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H. ABELS: Cocompactness of proper transformation groups

The ·following question is discussed: Given a locally compact

topological group G and a locally compact, locally connected,

connected, paracompact topological space X. Is it true that

for any two proper actions cf G on X beth orbit spaces

are compact or both are non-compact? The answer is no in

general. It is conjectured that the answer is yes if

dirnk H: (X;k) < m for same finite field k. The conjecture

i~ true in the followjng cases: (1) X a differentiable

manifold possibly with boundary, G a Lie group acting

effectively and differentiably. (2) G a closed subgroup of

a Lie group"having a finite number of connected components,

X arbitrary. (3) G a Lie group, the action is p~free,

p.char (k), i~e. all isotropy subgroups of G are finite

of order prime to p ; e .• g. ~ is discrete and has no p-torsion.

J. BERRICK: Detecting sections in K-theory

We study obstructions in KG -theory to the existence of

a section of the·sphere bundle SE cf an n-dimensional

complex G - vector bundle E over a compact ~-space B,

where G is a compact Lie graupe In KGeB) there exist

the following related obstructions: '

A -1 CE) = 0 ~

By considering the Gysin sequence of E

Theorem 1: Klf= (8 X 5 2n- 1
G

as *KG (B) - algebras.
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Now restriet to G = <1). Over the rationals 3. an

isomorphis~ as in Thm. 1 respecting ~k-operations.

Examination of the classifying space A _1'CE) = 0 reveals

the existence of secondary obstruction classes v.€ Kl(B) )J.
i = 1,2,."•. , n-1 .

Theorem 2: If vi = 0 Vi) then 3 an isomorphism as in
. .\ k .Thm. 1 respect1ng A -operatJ.ons.

An application to the non-immersibility of lens spaces is

presented.

M. C. CRABB: Z/2-equivariant homotopy: the Euler class,

the Kahn - Priddy theorem

)

)KO(X) where S2 is the sum operation

which takes the vector (or sphere)

bundle f (or S (s» to the sum

~ ~ i (or fihre join S(f)'1< S(r»

wi th 74/2 acting by switehing the faetors (,~ Ee ~ with this

involution is just f $ Lei) ~ ) •

Suppose that s) j' are real vector bundles over a compact

space X. Let L be the non-trivial 1-dimensional real

representation of Z/2. If the sphere-bundles set) and S(~')'

are stably fibre-homotopy equivalent.) then S(L @ ~_) an'd

SeL CZ ~') are 7/2-equivariantly stably fibre-homotopy equivalent.

The proof is the eommutative diagram:
S2

J,
J(X)

This'basie idea leads to consideration of power operations in

stahle eohomotopy and a geometrie definition of t~e generalized

Hopf invariant (giving by duality, whe~e appropriate, re~ent

interpretations by R. Wood, U. Koschorke and B. S~nderson).

We note that G. Segal's proof of the Kahn-Priddy theorem now

takes a very simple form. Several points are emphasized:. the

split exaet sequenee 0 +'{ X+; Rp
m

+ } ~ Z/2n~ (X) + w~ (X) + 0

+' ~
(X = Xu base point, 7/2wS = ~/2~equiv. stahle cohomotopy)

•
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the rSle of duality; the importance of defining relative

classes; the J/2 -equiv. Euler class / cha~acteristic of

a vector bundle with the antipodal involution.

J. DUPONT: Characteristic· classes of flat bundles

Let G = GL(n,C) ,let Gd be the underlying discrete group

and ~: Gd + G the natural map. Simons"and Cheeger have

constructed classes S,k E H2k-
1

(BGd • C l'l) such that

S(sk) = L*(Ck ) where" ß is the Bockstein homomorphism and

c k E H2k (BG,Z) are the Chern elasses. We give a simple

direet construction of cochains representing the classes S k

in the Eilenberg-Mac Lane group cohomology of Gd with

coefficients in C/Z. Secondly we show how the construction

of similar classes of Simons and'Cheeger for"any real Lie

group G is a direct consequence of the Chern-Weil theory

f~r the universal G~bundle in the framework of simplicial

De Rham cohomology.

s. GITLER: Vector bundles over astahle complex

Conditions both necessary and sufficient on geometrie dimension

of vector bundles over a suspension space are analyzed.

If the complex X" cf 'dimension n is stable, we conjecture

that a single obstruction in J*( DX A pn) is necessary and
N

sufficient for gd(a) ~ N if 2N > n. This is joint work

with K.Y. Lam and M. Mahowald.

H.A. HAMM: Zur Homologie Steinseher Räume

Es handelt sich um den folgenden Satz: Jeder n-dimensionale

Steinsehe Raum hat den Homotopietyp eines n-dimensionalen

CW~Komplexes. Im Fall einer Mannigfaltigkeit wurde dies von
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Andreotti - Frankel mit Morsethorie bewiesen. Im allgemeinen

Fall wird nun eine verallgemeinerte Morsetheorie benutzt.

Ober das oben angegebene Resultat hinaus läßt sich noch zeigen:

Ist X ein Steinscher Raum, Y eine analytische Teilmenge,

X-Y n-dimensional,.so entsteht X aus Y bis auf Homotopie

äquivalenz durch Anheften von Zellen der Dimension ~ n .

H.M. HASTINGS: ~ech and Steenrod homotopy theory

Inverse systems of spaces (pro-spaces) occur in many settings,

for example, s~ape theory, proper homotopy .theory, localizations

and completions, and etale cohomology. The basic algebraic

topology of pro-spaces is developed and the first two s~ttings

above are discussed.

Theorem: Let C be any of' Top, simplicial sets, simplicial

.groups, simplicial spectra. Then pro-C admits a natural closed

model structure in the sense of D.G. Quillen.

Corollary: There is a homotopy inverse limit holim:

Ho (pro-C) -+ Ho (C) adjoint to the inclusion Ho (C)~Ho(pro-C).

There are comparison theorems relating Ho (tow-C) (tow denotes

towers) and tow-Ho (C) c pro-Ho (C) , the category studied

by Artin and Mazur. This relation. extends the relation between

~ech and Steenrod homology.

Typical applications: Reproof cf Ross's results on vanishing

of lims , inadequacy of M-L condition, construction of generalized·

Steenrod homology theories, strong. Chapman complement theorem

(categorical) , classification of open principal fibrations.

(Joint work with D.A. Edwards.)

I. M. JAHES: Induced automorphisms of homotopy groups

Let points of the Stiefel manifold V k be represented byn,
k x n matrices, in the usual way, and let A ,~ be the

involutions given by changing the sign of a row, column,

respectively. Then

                                   
                                                                                                       ©



- 5 -

where

Also

where
P:4a SJIc A .

'Jrr(Vn,k) --" lIr (Sn-l) ---t 'Jr r +1 (Sn) ~ 'Jrr(Vn,k) •

These relations facilitate the calculation of l'ft and f.
at least for low values of k, and the information obtained~

applies to the index theory of multiple vactor fields with

finitely many singularities. The case of co~plex Stiefel

manifolds under complex conjugation will also be discussed.

•
JOHANNSON: Homotopy equivalences of bounded 3-manifolds

Let M be a cornpact 3-manifold (pI, orientable, irreducible).

Suppose aM is incompressible. Let V be a submanifold of

M. Then V is called the characteristic submanifold of M

if the following holds:

1) Every component S of V admits either a fibration

p : S + F as an I~bundle over a surface such that

(d S - p-laF )- = ~ Sn ~ M or a Seifert fibration with fibre

projection p: S + F such that p-l p (~ S n ~ M) = ~ S.f'\ ~ M.

2) Every component of (a v- ~ M)

or torus in M .

is an 'essential annulus •3) If W is a non-empty submanifold of M whose components

are components of M-V, then Vv W is not a submanifold

with 1) and 2).

4) 'Every submanifold with 1) and 2) can be def9rmed into V,

using a proper isotopy.

Theorem: Every homotopy equivalence f : M1 + M2
as above) can be deformed so that afterwards

                                   
                                                                                                       ©



- 6 -

f is a homeomorphism and

is a homotopy equivalence,

where v.
]

is the eharacteristie submanifold of M. ,
)

j = 1,2

u. KOSCHORKE: Selfinterseetions and higher Hopf invariants

I. James, P. May and others have eonstrueted combinatorial models

for i terated loop s paces OmSmX , 0 ~ m ~ co \~ If X is the

rhom eomplex of a bundle S we can interprete these models in

a natural way as "Thom spaees for immersions". Hence bordism

of smooth embedding ·into M x ~m (M a manifold), eqyipped

with a description of the normal bundle as a pullback of

f EBJRm turns out to be isomorphie to the corresponding ~

bordism of embeddings which project to immersions into M.
An analysis of transverse k-tupl~ points of the resulting

immersions leads to bordism invariants which translate into

homotopy operat ions e k, k = 1,2, ...-. As special cases

we deduce the generalized and higher Hopf invariants of James,

the Hopf ladder of Boardman-Steer as well as the (un>stable

eohomotopy operations of G. Segal.

M. KRECK: Isotopy cla~ses qf diffeomorphisms

,Consider orientation preserving diffeomorph~sms'on elosed

oriented diff. manifolds. Let w (Diff (M» (resp. ~ (Diff(M») ,o 0

be the group of isotopy (resp. pseudo-isotopy) classes of

diffeomorph~sms. A general method was introducßd for the

complete computation of wo(Diff (M».

Theorem: Let M be a (k-l)-connected 2k-manifold.

a) ror k = 5 (S) there is an exact sequence

0.-.,. e 2k+l -? Wo(Diff (H» --:, Aut HkCM,o), e 2k+l

the group of homotopy spheres.
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b ) For k = 3 ( 4 ) , k + 3 there are exact sequences

o ...... Kernel ~ 'lro (Diff (H» .--". Aut (Hk(M), 0) and

,0 ~ e 2k+l ~ Kerne! --:, Hk(M) ·

c) For simply connected 4-manifolds there is an i_njection

;r ,(Diff (H) ) ~ Aut (Hk(M), 0)
0

Using a result of Wall it turns out that for M of the form·

M' * 8 2)( 8
2

~ S2)( 8 2 this map is an isomorphism.

P. LöFFLER: Same remarks on smooth involutions on homotopy

spheres

Let M be a 7 2-manifold. We call M

have t(M) _ IR)( M ~ M )( (Rn,k e 'IRs )

(n,k)-framed if we

where ]Rn ,k

is the' ~n+k . with a nontrivial 2 2-action on the first n

coordinates (Rs no action).
Now a well-known lemma asserts that" ~f (tn,T), is a smooth

involution on a homotopy sphere then it is (n+1,-1)-framed.

Using this lemma and same well-known results of surgery and
equivariant homotopy theory we can show:

1) Every element of the bordism group of. (n,-l)-framed

7 2-manifolds has a reppesentative which is a homotopy
sphere with a free involution.

2) If Ed denotes the (~k+1)-dimensional Brieskorn-sphere ~
. d 2 2

associated to the polynomical Zo + zl +... + z2k+1= E, d odd,
.....

and free involution (zo,zl'··· ,z2k+l) ~ (zo,-zl' ••• '-~2k+1)

then t d is diffeomorphic to t dJ , up to an action of

L2(Z2'+) iff d: d' mod 22k+2

3) Call a free involution on a homotopy sphere a standard

involution if it admits a framing such that this element
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bounds in this bordism setting. Our approach gives a fairly

good description of the- standard involut~ons in dimensions

$ 3 (~). But using arecent result of Snaith we can show,
that there exist nonstandard involutions on S4k+l (the

standard sphere) for almost all k.

S. MARDE~IC: Approximate fibrations and pro-fibrations

In joint work with T.B. Rushing we introduce the nation of

a shape fibration. A map p E ~B between metric compacta

is a shape fibration provided one can find ANR-sequences

E = (E.,q •• ) , B = (B.,r .. ) and maps p. E. ~·B. such
- J. 1) - J. 1)' J. 1 1

that p.q .. = r .. p., p.q. = r.p and E = (p)..) = f ~ B
). 1J 1) J 1 1 1 .

has the following approximate homotopy lifting property

(AHLP) : (Vi) (Vi; > 0) "(lj ~ i) (3 'd > 0) 'whenever one

has maps h. : X ...". Ej , H. :. X·)( I ~B. with' dist
J J J

(p.h. ,H. ) d
,..,

< then there is a map H-. : X )( I -:., E ..
J J JO l. l.

(H. ,q .. -such that dist h. ) < E dist (Pi H. ,r .. H. ) .< E
10 1:) J 1 1J )

If this happens for one expansion ~ of p , it also

happens for any other expansion. .E' of p

If E,B are ANR's , then shape fibrations -p : E ~ B

coincide with approximate fibrations of Coram and Duvall.

Among the results obrained is ~n exact sequence ,for homotopy
pro-groups. Every cell-like map p : E ~-B is a shape

fibration provided dirn E < CI), dirn B < co

A. RANICKI: Equivariant S-duality

Let n b~ a (discrete) group. Given pointed n-spaces

X,Y let [~,Y1rr be the pointed set of pointed n-homotopy

classes of n-maps f X~Y, and define the abelian group
of Sn-maps
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with EX = XAS 1 the reduced suspension. Also, define a

pointed space'

XA Y = (X"Y)/rr •
11'

Given a finite connected'subcomplex xcSN with fundamental

bythe map a

group Tr 1 (X) = Tr and closed. regular neighbourhood E define

N collapse N~ ~ ~ diagonal
a :. S ) S I sl~ - E = E/ aE = (E / clE ) / n .,

~ ('ExE/ExaE) Irr = E+"nE/aE ~ X+"nE/2.E with

cover of E ~ X and X+ = Xu{point}, . Then

E "" X the universal e
a is an "Sn-duality"

between X+ and E/aE in the sense that for any pointed

n-space Y the slant products

a\- {X+ ,y} 1t'~. {SN, Y"nE/aE}

a'- {E/c)E'Y}1T ~ {Sn'X+"1TY}

are both isomorphisms~ In parti~ular, if X i5 a Poincare

complex ~e.g. a manifold) this establishes an Sn-duality

between X+ and the Thom space r/iE = T(~X) of the pullback

~x to X cf the normal spherical fibration "x cf XcS
N

generalizing the traditional Milnor-Spanier~Atiyah-Spivak

S-duality between X+ and T(~X) .

s. A. ROBERTSON: Topological exact fi11ings

The concept cf exact filling was introduced about fifteen

years aga by Robertson, a~d was studied in the context of

vectar bund1es by Robertson and Sc~warzenberger over severa1

years. Recently, I have found a simple way of formulating

the basic ideas in purely categorica1 language. The result

is that the ra~ge of e}Camples and problems iso naw very wide

indeed.

- ---- ------=---------------
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The most i~teresting cases seem to oceur in the ~opological

category, where there is ..a ciose connexion with problems

in fibre spaces. The talk attempted to explain this connexion,

and included a description of how many familiar objects in

topology (for example the family of maximal tori in a

connected compact Lie group) may be presented as exact·

~ fillings.

R. RUBINSZTEIN: Some remarks on the cohomotopy of' infinite

real projeetive space

Let }'" ~CZ/2) • wO(lRp
GO

) be' the well-known homomorphism,

where A(7/2) is the Burnside ring of 112 and w*(~).

denotes ordinary c~homotopy theory. Let ~: ~C~/2) • Z

be the augmentation. Consider B =i. -1(1) C ACrR/2). .One

o IX) 00 GO eo] ~ CD ] GO IX)
has w (RP ) = [~P ,0 5 ~P ,S~ where SG = n S (1).

Then )A (B) c [tRPIX), SG J .

There is a map i : SG • G/PL.. It induces the transformation

~*: [~.pCD ,SGJ, ,.' [IRP'ao ,G/PL] •

Consider the composition

i o}w\

ß : B .. ., [[RpGD , GI PL ]

The right han4 side has a coh?mological description.

We describe the map .ß. In part icular, for ~. e: B, ;the

value SCb) depends only on " mod 8 reduction of b" (in

some sense) and, consequently, ß is not an injection.

In the case of odd primes the situation is different.
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P. SCOTT: Ende of group Rairs

Let eCG) denote the number of ends of a group G. When G

is finitely generated, one can interpret eCG) geometrically.

A famous, result of Stallings says: If G is a finitelY

generated group, then e CG)· ~ 2 . if and only if G splits

over some finite subgroup.

I have generalized this result in the following way. There

is a natural definition, due to Houghton, of the number of

ends, eeG,C) , of pair of graups (G,C) where C is a

'subgroup of G. If G is finitely generated, X is a

finite CW complex, 'X a regular covering of X with

group G. and X/C is the quotient of X by the action

of C, then the number of ends of X/C eq~als e(G,C).

'We say that G is C-residually finite if given g E G-C,

there is a ~ubgruoup G1 of finite index in G such that

Gi :> C but g f G1 ~ l' have proved

Theorem: If G and C are f.g. groups and G is

C-residually finite, then eCG,C) ~ 2 if and only if

G has a subgroup G1 of finite index which contains C

and splits over C.

w. SINGHOF: Generalized hisher order cohomology operations

induced by the diagonal mapping

A method is developed for the calculation of the category

of aspace, where we put cat X ~ n if X can be covered

by n open subsets each of w~i~h is contractible in X •

Let 'IJ be a generalized stable n-th order cohomology

operation, X a finite CW-complex with base point * TnX =

{ (x1, ... ,xn)€XnI3i : xi =,,} ,d : ex,*> + (X,~)n= (Xn.,TnX)

the diagonal map. :If there exist cohomology classes ul, ... ,un

of (X,*) such that "IJ d(ü1x •.. xun ) is defined and does·

not contain 0, then cat X ~ n + 1
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This is applied to sp~ere bundles over spheres: If

sq + E + Sm is such a bundle, m,q > 1, m < 4q - 2,

then cat E is expressed in terms of the element of

wm_1 (SO(Q+l» classifying ~he bundle, ans~ering

for this range of dimensions a problem of T.Ganea.

~ J. VRABEC: Knotting a k-connected Mm in ~2m-k

Let M be a k-connected closed PL m-manifold,

o ~ k ~ m-3, and let q=2m-k. It is known that M

embeds in mq
and that any two embeddings of M in

Rn are isotopic if n > q. A natural problem is,

therefore, to describe 'the set of isotopy classes of ,

embeddings of M in IRq,. Denote this set by I. It

turns out that we have to distinguish four cases, which

we name OO,OE,NO,NB;" the first letter of the name

denotes orientability type of M (0 =ori~ntable,

N=nonorientable), and the second letter denotes parity

of m-k (O=odd, E=even).

·e
The set I is described as follows. There exists a

(geometrically defined) bijective map I~·~ k+l (M),

where -;x, k+-l eH) = Hk +1 (H ;J) in case 00,

~+l(M) = Hk+1 (M;J2) in cases OE and NO, and

'~+l{M) =J(l(M) = Hl(M'Xo;zt)/2 .. im[Hl(M;2t)~Hl(M,X~;zt)J

in case NE here x EH is any point, and zt denoteso

the twi~ted integer coefficients.
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Only apart of this is n~w. J.F.P. Hudson obtained in

1969, by a different construction, a description of I

for most cases. But he published only same of his proofs,

and one of the results claimed was false ..

w. Sirighof (Bonn)
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