, $Y = \{(z_1, z_2) \in P_1 \times P_1, |z_1^{-1}| \le 1 \text{ or } |z_2^{-1}| \le 1\}$, p: X×Y \rightarrow X the projection. Then for every vectorbundle F on X×Y the direct image p*F is a cohorent sheaf of O_X -modules.

ROBBA, P.: Schwarz's lemma and approximation lemma

Let K be a n.-a. valued complete field, locally compact; $q = \hat{K}$. Let $\lambda > 1$ such that $|K^*| = \langle \lambda \rangle$ and $\|a\| = \max\{|a_i|\}$ for $a \in K^d$. We assume that f is an analytic function in $B(0, R^+)$, $f = \sum_{n=1}^{\infty} x^n$. For r < R let $|f|_r = \sup\{|a_n|r^{|n|}\}$, then we have $\sup\{|f(x)|, \|x\| \le r\} \le |f|_r$. Let $\Gamma \subset B(0, r^+)$, r < R, $r \in |K|$, be a finite set,

h= # r and δ = inf{ γ_{γ}, γ' , $\gamma \neq \gamma', \gamma, \gamma' \in \Gamma$ }, s the integer such that $\frac{r}{\delta} = \lambda^{s-1}$. Necessarily we have $h \leq q^{sd}$; in the case of equality we

3

say that Γ is well distributed (W.D.) in B(0,r⁺).

We know that $|f|_{r} \leq |f|_{R}$. We want to improve that estimate when it is known that f is zero in Γ (resp. small).

Theorem 1: (Schwarz's lemma) If f has multiplicity $\geq m(\gamma)$ in $\gamma \in \Gamma$, then $|f|_{r} \leq \left(\frac{r}{R}\right)^{N} |f|_{R}$ with $N = \frac{1}{q(d-1)s_{\gamma \in \Gamma}} \sum_{\gamma \in \Gamma} (\gamma)$.

Theorem 2: Let $\varepsilon = \sup\{|D^{n}f(\gamma)|, |n| \le k-1, \gamma \in \Gamma\}$, then $|f|_{r} \le \max\{(\frac{r}{R})^{N}|f|_{R}, C\varepsilon(\frac{r}{\delta})^{N-1}\}$ with $N = \frac{hk}{q(d-1)s}, C = \sup_{|n| \le k-1} \{\frac{\delta|n|}{n!}\}$ (C = 1 if $\delta \le p^{-1/p-1}$, p = char (\widetilde{K})).

Theorem 3: Assume that Γ is W.D. and let ε be as in Th. 2. Then $|f|_{r} \leq \max\{(\frac{r}{R})^{hq^{S}}|f|_{R}, C\varepsilon\lambda^{\sigma}\}$ with $\sigma = (q^{S}-q/q-1)k-s-1$ and $\sup_{\|x\| \leq r} \{|f(x)|\} \leq \max\{(\frac{r}{R})^{hq^{S}}|f|_{R}, C\varepsilon\}.$

The results are used to prove properties of p-adic transcendance, diophantine approximation etc..

KATZ, N. M.: Some applications of p-adic measures

Let K be a p-adic field, O_K its integers. Suppose given a 1-parameter formal group G over O_K of finite height h and a parameter X, such that the coordinate ring A(G) of G is $O_K[X]$. Let D be the unique translation-invariant derivation of A(G) into A(G) with DX(0) = 1. Given a function $f \in A(G)$ one can form the sequence $c(n) := D^n f(0)$ of numbers in O_K . Then in the cases h= 1, 2 estimates are given for the divisibility of c(n) as a function of n like $c(n) \equiv 0 \mod p^{*(n)}$ and congruences between the various $c(n)/p^{*(n)}$ are proved for variable n.

DFG Deutsche Forschungsgemeinscha The principal applications of this are to the p-adic interpolation of Bernoulli numbers and Hurwitz numbers.

DE MATHAN, B.: p-adic Fourier analysis

Let K be a complete extension of Q_n , which contains roots of unity of all orders, and G be an abelian compact totally disconnected group, & the group of all continuous characters $G \rightarrow U$, U the group of roots of unity of K. Denote by $L^{1}(\hat{G})$ the algebra of all functions $f:\mathcal{C} \rightarrow K$, which tend to zero at infinity, with the convolution as product $f*g(\gamma) = \sum_{n} f(\delta)g(\gamma \delta^{-1})$ and normed by $\|f\| = \sup |f(x)|$. Now let \hat{f} be following continuous function on G: $\hat{f}(x) = \Sigma f(\gamma) \gamma(x)$; F:L¹(\hat{G}) $\rightarrow C(G,K)$, f $\rightarrow \hat{f}$ is an algebra homomorphism. It is known by Schikhof that the maximal ideals of $L^{1}(G)$ are the $\underline{m}_{x} := \{f | f(x) = 0\}, x \in G$. So the kernel of F is the intersection of all maximal ideals and it is shown that this equals the closure of the nilradical. For the further study of F it is sufficient to look at pro-p-groups G. Such groups are always of the form H \oplus Z_n^I , where H is the smallest closed subgroup such that G/H has no elements of finite order other than 0.

Theorem: F is injective if and only if G= H. F is surjective if and only if H is finite.

FRESNEL, J.: <u>Topological tensor product of valued fields</u> Let k,L,M be subfields of C_p ,L and M linearly disjoint extensions of k. If LM is the closure of the compositum LM in C_p ,

DFG Deutsche Eorschungsgemeinsch

.7

there is a conjecture: The canonical map f: $L\widehat{\mathbb{Q}}_{k}M \neq L\widehat{M}$ is surjective and the quotient $L\widehat{\mathbb{Q}}_{k}M/\ker(f)$ isometrically isomorphic to \widehat{LM} . Now it is sufficient to consider the case, where L and M are algebraic over k.

Proposition: $L\hat{\Theta}_{k}^{M}$ is a local ring with maximal ideal ker(f). In the next let $K_{\infty} = \bigcup_{n} K_{n}, K_{n} = Q_{p}(p\sqrt{n})$. Proposition: The tensornorm and the absolute value on

 $L \mathfrak{D}_{k} K_{\infty} \stackrel{\tilde{\rightarrow}}{\rightarrow} L K_{\infty}$ are equivalent if and only if the different $D_{L/K_{1}} \neq (0)$.

Theorem: In the case $D_{L/K_1} = (0)$ f is not injective but surjective. Moreover $L\hat{\Theta}_k K_{\infty}/\ker(f)$ is isometrically isomorphic to LK_{∞} . This theorem is a consequence of the surjectivity of the Fourier transform in the case G= Z_n .

FREY, G.: Some application of tori to number theory

Let K be a p-adic field, E an elliptic curve defined over K with absolute invariant j and Hasse-invariant γ . If v(j) < 0and γ trivial then the theory of Tate implies that there is an element $q \in K^*$ with $j = \frac{1}{q} + \sum_{i=1}^{S} a_i q^i$, $a_i \in Z$, and with $E(K)^{\frac{\gamma}{2}} K^*/<q>$, i.e. E can be viewed as an analytic torus. Applications: Let K_0 be a number field, then the Tate theory together with Néron's reduction theory helps to get information about the torsion points of elliptic curves defined over K_0 , so the following deep result could be proved: If $K_0 = Q$, then $|E(K)_+| \leq 12$.

FG Deutsche

ii) As Fund (E)= Z we conclude: any elliptic curve over any field with complex multiplication has an absolutely algebraic invariant j, that is an integer with respect to all real n.-a. valuations of K_{o} .

Q

iii) Using the isogeny theorem for E we describe the Galois group of the maximal unramified abelian extension of the function field F. Using function theory (O-functions) and the generalized Jacobian we describe moreover the maximal abelian extension of F unramified outside a finite set S of places of F in a very explicit manner; by going to the limit we get the Galois group of the maximal abelian extension of F.

This theory can be generalized to curves C of higher genus with split degenerated reduction in the sense of Mumford (i.e. the Jacobian of C is a torus again) by using techniques developped by Gerritzen, Mumford, Manin, Drinfeld.

ESCASSUT, A.: The ultrametric spectral theory

Let K be an algebraically closed complete ultrametric field and let A be a commutative unitary Banach algebra. In A proceedings of holomorphic functional calculus are defined, using a class of Banach algebras H(D,P), which extends the class of Krasner's algebras.

The three principal seminorms $|\cdot|_{sa}, |\cdot|_{s}, |\cdot|_{s}$ are defined, they satisfy $|\cdot|_{sa} \le |\cdot|_{s} \le |\cdot|_{si}$. Then the properties $|\cdot|_{sa} = |\cdot|_{s}$ and $|\cdot|_{s} = |\cdot|_{si}$ are compared.

DFG Deutsche Forschungsgemeinsch

3

Let $x \in A$ and s(x) be the spectrum of x. If the number of the infraconnected components of s(x) is finite, one can define some idempotents u of A associated to everyone.

- 10 -

If K owns the strongly valued property, the maximal spectrum of A is in a one-one-correspondance with the set of the multiplicative seminorms of A whose kernel is a maximal ideal. Then one has harmonic synthesis results which can be compared to the complex analysis results.

GERRITZEN, L.: p-adic automorphic forms

Let Γ be a subgroup of $SL_2(k)$, k groundfield with a n.-a. complete valuation which is assumed to be algebraically closed. We consider Γ to be acting on $P_1(k) = kv\{\infty\}$. Γ is called a Schottky group if all elements of $\Gamma \neq$ id are hyperbolic. Then there is an unbounded Stein-domain X of $P_1(k)$ such that the quotient space $S = X/_{\Gamma}$ is a compact analytic manifold and a projective curve the genus of which is the rank of Γ . Theorem 1: Any meromorphic function f on X has a product decomposition

$$f(z) = const. z^r \cdot \prod_{i=1}^{\infty} \frac{z-a_i}{z-b_i}, a_i, b_i \in k_i$$

and where $\lim_{i} |a_i - b_i| = 0$.

Let $c \in G = Hom(\Gamma, k^*)$ and f a meromorphic function on X. f is called automorphic form of degree c, if $f(\gamma(z)) = c(\gamma)f(z)$ for all $\gamma \in \Gamma$. Let $\Theta(a,b;z) = \prod_{\gamma \in \Gamma} \frac{z - \gamma(a)}{z - \gamma(b)}$, where $a, b \in X$.

Then $\Theta(a,b;z)$ is an automorphic form of some degree.

Theorem 2: If f is an automorphic form, we have a decomposition $f(z) = \prod_{i=1}^{T} \Theta(a_i, b_i; z)$. Th. 2 allows to show that the Jacobian variety of S is an analytic torus: $J_S = G/L$ where L is some lattice in the algebraic torus G.

Theorem 3: Let N be the normalizer of Γ in PGL₂(k). Then N/_{Γ} is the automorphism group of S.

The proofs for these theorems can be given by elementary function theoretic methods. An example with N isomorphic to the classical modular group $SL_2(Z)/_{(+1)}$ has been given:

BOSCH, S.: On the reduction of rigid analytic spaces

Let X be a (reduced) rigid analytic space (in the sense of Kiehl) over an algebraically closed field k and assume that X admits a formal covering U. Then dependent on U one associates to X the "reduction" \hat{X} which is a scheme of locally finite type over the residue field \hat{K} . For $x \in X$ denote by $X_+(x)$ the fibre at x with respect to the projection $X \rightarrow \hat{X}, x \rightarrow \hat{x}$. Proposition: Let X= Sp(A) be affinoid. Then the following is equivalent:

i) X is non singular in x.

ii) There exists functions $f_1, \ldots, f_d \in \underline{m}_x \cap A$, $d := \dim_x X$, such that the morphism $X \rightarrow B_d = \operatorname{Sp}(T_d)$ which is defined by the homomorphism $T_d = k < x_1, \ldots, x_d > \rightarrow A, X_i \rightarrow f_i, i = 1, \ldots, d$, induces an isomorphism $X_+(x) \xrightarrow{\sim} B_d^+(0)$.

DFG Deutsche Forschungsgemeinschar - 11 -

Theorem: Let X be separated and quasi-compact. Then $\dim_k H^q(X, O_X) \leq \dim_{Y} H^q(\hat{X}, O_Y)$ for all q.

Corollary 1: i) X is affinoid, if \ddot{X} is affine.

ii) A formal morphism ϕ : X + Y is finite if and only if $\hat{\phi}$: $\hat{X} + \hat{Y}$ is finite.

Corollary 2:
$$H^{0}(\mathring{X}, O_{\widehat{X}}) = \mathring{k}$$

 $H^{q}(\mathring{X}, O_{\widehat{X}}) = 0, q > 2$
 $\dim_{k} H^{1}(X, O_{\widehat{X}}) = 0, q > 2$
 $\dim_{k} H^{1}(X, O_{\widehat{X}}) = 0, q > 2$

Cor. 1 is true without any special assumption on k and X,Y. Cor. 2 applies in particular to the case where X is a complete curve. In case \hat{X} is an elliptic curve, it follows that X is an elliptic curve with good reduction.

BEZIVIN, J.-P.: Interpolation of bounded analytic functions

Let K be a complete ultrametric algebraically closed field and D be the open unit disk. Let $B = \{\sum_{n=0}^{\infty} a_n \chi^n, \sup_n |a_n| < \infty\}$, the space of bounded analytic functions on D, x_n be a sequence of points in D, $x_n \neq x_m$ for $n \neq m$ and b_n some sequence of elements of K.

Proposition 1: There exists a function $f \in B$ with $f(x_n) = b_n$ if and only if the sequence $b_n^{(n)}$ is bounded:

 $b_n^{(n)} = \Sigma \frac{b_k}{\pi_{kn}}$ where $\pi_{kn} = \prod_{\substack{j \le n \\ j \ne k}} (x_k - x_j)$.

As a corollary of this proposition one gets the results of van der Put on interpolation sequences. Furthermore, a question of van der Put is answered:

Proposition 2: There exists in B closed, not maximal, prime ideals, which are stable under differentiation.

- 13 -

HAIFAWI, M.: On Non-Standard aspects in certain n.-a. normed spaces

Let K be a n.-a. complete valued field and E a n.-a. normed space over K. Let *K and *E be enlargements of K and E respectively (in the sense of Robinson). E is considered as a subpace of *E. Define *E_{fin}:= { $x \in *E, *I \times I \leq r$ for certain $r \in R$ } and *E_{inf}:= { $x \in *E, *I \times I < r$ for all $r \in IR$ } and *E':= *E_{fin}/*E_{inf} *E' is a normed space with the usual inf. norm. Non-Standard proofs of the following theorems are given:

Theorem 1: (Hahn-Banach) E has the extension property if and only if E is spherically complete.

Theorem 2: ${}^{*}E$ is spherically complete. Theorem 3: For every normed space E there is a spherical completion E_s of E contained in ${}^{*}E$.

Def.: An element $x \in E$ is said to be a best approximate of $y \in E_{fin}$ if * $||x-y|| = inf\{*||y-e||, e \in E\}$.

Theorem 4: E is spherically complete iff every $x \in E_{fin}$ has a best approximate in E.

Theorem 5: E has the orthogonal complement property iff there

DFG Deutsche Forschungsgemeinsch - 14 -

is at least one $x \in E_{fin}$ orthogonal to E. The non-standard techniques developped can be used to handle non-standard proofs for a variety of interesting results in non-archimedean theory.

VAN DER PUT, M.: Cohomology of constant sheaves

For a holomorphic space X it is tried to calculate the cohomology groups $H^{i}(X,F)$ where F is a constant sheaf with respect to the Grothendieck topology on X. Following results are stated: 1.) $H^{i}(X,F) = 0$ for $i > \dim(X)$.

2.) Let X be a hyperelliptic curve of genus g. Then $0 \le \dim H^1(X,F) \le g$.

The extreme cases dim $H^{1}(X,F) = 0$ and dim $H^{1}(X,F) = g$ seem to occur when X has a good reduction resp. the reduction of X consists of projective lines.

Following methods are used: A good class of sheaves is introduced, namely constructible sheaves. For those sheaves cohomological dimension of spaces can be computed. Moreover, constructible sheaves satisfy a "base change" theorem.

DE GRANDE-DE KIMPE, N.: <u>Structure theorems for locally</u> K-convex spaces

Let K be a n.-a. valued field with a dense valuation under which it is spherically complete. A characterization is given for all the subspaces (locally K-convex) of c_0^I with the product topology, for some power I. $(c_0^{-1} \{(a_n) | a_n \in K, \lim a_n^{-1} = 0\}$ with $||(a_n)|| = \sup_n ||a_n||$. Every Schwartz space and every space which has an orthogonal basis, is a subspace of c_0^I . Let S_0 (resp. S, S_{ω}) denote the class of all subspaces of c_0^I (resp. of all Schwartz spaces, of all locally convex spaces with the property that all the operators to c_0 are compact). Then $S_0 \cap S_{\omega} = S$. Other characterizations of the elements of S_{ω} are given.

VAN ROOIJ, A. C. M.: Open questions on Banach spaces

Let K be a complete n.-a. valued field. If E is a Banach space over K and if D is a closed linear subspace of E, a "complement" of D is a closed linear subspace F of E, such that $D\cap F= 0$, D+F= E. A Banach space E is said to have the "complementation property" (CP), if every closed linear subspace of E has a complement. Question: Which Banach spaces have the CP? If the value group is discrete, every Banach space does. (In the proof one uses the fact that on every Banach space E one can define a norm $\|\cdot\|_{0}$, equivalent to the given one, such that $\|E\|_{0} = |K|$). Question: Is the discreteness of the valuation crucial for this?

Henceforth assume the valuation to be dense.

Let E be a Banach space. If E has a base, then every closed subspace of countable type has a complement. (Question: Is the converse true?) On the other hand, c_o^N has no complement in b^N . There exists a continuous linear surjection $c_o^K + b^N$. It follows that c_o^K does not have the CP. However, if a Banach

space E has the CP, then it is a quotient space of c_0^K . Thus, spaces with the CP cannot be too large.

(A Banach space over R or C has the CP if and only if it is linearly homeomorphic to a Hilbert space!)

K. Fieseler (Münster)

