

## Inhaltsverzeichnis zum Vortragsbuch Nr. 78

17.04.-23.04. 1988 Berechnung von Verzweigungen in ..... 1 mechanischen Systemen
$24.04,-30.04 .1988$ Kombinatorik geordneter Mengen ..... 21
01.05.-07.05.1988 Gruppen und Geometrien ..... 48
08.05.-14.05.1988 Approximation und Interpolation mit ..... 75 Lösungen partieller Differentialgleichungen
08.05.-14.05.1988 Mathematical Problems in the Kinetic ..... 93 Theory of Gases
15.05.-21.05.1988 Computational Group Theory ..... 107
22.05.-28.05.1988 Konstruktive Algebraische Zahlentheorie ..... 138
29.05.-04.06.1988 Orders and their Applications ..... 158
05.06.-11.06.1988 Algebraische K-Theorie ..... 183
12.06.-18.06.1988 Graphentheorie ..... 220
19.06.-25.06.1988 Variationsrechnung ..... 242
26.06.-02.07.1988 Probability in Banach Spaces ..... 263

BERECHNUNG NON VERZWEIGUNGEN
IN MECHANISCHEN SYSTEMEN
17-23. APRIL 1988
Exponentially small splitting of separatrices and bifurcation
For systems with a homoclinic orbit that are forced with a term having amplitude $\delta$ and frequency $\frac{1}{\epsilon}$ it is known from work by Philip Holmes, Jerrold Marclen and myself that under suitable conditions, for sufficiently small $\delta$, the separatrices split, if at all, by an amount of the form $\delta C e^{-r / \epsilon}$ for constants $C_{1}$ and $r$. Moreover, if $|\delta| \leqslant \in P$, where $p$ is a sufficiently large integer and $\in$ sufficiently small, Melnikovs method is applicable to detect the splitting and also the transversal intersection of the separatrices implying chaos. Besides motivating and reviewing this theory we discuss an application in bifurcation theory.

Jürgen Scheurle, Hamburg

On the computation of bifurcating manifolds in a higher singular point.

Let $x_{0} \in E$ be a higher singular point for an opuater $G: \mathbb{E} \rightarrow \hat{E}$, with $G \in C^{2}(\mathbb{E}), G_{0}^{\prime}=G_{0}^{\prime}\left(x_{0}\right)$ bonded with clocedrange on $d$ dim $\mathbb{N}\left(G_{0}^{\prime}\right)=m+9$, aim $N\left(Q_{0}^{\prime}{ }^{*}\right)=m$. In an eavliu pap bay Allegroen Botumer a gruel theory for the numerical approximation for $x_{0}, \mathbb{N}\left(G_{0}^{\prime}\right), N\left(G_{0}^{\prime *}\right)$ was presuted. This information in used now, to trampru the classical Lyapunow-Selemidmethod for the cocuputation of the bifurcating manifolds into the discrete coccutuparts. The relation of

2
Colssistucy and rlatiling popputies is diocussed and all the mexessay modifications and result, for the discrete case an giom. b it is porsble, based on the above approximation to courpute the bfuclating manifoer numevically

SlamPǒkmer, Hanturg
Surpee waves in a nealy squone contanner swhyeeted to vertical oncellatiens ave studied. De heoratieal. xeaults axe boeed on the andlyais of a dexined set of nomnal farm equatoons, whech represent perturbations of systemes witte $1: 1$ utinual resanance and welle $\gamma_{t}$ aymmetry. Befurcation andyais of there equatraue shores That the oystint is edpolele of pervodie and quaxifuen. Ahe standuing as zecll as tovelling wanes. Dhe Ancalyas do identefies porameter salues at whech ehaotic behavior is to be expected. The theoratical insalt am senfied weter
the sid. A same expreniments. Ambolicitious of tur expected. the aid of same exparinneuts. Smpliedicus of tw andysis to othes phyareal problunes ane discussed. Global befuractiour of a systim anth $1: 2$ sesanawee are dho discumed.
!. Settura

Bifurcations in Stodartic Syptems

- Models, Pualycis and sinulatier

Th practical environments ergodic pethrbatious are quesated by wind turbulunces or rough surfaces in such a way that the syten paramateses are super s'mposed worth corresponding time fluctuations. The papes eqless some simple examples in structural, acero or fluid dywahnic problens where multibli cative fluctuating terms are involved.
The stability aualysis of such hou-antonomous suptems if based on lyavunve expouents and votation numbers which subshitute the eipu voluce of fime-sinvoun ant hineas systeme. For a stocharbie hodelling of paramates excitations they ave calalable by introdnciog cyechi lyapunow coovdinates and talling the expected valuce vice orthofoual expansiass. For sincreasing waite intersitice the deterministic colution, e.q. The equilibrink position of the dynamic suptens, becomes unstadole and bi furcates outo turbulunt motions. They are bounded by cubsic dissipation tesms. Associated silent and hoity bimir cycles are simmlested by means of a Euler scheche. Normal forms are disesussed.

Walter Wedig, Karlsvite

Tutorial on
Stochastic Differential Equations.
Contents:
1.) Stochastic processes:

Stationary characteristics, white noise and Dimer process, linear time-invariaul systems
2. Ito calculus:

Stochastic differential equations, correction terns, Ito formula, diffusion equations, applications
3.) thalysis and simulation:

Taylor - and leer mite moments, generalized termite analysis, noise fenerater, cyclic coorclikates

Walter Wading, Cearhsinhe

Stability of a compressible elastic rod with imperfections

Stability of a compressible elastic rod axially loaded by two concentrated fores of arbitrary intensity is studied. It is assumed that imperfections in shape and loeding are present. The shape imperfections ore chorecterized by an initial deformation of the rod
axis, while the load imperfections are characterized by a swell distributed farce acting perpendicular to the actin live of the compressive fences

A number of solutions and their local behaviour is analyzed

Teodor Atanacković

Parallel Alporithms for continuation of partial differential systems

Dink Roose
We discuss how continuation procedures for partial differential equations, can be adapted to local memory parallel computers (egg. hypercubes).
If a finite-difference discretization on a fixed grid is used, one can apply a "classical" predictor-corrector continuation procedure in
which the linear systems are solved by a which the linear systems are solved by a parallel algorithm. The problems associated with this approach are indicated. Recently some interesting continuation procedures based on multigrid are developed. It is shown how these procedures can be parallellized. Some preliminary estimates of the efficiency of such a parallel algorithm are given.

On the Calculation of paths of Hops Bifurcations
Alastair Spence, Bath, U.K.
Consider a two-parameter nonlinear problem whose linearization has a double yer eigenvalue with only one eigenvector. In the talk a theoretical and computational analysis of the bifurcating branches at this singular point is given using a symmetry in the system used to calculate Hopt bifurcations. The result is that standard branch - switching techniques can be used to jump on to the path of Hopt bifurcation points emanating from the singular point.

On the Hops bifurcation with broken $O(2)$-symmetry
Translation and reflection syumetier cirtrodice the group $\theta(2)$ into bifurcation problems with periodic boundary condition. The effect on the Hope bitiercation wite O(2) symmetry of small terms breaking the translation symmetry is investigated. Two primary branches of standing waves are forind. Secondary and tertiary bifurcations involving two different types of modulated waves are analyzed in the veighbariood of secondary Tabens-Bogdanow bifurcation. The effects of breaking the phaseshift (in time) syunietry is brolly cowidered.
Gorkarl Dayclmayr, Tübingen

Modulated Rotating Waves in O(2) Mode-Interactions
W.F. Langford, Guelph, Canada.

The interaction of steady-state and Hopf bifurcations in the presence of $O(2)$ symmetry yids generically a secondary Hop bifurcation, from the primary "rotating
wave" branch, to a family of 2 -tori. Explicit formulae wave" branch, to a family of 2 -tori. Explicit formulae for the bifurcation coefficients which determine the direction of bifurcation and stability of these tori are presented. The tori are determined by third degree terms in the normal form equations, evaluated at the origin. The flow on the torus near criticality has a small second frequency, and is topologically congugate to a linear flow, without resonances or phase locking. Existence of an additional $\mathrm{SO}(2)$ symmetry as found in the Taylor-Covette problem, implies that the flow is exactly linear. We have computed the bifurcation coefficients for the Taylor-Coutte problem, directly from the Navies. Stoke equations, over a wide range of gap widths. These show that the 2 -tori are always unstable at onset a in the taylor-Couette case. More generally, these 2-tori may manifest themselves as slowly modulated rotating waves, for example in reaction-diffusion systems or in fluid flow through an elastic hosepipe. The computations reported here may be adapted easily to other such applications.

Splitting Iteration Techuigue for
the computation of the coramk-2 Bifureation point.
Mei zhen, Xian; Klaus Böhmer, Marburg
A splitting iteration method is discuased here to compnto ehe coronk 2 bifureation point and the nall spaces of the consespondring derimatives of mon/iiear problems. The varoms untenowss are divided int different groups and the itration procodure is corried out in a block way. The iteration needs small amount of computational effort, provides much information about the brfurcation point and convages with a adfuestable rate. Numerical examples are also discused.

Enogy Meanwes for the Stobility of Struntures
in Statios and Dynsmies
B. Mriplie, Dostmond

When thin walled shells hidhle a sequeure of tapidly chougray binkbing pattens is passed, while the struiture is maring from the pribuckleig to the pastbuckling range. Ayvinio ana lyiris of the phenomenose is cmuberome and the friol burklung poltere depeceds on the in generol not knorres dampary of the sturtwe. Static anelyyis can rely on equilibnimum obites, bit has to deal unthe a large cumber of parly vinsteble solection pathers are bifurstions. Bothe mitheods do not give estimates on the stiblelity of the oftained solution.
In adele to derive a stalility esticueate a petw bation sbalegy is hined out. It is based on ancoupanging eigurvalue calsulation and euables to estimerbe the degree of stability of a solutione peth eitho in statio ond dyremic cases.

Computational Methods for Bifurcation Problems with Symmetries
Bode Werner , Hamburg

It is shown how group theoretical methods can be employed to utilize the symmetry of a bifurcation problem in memericol computations. The essentiol numbical point is the utilization of certain reduced instead of full systems involving appropriate sulfromps of the underlying symmetry group. The group theoretical tool is an a prion knowledge of the interaction of certain mifgroups at (in general) multiple seedy state beluccalion prints. An bifurcation graph is introduced whit shows graphically lens information: it edges represent possible symmetry treating bifurcations. The main numerical aspect presented here is the efficient detection of b/uscalion points. A 4-60x and a 6-60x Brosselator model (with dinedial symmelios) have been chosen to discuss the numerical procedure.
$O(3)$ symmetry breaking in variational problems
Bernold Fiedler, Heidelberg
\& Konstantin Mischachos, Michigan State University We consider symmetry breaking bifurcations from the trivial solution $u \equiv 0$ of

$$
u_{t}=\Delta u+\lambda f(u), \quad f(0)=0, \quad f^{\prime}(0)=1 .
$$

Equivarionce with respect to the orthogonal group $O(3)$ arises naturally when we consider this equation on an $O(3)$-invariba, it domain (ball, shell, sphere) with appropriate boundary conditions. Typically, several branches of stationary solutions with nonconjugate isotropy can bifurcate
simultaneously because, due to equivariance, high-dimensional kernels occur, We address $\operatorname{dim}=5,7$ here. We determine the unstable dimensions associated to these solution branches, and we find heterodinic connections between them. Ow principal tool is Conley's connection matrix.

Bifurcation analysis of a rood subjected to terminal thrust and couple.

Ernesto Buzano, Torino, Italy.
The equilibrium configurations of a rod under terminal thunk $\lambda$ and couple $\frac{2}{2}$ are studied.
This beats to a variational two-porouseter bufuantion problem, which is studied by a miifoun vernon of The so-whed splittry Leumure.
We pore the eranturee of a sequence of elvancteristc carver $\lambda=\Lambda_{n}(\tau)$, from each one of which there irfencoter a contruions sunfore of non-Tival equlihioun confguatens. There equllimie are either nuferentivel or subtentiol according as $\tau$ is en e neighborhood of O (pure comprettrin) or in a neyhborhood of a zero of $A_{n}(E)$ (rime torsion).

Tligher ordes predictors in rontinuation seemes
xeans Venil, Xammor

For numerical sontimuation shemes variable Aighar proder popnomial predictorn are presented whik allow for simultancously monitoving sey wise and direction. Only fint ovoler derivaturs Rave to be calculates, no mumencere differentiation procen is requived to rompute the addilionel correctios terms.
Tais kind of rrechitor procen can seso be viewted ryon as a pecial redinction method uning pobyomial aypraximating merpaces. Morevver, it allows for directly kandling mape - thouge behavions.
dn elpyin nommalisation condition is ungented tor antomatically monitor ben longte and direction adjuntment in the ublrequent womector procen.

Singular Pertarbations and Cantre Theory
Detril Flochert', Wirintury
It is shasu how "jobtat" invmisut mavibles bo singulonily perturbed mptem $\dot{x}=f(x, \varepsilon)$ (possessing for $\varepsilon=0$ am imvaniount momiforl Ho c $\{x=f(x i 0)=0\}$ ) can he used in contral theory The aplicatien to monlimear conhol putbems one dirpited towords (i) geverating a large drmain ol a lhrat trien fara positive rimuaian A set (e.g. plolal stabilitation) by high-gain feedbach and
(ii) identifying an unknown function $v(t), t \in[$ to. te $]$ in

$$
\dot{x}=f(x, v(t)), x\left(t_{0}\right)=x_{0}, \quad y=c^{\top} x
$$

without measuring $y(t)$.
diction tochent

A mathematical model of the hydrostatic shelton and its bifurcations
Wolf- Iurven Ben, Konstanz Wolf-Jüngen Beyn, Konstanz

The hydrostatic shelton is a special form of skeleton realized in many invertebrates, eng. the lech. Basic ally it consists of an incroupressibee fund enclosed in an elastic body wall. The shape of the body is changed by activating parts of the musculature We present a unathematical model for the equilibria of suse a system white leads to a comparatively lase conswained optimization problem. Our special emphasis is on bifurcations of the equilibria for the '3 D-unit worm' where the volume is taka as parameter. We show how continuation and singular point techniques to carry over to sparse constrained optimization protemas with parameters.
hoy - J. Bey p

Coupled Hoff- and Diverfencebifurcation of pipes conveying fluid under O(2)-symunetry.
Alms Steind. Hens inter.

Alms Isteinde, Hens Tiger.
Following on investigation by Bajij and. Sethnor the bifurcations of the trivial. Steady state solution of on elastic pipe conveying plaid is considered In the nodded damping and gravitational forces are included; in addition a rotationoly symatic elastic
support with stiffness $K$ is introduced. By fixing $K$ and varying the fluid velocity $U$ either a Hist or a Divergencelifurcation occurs. For a certain value of $K$ an interaction of both bifurcation types to les place. Staining the equation of Motion on the 6- dimensional center manifold for small variations of the cintial perametervalues K and Ul rotating waves, standing waves, stationary woes states enol l different interactions of these solution types, e.g modulated wives are pound.

Altos Seine

DIRECT SOLUTION OF BIFURCATION EQUATIONS.
G. MOORE - Imperial College, London

We consider the computational linear algebra problem associated with solving the extended system which characterises some particular singular behaviour. The matrix $M$ representing the linearisation of this extended system (required for Newton's method) will genecally consist of a large but structured leading principal sulb-matrix A (which may be ill-posed) plus some augmented dense rows and columns. To solve such linear equations efficiently one should make use of the struative present is A while mitigating the ill-posedness. Three possibilities for long this are:-
a) explicit deflation of $M$ by manipulating rows/colunis,
b) making use of the expected position of small pivots in the $L U$-decomposition of $A$,
c) block Gauss-elimination of M together will implicit stabilization by means of
i) implicit deflation of $A$
ii) iterative refinement,

On the Numerical Approximation of an Invariant Curve
M. van Veldhuiem, Amstevolam

The lecture discusses several numerical algorithms In the approximation of a smooth invariant curve. Among others ane mentioned the algorithms of Thoulowe-P2ntt, Chan and Docile, Kevwkides ot al., Kaas-Petorsew, and the author. Convergence usults for the method of Kevukides with preconise linear intupolation ane hiefly discussed.
In the revers pent of the leetime we discuss The approximation of the rotation number. Give an approximate invariant eave, an approximate circle maps is defined, in algorithm In the approximation of the rotation number is mentioned. Finally, a comengmex usult is briefly mentioned and disonsed with uepeet to the absence of smpercomingence.
M. van Veldhuize.

$$
\begin{aligned}
& \text { Computation of Cusp Singulantier } \\
& \text { G.W. Reddien }
\end{aligned}
$$

A defining system for cusp points is given, allowing for anderdetermined pooblewr of arbitrary index. The approach allows the treatment of cubic twining points winged cusps and degenerate minimizes in the same framwort; tho
two parameter, are treated symmetrically. The

$$
\begin{aligned}
& \text { defining system can be solved effectively } \\
& \text { by mouton's method since explicit expressions } \\
& \text { are given for all the needed derivatives. Finally, } \\
& \text { a discretization error analysis is given for } \\
& \text { projection methods applied to the system. } \\
& \text { (Joint with A. Griewalk). }
\end{aligned}
$$

byuledher:

Bifurcations in the Notion of Robots
E. Lindtwer, A.Stenidl, H. Troper (Wien)

The periodic motion of a nimble DD-robot, ie. of a plane doable pendulum with drive moments acting at its joints is stuohid. The motion of the endpoint of the double pentubun is supposect to be on a aide and hawing constant peed co. For a fixed control system wo is increased quasistatically nutil Poincare mapping owed making use of Center Manifold seduction all three one parameter losses of stability which occur generically are pool ant analyzed. They ane (i) trons criticait-(ii) Flog - (iii) Hoof bifurcation. The corresponding physical behavior of the robot is shown to be (ia mall shift (ii) a bully periodic notion (iii) the motion on ar tomes.

N1 Tnoger

Chootic motion of rail-cohul systems G.P. Oibermuer, Iramesdnaiz.

In vestigatios in noneinear dynemics of rail way - whal systens treat stakilityklimair af bopies. Atyprian hogie model cansists on thererigid hodies, a kogie fiame and foo whulect, shioh are conneded by siscoclustic elements. The whedsets comples bogis and tiach. Main nonlinearities are to la tainad in geometry ond contact lehusiour at rail and ohul. Seserm anthors stutied the hiturection buhutior of such anobell and esen furnne chaotic solutions. For physiciel masons the rmil huse to betabeen into asount for modeling logie-rail inberactions.
Describning the vail by an infinite beam on siscrelastic fom dution leads to ue winstatility buhasior in lineor approsivustion. Classicul reduction methads for the ingestiyation of the noulinear bagix- acil madel (studies on biturcatian behustiont) tailes by the esistano of continumens parts af spectrum.
y.P. Oblermun)

Resonant foreing of nonlinear surface waves Klans Kingfissmes, Stattgart
Der Einfenss von Dmohwcllen anf Obefteichan wallen vitomptraie Fainnigheids dhilitem füret -im Rahimm dos Enevf faiding - out dar ftulimm futörter homethlind Oraits in Immentionentrinmm. Dit Wirkmen perialis dur linthwdem mive analpiat, bewo wie lejanìr nit enbribuen Support. 7 -n enten Fall tritt raimehohes Chaop bei propon teriolen out ii- 2. Fall gehngt ane
 Ampiritale.

Symbolic computation and equation on the enter manifold : application to the conette-Ta, bor Problem
P. LAURE (Nice)

Reduction on the senter manifold and computation of the amplitude equation is now er, known. We present here a two cases where it's necessary io olltain the expansion of the amplitude equation at hight order.
In the second case, we consider a degenerate Hoof bifurcation where it's necessary, to compute numerically the seventh order usm. then we dosuibe a netted which allows us io make this computation by using symbolic system (Macsyma).

Cellular Bifurcation. Application to plate and shell buckling.

Michel Potier-Ferry (Metz)
We study bifurcation of nearly periodic solutions that appears in many physical problems: convection, plate and shell bnkling.. These problems are studied by multiple scale expansion. So one gets amplitude eypations that are spatially modulated. In the supercritical cause, the second order amplitude yields the exustirce of many solutions that are charadirized by their wovenumber. The same amplitude equations are obtained for any "reversible" system that satisfies some spectral symptions.

Feedback Stimulated Bifurcation
Tassilo Küpper, Hannover
Bailey and Kuszta were the first who suggested to use Bifurcation Theory for the purpose of systems identification in situations sher other methods fail. Assume that an experiment has been modelled by ko different dynamical systems and that standard methods (comparision of steady states, transient response) do pot allows to discriminate aurong there Ruwdels.
Then a feedback proadure may be/set up to force tropf-Bifureationsuch that of quantitative diffornce between both systems appears. several Fedhach proadures are discussed which had to Itopf-Bifurcation; for example state and dynamic Feedback as well as Feedback with delay where the delay herm is used as a parameter. To force bifurcation.
In addition to this qualitative ondrria be propose to set up equations which can he used for the calculation of unknown quantities in the system. The equations are derived through a comparision of measure. mints with the asymptote expansion of the solution.
T. Kunpeh

Biflicalion of homodince orbits and bufarealion from the essential spectrum

For a non linear $2^{e}$ andre ODE over $R$, bifurcation of solutions in terms of the $L^{p}(\mathbb{R})$ norm was discussed. The solutions tend to zero at $\pm \infty$, no they are associated with homoclinic orbits. The method used amounts of making an appropriate rescaling of the problem and then convening a homochinic orbit of the rescaled equation. Conditions for doing this can be found via bifurcation from a simple eigenvalue using the phase of the to finding simple zeros of a Melmikor function. Related work is ane to Robert Magmas
boA. Stuart

Bifurcations in a Marangoni - Problem
R. Seydel (Wiizburg)

Zone refining of cylindrical rods of silicon material is strongly affected by surface-tension-driven convection. Nuder some Symmetry assumptions a 2-D Navier-ftokes problem is set up and solved numerically. Various branching diagrams are presented, reporting on the dependence of solutions on the Nusselt number and ' the Marangoni number. Based on the computational experiences, difficulties inherent to continuation are discussed. Several postulates on continuation are stated, some of which recommend to double-check computational results carefully.
R: SHell

Invariant Cantor sets in singularly perturbed syptems K. R. Schucieder, Bolim, DDR

Corsider singulaty perturted systum of the type $(*) d x / d t=$ $f(x, y, \varepsilon, \alpha), \varepsilon d y / d t=g(x, y, \varepsilon, \alpha)$ where $\varepsilon$ is a sumale parameler, $x \in R^{n}, y \in R^{m}, x \in R^{k}$. Aisume thet $g=0$ has the solutien $y=\varphi(x, \alpha)$ and that the degentrated syptem $(* *) \quad d x / d t=f(x, y(x, \alpha), 0, \alpha)$ has for $\alpha=\alpha_{0}$ a homvelinie wbil $\gamma$ to the equilibriem point $x=0$ sucl that $(t k)$ has on invariant Cantor set was $\gamma$. De the two cases
c) $\operatorname{rank} f_{x}\left(0,0,0, \alpha_{0}\right)=n$, $\operatorname{dim}\left(T m_{x}^{s} \cap T m_{x}^{k}\right)=1$ for $x \in \gamma$ where TrIn $_{x}^{s}$ ( TMn $_{x}^{6}$ ) is the tangent ppace of the stable (unstable) manifotal of $\gamma$ at $x$
b) runk $f_{x}\left(0,0,0, \alpha_{0}\right)=n-1, m^{c s}$ and $m^{c h}$ inkersed tranxoersally wher $\mathrm{Xx}^{\text {cs }}\left(\mathrm{m}^{c h}\right)$ in the center-stathe (cunk-unssable) mantos of $\gamma$
we derive sufficient conctitiens thed the singular perterted systen $(*)$ has aho an invariaust Cauts sel war $\gamma$ for $\varepsilon$ and $\left|\alpha-\alpha_{0}\right|$ small.
K. Sennidor

Kombinatorik geordneter Mengen 24.-30.4.88

The banderidth problem for distributive lattices
Let $P$ be a finite posed, and lat $f: P \rightarrow\{i, \ldots,|P|\}$ be a linear extension. Define

$$
\operatorname{bw}(f)=\max \{f(y)-f(x): x \text { is a lover neigfloor of } y\}
$$

$$
\operatorname{lov}^{f}(\rho)=\min ^{\operatorname{lw}(\rho)}
$$

Conjecture If $L$ is a distillutive lattice, then $w(L) \leq$ bo $(L) \leq$ $3 / p w(L)$.
Theorem: If $L$ is a distributive lattice of breath 3 , then

$$
\operatorname{bo}(L) \leq \omega(L)+1+\sqrt{w(L)-1}
$$

Theorem: If $L$ is a distributive lattice of beadle $\leq 4$, then $b_{w}(L) \leqslant \frac{3}{2} w(L)$
(This is joint wonk with F. Hergent)
Gourd Giorz, Riverside
Tableaux and chains in a new partial oder of $S_{n}$
We de tine a new partial order on the symmetric group $S_{n}$ whichisa supposed of the weak order by deterring $\sigma \leq \tau$ if $\tau$ is gotten ham $\sigma$ by a sequence of adjacent $\neq$ troarpositions moving a left-right maximum to the le 4 . we show the this pocket hes the property therereng interval is a distributive lattice. We can explicitly, compute the pact of gain- irreduables in the primeipal deals and enumerate the chains in certain are eases.

Paul Edelman (Minneyoli)

Minimal proper set families
H.-D.0.F. Gronan, Greiffwald, GDR

Let $R$ be a finite set, $|\mathbb{R}|=r$. A family $\mathcal{F} \cong Z^{R}$ is called a Sperner family if $X \neq Y$ for all $X, Y \in F$. A Speer family $F=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is called proper if for every $x \in R$ the family $F(x)=\{X-\{x\}: X \in \mathcal{F}\}$ is not a Sperner family or $|F(x)|<|F|$. Obviously, maximal Sperver families are proper. But what is the minimum size of a proper Spencer family on R? The main result in attacking this problem is the following one: Fix the size $k$ of the Spanner family $F$ and ask for the maximum size $r(k)$ of $R$ such that there exists a proper Spewer family F on $R$.
Theorem: $\quad \tau(k)= \begin{cases}2 k-2 & \text { if } 2 \leqq k \leqq 7, \\ {\left[\frac{k^{2}}{4}\right\rfloor} & \text { if } \\ k \geqq 7 .\end{cases}$
This and related results for further proper families (e.g. $\mu$-wise intersecting Sperwer famines) are presented. t $t$. $*$. Gronam

On an ordering problem in manufacturing
A practical optimisation problem that comes up in an umber of flexible mamulacthing systems is the following. Set a complete digraph $D_{n}=\left(v_{1} A_{n}\right)$ on $n$ nodes and cosh $C_{e}$ for all $e \in A_{n}$ be given. (The notes conserpend to ma times. The ins include the cons of moving am object
 that describes precedence relation among the machines. The tart in to fid a hamileterion path if is Dun Rant satisfies all precedence relation and has omallent cont. This problem in cooled sequatiol ordering problem is the flexible-mampactuming literature. We indicate that it con be viewed as an "intention" of the asymanctic TSP and the linear ovderiy problem. We gie e several is it eger pogo. formulation of tee protein and demonstrate hmo the corresponding LP- vela ration can be solved in polynomial time by providing polynomial time reparation al gonithm for certain cases of valid inequalities. Preliminary computational experience with a cutting plane code for the sequential orderiy prem is reported.
Martin Griothibe (Aughsmy)

Topology of Oriented Matroids
We outline a proof that the face lattice of an oriented matroid (as axiomatized By EDMONDS, MWDDEL and TwKUDA) is the face lattice of a shelladle regular $C W$-sphere.

Tor this, we ur BJORNER's characterization of the face lattices of shellable CW-spleres, to show that every linear extension of the posit of regions (as studied by GDerrw) introduce a recursive coatom ordering of the face lattice.

Our method leads to a new, stronger proof for the FakonnLawrence Representation Thorn for oriented matroids: every oriented matroid arises from an arrangement of prendo-hemisphures on a phr. Moreover, such arrangennts as well as their hemisplues and intersection of hemispheres (superalls) are always shellath. This sharpens Maude's rent that oriented matroids arse form constructible (hence $\mathbb{H}$-) spheres. [the is joint work with Andes Bjorrver, Stachelun]
Günter M. Ziegler (Angsbug)

Pareto extensions for spaning-tree-problems with several objectives
For a spaning-tree-problem with more than one objective the weights of the edges are $x$-tuples. Hence the edges give a partial order instead of the linear order. A linear extension of this partial order is called a Pareto extension if the usual algorithm like kruskal, Prim etc produce an efficient solution. The set of efficient solution can be very large and we present bounds on its cardinality. Furthermore we study Pareto extension given by preference functions and consider the problem to find prescribed efficient solution

Dietrar Sohureigert (Kaissolanten)

24
Towers of Powers and Bruhat Order genved R. Frigs (I,M,A, minneapolis \& Columbia S.C. USA)

A recent paper of Bumson deals with an interesting partial order on $I_{n}$ which arises from comparing permutations of iterated exponential. for $\sigma \in S_{n}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, let $T(\sigma(x))=T\left(x_{\sigma(1), \ldots,}, x_{\sigma(n)}\right)$ denote the tower of iterated exponential s $x_{\mathrm{H}(1)}^{x_{(0)}}{ }^{\prime x}(n)$, evaluated top-down a usual. For $\sigma, \tau \in f_{n}$ we have the partial ordering, called tower order, $T_{n}=\left(s_{n}, \leqslant_{T}\right)$ where $\sigma \leqslant_{T} \tau \Leftrightarrow T(\sigma(x)) \leq T(\tau(x))$ for all $x_{n} \geqslant \ldots \geqslant x_{1} \geqslant e$. Bummson showed that $T_{n}$ is stronger than the dewervill-known (strong) Buryat order on In, and that they are identical for $n \leq 4$. A was conjectured (in effect) That this true $\forall n$. However, we can provide a counterexample for $n=5$.

A closely-elated pret called $A_{n}(c)$, is $\{a, b\}^{n}$ ordered for $w, w^{\prime} \in\{a, b\}^{n}$ by $w^{\prime} \leqslant_{A} W^{\prime} \Leftrightarrow \forall b \geqslant a \geqslant c \quad T(w) \leq T(w)$, where $c \geqslant 0$ is given. We experiaity describe $A_{n}(e)$. For $n=3$ we find $A_{n}(c)$ for all $c$ t there are 8 different port. Hecank proven that $A_{n}(3,6)$ is a chain, under reverse exiographic order, for all $n$. Stembridge has proven that for all $c \geqslant e$, the poet $T_{n}(c)$ on $S_{n}$ ordered ar above, exact $e$ is replaced by $c$ a the cower bound, can be charactemid by is projections into $A_{n}(c)$. If follows that $\forall n, T_{n}(3.6)$ is chain under reverse lexicographic order.

One particularly chions inequality is $b^{b^{b}} \geqslant a^{b^{a}} \quad \forall b \geqslant a \geqslant 0$. fidel open: \&o $T_{n}(c)$ self-rual and rented $t_{n}, c$ ? \& $T_{n}(1)$ anantichain th? gross

Fibres in Gideued Sets
A fibre $u$ an ordered sot $X$ is a subset $F$ of the pouts of $X$ such that $|F \cap A| \neq \phi$ for all maximal antichains $A$ of $X$. This notion, dual to the more familiar idea of a putset, was in traduced
by Abner and Andrea, motivated by groph theoretic results. They conjecture that for were finite ordered set $X$ without splitting elements there is a fibre $F$ of size at most $|X| / 2$. Rival and Lone Ronjecture that such ordered sets have a subset $F$ such that both $F$ and $X \backslash F$ are fibres. The 2-element maximal antichains of an ordered set behave in accord with this ponjuture

Dwight Duffus (Emory University, Atlanta USA)
Complexity of diagrams
Javolar Kesebsil (Charles Uminersitz \& University Bonn)
A diagram io an undirected covering staph of a poses. The class of all diagrams seems to he difficult to analyse. We further mppost skis by giving the following:

1. Theorem For every positive e there exists a graph $G_{l}$ with the follow rug two properties:
(i) $G_{e}$ has sirsh $\geqslant l$
(ii) Ge fails to be a Hare diagram.
(Observe that (i) and (ii) imply $x\left(G_{p}\right) \geqslant l$.) This has been proved ley Nes̃bïl and Rödl (PAMS 78). The constructive proof is considerably more difficult. 0 . Pretbel solved the case $l=6$. Recently we found a constructive proof for every $l$. Constructive examples fails to the primitively recursive.
2. Theorem For every positive $k$ there exists a graph
$G_{k}$ which is the tasse diagram of poses $P_{k}$ sues that:
(i) $\operatorname{dim} P_{k}=2$
(ii) $\quad x\left(G_{k}\right) \geqslant k$.

This is due to Kiel and Nesetill and it solves a problem due to Trotter and Weñtrie. Ge tails to have a large gins and $P_{\text {er }}$ tails to he a lattice.

Ambeldul
Planar Ordered Sets David kelly, Unis. of Maritime
We call an ordered set $L$ a prendolattice if $L \dot{\cup}\{0,1\}$ is a lattice. Henceforth, all ordered sets are finite. Thus, psendilattices are defined by the implication $\{a, b\}<\{c, d\} \Rightarrow \exists x$ st $\{a, b\} \leq x \leq\{c, d\}$.
Theorem of a pseudolatice $L$ is a subpinet of a planer or deed set, then $t$ is also planar.

In otherwinds, nomplavar pseuchlattices are obstructions At plavaits. Observe that the ordeal set $P=0<\{a, b\}<c<\{d, e\}<1$ is planar, but the subposet $P-\{c\}$ is manplanar. Let On (resp. P, resp. L) be the set of all minimal nomplenar meet-semilattices (resp. preudulatios sep. lattice). By inspecting the bit $\mathcal{L}$ [Canad. J. math. $27(1975), 636-665$ ], it is see that $\mathcal{L} \subseteq P \cap O M$. We conjature that $M \subseteq P$. (In otter undo, if $M \in M$, then $M-\{0\}$ is planar, ) Examples:


Removing Monotone Cycles from Graph Orientations.

Gwen a graph $G$ give each cycle $C$ a reference onentation. For an one nutation $R$ of $a$ an edge $c$ of $C$ is forward if it is onicuted on $k$ in the reference direction Otheruric it is a tachwand edge. $C$ is monotonic if all it edges are fonoarel or all are recheururd. $C$ is $k$-good if it has at least $k$ fomound edges and $k$ tahevard edge: $R$ is $k$-good if all cycles are $k$-good. $(1-$ good $=$ acyclic, 2 -goods $=$ diagram onicntution).
Theorem (Mosesian 1972) If $a$ has girth $\geqslant 4$ and an onentation in whish every cycle's monotone or 2-good, then a hus a 2 -good one utaticin.
Weak Generalization (Pretzel) If a has girts $\geqslant 2 k$ and an orientation in which every cycle is monotone or $k$-good, then $a$ has a $k$-good orientation.

The proof (which inclucles a new proof of the Theorem) is bared on the following Lemma
Lemma If $G$ is strongly connected and for every cycle $C$ if $e \in C$ then $C$ has at least $k$ edges onented in the same direction as $e$, then $a$ is a cycle on it hus 2 disionit forwarded paths where internal vertices howe degree 2 .
Strong Generalization (false) If a hus girin $\geqslant 2 \varepsilon$ an an orientation in which every cycle is $k$-good or not $(k-1)$-good, then G hus a $k$-good onentation.

The counterexample (Dale romes) conscib of putting the following great on every path of conger 9 of a graph of gavin $>10$ and chromatic umber $\geqslant 10$ (consonuted, say, ty the method of Nesetill \& Rödl):


Dimension Invariance of Lattice Subdivisions
Ivan Rival (Ottawa).
Athengh N-free ordered sets may yield to effect wi constructroio in certain optimization froblemer (eg. Jump number) there is much evidence that they are as complex as ill ordered sits (cf. recent work of M. Habit and R. Mitring). In dud, every ordered et is contamid wi an $N$ - free Ordered set.

Lee, Lie, Nowatrouses and Rival shaw that the demerision problem for $N$-free ordered sets is $N P$. complete, answermip a recent question recently put forth by M. Halib The proof amounts to showing that the dimerisain problem for N-friee order is equivalent to the dimension problem for arbitrary orders, thus confirming again that $N$-free orders are as complex as all.

The proof rests on these results which seem to be of midependent interest.

For any lattice $L$, dimension $(L)=$ dimension $(\operatorname{sub}$ division $(L)$ ) A consequence is this:

Fer any endured set $P$ ?
dimension $(P)=$ dimensia (Suldivisia'(completrai $(P) \mid)$ This is thew used as a hasis for this construction.

For any ordered et $P$ there is an ordered set $Q$ Satishing $P \subseteq Q \subseteq$ subdioisisi (completion( $P$ )) And that $Q$ is $N$.free and $|Q|$ is small (ic. polynomial in term of $|P|$ ).

Discote Buprementation Thany fr Semiondes.
Damede Bepat (Themoun (US.A.))
Semisides mey be chunatring as adend sit what do ist here as restictors the sum of
 of semindse eree abance chancterige the poded not upenentioue by intiombe of lengt $w$. A semivies is upusentall bof intanbs of liggth ar y it ho io whetrictinn iomplic to a sime of a peint al a the elent chain. The /imity utre abrence chanalange adeul

 of longth wively golying to polloning constuction
 blect a minime etant $x$. Teplace $x$ with 2 etemerts $x_{1}$ ald $x_{2}$ les them ench $y$ with $x<y$. Ansolure a
 b, plence $z$ undar all elomentor los than fewer ellements than $x$.) Thember of such viomples is to to folloming thenem: A therios reato foltan for to flloming thenen: A semives is unsthere

 fom $x$ toy it $y<x$ and an eafe foight $w-1$ fim $x$ ty if
 ang apgyin a the groph

BOUNDS TO THE PAGE NUMBER OF A POSET
(Maciei M. Syplo, Inst. af Compt. Sai, Onio. of (Nocicw, Pland)

The page number of a poset $P$ is the page number of the diagrom, HDP(P) Shen the elewents of $P$ can le put on the book spine in a topolopical orser (r-e., as a linear extanrion). Let pu ( $P$ ) dewste the page cunuber of $P$. It is eery to shou that $p u(P)$ is tor a comparbblity invariaut. We hare $P u(P)=1$ iff $K D(P)$ is a tree. If can $F$. oworn slos thet $\mathrm{Pu}(P)=2$ of $\mathrm{HD}(P)$ is a cycle. In these two cares, ph is the diagran rimesuant. Let $S(L, P)$ be the number of puips in a linear exlewnin $L$ of $P$. Be here

$$
L(P)=\left[\frac{m-n+1}{s(L, P)}\right\rceil+1 \leqslant G_{n}(P)
$$

Attoud, The $L(P)$ in mimiensed for $S(C, P)$ equel to the bump nucubr, bucp) may not he afficed for a linear axdeunbu oifs the maxciucum number of pirms. On the stew hand

$$
p u(P) \leq c(P)
$$

Nere e(P) is the cover number of toD (P). Ten acesther bound adnle othived by corviduring couplite bipatitz rubopraples on $H D(P)$. Thise bounds have leen used to calculate pn for some deores of posets.
be also compoce thise votio for wik teat for praps.

A Shelal's proof that the van der Waerdien function is primitive recusive.

Walter Deuber Biekfeld
Ein hlassischer Satz von van der Waerden besagt dass zu $k, r \in \mathbb{N}$ eine klimste zalle $\omega(k, n)$ existient unit der Eigeuschaft, dass zu jeder Zorlegung vou $\{1, \ldots, w(k, r)\}$ in $r$ klassen in unudestens emer blicker klassen eive arith melische Progression wit $K$ Termen sich befindet.
Walvend bisherige obere Solvanken shets Ackermam gualitàt hatten, kouule shelal kurzlich zeigen, dass $w$ eve primitiv rekursive Fmition ist.

Some observations concerning the fired point properily for ordered sets - Alelsander Rutkoushi' (Warsaw, Poland)
I. Let $a, b \in P$ (an ordered set) and $x \notin P$. Define an order on Pu\{x\} in the following way:

$$
p<q \Leftrightarrow\left\{\begin{array}{l}
p<q \\
p<a \& a \leqslant q) \vee p<b \& b \leqslant q
\end{array} \text { if } p=x \& q \in P\right.
$$

Denote ( $P \cup\{\{x\}, \leqslant$ ) by $P(a, b, x)$
Theorem. Assume that (is Phas the FPP (fixed print pooperty)
(ii) $\{a, b\}^{*}$ has the FPP $\frac{1}{b}$
(iii) $\{a, b\}_{*} \neq \varnothing$
then P( $a, b, x)$ has the FPP
$\left[\{, b\}^{*}\right.$ is the set of all upper bounds of $\{a, b\},\{a, b\}_{*}$ : of all lower bounds $]$

Theorem. Let $Q$ be poset with FPP, (i), (ii), (iii) be satisfied, and or $M$ be chaine-complet (ie each nonempty chain has 60 th the sup and the inf). Then $P \times Q$ has the FPP
II. Let $M_{p}=M \operatorname{Min}_{p} \cup \operatorname{Max}_{p}$

Theorem. Let $P$ be a chain-complete post and $(\forall p \in P)\left(\exists x \in \operatorname{Min}_{p}\right)\left(\exists y \in \operatorname{Mar}_{p}\right) x \leq p \leq y$
Thus, if Mphas the Gp then Mp has it as well III. Let $P$ be a post
from the following Figure:
Thu. For every positive integer $n, P^{n}$ has the FPP.
IV. A normal A fence $x_{0}<y_{0}>x_{1}<y_{1}>x_{2}<\ldots$
is normal if, for each $i \quad y_{i}=\sup \left(x_{i}, x_{i+1}\right)$ and $x_{i}=\inf \left(y_{i-1}, y_{i}\right)$. Let $P$ be a connected, chain-finite, crown-free poset, If every infinite normal fence contains an infinite subset which is up-or down-bounded then $P$ has the FPP.

On the complexity of Lamilhis of sets
(Daniel Grieser, Berlin)
We consider the following problem:
$G$ Gen a family $\mathcal{P} \leq 2^{T}$ of rubel of nome finite set $T$ determine the complexity $c(P)$, which is defined as the minimal number of tit necessary to decide if on imaginary set $H \subseteq T$ in in $P$ or not, a foot being a question $4 / s x \in H Z$ " for some $x \in T$, this hind of question was frost discussed by Holt and Pingold
and Rosenberg 1973, in the special case where $P$ is a graph property.
Trivially $c(P) \leqslant t=|\pi|$ for all $P$, and in fact this bound is attained by ahmostall $P$ if $t \rightarrow \infty$.
We consider familist (propariss) $P$ with low complexity. A wellhnown theorem by Rinses and Villbmin states that a property $P$ with $(P) \subseteq t-k$ must be the disjoint union of intervals of bugth $k$.
We prove a hind of wat inversion of this:
If $P$ is the disjoint union of $\tau>1$ interval of bugth $\geqslant k$, thew $c(P) \leq 2(t-k)$ la $r \quad$ (natural $\log a_{n}$ thin). In the course of the proof we establish an interesting comection to a probbm concomuing edge coverings of a complete graph by bipartite grapes.

Boolean lattices, combinatorial spaces and Ramsey theory

In this talk we dismiss two extensions of Halls Jewett's theorem on combinatorial spaces with particle emphases on the special case of Boolean lattices. The first one is a orderenig version of Hales Jiwitt's result, describerig all natural ovele, on combine. torial'spaces. A characterization of all these natural orders was first given by Neretile, Promel, Roiled, Unit, J. Comb Th( 1 ), 1985 . Here we present a new' simplified approach. The second remelt we chiscurs is a "sparse" verizon of tales. Jewett's theorem
while is a joint result with B. Sort and art 4 upper in Tres. Ames. Math. Soc.
Hans Jürjen Prömel (Bonn)

Finite module lattice freely geurated by an ardwed set Pete Luksch (TH Dasuitadt)

Free module battier are of central Austerest in lattice theory. In paticeler, one cauridess $F M(r)$, the modular lattice folly generated by an ordered set $P$.

If the width of $P$ is two, $\mp M(P)$ beomes distribuntue and lance is isomorphic to $F D(D)$ the free distributive lattice gevetad boy $P$. In this case we state a recursive structural formula for $F D(P)$ which can be med to obtain a reasonable line diagramm. Ow baric idea is to study a decomposition by a congruence relation which has congruence classes isomorphic to a direct product $\mp O\left(Q_{1}\right) \times F D\left(Q_{2}\right)$ for some $Q_{1}, Q_{2} \nsubseteq P$. Then a struchial formula $f o-F D(P)$ con be described which uses the knowledge of rome $F D(Q)$ for $P \rightarrow p$ s. subsets Q of P.

For the modeler lattice $F M(1+1+\mu)$ frack generated by two single elements and an m-dement chain se state a recursive comping formula. This answers Problem 44 in Biokleff (Lattice Thearin Amen. Math. Soc. (1967)) which arks one to determine $\neq M(1+1+1$ ). Therefore we study subodirect products of copies of $D_{2}$ and $M_{3}$ via their scaffoldings. In this way are obtain a deeper undertandty of the strmetur of $\mp M(1+1+\mu)$.

On the interval inclusion number of a partially ordered set Douglas B. West (with Thomas Manes)

A containment representation of a pose $P$ is a map $f$ such that $x<y$ in $P$ if and only if $0, f(x) \operatorname{cf}(y)$. We introduce the interval inclusion number cor intowal number) $i(P)$ as the smallest $t$ such that $P$ hos a containment representation in which each $f(x)$ is the union of at most $t$ intervale. Trivially, $i(P)=1$ if and only if $\operatorname{dim} p=2$. Noseto with $i p\rangle=2$ include the standard $n$-dimensional poet and all interval orders; ie, ports of arbitrarily high dimension In general, $i(P) \leq\lceil\operatorname{dim} P / 27$, with equality for Boolean algebras. For lexicographic composition, $\operatorname{dim}(Q)=2 k+1$ and $i(P)=k$ imply $i(P[Q])=k+1$. This and $i\left(B_{2 k}\right)=k$ imply that resting $\mid(P) \leq k$ is $N P$-complete for fixed $k$. The maximum value of $i(P)$ for $n$-element posits remains unknown, but $i(P)=\theta(|P| / \log |P|)$ for almost every pout. Concerning removal theorems, $i(P-x) \geq i(P)-1$ when $x$ is a maximal or minimal element, and ingeneral $i(T-x)=i(P) / 2$.

Fourier analysis of a problem on finite sets
Jeff Calm (New Bonnsuick) (joint $\bar{\omega}$ G. Kalai $\frac{1}{q}$ N. Linial)
For $x \subseteq\{0,1\}^{n}$ (endowed with the usual graph structure) tet $E_{i}$ be the set of edges having an end in each of

- ( ) $\ln x, \bar{x}_{1} T^{-1}$ and $\alpha_{i}=\left|E_{i}\right| / 2^{n-1}$. Set
$\quad f(n)=\min _{\max }\left\{\alpha_{i}\right\}$.
(We restrict to $|x|=2^{n-1}$ only for simplicity.)
The problem of bounds for $f(n)$ seems first to have appeared in print in Ben-Or and limial (see this article also for connections with computer science and game theory). Ben Or and Linial observed that

$$
\begin{equation*}
\frac{1}{n} \leqslant f(n) \leqslant \frac{\log n}{n} \tag{1}
\end{equation*}
$$

and conjectured that the upper bound was close to the truth. (The Cower bound follows from the well-known (easy) fact that

$$
\begin{equation*}
\sum \alpha_{i} \geqslant 1 . \tag{2}
\end{equation*}
$$

Since (e.g.) equality in (2) requires $X=\left\{x: x_{i}=\varepsilon\right\}$ for some $i \in[n]$ and $\varepsilon \in\{0,1\}$ (in which case $\max x_{i}=1$ ), the Cower bound in (1) seems extremely weak, Still, the best results till now were $f(n)>\frac{2-0(1)}{n}$ due to Alon, and $f(n)>\frac{3-o(1)}{n}$ due to Gereh-Grans.) Here we settle the question cup to a constant):

THEOREM. $f(n)>C \log n / n$.
Our proof uses techniques of Fourier analysis on $\mathbb{Z}_{2}^{n}$ and has implications for (a) random vales on the cuke, and (b) distributions of distances in subsets of the cube.

Diagrams, orientation, and varieties
Hans-Juirgen Bandelt (with Ivan Rival)
A class of finite ordered sets is a diagram variety if it is closed with respect to diagram retracts ( images of order-and cover-preserving idempotent maps) and Cartesian products. An orientation varity is a diagram variety closed with respect to reortientations. For instance, the diagram variety generated by the too-element
chain 2 consists of all finite distributive lattices, while a finite ordered set is in the orientation variety generated by $\underset{z}{2}$ if and only if its covering graph is median. Thus, reorientation of such ordered sets are necessarily inversions: an inversion is a reorientation obtained by a sequence of pushdoons (sense Pretzel). Then the orientation variety generated by a class $K$ of finite ordered sets consists of the diagram retracts of the inversions of the Cartesian products of the reorientation of members of $K$. In particular, the class of all finite ordered sets for which all reorientations are inversions is an orientation variety. Such ordered sets can be described in terms of a configuration forbidden in all rerientations.

Divisors Withent Unit-Congmuence Ratios
D. Kleitinean (Cambist Ma)

We address the question: how lave can
a collection $C$ of dunois of a square free integer $N$ be, if whenever $A, B \in C$ A/B then $A \not \equiv B$ oud $p$ ?

We show that when, the number of puisne factors of $N$ congruent to $f$ mind $p$ is the same as the number congruent to $\frac{1}{f}$, and the number $\equiv-1$ is even, and $N$ hes $n$ pure factors, then an upper bound is $\binom{n}{\left[N_{2}\right]}+\binom{n}{[2+1)}$.

This bound can be ackewred when $N$ has no puri futons $\equiv 1 \bmod P$.

The Partial order of Equal See Subsets,
D Kleatman (Canturye Ha) Moulimy
Let $|s|=n$. We condu ordued pair of subsets of $S$
$\qquad$ of size $k$ such that an initial segment is the ensures (on $n \geqslant 4$ ), ore can constant which collectors of paws.O (Q)

Trieidence Algebras
James Schemer (Stars, Connecticut, US A) is toe (w/E.Spiegel \& M. Parmenter)

Let $P$ be an arbitrary locally finite momblong (ie. all $[x, y]$ finite) poset and $R$ an to $\hat{y}$ a commutative ring with 1: Define the (ashe) alt incidence algebra $I(P, R)$ to be the to Mol silt


$$
I(P, R)=\{f: P \times p \rightarrow R \mid f(x, y) \neq 0 \Rightarrow x \leqslant y\}
$$ with operations defined by

$$
\begin{aligned}
& \left.(f+g)(x, y)=\sum_{x \leq z \leq y} f(x, y)+g\right) g(x, y), \\
& (f g)(x, y), \\
& (a f)(x, y)=a(f(x, y)) .
\end{aligned}
$$

The question we consider, known as the "isomorphism problem" is the following:
Does $I(P, R) \cong I(Q, R) \Longrightarrow P \cong Q$ ?
Theorem 1. If $P, Q$ are countable, then

$$
I(P, R) \cong I(Q, R) \Rightarrow P \cong Q .
$$

A covallany to the proof is: If $R$ has
$<2^{N_{0}}$ idempotent, then $I(P, R) \cong I(Q, R) \cong P \cong Q$.
The conclusion to Theorem 1 is actually shown to be obtained for arbitrary $P$ and $Q$, but is then a little weaker. $I(P, R) \cong I(Q, R) \Longrightarrow P \cong$ wow $Q$. ( $\sum_{\text {sow }}$ is a well-known notion from model-theony). Using concepts from Boolean-valued models in set theom ve pave a converse:

Theorem 2. If $P \equiv_{\text {aw }} Q$, then there is a ring such that $I(P, R) \cong I(Q, R)$.
N.B. There exist many examples of $P, Q$ for which $P \equiv_{\text {ow }} Q$ but $P \neq Q$.

Chains, mbichains and cut-sels for infinite poses.
N. Solver (with A. Banal)

For $(P, \leq)$ a poses and $x \in P$ the setxll $S C P$ is a cus-set lot $x$ in $P$ if for every mascinal chain $C$ of $P(C \cap\{\times\} \cup S \neq \varnothing)$. It is the cut-sel number of $P$, if $k$ is the smallest cardinal munch that every $x \in P$ has a cuh-set $S$ with $|S| \angle K$. $V$ is the chain-mumber of $P$, if $r$ is the smallest cardinal such thatforevery maximal chain $C$ of $P$ $|C|<v$ holds. A poses with chain under $v$ and cut-set number $k$ is said ha have tyre $(K, v)$. If $P$ has hype $(k, v)$ the sire of an aubithan muss be bounded in terns of $K$ and $v$. So, $\Pi(K, v)$ denser the smallest cardinal such that if A is an autichoin of a poses of type $(k, v)$ then $|A|<\pi(k, v)$. We determined $\pi(k, v)$ for all condinals $k, v$ with $K+v \geq X_{0}: \Pi(K, v)=\left(K^{2}\right)^{+}$if $k \geq v$ and $k$ is cither a successor an singular or accessible from $v$ ad $v \geq 5$. $\pi(k, v)=\left(v^{k}\right)^{+}$if $v \geq k$ and $v$ is either singular or assess or owassible from $k$ and $K \geq 3$. If $k<v$ and $v$ not accessible from $k \quad v<k$ and $k$ shat acressitle from $V$, so aol the poerimes case holds, then $T(K, V)$. $\Pi(V, K)=0$. e. of thrave is mo posed of this type. If $K$ is weakly compact then $\Pi(k, k)=0$, if $k$ is a strong lint but met wealthy compact then $T(K, K)=K$. Moo, if $K$ is a li mid smighlar thane is $n o$ massinal antiliaind sire $k$ in a posed of huge $(3, v)$ ar $(4, v)$.

The core (s) of finite lattices. V.Duqueme, Paris.
Motivated by some practical reasons in Data Analysis in Psychology (description of Experimental Designs built on 2-permuting partition sublattices, lan gage for describing their statistics...; analysis of dependencies between altivbutes in formal Concent Analysis...), as Well as for generalysing the celebretaded BIRKHOFF's Theorem which exhibits any distributive lattice $L$ as isomorphic to the (order-) filter lattice of the set $M(L)$ of if mect-irreducible elements, the following is proved: For a finite lattice $L, x \in L$ is said to be 1 -essential if there exists anoroler filter $X \subset[x]$ with $\Lambda X=x$ and $X \cup\{x\}$ a sublattice of $[x]$. Let denote by
$K_{A}(L):=M(L) \cup\{x \in L \mid x$ is $\Lambda$-essential $\}$ the $\Lambda$-core of $L . T H 1$ : the filter lattice of the partial $\Lambda$-Semilattice constructed on $P \subseteq L$ is isomorphic to $L$ iff $P \supseteq K_{n}(L)$. TH2: for a subduct product, the 1 -core is equal to the union of the factors cores. TH13: Let Lie modular; $x$-essential the sublattice generated by the covers of $x$ is a covering $M n$. Some properties of the 1 -core (resp.V-coe) of semimmodular lattices are given; and the cons ( $\Lambda$ and $V$ ) of a geometric lattice are characterized.

On the Fibonacci number of an $m \times n$ lallice
K. Engel, Rostock, GOR

Let $Z_{m, n} \cdots\{(r, j)$ : $1 \leq i \leq m, 1 \leq j \leq n\}$ and $x_{m, n}$ be the numberof subsets of $z_{n, n}$ with the property: there are no $\left(i_{i}, j_{i}\right),\left(i_{i}, j_{2}\right) \in A$ with $\left|i_{i}-x_{i}\right|+\left|p_{i}-j_{2}\right|=1$. Using linear algebraic techniques we prove several inequalities for the numbers $x_{m, n}$ and show that $1.503 \leq \lim _{n \rightarrow \infty} \lim _{n \rightarrow \infty} x_{m, n}^{1 / m n}=\lim _{n \rightarrow \infty} x_{n, n}^{1 / m^{2}}=1.514$. we conjecture that $x_{n, 2 k}^{2}={ }^{n} x_{m, 2 k-2} x_{m, 2 u r 2}$ holes for -all positive integers $m$ and $k$ which implies

$$
\begin{aligned}
& \frac{x_{m, 2}}{x_{m, 1}}=\frac{x_{m, 4}}{x_{m, 3}}=\frac{x_{m, 6}}{x_{m, 5}} \leq \ldots \leq \frac{x_{m, 5}}{x_{m, 4}}=\frac{x_{m, 3}}{x_{m, 2}} \leq \frac{x_{m, 1}}{x_{m, 0}} \text { for ae } \\
& \text { as weed an } \\
& \lim _{n \rightarrow \infty} x_{m, n}^{1 / m^{2}}=1.50304808 \text {. }
\end{aligned}
$$

Partial warders of interval dimension two and a channel routing problem

Rolf H. Mohiving (Berlin)
[jointly with M. Halle, Brest]
It was shown by Dagan, Columbic and Pinter (DAM, to appear) that certain VLSI channel routing problems can be modeled as the intersection of two interval orders, ie. by partial orders $P$
of interval dimension at most two $(\operatorname{idim}(P) \leq 2)$. We obtain a polynomial algorithm that tests whether a partial order has idim $(P) \leq 2$ and, i so, finds two associated niteval orders. The algorithm expleriss a lower bound of idim $(P)$ given by the dimension $\operatorname{dim}(Q)$ of the partial order $Q$ of all downsets $D(u)=\{v \in P \mid v<u\}$ ardered by viclusion. This solves an open problem of Yannakakis ( $\operatorname{siA} M$ J. Neg. Miser. Heth, 1982) about the complexity of interval dimension two.
order dimension via Ferrers relations
K. Renter, TH Darmstadt

A survey of my work on sone problems about order dimension will be given.

1) How small con a lattice of order dimension 4 be?
2) It is known that:

$$
\max \{\operatorname{dim} P, \operatorname{dim} Q\} \leq \operatorname{dim} P \times Q \leq \operatorname{dim} P+\operatorname{dim} Q
$$

Can the bounds be improved?
3) Given a convex polytaje $P$. Is order $\operatorname{dim}($ face lattice $(P))=1+\operatorname{affine} \operatorname{dim}(P)$.?
4) Dos the removal of a critical pair is an ordered set $P$ alway decreases the dimension by at most one.

I have used the wore general concept of Ferrers relations to get some new insight and partial answers to the questions vaioed above. The answers to 3. and 4. is "no".

42
Fibres in Ordered Sets and Clique-Transversals of Graphs
T. Anchreae (FU Berlin)

This is joint work with M. Schighart (Belem) and $Z$. Tuza (Buna pest). A fibre of an ordered set $P$ is a collection $F$ of elements of $P$ that meets every maximal antichain. Here are two conjectures on fibres:

Conjecture 1 (Signer (Andreae, 1985): If P has no entpoints, then there is a fibre $F$ such that $|F| \leq n / 2$, where $n=|P|$.

Conjecture 2 (Louc/Rival, 1986): If $P$ has no outpoints, them these is a fibre $F$ such that the complements $P-F$ is abs a fibre.

Clearly long. 2 would imply long. 1. Love and Rival established long. 2 for some restricted classes of ordered sets.-

Both conjectures have a strong graph -theoretic flavor: for a graph $C_{T}$ without isolated vertices let $\tau_{c}\left(C_{T}\right)$ be the smallest number of vertices that meet every massimal relique. Convict the follownig two propesiis, where $\mathcal{g}$ is a class of graphs without isolated vertices:
$\left(P_{A}\right) \tau_{c}\left(C_{T}\right) \leqslant n / 2$ for all $C_{T} \in \mathcal{g}$
$\left(P_{2}\right)$ for all $G \in g$ the vertices of $G$ can be colored red and blue such that $C_{T}$ has no monochromatic
maximal clique.
(by. M. Aigner and myself)/
$\left(P_{n}\right)$ and $\left(P_{2}\right)$ where observed t to hold for several classes $I$ of perfect graphs unchading triangulated graphs, cotriangulated graphs, comparability graphs, Meyniel-graphs, perfectly arderable graphs; howler, it is not known whether $\left(P_{1}\right)$ and $\left(P_{2}\right)$ hold for incomparability graphs (this is exactly what the above Conjectures 1 and 2 clam).

In a recent work of Schghart, Tuza and myself (1987) properties $\left(P_{1}\right)_{1}\left(P_{2}\right)$ where investigated for line graphs and complements of lime graphs. (The motivation for looking at lime graphs and their complemss results from the fact that $\left(P_{1}\right)$ and $\left(P_{2}\right)$ where known to hold for lime graphs of bipartite graphs and complements of line graphs of bipartite graphs.) Our results are

1. $\left(P_{A}\right)$ holds for line-graphs with the exception of odd cycles,
2. $\left(P_{1}\right)$ and $\left(P_{2}\right)$ hold for all complements of lime-graphs with the exception of some small graphs,
3. We le charatcterisent the lime-graphs for which $\left(P_{2}\right)$ holds.

A New User Bound on the Dimension of Interval Orders
Z. Füredi, V. Rö̈le, and T. Trotter

Let $f(n)$ be the least positive integer so antic that if $P$ is any intural order of length $n$,

Then dim $(P) \leq f(n)$. The existence of $f(n)$ was first established by I. Ratimoritch who proved that $f(n) \leq 1+2\left[\log _{n} n 7\right.$. This was improved (slightly) by Bog ut, Ratimovitch and Trotter who shred that there exist,
a constant $c>2$ and a value $n_{0}$ so that $f(n)<\log _{e} n$ when $n \geq n_{0}$. On the lower side, one can show $f(n) \geq \log \log n$ Using an analogy with shift gropes this can be improved to $f(n) \geq \log \log n+3 / 2 \log \log \log n$ In the pager, we show $f(n) \leq e \log \operatorname{logn}$. It in probably tres that $f(u)=(1+0(1)) \log \operatorname{lig} n$.

A polynomial approximation algorithm for Dynamic Storage Allocation

Hal Kierstead
It is shown that the greedy algorithm for coloring interval graphs requires at most 40 times the clique sire colors, in the worst case. This answers a question of Woodall (1973) and Chrobak and slusarek (1984). It follows from independent ideas of both sets of authors that Dynamic Storage Allocation has a polynomial approximation algorithm with constant performance: ratio of 80.

Some Results On Correlation
Graham Brightwell (Camiridys)
This talk constifutes a survey of same (fairy) recent result conanning correlation in posets. For $(x, R)$ a finitite poset $(R \subseteq X x X)$, and $A \subseteq X \times x$, we define $P(A \mid R)$, the probalitity of $A($ given $R)$ to be the proportion of lineer astenvions $\{$ of $R$ which reppect $A$ (i.e. with, $x 2 y$ chenever $(x, y) \in A$ ). The pair $(A, B)$ is (posiliveds) a arrelated (with respeet to $R), A T_{R} B$, when $P(A \mid R) P(B(R) \leqslant P(A \nu B \mid R)$. The Results in this avea invalue reotrictions on eitter $R$ or $(A, B)$. Solutions are "given" to the follning problens.:

1) Clnowily $(A, B)$ st. $A T_{R} B$ hold with respeat to avey poost $R$.
(Linhber)
2) Clasity $R$ s.t. $(x, y) \uparrow_{s}(u, v)$ hidd for all exterimes $S$ of $R$. [Thi is eluted to the patler of dosilying $(A, B)$ s.t. $A P_{N} B$ holds with roopect to ever poict $R$ on a fines germed-ent. An exapple is firnished by the Gomanan, $x_{00}, \&$ Yoar aregu vilimal
3) Chasi/f $R$ sit. $(x, y) \Gamma_{s}(n, v)$ hile for all sibpiet $S$ of $R$. [An example : ffrmisted by a resitt of verpe.].

Mechanisms and algoithmy for multiple inheritance in object riented syptems"

$$
\text { Michel } H A B I B
$$

(Bust, Franu)
I present a joint work with R. DUCOURNAU (INRIA) aboot inheritance algrithms. They are the kernel of object oricuted system. When moltiple inheritance is allowed (the inheritance grapl is any diuctid acydic graph) then conflict may
occur. We present and compare with known algnithns, our propositions for a good inheritance mechanism (i.e. satsfying some principle, such as: particular - to-geveral, modularity...).
In all these algorithms the depth-first greedy linear extensions play a great role and ave very helpful. It is worth noticing that the linear extensions also called "Supergreedy" were defined by O. PRETZEL during ak Obewoffech meeting in 1985.

On the skeletons of free distributive lattices
Rudolf will (T HDarmstadt)
The aim is to understand the structure of free distributive lattices via their skeletons. The skeleton $S(L)$ of a finite distributive lattice $L$ con $=$ sists of all maximal Boolean intervals of $L$ ordered by their lower (or equivalently upper) bounds; $S(L)$ is again a lattice. To analyse the stuletous of the free bounded distributive lattices $F B D(n)$ with $n$ generators, methods of formal concept analysis are helpful. As key we use the basic fact that $F B D(n)$ is isuvorpleic to the concept lattice $\mathscr{L}_{-}\left(B_{n}, B_{n}, \ngtr\right)$ and $S(F B D(n)) \cong \mathscr{y}\left(B_{n}, B_{n}, \ngtr\right)$ where $B_{n}$ is the Boolean lattice with $n$ atoms.
Theorem: The maximal Boolean intervals containing $n-1$ of the generators generate in $S(F B D(n)$ ) a $\theta-1$-sublattice somoplic to $F B D(n-1)$; if $n \leqslant 5, S(F B D(n))$ is the union of these $n$ sublattices. Corollary: $|S(F B D(5))|=386$

The poset of closures
Gyula O.H. Katona.
Let $X$ be a set of $n$ elements and consider all the closures $\mathcal{L}$ on $X: \mathcal{L}: 2^{X} \rightarrow 2^{x}$,

1) $\mathcal{L}(A) \geq A$
2) $A \subseteq B \Rightarrow \mathscr{L}(A) \subseteq \mathscr{L}(B)$
3) $\mathscr{L}(\mathcal{L}(A))=\mathscr{L}(A)$
for all $A_{1} B \leq X$. The ordering $\mathcal{L}_{1} \leq \mathcal{L}_{2}$ iff $\mathcal{L}_{1}(A) \geqslant \mathcal{L}_{2}(A)$ holds for all $A$, is introduced. In a paper with Burosch, Demetrovis and saporenho we investigated the total number of elements of the poset $P$ defined by $\leqslant$. Also there are some asymptotic results on the number elements of the $k$ th and $\left(2^{n}-2-k\right)$ th level ( $P$ is ranked). In another joint paper (Order 1987) with Burosch and Demetrovies we gave upper and lower estimates on the max and min degrees of the elomats of a given rask.

After the talk, D. J. Kecitman improved our estimate on the size of $P$.

Minimal outsets of the Boocion Gttice
zoctin Fülede (with J. R. griggs and D.J. Kluetman)
$e \subset B_{n}$ is a outset if it intersects all maximal chains (ie. chains of the form $\left\{L_{0}=\not \subset \subsetneq L_{1} \nsubseteq \cdots \nsubseteq L_{n}=[n]\right\}$ ). $C$ is minimal if $C \backslash\{C\}$ is not a outset for all $c \in e$ Fig, a whole led of $B_{n}$ is a minimal outset. However there are much lager minimal uitsets. Namely,

$$
\{C \subset[n]:|C \cap\{1,2\}|=1\}
$$

has size $2^{n-1}$. It is easy to we that $c(n+1) \geqslant 2 c(n)$, $x$ $\lim _{n \rightarrow \infty} c(n) / 2^{n}$ exists. Kor-Wer Lin (Taipei, Taiwan) gave a construction $c(6) \geqslant 33$. Here we give an almost explicit construction, proving

$$
c(n)=(1-0(1)) 2^{n} .
$$

gruppen and Geometrien (1.5.88-1.5.5.88)

Quadratic modules for finite 1 imply groups Gernot Stroth (FU-Berlin)

Let $G$ be a finite group and $V$ be a faithful GP $p$ ) $G$-module. We nay that $V$ in a quadratic module for $G$ if there is a come $p$-nubgroup $1 \neq X^{-}$ of $G$ auchthut $\left[v, x_{1} x\right]=1$. There in a well developed theory if $p$ is odd. It $p=2$, then $[v, t, t]=1$ for any involution $t \in G$. So the find interesting case is that $X$ is a fours group.
Together with U. Meier frank en Held we ntudied the following situation
(x) (i) $G$ is a finite group conkining a normal anhegroup Haunch that $C_{6}(H)=z(H), H^{\prime}=H$, $|z(H)|$ is ole and $H / z(H)$ in rimple
(ii) There is nome faithful module $V$ over $6 F(2)$ ane a fours group $E \leq G$ much that $[V, E, E]=1$.

We have the following result:
Theorem: If $H / z(H)$ is a Lie group in odd characters hic or a sporadic group, the $H$ is isomorphic to $L_{2}(5), L_{2}(7)$,

$$
\begin{aligned}
& L_{2}(9), 3 \cdot L_{2}(g)^{\prime}, U_{3}(3),{ }^{2} G_{2}(3)^{\prime}, P \cdot S_{p_{4}}(3), 3 \cdot U_{4}(3), M_{12}, 3 \cdot H_{22}, \\
& M_{24}, C_{1}, C_{2}, J_{2} \text { or } 3 \cdot S_{4 z}
\end{aligned}
$$

Ramr-3-amalgams
Andoear Böhmer, Gepsen
Let $p$ be a prime, and $G$ a group generated by its finite subgroups $P_{0}, P_{1}, P_{2}$ satisfying
(1) $\left.B:=\bigcap_{i \in\{0,1,2\}} P_{i}=P_{i} \cap P_{j}, i \neq j \in\{0,1,2\},=N_{p_{i}}(S), S \in S_{y}\right)_{p}(B)$
(2) $O^{p}(p)\left(\rho_{p}\left(p_{i}\right)\right) \simeq(s) u_{2}\left(p^{u_{i}}\right),(s) u_{3}\left(q^{u_{i}}\right), \operatorname{sz}\left(p^{u_{i}}, \operatorname{Ree}\left(p^{u_{i}}\right), i=0,1,2\right.$
(3) $P_{i} \not \& O_{p}\left(P_{i}\right) \cap O_{p}\left(P_{j}\right) \not \otimes P_{j} \quad$ for $i=2$ and $j=0$ or 1 , but $P_{0} \triangleright O_{p}\left(P_{0}\right) \cap O_{p}\left(P_{1}\right) \triangleleft P_{1}$
(4) $\quad B_{C}:=\bigcap_{j \in G} B^{\gamma}=1$

Suck a group is also called a weak-BN-poir of rank 3 If $\left\langle P_{0}, P_{2}\right\rangle \notin Z=\Omega_{1}(z(S)) \phi\left\langle P_{1}, P_{2}\right\rangle$, then the local structure of $G$ is given by a theorem of stellwecacherr and Ticumesped. I investigated the situation, where $Z \Delta\left\langle P_{1}, P_{2}\right\rangle$, mender the additional hypothesis that $\left\langle O^{P}\left(P_{1}\right), O^{P}\left(P_{2}\right)\right\rangle$ is "essentially" (ie. modulo some normal subgroup) parabolically isomorphic to $(S) L_{3}\left(p^{n_{n}}\right)$. It turned out, that $p^{\mu_{s}}=2$, ane the local structure of $G$ could be oleternined. Exacuples are pom by the sporadic simple groups He and $\mathrm{M}_{24}$, but there may exist also examples, which have no finite analogue.

On a don of Geonvetries veloted to offine jolor yoces.
Qutocis Desmi diena.
Let $\Gamma$ belong to the frovoency digrom

$$
{ }_{x \rightarrow 1} x_{x}-\cdots x_{x}=y_{i} \quad(\text { rouk } n+1)
$$

 Then there is a couttont $\gamma$ mel thits, gwen a foute a and a moskinal veyour $\mu$, thoo in exactly are hyperf wher that $a \notin \mu$ and $a^{\perp} n u \neq \phi$, thene in exacrey one hapeyfoue wora and $\gamma$ mix. veljoces $\mu_{1}$...uy uch that $u_{i} \geq w(i=1, \ldots p), u_{i} \cap \mu$ in a hypeytove $(i=1, \ldots \gamma)$, $u_{1} \cap u, \ldots u_{\text {p }} \cap u$ on gnnamer govelel, $a^{\perp} \cap u=\bigcup_{i=1}^{\nu} u_{i} \cap \mu$ and

It is kuram thot $\gamma=1$ iff $\Gamma$ in on tfure folon you. 9 gurve that $\gamma=x$, It 5 in eithen the geametry In the 2-hanctuve riction of $x^{2 n} S_{p_{2 n}}(x)$ or are of the tre o geowencer for the 2 -trounture actions of $\delta_{p_{I M}(x)}$.

Monoids of Coxeter type having attractors.
S. Psaranov
( $I=\{1,2, \ldots, n\}$
Let $\Delta=\left\{x_{i}\right\}_{i \in S} \sqrt{\text { be a set of subgroups in a group } G \text { (not }}$ necessary1y finite) such that $X_{i}, X_{j}$ are proper subgroups in $X_{i j}=\left\langle x_{i}, x_{j}\right\rangle$. Let $F(\Delta)$ be a monoid which elements are the subsets of $G$ presented as products of subgroups of $\Delta$ and operation is the usual product of them as subsets of $G$
 elements of $F(\Delta)$.
Define a matrix $M=M(\Delta)=\left(m_{i j}\right)_{n \times n}$ as follows: $m_{i i}=1$; for $i \neq j$ $m_{i j}=\min \left\{s: r_{s}(i, j)=X_{i j}\right\}$. Denote $r(i, j)=r_{m_{i j}}(i, j), \ell(i, j)=$ $=l_{m_{i j}}(i, j)$. It is not so hard to show that if $m_{i j}=2$ then $m_{j i}=2$ and if $m_{i j} \neq m_{j i}$ then $\left\{m_{i j}, m_{j i}\right\}=\{25-1,2 s\}$ for some $S>1$. Such matrices will be called generalized Coxeter matrices (GCM). Forevany GCM M define a Coxeter monoid $F(M)$ over $\Delta$ that satisfies the folloroing relations

$$
\begin{aligned}
& x_{i} x_{i}=x_{i}, \quad i \in I \\
& r(i, j)=r(j, i)=\ell(i, j)=\ell(j, i) \text { for all } i \neq j
\end{aligned}
$$

Definition. A word $X \in F(M)$ is called attractor if $X=$

$$
=X X_{i}=X_{i} X \text { for any } i \in I \text {. }
$$

There is a natural homomorphism $\pi: F(M) \rightarrow F(\Delta)$. If $X$ is attractor for $F(M)$ then $\pi(X)$ is attractor for $F(\Delta)$ of course. The presence of attractor for $F(\Delta)$ is equivalent to finiteness of $G($ and $F(\Delta))$. A monoid is called indecomposable if it cannot be presented as a direct product of two proper submonoids.

Theorem. 1) Indecomposable Coxeter monoid is finite iff $M$ is a spherical Coxeter matrix; 2) $F(M)$ has an attractor iff either $M$ is spherical or $A_{n} \leqslant M \leqslant A_{n}^{\prime}$ where $A_{n}^{\prime}$ corresponds to diagram 0,

Some Remarks on the Cohen-Macaulay Popucties for Sporadic Geometries

SATOSHI YOSHIARA Univ. of Illinois at Chicago

1. Result e ( jo ut work with Alex Reba a Stave Smith)

Among the Renown sporadic geometries $\triangle$ in characteristic $p$, admitting a flay-transoturve action of a group $G$ with $|Q| p \geqslant p^{2}$, it is determined the list of those $\Delta$ with projective verdured Lefsechetz module $\tau(\Delta, k)$ for a field $t e$ of choredotercsito $p$.
2. Obsenativas Suppose $\triangle$ is one of finite GABs of dim $=2$ associated with $\Omega_{6}^{5}(p), \Omega_{5}(p)$. (and $G_{2}(p)$ ) for an add prime $p$, constructed by W. Kantar from Affine buildings.
Then $H_{1}(4, \mathbb{Z})$ is a non-tricivil founts $p$-group.
This implies that $\triangle$ does not have Cohem-Macaulay property over $\mathbb{Z}$, but have this property over a field $\vec{k}$, exapt for char $\vec{k}=p$.
3. Application $(-f$ 2.) Let $\triangle$ be a $G A B$ for sporadic Suzuki group and $\sum$ its subgeoontry on which $\Omega-(6,3)$ acts. Then the iurouse image $p^{-1}\left(\sum\right)$ of $\sum$ inside the universal 2 -aver $(\bar{\Delta}, p)$ of $\Delta$ is not connected. $C$ It seems to me that this fact suggests the diffcicily of expect construction of $\widetilde{\text { a }}$ )

Subgroup structure of groups of type $E_{6}$.
Let $G$ be a universal gins of type $E_{6}$ over a finite or algebraically closed field $F$. I LE $V$ he the 27 -dimensimal uvelule poor $G$ over $F ; G$ may be regarded as the isometry goop of a symmetric trilinear form $f$ on $V$. Let $r$ be the grump of semilinean maps on $V$ preserving f. We define a cess, of genetic structures in $V$ and sets S, UNK of quasisimple subgroups of GL(V) and prove:

Thenem: Let $M$ be a closed subgroup of $G$ a a subgroup of $\Gamma$ when $F$ is finite. Then eitur

1) $M$ stabilizes a member of 8 , or
2) $F^{*}(M)=L Z(M)$ with $L$ quasisimple and $C_{G}(L)=Z(G)$. Further one of the following holds:
a) $L \in S$
b) $M$ is Pride, char $(F) \neq 0$, an irreduable finite $F L$-subuvelule of $V$ can be written over a proper subfielab $F_{0}$ of $F$, and $N_{T}(M) \leqslant N_{T}(S)$ fir sue $S \leqslant G$ with $S=E_{6}\left(F_{0}\right)$
c) $L$ is finite and in UNK

This prides a description of maximal subquips of guns between $G$ and $F$ when $T$ is Pune and maximal chisel subsumps of $G$ whin $F$ is alg. dosed, modulo the list UNK, whine the existence and uniqueness (up to caijugation) of mentivers of UNK is left open. UNK consists of about 15 cnijngacy classes of (small) prince subgumps of
CqL(V),
Michael Aschbaelve, Pasodua, May 1988

54
Combinatorial * Geometrixinin Modular Represent ation Theory
Stqhen D. Smith
U. Allinsis Chicago

Part of the game is to extond, by some analog,, propertica "P" of Chevalley groups aboildings to sporadic groups and then geometnies.

Using results of cortis (or others) one can estobl lish tor Qavally groups:
(P) For Ba Bosel subsroup, the induced wrodule I $I_{B}$ ta deumposes (directly) over the orbit poset $A / G$ :
where $A_{5}=$ tophomsology of truncater complex $\Delta_{5}$ frombilding $太$.
The qualis to prove this direcdly via gemetry ithandeduce representitions thairy, (hotivation then extend by ovalosy to sprosil gementies).

Steithico determine U -invariat cydes in H J
(2) Forrach suat cyet $C$, fund $C^{\prime} \in H$ wath $C^{\prime} X C$ in nalual fom on popertation wadivle $1_{P} T^{6}$.
 thereradinat emppontion $\left.\right|_{p_{J}} \|_{2} H_{J G}(\uparrow)$.
The ideas canke applied (by brute force if necessary) to spuratil geamethies (The exaple $C i=1, D=\cdots$ wes discusped).

The Fifty Six Dinersinal Module Fou Groups of Type $E_{7}$.

Let $\Phi=\{1,2, \ldots, 8\}, V$ a vectorspace of dimension 8 over a field $K$ of characteristic not two with basis $v_{1} \ldots, v_{8}$. let $S=S L(V), V^{*}$ a dual space of $V$ wt dual basic $v_{1}^{*}$, $\ldots, v_{8}^{*}$, Set $x=\Lambda^{2}(v), x^{x}=\Lambda^{2}\left(v^{*}\right)$ and let $x_{i j}=v_{c} \Lambda v_{j}, x_{c_{j}^{*}}=v_{i}^{*} n v_{j}^{*}$ be bases, $X$ and $X^{*}$ ave dual via the pairing $x * x^{*} \rightarrow k$, given by $\left(u_{1} \wedge u_{2}, w_{1}^{*} \wedge w_{2}^{*}\right)=\operatorname{det}\left(w_{i}^{*}\left(u_{j}\right)\right)$. Detine the alternating form $\langle\rangle:, M \times M \rightarrow K$, where $M=x+x^{*}$ by $\left\langle a+a^{*}, b+b^{*}\right\rangle$ $=\left(a, b^{*}\right)-\left(b, a^{*}\right)$ where $a, b \in X, a^{*}, b^{*} \in X^{*}$. This is S-invariant. Also, set $Q: M \rightarrow K$ be the quadratic form $Q\left(a+a^{*}\right)-\left(a, a^{*}\right) \cdot Q^{2}$ is a 4-Rumogeneous $S$-inuuriaut form in $K[M]$, the poly nominal algetora on $M$.

The map $f: x^{4} \rightarrow \Lambda^{g}(v) \cong K$ by $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4}$ is a 4 -lineiur map. Identify $X^{8}(v)$ with $K$ so that $f\left(x_{12}, x_{>4}, x_{96}, x_{78}\right)=1$. The map $h: x \rightarrow K$ by $h(x)=f(x, x, x, x)$ is 4 -homogeneous. In terms of coordinates hacks as follow's, let $x=\sum X_{0 j} X_{i j}$ (here, by convention, $\left.X_{0 j}=-X_{j i}\right)$. Then lat REP be a set of colet representatives for the centralizer of $(12)(34)(56)(+8)$ in $\operatorname{Sym}(8)$.

$$
h(x)=4!\sum_{\sigma \in \mathbb{R E P}} X_{\sigma 1, \sigma 2} X_{\sigma 2, \sigma 4} X_{+5, \sigma 6} X_{\sigma 7, \sigma 8}
$$

Define $h_{0}(x)=\sum_{\sigma \in R E P} X_{01, \sigma 2} X_{03, \sigma 4} X_{\sigma 5, \sigma 6} X_{F 7,58}$. This is an $S$-invariant 4 -homogeneous foin on $X$. Extent to $g_{0}$ on $M$ by $g_{0}\left(x+x^{*}\right)=g_{0}(x)$. In a similar way define $g_{0}^{x}$. One more 4 -homogeneous form on $M$ is cleteried: $x \wedge x \cong \Lambda^{4}(v)$ and $x^{*} \wedge x^{*} \cong \Lambda^{4}\left(v^{*}\right)$ are dual by a pairing similar to the one above ; $\gamma\left(u_{1} \wedge u_{2} \wedge u_{3} \wedge u_{4}, \omega_{1}^{*} \wedge \omega_{2}^{*} \wedge u_{3}^{*} \wedge w_{4}^{*}\right)=$ $\operatorname{det}\left(\omega_{i}^{*}\left(u_{j}\right)\right)$. Now set $c_{0}\left(x+x^{*}\right)=\gamma\left(x \wedge x, x^{k} \wedge x^{*}\right)$ and $C=1 / 4 C_{0}$. This yields a 4 -space, $\left\langle c, g_{0}, g_{0}^{*}, Q^{2}\right\rangle_{k}$ of $S$-invariant $4-1$ homogeneous forms Now, set $P_{i j}=\left\langle x_{i j}\right\rangle, P_{i j}^{*}=\left\langle x_{i j}^{*}\right\rangle$ and $\Omega$ the ret of these she one -spaces. Retire a graph on $\Omega$ by $P_{i j} \sim P_{k l}\left(p_{j}^{*} \sim P_{k l}^{*}\right)$ ifs $|\{i, j\} \sim\{k, l\}|=1$ and
$P_{y} \sim P_{k_{l}}^{x}$ if $\left\{i_{i j} j\right\} \cap\{l, l\}=\varnothing$. The outomorphisin groups of this graph clearly contains $\operatorname{sym}(B)$. In fact,
Tum Aust $\left(\Omega, \sim\right.$ ) is isomorphic to weyl $\left(R_{7}\right) \approx \mathbb{Z}_{2} \times S_{p}(6,2)$.
Let $\sigma$ be a permutation in $\operatorname{Aut}(\Omega, \sim)$ not noraralizing a sym ( 8 ),
Next, let $W(S)=S_{\Omega}$, the set -wise stabilizer of $\Omega$ in $S, H(S)=\bigcap_{p \in \Omega} S_{p}$. Then $H(S)$ is the diagonal subgroups for the base $v_{1}, \ldots, v_{8}, H(S) \Delta W(S)$ and $\frac{P \in \Omega}{W(S)}=\omega(S) / H(S)$ $\cong \operatorname{Sym}(B)$. We construct are transformation $\left.g_{\sigma} \in S P(S\rangle, M,\right)$ so $\sigma$
pheverves $\Omega$ and induces $\sigma$ on $\Omega$. It isthon shown
Finn: $E=\left\langle S, g_{\sigma}\right\rangle$ leaves $C+g_{0}+g_{0}^{*}-1 / 4 Q^{2}$ invariant
The: $E$ is a universal group of tyre $E_{7}(K)$.
Inn: E has tree orbits on one-space $p$ of $M$ so $f(p)=0$, where

$$
\mathcal{I}=c+g_{0}+g_{0}^{*}-1 / 4 Q^{2}
$$

Inn: If $\mathcal{H}(x)+0+\mathcal{H}(y)$, then $\langle x\rangle$ and $\langle y\rangle$ are in the sane $E$-obit if $\mathscr{L}(x) / \mathscr{L}(y)$ is a $4^{\text {th }}$-power ni $K^{*}$.
Cor: If $K$ is alg. closed, $E$ has four obbits on one-spaces af $M$.
Cons. If $K=G F\left(p^{n}\right), p>2$, then the number of orbits of $E$ on onespaceer of Mir 5 or 5 as $4 * p-1$ or $4 / p-1$, respectively.

Equally,
Inn: Suppose $f(x) \neq 0$. If $-f(x)$ is a square in $K$, then $O^{\infty}\left(E_{\langle x\rangle}\right) \approx$ $E_{6}(K)$. If $-f(x)$ is not a square, then $0^{(\gamma)}\left(E_{\langle x\rangle}\right) \not{ }^{2} E_{6}(K)$. In each case $\left[E_{\langle x\rangle}: 0^{\infty}\left(E_{\langle x\rangle}\right)\right]$ is 2 or 4 depending on whether -1 is not, or is a square in $K$, respectively.

Busmen. Cooperstein
university of Callfania, Santa Cry

$$
415188
$$

SIMPLE SUBGROUPS OF SIMPLE GROVPS
Let $G$ be a Sinte smiple spoup and $M$ a maximal subpoup of $G$. Then are of

1) $M$ is cocAL ; $O_{p}(M) \neq 1$ for atrue pulie $p$
2) $M$ is SEMISIMRIE; $\operatorname{Arc}(M)=S_{1} x \cdots S_{t}$ Si minile man-ablehan, $t \geq 2$
3) $M$ is ALMOST SIMPLE; $\operatorname{rre}(M)$ van-abehein sumple.

Thevem I ACl bral masinal subporpm of the fuinte sumple groups are broun, apent fom 2 -lorab of Baluy Dernster 2 Meriter.
 poupn are leworm, apent frem $E_{7}(y), E_{7}\left(\frac{)}{1}\right.$.

There is no corvespondring thenem 3. This is the haul problem-Closrifpris smile subpenps of suriple spoups. This leves to the question: when is a smile group $X$ contamed in a sumple samp $Y$ ? We fous on tho quactan: when is a spradic sump contandel in an ekeptionid roup i fie tyre? Anteratury examples orise, such as $J_{1}<G_{2}(11)$ (Auciow, Coprele) $J_{2}<G_{2}(4)$ (Hules, Supphi) $F_{i_{22}}<{ }^{2} E_{6}(2)$ (Firither) $T h<E_{8}(3)$ (Smith, Thompan) $\left.J_{3}<E_{6} \mid 4\right)$ (Keieilman, Asclbucter) $M_{12}<E_{6}(5)$ (Hhilman, wilsen). We stwdy oll other possitle inclunum. This mgeit, which is joint work with Pob wison, is nov alunat complete. The only questums lift unpen are $M_{22}<E_{1}(5)$ ? $N S<E_{7}(5)$ ? $R_{u}<E_{7}(25)$ ?

Petcr Klielman Caltech, pasadena 4/5188

Parabolic systems of rank 3 .
The main ichas of the classificetion of (ymasi) parabolic syotums of rant 3 and eqmivalently, locelly fimize lassical Iit's chamburysthms in th discrete chamber transizite antomorphismm grompt teere chacribed. The resmets will appeer in th J. of Alg. They can not bi written down here, since the theorem has to many lases.
F. G. Tinmmesfoled, Jiefom

BUILDINSS AT INFINITY.
A builtinig at anfonity $\Delta_{\infty}$ of type $X_{n}$ is a building at afonity of some affine builutmigsof leger $\tilde{x}_{n}$ (ayention by $T i_{1}$ ). E. $C_{1}$. Affine building of type $\tilde{A}_{2}$ (diaguom \&o) have a projective pome at infonity; affine hivildigg of cype $\widehat{C}_{2}$ (deagism $0<0$ ) have a gineraliser qroidrangle at injinity
THEORETM1. The clan of mogetwe plaves at affinity comcides with the can of projutive ploves corrdinatiaed by some floner tumary ring with vahatiori (e.g. local fuelis)
THEOREM $\alpha$. The an of pugcthe genvalised quodrangler at iafinity comindes with the closs of generalised quodrangles coovdenabised by rome quadric quaternary ung wich valuation

E.4. Severol eromples whe consthuched wi give one.

Let $k=G F\left(\alpha^{n}\right), \theta_{i}=\alpha \cdot 2^{2_{i}}$ with $\left(2^{h}-1, \alpha^{1+h_{1}+h_{2}}\right)=1$.
nfive ni $K((t))$

$$
\left(\sum x_{n} t^{n}\right)^{\theta_{i}}=\sum x_{n}^{b_{i}} t^{n}
$$

then

$$
\begin{aligned}
& \nabla_{1}\left(k, a, l, a^{\prime}\right)=\left(k^{2}\right)^{\theta_{1}} \cdot a+a^{\prime} \\
& Q_{k}\left(u, k, b, l^{\prime}\right)=a^{\theta_{k}} \cdot k+k^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { definer a } T_{\alpha}(0) \text { (infurite), on Bfane } k \theta_{1} e=Q_{1}(h, a, 0,0) \\
& A_{2} Q_{2} k=Q_{2}(u, k, 0,0)
\end{aligned}
$$

then duel hanslation 4 R .

Residues in tac corresponding brulding (nox-closrecil) ore $T_{2}(0)$ 's (rame defuntion as alove restre cbed to $k$ ).

A maluation on generalised ple polygons con le deyied wi such a may that:

CONSECTURE The chon of geralised polygons at infenity coincides with the loss of generolesed polygous unth noluatioi Proved for gerevolijed $x$-gons, $x \geqslant 3$ and $x \neq 6$.

H Von Maldeghen, Gent (Belgain).

Primitive groups of genus zero

If $\phi$ is a noncoustant meromorphic funchai on a compact connected Riemann surface $X$ of genus $g$, the manadrony group of the cover $X \xrightarrow{\phi} \mathbb{P}^{\prime}$ is called a group of genus $g$. This can be translated into a purely group theoretic elefinittain: a subformp $G$ of the symmetric group $S_{n}$ is a group of genus $g$ if

1) $G$ is transitive (of degree $n$ ),
2) $G=\left\langle x_{1}, \ldots, x_{r}\right\rangle$ with $x_{i} \neq 1$ for all $i$, and $x_{1} \ldots x_{r}=1$, and
3) if we define aid $\left(x_{i}\right)=n-$ \#orb $\left\langle x_{i}\right\rangle$ (where \#orb $\left\langle x_{i}\right\rangle$ is the number of onsite of $\left.\left\langle x_{i}\right\rangle\right)$, then

$$
\sum_{1}^{r} \operatorname{ind}\left(x_{i}\right)=2(n+g-1)
$$

J.G. Thompson, R. Guralnick, M. Aschbacher and solvers have been developuip methods for studying the poinituie frompo of genes zara. (hive assumphai of primitivity here is mathal, as there is a standard way wi which each group of genus zero is built ont of primitume froups.)

As an example of a primitive stoup of genes $w_{0}$, take $G=S_{n}$ acis naturally a $\{1, \ldots, n\}$, with $x_{1}=(12), x_{2}=(134 \ldots n), x_{3}=(\ln n-1 \ldots 2)$.

Now let $G$ be any/froup of genus vo. Then either
(a) $G$ is affine, iRe. The socle of $G$ is $Z_{p}^{k}$, $e=$ prime, or
(b) The socle of $G$ is $L^{k}$ for sane non-abelian simple four $L$.

Guvalnick and Thompson have proved that wi case (a), either $n \leqslant 2^{16}$ a $n=p$ or $p^{2}$ and $G^{\prime \prime}=1$. And wi case (b) Henry have shown that there is a from $X$ suck that $L \Delta X \leqslant$ Aus $L$, a subgroup $M$ of $X$ win $L \leqslant M$, and an element $1 \neq x \in X$ such hel

$$
\begin{equation*}
\frac{\left|x^{x} n M\right|}{\left|x^{x}\right|}>\frac{1}{85} \tag{*}
\end{equation*}
$$

(i.e. M cantoris at lean $\frac{1}{85}$ th of the $X$-cansiyates of $x$ ). Writing $\varepsilon$ for the set of simple fromps $L$ satispying ( $*$ ) for some $x$ and $M$, Guralwick and Thompson make the
Conjecture there is a number $N$ such that for $q>N$, no group $G(a)$ of Lie hype over $G F(q)$ lies in the sell $E$.

In the talk 1 outlined a proof, obtanied jointly with J. Sax, of The oren the carjechue is trues for groups $G(q)$ of hype $E_{7}$ add $E_{8}$. It seems likely that he meherdo of the poof discussed will handle all he excephaid soups of lie hype.
M.W. Liebech, Imperial College, London.

On the classification of arithmetic hyyvoboic reflection groups
We consider groups $W$ of isometries of $n$-chimen $=$ sion el hyperbolic space $\mathrm{H}^{m}$ generated by reflections and such that $H^{n} / \mathrm{W}$ is of finite volume. In par = hicular (flowing Vinbery, Nikhlin, Remmike), we are interested in asthmatic noncompact groups of that hind. That is, $W$ is commensurable to a group $O(f, \mathbb{Z})$ where $f$ in an integral quacirati. form of signature $(\sim, 7)$, and isotroquic over $\mathbb{Z}$. This means move or less that we are looking for those quadratic forms $s$.th. The subgroup $W(f) \Delta O(f)$ gevented by all reflections preserving $f$ is of finite index. We ar particularly interested in the case $n=3$.
From geneal results of Nifaulin it follows thant the hist of mich $f$ is finite. On the other hand, the list of candidates that come from Mitzulin's proof in much io large to decl with. This problem is not only a computational one, because there is no algorithm known to us which deciles for a given f whether $O(f): W(f)$ is finite or infinite.
By combining an idea of Vinbery (used in the proof of the fact that $O(f): w(t)$ in chars infinite
if $n \geq 30$ ) with methach by J. Renmike in = whoring the genus of a certain plane stabilizer, we hove to produce suftiventey sharp criteria that allow to prove insimitomess in each concrete case where $O(f): w(f)$ is not "obviously" finite. As an example, we have proved this for $f_{p}=x_{0} x_{1}+x_{2}^{2}+p x_{3}^{2}, p$ prime, $p=1(4)$ ore has $\left[O\left(f_{p}\right): w\left(f_{p}\right)\right]<\infty$ if and only if $p=5,73,17$. we hour produced a list of about 50 forms n $k$. the $O(t)$ are macional, pariousix non-conjingate and $[O(t): w(t)]<\infty$. We hope that thin lint will turn out to be (almost) complete. The proof of this fact will e the joint work with F. Grunewald.

Rudolf Sharlan,
univ. Bielefeld

New feasible conditions for the existence of a distance regular graph.
Let $r, s, t$ be integers such that the intersection numbers of a distance regular graph satisfy the following conditions:

$$
\begin{aligned}
& \left(1, a_{1}, b_{1}\right)=\left(c_{2-}, a_{2-1}, b_{2-1}\right) \neq\left(c_{r}, a_{r}, b_{r}\right) \\
& \left(c_{s-1}, a_{s-1}, b_{s-1}\right) \neq\left(c_{s} a_{s}, b_{s}\right)=\left(c_{s+t}, a_{s+t}, b_{s+t}\right) \neq\left(c_{s+t+1}, a_{s+t+1}, b_{s+t+1}\right)
\end{aligned}
$$

We have the follorving two theorems:
Theorem 1 (A.A.Ivanov) $t<s$.
Theorem 2 (A. V. Ivanov) If $t \geqslant 2$, then the following four conditions are satisfied:'
(i) $c_{r}=1$
(ii) $a_{s} \geqslant 1$
(iii) $2 \leq b_{s} \leq\left(b_{1}-c_{s-1}\right) / 2$
(iv) $2 \leqslant c_{s} \leqslant\left(b_{1}-b_{s+t+1}\right) / 2$

Conjecture $t<r \leqslant S$
If this conjecture is true then we have a new upper bound for the dianveter of of a distance regular graph of valency $k: d \leq C_{1} \cdot g \cdot k$, where $g=\left\{\begin{array}{l}2 r, \text { if } c_{r} \geqslant 2 \\ 2 r+1 \text { if } c_{r}=1,\end{array}\right.$
and $C_{1}$ is a coustout. The current avarlable upper bound follows from Theorem 1: $d \leq C_{2} \cdot g \cdot 2^{2 u}$.
A.V. Ivanovo

Institute for System Studies Moscow
Further Characterizations of Lie Incidence Systems
Suppose $\Gamma=(P, \mathcal{L})$ is a meat parapolar space with
Lion the the local pentagon prapenty, ouch that
(1) fen each non-incident point-symplector pair $(x, S)$ $x^{\prime} \cap S$ is empty ar contains a line.
Then $\Gamma$ is either a polar space, a metroymplecticispace, a Grassman space of type $A_{n, 2}$ ar a polar Grassmax space
$\left.b_{\text {states }}\right)$ of type $C_{n, 2}$.

Other chanacterizativis, where the hypothuis (1) is replaced by other propestic of symplecta, bead to characterization of all residually connected gemetris covered by a building with diagram
as well as homomorptic cringes of polar Gasman spaces of type $C_{n, d}, d \leqslant n-2$.

Presentation of 2-Lrad migromp of the Menster
Let us define $Y_{\text {atc }}(a \geqslant h \geqslant c \geqslant 2)$ as the Coseter grup genented ly a $K$-shaped diagram whose ams (excluting the cestad ard) have legtk a, $h, c$, inljeut ti the robtion tant defines $3^{S} O_{S}(3) .2$ in the centsd $Y_{222}$. If $c=1$, ther relations, that ink ohm ti te casegremes insile lazer $Y$-graps, ore uncl.

Then $Y_{\text {mA1 }}$ is on athegend grup ore $(F / 12) ; Y_{n 22}$ wer $\left.G F / 3\right)$; and $Y_{632}$ is trinil. This leares anf the ases she $a \leqslant 5, h \geqslant 3, c \geqslant 2$; onl is the it conteshme thet He values 4 oul 5 por my of $n, t, 6$ leat to the zare gromp. Ad cases lent to krom prectations eseept for $Y_{433}\left(=2 B \times 2{ }^{3}\right), Y_{443}\left(=2 \times M^{3}\right)$ ant $Y_{444}\left(=M_{w-23}\right.$ ?) Ir is keans thet the seeme $f$ these inphis the cost (Ssinter).

 t. Y sss .

Define, for my arde $a$, $a *$ to te the ceute of oy $D_{4}$ for whic $a$ is $m$
 will defined, ad by futter uxe of this extaled $D_{8}$ me con prove the the $23^{32}$ a's all at'o comesponings pints of the projective pline gerearte extrospeind gomp $2^{1+26}$.

Faside the $A_{3}$-lingron correaponling $t 2$ prits onl the hie jrimis then, ore con firl on elemat insmlisist the $2^{1+26}$. This is eang t parse. Ore con abo detemine rebtis anny thase clements. Ther omisis sulgrapts of the prifectic plove lend to presectations
 H. $2^{1+26}$ i Mur 2 . The esuptins ave $2^{1+25} \cdot 26_{0}$ ( (ramell Le $2^{1+25}\left(0_{1}\right)$ and $2^{1+26} \cdot G$

 mos $x$ fard .

One riy use this reterd $t$ pronide degant $26 \times 26$ matries to te coiry grone In fat we hire ostained geventens of $2^{24} . C_{01}, \mathbb{Z}^{24} .26$, and $5^{24} .26$, by the mithed.

Summ Nas
cumbinge.

Aoymgtotic propentios pome $G A B_{s}$
Let $f=\sum_{1}^{6} x_{0}{ }^{2}, p>2$, and let $\Delta$ be the offine buculding ons $\Omega\left(f, Q_{p}\right)$, with diagram : if $p \equiv 3(k)$, ${ }^{\circ}$ ? ' i $p \equiv i(k)$. Then $G=O\left(f, Q\left[\frac{1}{p}\right]\right)$ is thanture on the set of veitices 7 type 0 orl. To eart pantive mitega $m \geqslant 1, m \neq O(p)$, consies $G(m)=\{g \in G / g \equiv((m)\} \triangleleft G, G / G / m)=O(f, \mathbb{D} /(m)$. This ants on the sumphiel complex $\Delta / G(m)$, and is taneiture on the est openters of hpe oorl.

The "dhametes" of $\Delta / G(m)$ can be comailed in termo oferther the surge of verties of type 0 orl, the 1 -sheleton of $\Delta(G(\mathrm{~m})$, or the Chamber sugh. For each of these, the diameta is at most $C \log _{2}(G / G(m))$ tor same constant $C$ (pover using Kaghdais Prquerty $(T)$ for $G_{;}$an exphiit estens te tor $C i$ unduanm).

The "geametiic givith" of $A / G(m)$ is the leyth of a shoftent incuit not homotogie to 0 , where the circuit can be in the simphiil umpler or the chamber gight. Ior erthes defunthoi, the geametin guith is $\geqslant$ C'logpm for a hovown constant $C^{\prime}$; $C^{\prime}=1$ what in, the case or the simplicial complex. (Here lespem $\left.\left.\approx \frac{1}{12} \operatorname{los}_{p} \right\rvert\, G / G / m\right) /$.) Shimlar sesulss hold fer other GABs anising foom chavel affine buildings (class mumber is reguied).

Wilhai In. Kantor Unvienits of Organ

Fuchsian groups and Valois theory
If $G$ is a uniformizing group for 4 -punctured sphere, there is a subgroups $H$ of $\operatorname{PSL}(2, R)$ such that $G \triangleleft H, H / G$ being non cydic of order 4 ; and $H$ is generated by involutions. There is a generator $f$ of $\mathbb{C}(G \mathcal{G})$ such that $f^{2}+f^{-2}=f_{0}$ is a generator for $\mathbb{C}(\mathrm{HVg})$. If $\binom{1}{1}$ is a generator for tho stabligie of a in $H, q=e^{2 \pi i z}$, and $f(z)=\alpha_{0}+\alpha_{1} q+\alpha_{2} q^{2}+\ldots$, then the following conjecture was made:
of $\alpha_{0} \in \bar{Q}$, then $\alpha_{1}^{-2} \alpha_{2} \in \bar{Q}$.
g. Is. Thompson

University of Cambridge
Designs of StrengTh $t$.

1. A measure $\xi$ in $\mathbb{R}^{d}$ is said to have strength $t$ if $\int f d \xi=\int f d \xi \circ \varphi$, for all polynonvias f of denied of $s t$, and all $\varphi \in O(d)$ the or thogenal group.
2. For finite support $X$ on the unis sphere $S$ wergab $w_{k}=1$,
this amounts to opheweal $t$-designs: Are $f$ = Are of this amounts to oplawcal $t$-design: Ave $f=$ are of, equivalents $h(X):=\sum_{x \in X} h(x)=0$, for $h$ harmome homogeneans, $\partial R=1,2, \ldots, t . \quad x_{1}(d, x, t)=(3,12, \sigma)$.
3. For a lattice $y=\bigcup_{r \in R} Y_{z}$ (unemoduluy indgral, evans) She condition reads $\sum_{r \in R} w(r) h(y r)=0$ where $\left.R_{i}=\{r=(y, y): y \in d\}\right\}$, By use of theta series it follows that each Ir in a spheriend design of shougta $\frac{1}{2}\left(12 r_{0}\right.$-dim $)-1$, of. Hecke, Sehoenaberg, B.B. Venkov ( ugd 4$)$. Dxamipla; $\left(d, x, r_{0,}, t\right)=(8,240,2, y): E 8$, and $\left(24,2\left(\begin{array}{l}2 \\ 5 \\ 5\end{array}\right), 4,11\right)$ led.
4. For finite support $y$ on $p$ spheres we prove the $F_{\text {ioher }}$ inequaliding $|y| \geqslant \sum_{i=0}^{2 p}\binom{d-1+e-i}{d-1}$.
Joint work with Neumaire (Induna. Malta) to appear
and Desarte (Lin.alig-Ape)

Some remarks on the coordinatisation of generalised polygons.
Coordinatiration has been carried out for projective planes, and has proved to be a valuable tool in understanding and creating such objects. We present a coordinatisation theory for generalised quadrangles, that extends to generalised hexagons and 8 -gas.
We use two sets $R_{1}$ and $R_{2}$, with $\left|R_{1}\right|=$ \# pts/line -1, $\left|R_{2}\right|=\#$ lines $\mid n^{t}-1$, and two quatimary operations.
For excample, for the symplectic quadrangle $w(a)$ we have $\left(a, l, a^{\prime}\right) I\left[k, b, k^{\prime}\right] \Leftrightarrow a^{\prime}=k a+b$

$$
k^{\prime}=a^{2} k-2 a a^{\prime}+l
$$

where $a, b, a^{\prime} \in R_{1}=G F(a), k, l, k^{\prime} \in R_{2}=G F(a)$
$\left(a, l, a^{\prime}\right)$ the condiviate of a point
$\left[k, b, k^{\prime}\right]$ the coordinate of a line.
It appears that the more elation a $\in Q$ has, the nicer its coordinatizung structure becomes. This method might be useful to give a more elementary proof of Tits, clamfication of Monfang polygons. Af first step in that direction is made.
9. Hanssenss Gent (Belgium)

1- Cohomology and Ronan-Simith presheaf homology
Let $t 5$ be a Chevalley group over $k=\pi_{q}$ and $V$ an irreducible k $E$-module. We study 1 -cohornology $H^{\prime}\left(S_{1} V^{*}\right)$ ) by looking at non-splitting k $E$-module extensions $O \rightarrow k \rightarrow E \rightarrow V \rightarrow 0$. If either of is not a prime or $V$ is fundamental $f_{\text {a }}$ then $E$ is generated by a 1 -space fixed by a Borel-subgioup (with some exceptions for $q=2,3$ ). Furthermore, if $V$ is fundounental
DEG pouch

68
(excluding the above exceptions) then $E$ is a quotient of the geometrically defined module $\widetilde{V}$ ( of the system of inclusion maps $V_{B} \leftrightarrows V_{P}$ or or $B$ (resp. P) a Bore subgroup (resp minimal parabolic) of $E^{P}$ where $V_{p}$ is the centraliser in $V$ of the unipotent radical of ${ }^{\prime} P$ ). The module $\tilde{V}$ occurred first in the work of Ronan and Smith on universal presheaves. The computation of $\tilde{V}$ for $V$ adjoint (not of type $C_{l}$ ) yields the 1-cohomology of the adjoint module.
H. Voulklim (Eainesville)

Two sporadic geometries related to the Hoffran-Singelton graph.
Let $P^{(i)}(i=1,2)$ be a residually connected Tits-jeometry belonging rap. to the diagram ${\Lambda^{(4)}}^{0}$ ? such that every rank 3 residue belonging to a vibdiagram of type $C_{3}$ is the sporadic $A_{7}$ - geometry.
An easy construction of such geometries exists. This construction mates use of the Hoffman-Singelton graph 1 and the codiguen of site 15 in 1 . On the other hand it can be shown. that the incidences of these geometries are consequences of the structure of the rank 3 residues, which proves:

Theorem: Up to womorphism, thee exists an unique geometry $\Gamma^{(i)}(i=1,2)$ which satisfies our assumptions.

Hyde thin (Basin)

A sufficient condition for an element to belong to a slow $p$-secelyoup
Limit (a new 7-bocal subgroup of the monster)

Let $G$ be a finite group. An element $g$ in $G$ is called a right-engel element of there exits on integer $n$ such that $[x, g, \cdots, g]=1$ for all $x \varepsilon G$. A pompous theorem of Boa state that $g$ is right-engel iff $g \in F(G)^{2}$, the Fitting sulbyoup of $G$. We study a generalization of this. We say that $g$ is night-engel with reeled to an element $y$ in $G$ it $g$ is a nigit-engel elem ant in $\langle g, y\rangle$. We lon for condition on $g$ and $H \leq G$ wolich implies $g_{E} F(H)$. We notice that the condition: " $g$ is right-engel with respect to each element in $H^{\prime \prime}$ is not a sufficient condition.

Cajecture I. Let $\pi=$ set ff primes, $H \cdot a$ Hell $\pi$-aulyoup and $g \cdot a ~ \pi$-dement of $G$. If $g$ is right-unge with roped to cad element in $H$, then $g \& F(H)$.

To a prime $p$, Been's the has the following version. $g \in O_{p}(G) \Leftrightarrow\langle g, y\rangle$ is a p-group $\forall y \in G$. This lead to the pollownig version of cayicture $I$.
conjecture I. Let $P \in \log _{g}(G), g$ a $p$-leman. Then $g$ is rigft-erngel with select t each etment in $P \Leftrightarrow g_{2} P$.
conjecture II. LAt $P \in \operatorname{syy}_{p}(G), g$ a $p$-demean. Then $\langle g, y\rangle$ is a $p$-group $\forall y_{z} P$ $\Leftrightarrow g 2 P$.

Prop. Conjectures I, I, II me equivalent.
Atm. (with Viechluin) conjedire II holds for $p \geq 5$ exapt possibly when $p=7$ and $G$ involves the Monte.

In treating the Monte for $p=7$. I came across a new 7 -bal subgroup not apfoen in the list of Atlas, 3 yeas ago. This subgroup turns to be a maximal sutgrionp ( 7 -load), and the list of maximal 1 --coal culloroup of the Monster is then complete. (Wilson also found this sully roup independently).

Chat y. Ido
University of Florida.

On subfield subgroups
We dircarved a method of invertigaticy the action of a group $G$ of ie tee on the set of poets of a vietfory is of the vale type (soroitg triter) over a smaller file. As on illautation, sr conviderad the acre where $G$ is ty ag $g$ itch $y$ even and $v$ is rich $\sqrt{2}(q)$ or 少保 $\left.g^{\frac{1}{3}}\right)$, and the are when $G=E_{0} G$ ) active on the ret of cossets of Es $\left.E^{\frac{1}{3}}\right)$.

Jan Bel
cambridge
Suppose Cis a pinite group acting primitively and distance hansitidily an a graph $\Gamma$ and $L=$ soc $C$ is a simple group.
theorem If $G$ has a BN pair, then $\Gamma$ is known
theorem (joint with vankon). If $\tau \approx \tau_{T}(u, q)$ then $\Gamma$ is either complete, a Grassmanm graph or bowen (member of a finite list)
Theoran ( joint with Liekech \& Sari l). $\tau_{1} \not \approx E_{8}(q)$ for $q \geqslant 4$.
theorem (joint with van Bon e Cnypers). I $\neq \mathrm{He}$.
Arjah M. Cohen Ansterdam/Urrecht.
On the flacks of $Q^{+}(3, a)$
A complete characterization of the locks othe hyperbolic quadric $e^{t}(3, q)$ is given. Iss an application it follows that if $q \neq 15,23,59$, and $y$ is odd, there exist no maximal exterior sets of $2^{t}(2 n-1,4)$. Guyliclno Lrorwour

Napoli.

Component uniqueness theorems.
A heuristic discussion of "uniqueness theorems" and their role in the proof of the classification of finite simple groups was given. Let $G$ be a finite group and $A$ a family of oublgroups of $G$ closed under conjugation. I is made a graph by joining two elements of It iff they commute elementurise. Uniqueness theorems are concerned with the connectedness properties of $A_{p^{n}}$, the set of all subgroups of $G$ isomophic to the direct product of $n$ copies of $Z_{p}$. For instance, the celebrated Bender - Suzuki "strongly embedded subgroup" theorem determines all groups in which $\mathcal{A}_{2}$ is disconnected, and the "uniqueness case" theorem of Aschbacher shows that there are no simple groups in which $\mathcal{H}_{p}$ is disconnected for many odd primes and certain other conditions are satisfied.
of $A_{p}$ is disconnected for some prime $p$, the normalizer $M$ of a connected component of $A_{p}$ is called "p-strongly embedded" in $G$, as are all its overgroups. M then has the property that for all $g \in G-M, M \cap M^{g}$ is a $p^{\prime}-$ group (but $M \neq G$ ).

The following "component" uniqueness theorem is useful at several places in the classification, for instance to detect a direct product structure in the group $G$ : Let $G$ be a finite simple group all of whose proper subgroups are K-group-i.e., have composition factors of known type. Let $K$ be a $p$-component of $M$, and $Q$ a Sylow $p$-subgroup of $C_{M}\left(K / O_{p^{\prime}}(K)\right)$. Assume that $m_{p}(K) \geq 2, m_{p}(Q) \geq 2$, and (if $p>2) \quad m_{p}(M) \geq 4$. Then either $K \triangleleft M$ or $M$ is strongly $p$-embedded in $G$. (A mild additional hypothesis is required if $K$ itself has a strongly $p$-embedded subgroup.)

Finally, in view of the fact that the successful assault on the finite simple group was largely from the point of view of "semisimple" elements, whereas the main studies and understanding of the Chevally groups are from the point of view of the
$\qquad$

72
building - i.e. equicharacteritie, the following question was asked: Is there arkable geometric approach to The Chevalley groups from the point of view of tori or other semisimple subgroups?

The above theorem is joint with D. Grenstem and R. Solomon.
Richard Lyous
Rutgers University, May 1988

Parabolic system over GF(2)

Suppose $G$ is va group containing va minimal yerabolic system $\left\{P_{1}, \ldots, P_{n}\right\}$ vatoofyng $P_{n}+$ and such that for each $i \in I=\{1, \ldots, n\}$

$$
P_{i} / O_{2}\left(P_{i}\right) \cong S_{3}\left(\cong S L_{2}(2)\right)
$$

Shin talk ceacems those parabolic systems whose cdingran $\Delta$


$$
\left.\left\langle P_{1}, P_{2}\right\rangle / O_{2}\left(\left\langle P_{1}, P_{2}\right\rangle\right) \cong \hat{S}_{6}\right\rangle \text {. Nut } S=\bigcap_{i \in I} P_{i}, S_{0}=\operatorname{corec}_{G} S
$$

and $S_{123}=$ core $\left\langle p_{1}, p_{2}, p_{3}\right\rangle$. UA proof of the following was couthined

Theorem If $\Delta=\begin{array}{r}0-0001 \\ 54321\end{array}$ and $|S| S_{123} \mid \neq 2^{9}$, then

$$
\left|S / S_{0}\right|=2^{46}
$$

Meter lowly UMIST, Manchu May 1988.

Tailure-of-factorization modules far lie-type groups in odd characteristic

A faillful $F_{P} \mid G T$-codule $V$ is called a failure-f-factonzation ( $F F-$ ) module in characteristic $p$ fa the group $G$, if thee is an elementory abelian 7 -subgroup $1 \neq A \leq G$ satisfying $|A| \geq\left|V: C_{V}(A)\right|$.

The ireducible FF-vodules for finite lie-type groups in characteriscic 2 is their natural dharactenstic were detenmined by Copperskiu, while the cartoppading clasification fa rauk-2-lie-type group in aubihary (fuite) dranadeistic follows frau wak of Delgado. Special cases in higher rauk were treated by thiel. I frove the followiry

Theatu. Let $G$ be a fiuite Lie-fype group, rank 3 V, ineducible FF-wodule fa $G$ in the notural diaractenstic $p$, and let p be odd. Then are of the foltasing holds
(i) $G$ is of tyre $A_{u}(g), ~ V$ a naturad, uodule, exteria square of his ar dual to are of these
(2) $G$ is of tage $B_{n}(q), C_{n}(q),{ }^{2} A_{n}(q),{ }^{2} D_{n}(q)$ and $V$ is a "vatural" module
(3) $G$ is of type $D_{4}(q)$ a $D_{5}(g)$ and $V$ is a spin luodule
(4) $G$ is of tgree $B_{3}(q)$ and $V$ is the spin module.

The proof makes heavy use of a dasafication thearnu of quadiatic unodules for the carresparding lie-type graups by Premet and Suprunentio (1981).

Thanas Meixuer (Gioßen)
distance-transitive graphs with projective subconstituents.

Let $\Gamma$ be a graph and $G$ be a distance transitive artamonphism of $\Gamma$ such that for a vertex $x \in V(\Gamma)$ the permutation group ineluced by the stabilizer $G(x)$ on the neibourhoud $\Gamma(x)$ of $x$ is a projective grep:

$$
p S L_{n}(q) \leqslant G(x)^{\Gamma(x)} \leqslant p \Gamma L_{n}(q)
$$

Here PSLD $(q)$ is considered at the permutation group of segue $\left(q^{h}-1\right) /(q-1)$ (natural doubly transitive
rupescutations. All pairs ( $\Gamma, G$ ) with the above representations. all pairs $(\Gamma, G)$ with the above properties are classified. For $n \geqslant 3$ the list is the
following:
(1) $\Gamma$ is the point-hyperplame incidence graph of the projective space $P G(n+1, q)$;
(2) I is the double brassman graph (the q-analog of the antipodal covering of the ore graph);
(3) $\Gamma$ is the graph of the dual polar space of tam $D_{h}(q)$;

$$
G F\left(2^{2}\right) \text {; }
$$

(4) $\Gamma$ is the hamitian forms graph over field
(5) I is the complete graph or the double covering of the complete graph, $G$ contains $A G L(4,2)$ - $A G L(4,2) \times Z_{2}$.
(6) $\Gamma$ is a graph on 506 vertices related $t$ $M_{23}$, or a graph on 330 vertices related to $M_{22}$ or a grape l on gao verticy velatorl to $3 . M_{22}$ (the nonsplit triple covering)


Approximation und Intepoletion nit
Lösungen vor partiller Differtial ghahnger (8.-14.5.88)

Approximation by solutions of elliptic equations:
I wish to report on joint woik with A. Dufresnoy and W.H.Ow published in Complex Variables, 1986 , vol6, pp. 235-247. Given a function un a closed set, we wish to approtiomate it uniformly by solutions of a gives elliftic partial differential equation.

Université de Montréal
Radou-Transtormation auf Polynourä̈men
Für Palynome $P$ des, Srades $\mu$ kam dive Radontrausformieste $(R P)(s, t)=\omega_{r-1}\left(1-s^{2}\right)^{4-\frac{1}{2}}(\tilde{R} P)(s, t),-1 \leqslant s=1, t \in s^{r-1}, r \geqslant 2$, elecuentair haustruiel werden, wemn man zurióhst $P=\sum_{V=0}^{M} P_{v}^{x_{1}^{\prime}}$ in sulve horngenen Bestandthele zerlegt, diex danad oupf eler Splärre $S^{r-1}$ mah hornogenen harmouinchen Polynoucen ${ }^{*}$ vere van frade ze zerlegt, aho van eiver Dastelliny
ansgeht.
Das Bied muter $\tilde{R}$ hat dounz dre Dantelling

$$
\begin{equation*}
(\widetilde{R} P)(s, t)=\sum_{v=0} \sum_{x=0}^{u_{x=0}(r)} H_{v x}(t) G_{v x}^{r}(s), \tag{2}
\end{equation*}
$$

$4,2)$
wober die $G_{v x}^{r}$ fïr $x=0(i v, x=v(2)$, mivivariate Polynome an genamen frad $v$ sind, wehhe th alh Delynamen $x$-te frades bercigend der fewribtifumbtion $\left(1-s^{2}\right)^{\frac{n-1}{2}}$ orthogoral innd und bosijelel $\left(v_{1} x\right)$ elue Rehuriousplevching erfuillen. Das Bild kaun aul on oler Torn $Q(s, t):=(\tilde{R} P)(s, t)=\sum_{\lambda=0} F_{\lambda}(t) \tilde{C}^{\frac{r}{2}}(s), A_{\lambda}$ homogen vain frad , geuhmehen werder, wid die hier auftrefender rechlen Suten bulden den genamen Biedraum von R hainglich der Polynoune fiter frades

The Rüchtranformation von $Q(s, t)$ exfordent Rumächst dise Proistation van $A_{\lambda}$ anf dive Reainune der pplërivelan harmoninhen Polynome vam frach $\nu=\lambda, \lambda-2, \ldots$, was selv anfurendy int. Besser at ess, hier ruterpolaforicil vormgehen, was uur den eannaliyen. Tufurand eíner Iuvernan edver graper ponchor-defunifen Systeumotrise erfendent, and nhbliaficel die Bectondteile $H_{v x}^{*} \operatorname{van} P$ hivefut.
Der Übergany dan (1) wail (2) wird auf dem Wege enver Hittelbilduny riher die Gouppe aller Rotatiduen unlt Fixpunlet $t \in S^{r-1}$ voelrogen, die ülur das Haar-Dutegrae definiert, aher aul expeitiert volerogen werden kann.
lll.Reimer, Universitait Dorlumurd

Approximation of Vector-Valued Functions
The situation to be considered is as pollows. The mapping of associates each element in a set $S$ witl some dement in a Banad space $X$. The set $S$ will be essuned to have some structure / measure-theretic or topological) so that a banach space of sud mappings/denoted by $A(S, x)$ ), nay be constrncted. Under suitable conditions, a closed subspace $G$ of $X$ gives ase to a subspace $A / S, G$ ) If $A(s, x)$. A ratural question is "When does the proximinality of $A(S, G)$ in $A(S, X)$ f Uow from that of $G$ in $X$ ?" Such problems are reluted to "blending functios" where one half of the approximating rubspace contrins dements of the form

$$
a_{0}(s)+a_{1}(s) t+\cdots+a_{n}(s) t^{n}
$$

wer $G$ is the subspace of polywomials of degree $n$. Then one approximates sections of bivarinte tunctions $f_{s}(t)$ by polywomials. If $f, a_{0}, \ldots, a_{n}$ are contimons then the proximinality
sought is that of $C\left(S, \pi_{n}\right)$ in $C(S, C(T))$.
will Light (Lanaster)

Bachonlli Distributions and Approxivation by Trigorouatire Blerding Farction

Fackron-Farad ertiunts for trigonouatrin approxivation aic reated to H. convolution formela $f=c_{0}(f)+b_{r} * f(n)$ for prisodie funtions $f \in W_{r}^{*}$ (wrth $c_{0}(f)$ the uear value of $f$ and $B_{r}$ te. $r$-th Reronce epline). We dewdop a fimiler thoory for unltivinate aproxivation Mricig the motion of pariodic dittributions and the (d-dimentional) Raronlli: dertribution (intiodend by F. Stocklas).
A typial nowe dory thise lines is the fruowing: If $\alpha \cdot \xi=1$ (with fixad $0+\left\{\in \mathbb{Z}^{d}\right.$ ) han at integas roletion $\alpha=\alpha_{\varepsilon} \in \mathbb{Z}^{d}$, and of $T_{n, s}$ denots the peniodic Aesffrections of $\mathrm{A}_{4} \mathrm{r}^{2}$

$$
t(x)=\varphi_{0}(x)+\sum_{k=1}^{n}\left(\cos \left(k \alpha_{j} \cdot x\right) \varphi_{k}(x)+\sin \left(k \alpha_{j} \cdot k\right) \psi_{k}(x)\right)
$$

with $\varphi_{k}, \psi_{k}$ ioderivielane of $\$$, Hen the approxivation contach

$$
\operatorname{ing}^{2}\left(\|f-t\|_{p} ; t \in T_{4, \varepsilon}\right\}
$$

aduits a Favard type ertiunte $\| D_{\varepsilon}^{r} f{ }^{\prime} r \frac{K_{r}}{(k+1)^{r}}$ ante $K_{r}$ the $r$-th Favad courtant.
Applications of decrechats properitios yived the eitiuntes from He literativie.
K. Foten, Uni Duirbung

Interpolation by Non-differentiable Radial Basis Functions. Let $\mathcal{N}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a prescribed set of points (called "nodes") in $\mathbb{R}^{2}$. We wish to interpolate data given at the nodes by a continuous function. The interpolating function is of the form $f(x)=\sum_{j=1}^{n} c_{j}\left\|x-x_{j}\right\|_{1}$, where the $l_{1}$-norm is being used. Explicitly, if $x=(s, t) \in \mathbb{R}^{2}$, then $\|x\|_{1}=|s|+|t|$. Let $h_{j}(x)=\left\|x-x_{j}\right\|_{1}$ and let $O B$ denote the subspace of $C\left(\mathbb{R}^{2}\right)$ spanned by $\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$. ("RB3" stands for "Radial Basis"). The functions in $R B$ are continuous piecewise linear functions, whose domains of linearity are rectangles created by passing a horizontal and vertical line through each node. Oar paper establishes the dimension of $A B$ (usually $x$ ), the codimension of $P B$ in the space of all piecewise linear continuous functions, and other characteristics. Conditions for solvability of the original interpolation problem are given. This is joint worth with W. A. Light of Lancaster, England.

The rate of approximation by recipocals of polynomials
Let $f \in[-1,1]$ the nonnegative. Then we can find polynomials $p_{u}$ of degree not exceeding $n$ such that $\|f-\| p_{n} \|_{\infty} \leqslant C \omega_{y}\left(f, \frac{1}{n}\right)$ where $C$ is an absolute constant independent of $f$ and of $n$. The $w_{c}(f, \cdot)$ is the bitgian-Jotik modulus of continuity with $\varphi(x)=\sqrt{1-x^{2}}$. Trying to estimate distances in the $L^{x}$-norm for $\gamma^{k}<\infty$ we have a less satisfactory result. Tho: Let $f \in\left[{ }^{p+1}[-1,1], f \geqslant 0\right.$. Then there exist polynomials $p_{n}$ such that $\|f-\| p_{n} \|_{k} \leqslant C \omega_{\varphi}\left(f, \frac{1}{n}\right)_{p}$ This is a joint work with Ed faff and A. Levin. J. Levistan Tel Avior

Proximinality of Tensor Product Subspaces
Let $S, T, D \leq S X T$ be compact Hausdorff spaces. Let $G \subset C(S)$ and $H \subset C(T)$ be finite-dimensional subspaces of realvalued continuous functions. The question is discussed which of the spaces $W=G \otimes C(T)+C(S) \otimes H$ are proximinal in $C(D)$. It turns out that, in general, "bad functions" $f \in C(D)$ do not possess a best approximation in $W$.
M.s.Golitsche

Splines for Solving Boundary Value Probbun of Slasticing
A police interpolation wetter is proposed for solving the clamical displacement boundary value problems of elestostatics from discretely defiiced boundary displaceurent vectors or sher vectors. A stability theorems is developed, which is dependent on the spacing of the data on the boundary, and convergence is estatlixled for the case in which the data points become duns. A boric tool is a vectoribl generalization of the addition theorem for spherical harmonics.
D. Feeder, RWTH Aachen
tried K-functionals: A new modulus of smoothness for
Blending -type approximation
The K-functionals of $\mathcal{A}$. Peetre play an in portant sole in the derivation of quantitative estimates for the degree of approximation of certain approximanits for univariate functions. One reason for this is the fact that they are equivalent to the standard moduli of smoothness.

In the case of "Blending-type" approximation of functions of two variables (e.g. approximation by Boolean sums of parametric extensions of univariate approximation operators or by pseudo polynomials) the so-called mixed moduli of smoothness have turned out to be appropriate devices for measuring smoothness.

In the polk at this conference we introduced "mixed K-functionals" as an analogue to the Rete $K$-functionals in the context of Blending-type approximation. We stated an equivalence relation between mixed K-functionals and mixed moduli of smoothness. As applications it wen shown how united $K$-funchionals can be used in the method of smoothing known e.g. from the univaniate case, and row they om be applied in the derivation of an optimal estimate for the degree of apporimation by higonometric psendopoly nomials.
C. Cothin, Duisburg

Approximation by harmonic functions in BMO and spechal synthesis for Hardy-Sobdev spaces.

We show that there is no obsturction to approximate planar harnuawi functions in BMO. Hecisely, we prove the following

Theorem. Let $\times C \mathbb{C}$ be compact and let $f \in V M O(\mathbb{C})$ be harmonic on $\stackrel{O}{x}$. Then we can find
a sequence $\left(f_{n}\right)_{n=1}^{\infty}$, each $f_{n}$ being in VMOC(1) and harmonic on a neighbourhood (depending on $n$ ) of $X$, such that $f_{n} \xrightarrow{n \rightarrow \infty} f$ in BMO (C).

Our tetnigue is twofold: we use Vitushrinis locdization method and dudity. As an application we get the following spechal synthesis result.

Theorem. Let $E \subset \mathbb{R}^{2}$ be closed and assume $f \in \overline{I_{2} H^{1}\left(\mid \mathbb{R}^{2}\right)}=\left\{\log |z| * h: h \in H^{1}\left(\mathbb{R}^{2}\right)\right\}$ satisfies $f=0$ on $E$ and
$\nabla f=0$ except for a set of zero length.
Then $\exists\left(\varphi_{j}\right)_{j=1}^{\infty}, \varphi_{j} \in C_{0}^{\infty}\left(E^{c}\right)$, such that $\varphi_{j} \xrightarrow{j+\infty} f$ in $I_{2} H^{1}\left(1 \mathbb{R}^{2}\right)$ (which mean : $\Delta \varphi_{j} \rightarrow \Delta f$ in $H^{1}\left(1 R^{2}\right)$ ).

Joan Yerdera
Universitat Audónoma de Banelona, 08193 Bellaterra, Barcelona.
"Duality and shope-presewing interpolation Frown Dentich, Perm State Chimasity

Let $\bar{X}$ be a normed emean space and $\left\{k_{i} \mid i \in I\right\}$ a collection of convex sets and $K=? K_{i}$.

Theorem. If ion $\cap\left(K_{i}-k\right)=$ ? ion $\left(K_{i}-k\right) \quad \forall k \in K$, $x \in \frac{X}{i}$, and $k_{0} \in K$, 'Men pe 'following ane equivalent.
(1) $R_{0}$ is a lest approximation to $x$ from $K$;
(2) $\exists x^{*} \in \underline{X}^{*}$ such that $\|x *\|=1, x^{*}\left(x-k_{0}\right)=\left\|x-k_{0}\right\|$, and $x^{*} \in \overline{\sum_{i}\left(K_{i}-k_{0}\right)^{\circ}} \omega^{*}$,
where $S^{0}:=\left\{x^{*} \in Z^{*} \mid x^{*}(x) \leq 0 \quad \forall x \in S^{\prime}\right\}$ denotes The dual cone of S'.

Application: Consider $L_{2}=L_{2}(T, \mu)$, $\left\{x_{1}, \ldots, x_{n}\right\} \in L_{2},\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{R}^{n}$, and

$$
K=\left\{y \in L_{2} \mid y \geqslant 0,\left\langle y, x_{i}\right\rangle=d_{i} \quad(i=1,2, \ldots, n)\right\} \neq \varnothing .
$$

Then the best gaproximation to any $x \in L_{2}$ is given by

$$
k_{x}:=\left(x+\sum_{1}^{n} \alpha_{i} x_{i}\right)+X_{\Omega}
$$

for some scalars $\alpha_{i}$ chosen so phat phe element $R_{x}$ satifiés

$$
\left\langle k_{x}, x_{j}\right\rangle=d_{j} \quad(j=1,2, \ldots, n)
$$

and

$$
\Omega:=\{t \in T \mid \exists k \in \mathbb{K} \text { with } k(t)>0\} \text {. }
$$

This application contains characterization preoems (proved under more stringent conditions) sitaflished by jeveral anthors.
Approximation singuläver Lösungen partieller Differextingleichungen in einfacten Fälen



 BUaB in Sunce do Naminhte Ciderning neelew zadem, and fir jed Komponemtevon $T$ ).



 moth sffor Pooteme mordon penanut. Lothe tolelt, Hambing

On the approximation of matrices connected with the discrete approximation of functions in tor variables

In approviniation of a matrix is very close to an approximation of a function in two variables. Let $s$ be a discrete point $s$ et $f=\left\{f\left(x_{i}, y_{i} t: i=1, \ldots, m ; j=1, \ldots, m\right\}\right.$ and $f$ be e function in two variables. We can appostimate $f(x, y)$ aver $s$ by functions which can have one of the following forms:

$$
\sum_{k=1}^{\Gamma} g_{k}(x) h_{k}(y) \quad, \quad \sum_{k=1}^{T} a_{k} f_{k}(x, y)
$$

Then we here the following matrix' problems:

$$
\min _{\operatorname{rank}(2) \leq r}\|F-2\|, \quad \min \left\|F-\sum_{k=1}^{r} a_{k} F_{k}\right\|
$$

with an appropriate definition of the matrices $F$ and $F_{k}$, and any matin' morn. We discuss same properties of these matrix problems. In particular, we give a chomacteriation of extremal points of the unit sphere of matrices with unitarily invariant norm.
K. Zietak (Wractar)
open seta $D$ in $R^{N}(N \geq 3)$ wick the property
that $\bar{D}$ sa a closed annulus $\left\{x: n, \leq\|x\| \leq \Omega_{2}\right\}$ are ckasmetirged by quadrature formulae involors mean values of certain Larmovie functions. One suck ckaractirigstion na used to gave a criterion for che epistance of a best harmonic $L^{\prime}$ appropimant to a function which is subharmonic (and satisfies some other cors(itions) in en annulus.
myron Gollatein (Tempe)

84
Summen von Poisson Kern
Es sei $f(\theta)$ eine belidige waik unten halbstetige funbiien mit |leriode 24, und sei

$$
P(\theta, 2)=\frac{1-|z|^{2}}{2 \pi\left|e^{i \theta}-2\right|^{2}}
$$

der Poisson Kern. Wir suhhen eine Entwishlung

$$
\text { (*) } \quad f(\theta)=\sum_{1}^{\infty} c_{n} P\left(\theta, z_{n}\right)
$$

vu $f$, wo $z_{n}$ eine inn Vorans gegebene folge ist, und die $c_{4}$ nicht negutive Konstanten.

Eine not wendige and hinveichende Bedingung nicd fium $z_{n}$ gegeben, $w$ das dies fün jedes $f$ möghioh sei. Hinvei chend ist zum Beispiel dous jeden punhlt $e^{i \theta}$ grenzwert wn einen Unterfolge ven $z_{n}$ in eimem stolzchen wiwhel ist. Hiermir wind eine Frage ven Walter Rudin beantwortet. Die Arbeit ist gemeinsom mit T. J. Lyous.
W.K. Hayuan.

Pseudehyperbolie Teusier Approxiuation
Far $f:[0, z \pi]^{2} \rightarrow \mathbb{C}$ eet $\left(f, x_{k e}\right)$ denote d's Fonner double series coefficients. The korobou space for $\alpha>0$ is defined as

$$
e^{\alpha}=\left\{f:\left|\left(f_{1} x_{k e}\right)\right|=\sigma\left(\frac{1}{|k|^{\alpha}}\right),|k|,|l| \rightarrow \infty\right\} \text {. }
$$

Examples of functions of a Korobou space are sunooth functrour with periodic ex.tor periodic derivatives up to a certain order.
Hyperbolic tourier partiol sums $\underset{|k \cdot l| \leqslant n}{ }\left(f, x_{k e}\right) x_{k e}$ approximate $f \in E^{\alpha}$ well both in $L_{2}$ and $L_{\infty}$ nerm,
but the set of coelficients is oufficult to arganize as a data stouctue.
 are simplec to handle and give the same asyuptotic
ertor estimates as the huperbolic sums. ertor estimates as the hyperbolic sums. q 3 3oszenski.
Degree of Similttaneous Approtimation by Gordon Operators
A report on inuestigations of the degree of approtimation of bivarite functions on a rectangle by (discrect) spline bended oparatoon was given. Thene are of the type ${ }_{x} L+{ }_{y} M-{ }_{x} L \cdot y M$ and ${ }_{y} \bar{T}_{x} L+{ }_{x} \bar{L}_{y} M-x L_{y} M$, respectivel, Ow aim uns to give a fieler description tham is availatle in the likerature by using mixed modili. of smoottmess of lijfer ordero. The cmaial tool from the umivanite case was a gueveraliction of 4 Heorem of Sharma and taci on the degree of simmetcomeonis approsimation by cutric poline inkspotatos. The muain remets for the multivariate case were tho theorms expuessing costain pesmanaence principles waid stplain how the Bootean sums and certain (discrete) blending goerators interit gumatitotice propesties from their univariate minitding blocks.
thine the jomka.

Univalent harmonic mappings and approximate solution
Let $f=u+i v$ a complex valued-miivalent, orientalim-preserning harmonic mopping defined on the unit disk $U$. Then f com be viewed as a orlution of the elliptic P.D.E. $\overline{F_{\bar{z}}}=a f_{z}$, where the dilatation $a(z) \in H(U)$ and $|a(z)|<1$ for all $z \in U$. Since a composition fo $\phi$ isth a conformal mapping $\phi$ remains harmonic ne may assume that $f(0)=0$ and $f_{z} / 01>0$. Existence and Unignemes of mid mappings onto a given simply connected domain $\Omega$ harming a prescribed dilotuchion alt) are discussed.

For the case where $\Omega$ is a strictly starlike domain the shall give a numerical methorl to construct the desired mapprig.

Walter Aengmentar
Unyprom Harmonic Approximation with Continues Extension to the Boundary.

Let $G$ be a domain in the complex plane $\mathbb{C}$ such that $C-G$ contains a closed disk; and let $F$ be a closed pullet of $G$ mash that $F$ is the closure in $G$ of it intern $F^{\circ}$. We soy $f \in C^{1}(F)$ if $f$ is continuous on $F$ and possesses contmuois fins partial derwatiwes in $F^{\circ}$ which extend continuously to $F$ as fincte-valued functions. Let $G^{*}-F$ be connected and locally connected, $f \in C^{1}(F)$ be harmonic in $F$; and $E$ a subset of $\partial F \cap \partial G$ (here $G^{*}$ dents the one -point compactepcation of $G$ and the houndaices $\partial F, \partial G$ as e token in the extended plane). Suppose there exults a sequence $\left\langle h_{n}\right\rangle$ of functuma harmonic $m G$ such that $\left|f-h_{n}\right| \rightarrow 0$, $\left|\frac{\partial f}{\partial x}-\frac{\partial h_{n}}{\partial x}\right| \rightarrow 0$, and $\left|\frac{\partial f}{\partial y}-\frac{\partial h_{n}}{\partial y}\right| \rightarrow 0$ man firmly on $F$ or $n \rightarrow \infty$. We show that $y$ of extends continuously to FUE then each $h_{n}$ con le chosen to have the some property

Appoxunation by hanuomic functions in Düichlet and uniftimen noun,

In 1941, in his findamental sturey of the Divichlet problen, M.V.Keldysh cherectevized the cmperct retsKin $\mathbb{R}^{n}$ with the puquity that the continuons functions on $K$ which we haimonic on int $(K)$ can be unifolmely apquatinatece on $K$ ly frnctions hamomic on veighbuhords of $K$. Heis prozg was consturctive and quike cmuplicated. A provf by duality was given in 1950 ty 7 . Deny.

In 1968 V.P. Hlaom shedied the annlogows problan for $\angle^{2}$-appaoinnation by analytic fructions on conipa ot sets in the complex plane. He gave a neverrayy and sofficient ondition, which is essity sea to be equivelant to the wnaition given ly Keldysh. Hain's puoblem can be reformulated as an appuarmation problear he hamomic functions in the Dinichlet nome, and then it makes sense also in $n$ dimeurions.

It is ly no means obrions from the prafs why unipron appuoimation is possible if and only if apuari= mation in the Diridelet urm is possibe. The tathe is devoted to an effoit at explaining thit equivelence, by teacing if rorts to $H$. Caitans offinition of belayage $l y$ means of puopections in Hetbut prec. Lans Irge Hedoug
Imkoping, Sureden

PDE aspects of holographic grids
Sating with the cardinal intupolation semis of the uniform sampling theovern, the elemenang holograms ane calculated explicitly. IN is enoblished thad they give us to the eigenfunctions of the Schworty hemal associated wo th the self -adjoint hyprelleptic mb-laplacian a the Heisenberg milporent lin gray. The 3. wriffeld of planar lolograplice gish an clarified. Thew weidunce las ben estoblidnd experimentally by Prof. D Pal griguos (Budapers). As a result, new identities for theta ne - clues ar s pupping up Findly, a sui of applications $A_{0}$ different fields (lase physics, new de compress,...) an in dicakd.

Walk Schern pp (Sign),
the Approximation by polyharnonic functions and
the inverse potential problem.

1. There is an analogy between the inverse potential protlens (cf. Anger G.) for high order elliptic equations and the classical moment problem. As a consequence, extremal problems for the inv. pot. prob are dual to problems of approximation by solutions of the operators (in case of $\Delta^{n}$ these are the polyharmoinic functions).
2. Consider homogeneous bodies which are graviequivalent to a finite number of mass points (they are called quadrature or Zidarou domains). For this we prove characterization of the element of lest $L$-approximation of subharmonic functions by harmonic functions, similar to the case of the ball, obtained by M. Goldsibein, W. Haussmam et al.

Ogiyan Kouncher (Sofia)

H-Sets and Bert Uniform Approssmativen by folutions of Eviptic Rppontial Equations
(joint work with K. Zeller)
We courider second onder elliptic patial elfferentice aperaton $L u=\sum_{i=1}^{n} a_{i j}(x) \frac{\partial L_{u}}{\partial x_{i} x_{j}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}}$ for $a_{i j}, b_{i} \in\left(\subset \mathbb{R}^{n}\right.$ ), and the space (for a dormain $D\left(\mathbb{R}^{n}\right.$ ) $F C(\bar{D}):=\left\{\omega \in C^{2}(D) \mid L \omega=0\right.$, $w$ hes cont. esterian $\left.\hbar \bar{D}\right\}$. gove an $f \in C(\bar{D})$ we ash for a bast appronimant $\omega^{*} \in F C(\bar{D})$ satis forig
$\left\|f-\omega^{*}\right\|_{\infty, \overline{0}} \leq\|f-\omega\|_{\infty, \bar{D}}$ for all $\left.\omega \in F C C \bar{D}\right)$. We pie a characturization of a but approxinant ni temis of $H$-sits $H_{1}, H_{2}$ (rintoduced by Callate egGo). To kuis end we first characterize $H$-scts with respect to $F C(\bar{D})$ in terns of the polyu omially cowest luele $h\left(H_{1}\right)$ ad $h\left(H_{2}\right)$. This liads to a result of de la Vallé Poussiu type, from which the chavecteritation of a bect approsnin ant fullors. Main tove is Khe Ruye approxnination property (Browder leg62, Lax 1936). The niviquewess of a but appiosicinant follows prou the validity of the niniquenes condition in thu Cavdey problim in thu suall (of. eg. Throurder tse) Our renelts include previous invertigation due to Burbard (1576), Hayman-Vishow-Lyores (1584) and Kouncher (1985) on approsimation by harmonic functious. We can ad wit unifonnly elliptic differntial operator with awalytic coefficients. 2n the case of L-sublearmovic functicus of we conshuch the nuique best approsimant, and we show the novo torieity of the degra of approssiuation.

Werver HanA m am (Duísburg)

Mathematical Problems in
the Kinetic Theory of Gases

Singabar crityral equationis cwhice ame m tomupot publums hove
 bey Kuser, etal. I show thut thereve speciel coner of more generel othoponedr ellorim for geverse singolencity ul equations, eoferan untervils and on donel contoues. The orthayas sert meturo bas a mumbre fodnen tager over the clancal (tterehet thavefon me tued). St sumblu; A claufer the mathenstieal sinveture of the solutious (fu seample, it clareur te mystervin "er eppent condition" of lase as co dition which ame naturelly as requemment for the exutuce y cestani contain nitypols); and it allous one to define solutwm fur can thent zeroes accen on the contain fo integretim ad even for equateon anR non-intyer index.

Tanf. Zuvife (insosong)
On the Cauchy Problem for the Nonlinear Full Euskog Equotion in Three Dymensions
A globol existence theorem is proven for the solutions to the initial velue problew for the nonlinear Euskoy equetion in del apece. It is praven thet if a smooth solution for the aame problem refored to tho Boltemann equetion exiots globelly intime, thetr a flobal solution olas exists fou the Enrkeg Equation aud that the distence beterion the tno solutions Tenls to zeno as the roolius of the herot spheres olso tends to zero.
$\qquad$

94
Sonceresults firble Bothuraun and Eusby equaltoms.
Tutalh ebcurses ble following dhee verult:
i) Tidu spocehonggeneous BE. cpponeuiul cow. audsfability cender have forces and oreffliently high moments.
ii) de equivalune of toeb $L$ 'soluitorn and steudard Youny nnarme sohtiom to the spreadependet BE . witl laye L'data.
iii) wellporeduen and regularth pu blee 3D enjo Dath Euslog agreate with a counthut hyble densth fector, globelly in the core of bounded veloctss and Cocolly in. thit in unsoundedodocik. beif hary
Kinetic limits for stochastic paricle systems
It would be nice to prove Boltzmane Eq., Euler and Navier. Shecen ys stanting from the Newton law of the motion. This is very Lifficult havically hecoure the aspmptotic behavior of hamiltonion sycterns is not veny well undurtaod. In this talk I refr on a research in proguen (iuvolving A, halleari, S.Capino, E. Puemtti and myolf) in which the Corlenan equation wis deives, in the eq-ivalent of the Roltrmann-Grad limit, from a yotem of interacting poutides. The Antrobynamical limit is sill an open probeme.
lllaroResi
Mario Pulvirenti

On the Converagnce of 'Particle Methods for Multidimensional VlanarPorssan Systems by A.D.Victory and KGangly
For Vlasar-Porsson syptemes, partide matherds are numerical techniquee which simulate the behavior of a plasma by a large set of charged superpartroles which dsey the classical laws of electrostatics. The trajectunies of there changed particler ure then followed, We give estimates for the errons incurred for a "semi discrete""
approximation to the undarlying Vlasw- Porssan sytem, by firot Superimposing a reetan jular grid er mesh on all of phare spare and then replacing the initial continuores distribution of chouges or manse by atscrete changes or masses located at the center geach grid cell Our analyuis, one ono hand generalizes that of G-H. Cottet and P.A. Raviat (SIAM J. Nemer. Anal, $\alpha 1$ (1984) pp. 52-76) to higher - dimensicual Vkusov-Prisson syotems; and, or the other tho fundamental results of ole Itald (SIAMJ. Numer. Anae 16 (1919), 726-755), and 9 J.T. Beale and A. Majda (Math. Comp. $39(1982), 1-52)$ on vorternothods fur two- ano-there-dimenisisnal Eulen equatius to pertich -in-cell methoos fu multidimensixnal Vlawar. ? Orsson setting.

The Initial-Value Probtern for the Vasov-Maxwell System $O_{M} \mathbb{R}^{3}$ we consider the Caunhy Peoflem for the systern

$$
\begin{aligned}
& \partial_{t} f+\hat{v} \cdot \nabla_{x} f+(E+\hat{v} \times B) \cdot \nabla_{v} f=0 \quad\left(x, v \in \mathbb{R}^{3}, t>0\right) \\
& E_{t}=\nabla \times B-j, B_{t}=-\nabla \times E, \quad \nabla \cdot E=\rho, \nabla \cdot B=0
\end{aligned}
$$

where $p=\int f d v, j=\int \hat{v} f d v$ and $\hat{v}=v / \sqrt{1+|v|^{2}}$
Swoth sitial values $f_{0}, E_{0}, B_{0}$ with compart supportare prescribed, whin satisfy the obowing coustrainte A geneul sufficient condition for global classial ex isteme is gien in term of an a priori istimate on the $v$-suppert of $f$. This estimate can be wade when the data ar "small" en an appcopiate sesse, and when the data ere "mearly sewtral"

On the Existence of Smooth Solution of the Vlason-Maxarell Equations with Collisions

This is a report on work in progress in which R. Glassy and $l$ are generalizing our previous work on the relativistic Wlasov-Maxwell system to allow Boltzman-type elision tens with appropriate collision kernels. Theorem: Assuming (1) initial date in $C_{c}^{\infty}$ and (2) the apron estimate $f_{\alpha}(b, x, v) \leq b e^{-a / v)}$ uniformly for all species $\alpha$, all $x, v \in \mathbb{R}^{3} \times \mathbb{R}^{3}$ and $t$ bounded, There exists a unique $C^{1}$ solution of the Vlasov. Marwill-Bolkmann system for all $x, v$ and $t<\infty$. We are now working on venfying (2) in care the data are clone to the relativistic daxwellion $e^{-\sqrt{1+r^{2}}}$. W. States (Brown U.)

Nate Alta
Statistical Solutions of Boltzmann Equation and Boltzmann Hireneny.

The understanding of the Boltzmena Hiecorely is an intermediate necessary step in the ettcenpt to prove the saliabity of the Boltzurenu Equation. On the it her hond, BH Les an intrincive interest, beeouse ct uprusents the equation for the cuocrente of the statistical solutions to the B.E. YA true out that this intupretation allows to cons rant socutious to the B.H. at least when solutions to the B.E. ane available. If is pomble to deal with the near equilibrium situation, using the molividhal theoun of UKaito prove the existence $2 n d$ the estimates for the so elution to the B.H. and the Laipord thor to get uniqueness locally intine and then extud if globally.
This e pproach oboes not work in the cor of specially homsjemeon P B.E. beceure Lenforol theoum जemuot be used. In thiscese. method bond an approximate dymenical evolution is worticd out,

Which allows to prove uniqueness) for the rtatistical solution of the B.E. and there fore provides existence and uniqueness for the spetially homogeneous B.H.


Solverig the Boltzmam system for a gas mixture via the relevant conservation system.

It is first recalled that in the spatially homogeneous case the nonlinear integro-partial differential Boltzmann system for the distribution functions $f_{1}, f_{1}, \ldots, f_{M}$ of the $M$ gases of a mixture has been converted - on the basis of the only assumption of constant collision frequencies - into a nonlinear furst-order ordinary differential system for the number densities $P_{1}, P_{0}, \ldots, P_{M}$ with $p_{j}(t)=\int_{R_{3}} f_{j}(\bar{\sigma}, t) d \bar{v}$. This system -including both removal and creation effects -is then studied as a dynamical system. Can such a conversion be achieved also in the spatially inhomogeneous case? The answer is positive provided not only the cessumption of constant collision frequencies, as made in the spatially homogeneous case, is maintaned, but also other assumptions are added concerning both the scattering and creation probability distributions as well as the initial data. With special delta form for the former quantities and separable form for the initial data, a quasilinear functional hyperbolic conservation system for the number densities $f_{j}(\bar{x}, t)=\int_{R_{3}} f_{j}(\bar{x}, \bar{v}, t) d \bar{v}(j=1,2, \ldots, M)$ is obtained in the spatially inhomogeneous case. This system can be studied for $M=2$, and explicit solutions to it can be constructed by resorting also to a Lie group analysis.

On Inverse Problems in Linear Kinetic Theory
Inverse problems for a class of linear kinetic equations are investigated. Ore wants to identify the scattering kernel of a *ansport equation (corresponding to the structure of a backgronney medium ) by observing the albedo-part of the solution operator for a direct (initial-) boundary-value problem.
In order to do that we derive a constructive method for solving direct half space and slab problems and prove a factorisation theorem for the solutions.
Using that we investigate stationary inverse problems w.r.t. well-posedners (egg. reduce them to classical ill-posed problems such as integral equations of first kind).
In the time dependent case we show that a quite general inverse problem is well-posed and solve it constructively.

Klans Draper
Improved Chapman Ensor Approximation
The solutions of the Boltzmann Equation obtained by the Chapman Enskog procedure are not uniformly convergent in velocity spare, because of their behaviour at large velocities. As a result the hierarchy of continuum approximations, which can be derived by the procedure -Euler, Xavier Slither, Burnett,... - can only be asymptotically convergent.
A modified procedure is proposed, in which the parameter of the Maxwelliein distribution, that is used as the lowest order approximation, are allowed to be slowly varying functions of veloity. In this way a formal solution is cbtamed which could be uniformly convergent.

The Navier－Stokes Equation in The Disuate Kinetic Theory
We investigate the Navier－Stokes equation which is formally derived from the incite Boltzmann equation as the second order approximation If the Chapman－Euskeg expansion．First，we eltain an explicit form of the Navier－Stokes equation without any particular assumptions．Nest，we show that if there exists a＂hydrodynamical basis＂of the apace of summational invanants， then our Navier－Stibes equation can be Transformed into a symmetric system of hyperbilic－parabolic type．Consequently， the associated Cauchy problem is well posed on a shit time＂ interval．Finally，it is shown that the＂stability condition＂ for the original disnete Boltzmann equation guarantees the global existence of solution of the Navier－Stohes equation． KAWASHIMA Shmichi
（川鳥 秀一）
Low Discrepancy Methods for Solving the Boltracann Equation
Monte Carlo Methods play an inupartant sole for the numerical evaluation of the spatially inhomogeneous Boltemannen Equation．They are mostly intuitively motivated and intended to imitate the belacions of gas particles in a reduced particle system． We investigate the mathematical structure behind one of these schecures（Nousu＇s） and prove that it converges when the particle accuser increases to in fixity．
Since rout Carlo methods are bested an random uncuders，flan cation eras are high． The convergence proof indicates low to replace the stochastic gacue by a regular schecue（low Discrepancy menthol）．We shows some examples in the spatially homogeneous case．Finally，we report on results we stained for the calculation of the reentry phase of the European space shuttle Hescues．
Has Jasorsky

Stohastic solution method of the B－G－K equation for diatomic molecules

Rarefied flows of monatomic gas have hen calcula ed successfully by use of the direct simulazion Monte Carlo method based on the Boltzmann equation．In simulating diatomic gas flows one has had recourse to some heuristic assumptions such as phenomenological model，together wish the simulation method for monatomic gas．The result obtained ty means of such a patched procedure is not a solution of any kinetic equation．Here is presented a stochastic solution method of the B－G－K type equation（Holway＇s model equation）for diatomic gas．The merhod is applied to the analysis of shock structure of diatomic gas and is shown to work well．

Kenichi Nan lm （而 部 健一）

The stationary nonlinear Boltzmann equation in unbounded dolourans
Half－space problems fo the ready one－dinensioual Boltzmann equation ane considered．Two types of boundary conditions are analyzed：
specular reflection and the condition with a given dishibution prinction of particles entering the regrow of interaction．
It has been made an atterupt to slow that these problems posses solution，ioftiocit discussing lac ciniguenens of the solutions

Andre Pderewsh．

Srationary Boltzmann Equalim for a degenerate gas in a slab: boundary value moslem auk hychodysuanics.

To the B.E. for a gas of "vertical sticks" in the plane (exchange of $v_{x}$, conservation of $v_{y}$, worssechin dereuduluy on $\left(v_{x}-v_{1 x} \mid\right)$, with reflected boulder exciting, a cen of linear transport equalizes with prescribed B.C. is asso eisted. A uniform expansim is then performed on the solutim (Shown to exist uniquely in a $L_{\infty}$ framework). Relations with an underlying niorkou jump prows are considered. Rivio ruialo

On the number of collisions in Sinai's billiard in $\mathbb{R}^{3}$
We present a simple proof that the number of collisions in a cloud of finitely many lard spheres (which disperse in all space) is finite.

Revilard feline
Existence of $L^{1}$ solutions for the 3-d Ensnog equation
The Easnoy equation for dense gases is shown to have global solutions in $L^{2}$ for sufficiently small dato. Previous proofs were either in $L^{\infty}$ or in lower dimensions.

Poist approximation tor collision deams occuring in semicomductos probleuno The equations

$$
\partial_{f} f+v \cdot \partial_{x} f+E \partial_{v} f=\int P\left(v, v^{\prime}\right) f\left(t^{\prime}, v^{\prime}\right) d v^{\prime}-C(v) f\left(t^{\prime}, v\right) ; \operatorname{rol} E=0 ; \operatorname{div} E=\int f(t, x, v) d v-u
$$

are one model of. for aumiconolucton in the elechoatatic cese. If the collinion term is zuo, we have the well-hnocon Vlesov-Poisson systim, foe which the poind apporineadios is well estebblished. In onder to extend this method for the remi-conduchos cesc we consides the aprece-homegeneans problem reshicled to 10, whick reads as
(a) $\quad \partial_{f} f(f, v)=\int_{-\infty}^{\infty} P\left(v, v^{\prime}\right) f\left(t, v^{\prime}\right) d v^{\prime}-c(v) f(t, v)$
and thy to approximale $f(t, v) d v=\mu_{t}(v)$ by $\mu_{t}^{\prime \prime}(v)=\frac{1}{N} \sum_{i=1}^{N} d\left(v-v_{i}(t)\right)$.
De sioul with the thime discactization of ( 1 )

$$
f_{u+1}(v)=(1-\Delta t C(v)) f_{n}(v)+\Delta t \int_{-10}^{\infty} P\left(v, v^{\prime}\right) f_{u}\left(v^{\prime}\right) d v^{\prime}
$$

whese at is the time slep and $f_{n}(v)=f($ uat,v).
We define the approximation $\mu_{0}^{N}=\frac{1}{N} \sum \delta\left(v-v_{i}^{0}\right)$ by $\frac{2 i-d}{\delta N}=\int_{-\infty}^{v_{i}^{0}} f_{0}(v) d v, i=1(1) N$; and form $\hat{v}_{0}^{N}:=(1-a t C(v)) \mu_{0}^{N}+\Delta t \int P\left(v, v^{\prime}\right) \mu_{0}^{N}\left(d v^{\prime}\right)$
we compule $\frac{i}{N}=\int_{-\infty}^{\hat{v}_{i}} \nu_{0}^{N}(d v), i=1(1) N-1 ; \hat{v}_{0}=-\infty, \hat{v}_{N}=\infty$ and set $\mu_{1}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta\left(v-v_{i}^{N}\right) ; v_{0}^{N}=\int_{i v} v v_{0}^{N}(d v)$, which can be continued.
This apmoximation convenges undes slighlly weale cosditionso on P and $C$ wealhly to the solutione in eviry finile time indervalh, if at $\rightarrow 0$ and $N \Delta t \rightarrow \infty$. The algarithm ilself is highly vecharizable and was tesled wilh $N=127$ for the waster equation.
since the computiotion of the $v_{i}^{\prime \prime}$ is difficulf to extend for highu dimbusions we present on othes method based on Laprangion cosadimales. Until nowe only numerical desulh ene availaible, which equees sith the sesulh quoled above foultion clice

On the discrebe veloatry roodels with initial volues in $L_{1}^{+}$(R) We coutider the Csuclyy probleue for a peneral velocity ruodel of the Badtzusum equation in one space dimension, subjected to the ddditiond thy pothesis that the ulative velocities hove different from Teto component doup the spatial ditection in which these is a raristion of the otensities. We show that the problem lads a whique glolad mild colution frovioled thest the mitial dosts have frute eubropy sud stay in a weiphted $L_{s}$ space.
quiseppe nonars

A Sumer of One Dimensional Stationary Problems
Various methods of solving one dimensioned stationary boundary value problems are estamened. The eigenfunction esporncon mettat of lase and the resolvent integration me thad of Larcen-Habetler are claimed ta he equivalent, and hove hen widely, employed. The durionalyation method introduced thy Hangeldraed allows for functional anal, tee techniques nat available to earlier analysis Recent interest lies in convolution equation technigive, which allow an algebraic approve ta the problem of Dismigroyp construction. Typical Disemigroyp perturbation results are presented, both in Hilbert and Bowel space settings. These ore relevant to the solution of the abstract transport equation vet operator coefficients.

Delian seentbry
D: Huston approxumation for a free gaz with a stochastic boundary -

This is a report on a joint work with M. Babovsles and T. Platkowoly - One consider a free gay (ho collisiour) in a tube (or a slab) arbitrary long and of a thickness of the order of $\varepsilon \subset \&$ will go to zero). Than one shows that if the bound ry of the tube create some strochaitie effect the isolation helave, like the solution of a diffusion equation. The proof belies, oc danicol analfs is, and arympto $t=e$ ananion.

104
Velocity averaging techniques and their applications to kinetic theory.
by Francis Golse, Paris

1. Report of Joint work with P.L. Lions, B. Perthame and Sentis)
Assume that $f \equiv f(x, v) \in L^{2}(d x \otimes d m(v))$ where un is a probability measure on $R^{N}$ such that sup $\ln (\{v /|v . e| \leqslant \varepsilon\}) \leqslant C \varepsilon \gamma, \quad 0<\gamma<2$, $e \in S^{N-1}$
and that $v_{1} \partial_{x} f \in L^{2}\left(d x \otimes \operatorname{dmm}_{\text {in }}(v)\right)$. then
$f=\int f \operatorname{dm}(v)^{x f} \in H_{x}^{\gamma / 2}$, with the in equal ty
$\mid D D_{x}^{\gamma / 2} \bar{f}_{L_{x}} \leqslant C\|f\|_{L_{x, v}^{e}}^{1-\gamma / 2}\left\|v \cdot \partial_{x} f\right\|_{L_{x, v}^{2}}^{\gamma / 2}$
2. Repast of joint work with C. Barder, B. Peethame and R. Sentis)
The above averaging result io used to tosca the radiative transfer equation when the opacity does not depend on the frequency of photons. We prove
a. global existence of a weak solution
$b$. the Rosseland app roximation when the opacity $\sigma(T) \sim T^{-\alpha}$ with $\alpha<1$ near $T=0$.

On Collision Models for the Non-Linear Boltruam Equation
For Monte Carlo simulation of rarefied gas flows ane weeds a mitatle puodel for the intermolecular differential scattering cross section. Whereas for monatomic gases puodeds are cary to construct,
notating molecules present a more difficult took. notating puoleciules present a more difficult Ta oh.' If The collisional pedistrifuxtion of evergyisitard resulting from diffusion in the space of notational energies, a cross pectise can he oftatined that obeys detailed balance. Via the simplest Chapman-- Cowling approximations the puodel parameters are fifer to the known values of the isscosity and either the thermal conductivity or the volume riscosin.

Frau fiescer (U. Y Ajubgiane, Hyoslavia)

Nos Solutions and Results for the Veasoo- Poisson system Now results have been obtained in the poleaning three dissections: 1. Investigation of the "locales isotropic" solutions which are of the farm

$$
\begin{aligned}
& f(t, x, 0)=\varphi\left(w(t, x)+\frac{\left.(x-A x)^{2}\right)}{2}\right) \\
& u(t, x)=w(t, x)+\frac{(\Delta x)^{2}}{2},
\end{aligned}
$$

where $f$ is the dithintion function, $x$ the Nestorian potential and $w($ for $t=0)$ a sountion of the semilimea deistic equation

$$
\Delta w+\lambda=h_{\varphi}(w)
$$

fo given $\varphi: \mathbb{R} \rightarrow\{0, \infty)$ and antisymuctic $3 \times 3$ matrices $A$ (joint work with H. Berestycti, P. Resound, B. Perthame, to appear in Arch. Rat. Mech. An el.)

106
2. Investigation of the stationary sphericale, symmetric solutions which correspond $t$, the solutions of the generalized Enden-Foiber equation (in connection with ummerical experiments of Hénon's with respect to the stability of there solutions) (joint work with K. Efaffelmoser, to asper in Math. Meth. in the Ape. Sci),
3. Existence of $C^{n}$-stationary sections of the relativistic UPS with compact suppat ( to appear in the Proceeding of the Marcel Gob man meeting on Several Relativity, Perth, Australia, 1988)
Batt (Múucken)

Computational Group Theory

$$
(15.5 .88-21.5 .88)
$$

Short Presentations
Define the length of a presentation $\langle X(R)$ to be $|X|+\sum_{r \in R} l(r)$, where $l(r)$ is the length or as a wand in $X \cup X X^{\text {:. }}$
The following remex have been paved by Babi- Kaitor-Wess. Pally:
Theorem 1. Every finite gong $G$ has a presentation of layth $\left.\overline{O( } \log (G 1)^{3}\right)$; the exponent 3 is best possible.

Theorem 2. Evens forte supple props $G$ hos a presentation of length $O\left(\left(\log (G /)^{2}\right)\right.$ - and even one 7 length
 nor a naval prop of lie type.

Compertine: Every finite siple gers $G$ hoo presentation of leyth $O(\log (G 1)$.

Withai M. Kainto
University of Ryan
Computing Modular Characters
2 short announcements - A pritchard has been working on a low index alyorthon, and $S$ linton on a double coset enumerator.

Conway's polynomials - dossed to define Braver characters (see next page) are

108
order polynomials by the lexicographical order $0<1<2 \cdots<p-1$ on the field of order $p$, then $x^{n}-a_{1} x^{n-1}+a_{2} x^{n-2}$. ore ordeal on $\left(a_{1}, a_{2}, a_{3}\right.$ )
Primitive Polynomials of degree $d$ and $n$ (where $d / n$ ) are

The convoy polynomial $S(n)$ degree $n$ characteristic $P$ is the earliest primitive polynomial consistent with all Conway polynomial \& degree $d / n$.
we use the map $x\left(\bmod c_{p}(n)\right) \rightarrow e^{\frac{2 \pi i}{p^{n-1}}}$, tocfended to the while algebraic closure of $G F_{P}$, to define nodular characters.

The meataxe system has been re-writter several tines, and is nor available as FORTRAN programmes running on the masscomp and sun workstation at this conference.
R.A. Parker Cambridge.

Alybmic Combinatrics: The Nne of Fist Group Actions
In that raving folk the Candy-Frobemise laura and Burnside's lexeme were mentioned, bots in the constant ant sighted pros. Fuotwonie constrictions of wit represcontation cone mentimad, dicot ones, portustrilitic and recursive mes. Al tat vas shaw on hos it applies is te paradigmatic case ven a gera aitim of $6 \mathrm{~m} x$
 Thin is 4 situation vile enos graph numeration, for axanfe.

Inbganp presentation, revisited.
Let $G=\left\langle g_{1}, \ldots, g_{n} \mid r_{1}\left(g_{i}\right)=1, \ldots, r_{m}\left(g_{i}\right)=1\right\rangle$ bu a finutitely prosunted gramp, $x \leqslant G$ a subgroup of finut index. Them, in order to ortain a fincte uresuntation of $x$, each of the Joliawing thrn data on 21 saffices:
(i) a ginerativig systemn $S=\left\{u_{1}\left(g_{i}\right), \ldots, u_{s}\left(g_{i}\right)\right\}, i, e . U_{1}=\langle s\rangle$;
(iii) a "nonmal gen. Fystem" $S$, i.e. $V_{c}=\overline{\langle 5\rangle}$, the nurmat clasurn of $\langle 5\rangle$;
(iii) a cost twble of 2 in $G$.

By the Toud-Cot-ter provedure (iii) can bn obtcuned fromerther (is orrii), and fram (iii) Didemeister's therom, allo wes them to write down a prereatation of $X$ in termin of then Sichrier queraton of $H$. The largs unmber of ficunier feneratos $(k-1)(G: Z)+1)$ and Poidemanter reluxan vucersifates oler use of Tie be tremoformativis in a herristicully stured altmyit to eliminate fohnier generators. On the other hanch, in, case (i) a modifid cosel toble con be coustunctul fram which tiy an analoger of Rack minder's theormen a presutation of Zrintemm vo then given giveratan can en- ofkained. Jo, the talk a wew thired possibility in ade cases in clencsiled, nunuty to resethe dechniquess of the modifid Tould-Cureter weittwed for on a unori revuction of the number of Pitmier geveratorn that enter the fres sutatian of 2 . Tinmen for con arite computation, suen given, thal indicate ter usstulnuss of tha new nuthod. The innglennuitation of this muthod ond of seytem of routines for reffgrene prereutaticen (SPAS) is clue to A. Unchlini ance nvointly Voblamar Felach.

Fesuctim Nenbeixer (Aarluen).
stephen Glassy (Univ. of Sydney) Algorithms for finite soluble groups
Algorithms are presented here for calculating normalizers and intersections in a finite soluble group $G$. Most attention will be given to algorithms for computing the normalizer in $G$ of Hall $\pi$-subgroups and for computing the intersection of two subgroups whose indices in $G$ are coprime. An algorithm for conjugating one given Aral $\pi$-subgroup to another is used to construct thrall $\pi$-subgroups, and is also used the the normalizer algorithm. The above algorithms may he used to construct system normalizers, Carter subgroups and Sylow bases. Details of algorithms for computing normalizers of arbitrary subgroups and for computing the intersection of two arbitrary subgroups will be described in a forth coming joint paper with M. Slatery.

Michael Vaughan the (Oxford) Collection from te left
Following work of Leedham-Green and fricher at OMC have implemented an algorithm for collection from the left in CAYEY. CAYLEY inionpmates the Canberra Nilpstent Quotient A yroittom wits the Havas-Nichotion algontim for collection from the night. I have winter a subroutine which can be substituted is cAy by for the Hams - Nicholson subroutine. A fees minor modifications $t$ other subroutines han ts be made where arlection from the right was assumed. Like the Havas-Nichotson alfirittm, my alfmittm incorpmates continotrial collusion whereto $\left[a_{j}{ }^{m}, a_{i}^{n}\right]$ is enhated by using the formula $\left.\left[a_{j}^{m}, a_{i}^{n}\right]=\left[a_{j}, a_{j}\right]^{m-n}\left[a_{j}, a_{i}, a_{i}\right]^{m(z)} \cdots\left(a_{j}, a_{i j}, a_{i j}\right]^{m(n}\right)$
$\qquad$
which is valid provided $2 \operatorname{\omega t}\left(a_{j}\right)+\omega t\left(a_{i}\right)>c$. (The poop his class $c$ and generator $a_{i}$ is assigned wight $w$ if it hes is the w-ts term of the lower expoment-p - central sere if $G$.) A number of timing emprarisons have been made between collection from the right anodal orllection from the left, and time improvements (for the ness algrittem) were observed of fatsos napping between 1.6 and 14:5 (Ex higher the dist the fetter the improvement).
M. R Vaughan hus

Computing in grouts of exponent four
The study of groups of exponent four centimes to throw ut interesting computational challenges. some adolitions and improvement o to tel milfoltent quthent elgoith sere described whelk shoved allow the determination of the order of the 5. generator (relatively) free grant $B$ of exponent four te resconsalle resources.
These improvements are based primarily on a more cerfule andeyois of the structure of ar affropprinti system of linear equations our GF 2 ). In rm the int as for it follows tent an upper bound for the order of $B$ is $2^{2728}$ and it same likely this is the order of $B$.

Mi 3 newman

112
VERTICES AND SOURCES
Let $F$ be a (finite) field of characteristic $p$, $Q$ a finite group (such that, divides |GI) and bi It be an ridecomposable $F G$-moslule. A vertex is a subgroy $P$ of $G$ of smallest possible order which has an midecomposable FP-modble N (a source) sud e thar $M$ is a diver summand of the induced moclule $N T^{G}$.

We present methods that automatically determine vertex and source for an widen. Fr-cuodule $M$. The particular, we describe bow to compute the ring of FG- Didomophisms of a module $M$ and bow to prove the nidecomposabiliy of $H$ ar to fid an eyliut decomposition

The methods have been cimbenented as par of the carey system and leave been used to confute a number of examples.


MOC: a modular character system - theoretical background
MOC is a computer system for dealing with modular characters. It was developed in joint work with R. Darker and X. Suse. Lome theory behind this system is described in my talk.
Certain bases for the rings of generalized Iraver character and projective characters are introduced. Fintly, basic sets
x. of Braver character resp. projective character are defined and secondly, in duality to there, bases of projective atoms and Braver atoms. The problem of finding all possible decomposition matrices for a finite group, which are consistent with a given ret of information, is reduced to the following problem. Let $A, B, U$ be integral
matrices, such that $U$ is square of determinant 1 and has non-negative entries. Find all square matrices $U_{1}, U_{2}$ with $U=U_{1} \cdot U_{2}$ such that all of $U_{1}, U_{2}, A \cdot U_{1}$ and $B \cdot U_{2}$ have non-negative entries.

Gerhard His
(Aachen)

Simplifying group presentations
A system has been developed which contains many small primitive functions which can be combined to give Todd-boceter, Redennieter Schreier, Tinge hans formation facilities etc.

Two speificideas which some from the flexulsity of the system allowing easy experinitition are disciessed. The first of these look at extra relations whit can be oltanid from a modified Todd-boceter algorithm. Relations of type A come from the early closing of vows. Relntrois B come from comididnces between coset yelling relations between coset reppresentitives. In using Titty timaformations it is possible to direct the process towards getting relations of a particular log he by defining a weighted length on substrings whit cone from weighting the gesantm. Jiving a gerentor low weight compared int other improves to chimes of the order of the gensator being perducal as me of the relitions

Edmund 7. Robetia. (St Andrews)

PRESENTATIONS FOR SIMPLE GROUPS

In a recent paper int EFRobertson (St Andros) and P.D. Wi Fiiams (San Bernardino) we gore presentations for the groups PSL $\left(2, p^{n}\right)$, $p$ prime, which show that the deficiency of these groups is bounded below. Far the groups $S L\left(2,2^{n}\right)$ the best general result still contains one extra relation. However for $n \leqslant 6$ efficient presentations have been obtcuñed by using a computer. Deficiency -1 presentations for direct products of $\operatorname{SL}\left(2,2^{n_{i}}\right)$ for coprime $n_{i}$ are also given.

New efficient presentations have also been obtained far certain groups PSL $\left(2, p^{n}\right), p$ odd; in panicular $\operatorname{PSL}\left(2,3^{4}\right)$, $\operatorname{PSL}\left(2,5^{3}\right), \operatorname{PSL}\left(2,11^{2}\right), \operatorname{PSL}\left(2,13^{2}\right)$ and $\operatorname{PSL}\left(2,19^{2}\right)$. Fut the we considered the groups $\operatorname{PSL}(2, p) \times \operatorname{PSL}(2, p)$, goring a 2-generatar 6 -relation presentation for these groups. Finally, based on computer evidence of efficient presentations obtained for $p=5,7,11,13$ and 17 we conjectured an efficient (2-generator 4 -relation) presentation for the groups $P S L(2, p) \times P S L(2, p)$.

Gown M. Campbell (St Andrews)

Algorithms for the determination of finite p-growes.
The groups of order 256 have been determined thy computer. The algoerthms used in the determination are extensions of the $z$-group generation algorithm descaled by Newman 1977 . The basic algorithm wile te kevienea briefly and the extensions described in some detail. Implementation \& performance details will be provided together wite a summary of Results. E.A. D'Brian (Australian National

Algorithms for finite soluble groups and permutation groups.
This talk was a report on recent discussions with Charles Seedham-Green and Leonard Soicher awned at developing algorithms for groups which could be implemented quickly in a high level language like eAYLEY. We concentrated on the problem of finding the kernel of a grasp homonophiom. we developed three algorithms: let $G=\langle x\rangle$ and $A$ be grays and $\phi: x \rightarrow H$ a map.

Begoithn 1 assumes that $G$ and $H$ are permutation groups for which bases are known. It test whether $\phi$ deter mines a homomorplisim $\phi: G \rightarrow H$, and if so finds the kernel.
Aleqoithm 2 assumes that $G$ and 4 are soluble group r with power commutator presentations and that $\phi: G \rightarrow H$ is a homonophiom. It returns power commutator presentation for the kernel and image. algorithm 3 is nondeterministic. It aoscumes that $G$ and $H$ ore permutation groups on soluble groups, that $|s|$ is known and that $\phi: G \rightarrow H$ is a homomorphism. It returns the kernel and image with a high probability.

Charge Praege (Wester Australia)

The Knuth-Bendix Procedure and Coset Enumeration
The Knuth-Bendix procedure for strings is outlined. Two examples are presented. In these examples, the Knufl-Bendix procedure is able to provide more information than coset
enumeration. A family of orderings on free monoids is defined. The orderings have proven useful in computations with polycyclic groups. Four implementation issues associated with the Knuth-Bendix procedure are discussed: rewriting strategy, indexing the rules, overlap strategy, and provision for length increasing rules.


Finite varieties and a finitely presented group
A is known that there exists a sequence $w_{1}, w_{2}, \ldots$ of words in two variables with the following property:
The finite group $G$ is soluble if and ouly if $\omega_{k}(G)=1$ for all bud finitely, many values of $k$.
We present sone explicit sequences ie four variables and discus a question whose answer would yod a satisfactory series iuvobring two variables. This leads to the group $G(a, b)=\langle X, Y| X=\left[X_{1 a} Y\right], Y=[Y, b X]$. That have $\operatorname{SL}(2, q)$ as quotient for various values of $q, a$ and $b$. Fo example, $G(5,5)$ maps onto $S L(2,5)$. Nothing seems to be known about $G(2,3)$, however adjoining the extra relations $x^{n}=1, y^{n}=1$ where $r$ and $s$ are coptrine causes the group to collapse is many cases.


Power -series groups
Sain Youth (xiseard student) has made use of RODVLE (Nommighomi) and CAYLEY (Momduntan) packages to find in variants of "pewer-series gramps"
$G_{n}(p)=\left\{\right.$ integer polynomials under substitution\} ~ $/\left(x^{n+1}, p\right)$, a group of order $p^{n-1}$. As a wesulb, severe cayections hove been formulated and same of them have been pried. Hor example, the doss and exponent o of $G_{n}(p)$ are now known explicitly in all cones.

Dophum nottingturtn

Constmetion of Representations of Hecke Algebras
We describe a computational technique called condensation which tums representations of a finite group into representations of a related Hecke algebra. under certain circumstances condensation sets up a Morita equivalence between modules of the group algebra and the very much smaller modules for the Hecke algebra; this allows us to use condensation to obtain oftemise miaccessible niformation about the group. We describe tee use of the condensation programs in the calculation of the 2-modular characters of $G_{2}(3)$.

Aleron der Ryba. Ann Arbor.

A Senaralization of the Alternating Group
The clan of group

$$
Y(m, n)=\left\{a_{i}(1 \leqslant i \leqslant m) \left\lvert\, \begin{array}{l}
a_{i}^{n}=1, \quad\left(a_{i}^{k} a_{j}^{k}\right)^{2}=1 \\
(1 \leqslant i \leqslant m) \quad\left(1 \leqslant i \leqslant j \leqslant m, 1 \leqslant k \leqslant \frac{n}{2}\right\}
\end{array}\right.\right.
$$

when introdned in the y.of Alg. vol. 75 (1582).
Extensive computailional imverosgation doue with J. Nentiven
in Aachen during You-March 1987, and indereneate, by
Robertion + Compbeee in St. Andeen confiren a conjecture that this serien is found by orthogoual a momplechic groum defined over cutain field of haractrisis two of finite order.

The clan $Y(m, n)$ is relates to
$y(m, n)=\left\{\Sigma_{m}, a \mid \Sigma_{m}\right.$ impmintin go generatad by the tran-privivm $\tau_{12}, \tau_{23}, \ldots, \tau_{1, \ldots}$,

$$
\begin{aligned}
& a^{n}=\left(a \tau_{12}\right)^{n}=1, \\
& \left.\left\{_{12}^{a^{i}}, \tau_{n}\right]=1 \quad\left(1 \leqslant i \leqslant\left[\frac{n}{2}\right]\right) \quad, \quad\left(a \tau_{i, i+1}\right)^{2}=1 \quad(2 \leqslant i \leqslant m-1)\right\}
\end{aligned}
$$

Formitance, $Y(m, n) \cong y(m, n)$ for $n$ oed.
The fint difficuet can of the purtern is $y(3, n)$. We idinify $y(3, \infty)=\left\{u, v, a\left|u^{2}=v^{2}=|u v|^{3}=1\right.\right.$

$$
\left.\left|v^{i}, v\right|=1 \quad \forall i, \quad a^{4}=a^{\prime \prime}\right\}
$$

as being $\operatorname{SL}\left(2, \pi_{2}\left[t, t^{\prime \prime} 1\right)\left\langle\left(\begin{array}{cc}t^{\frac{1}{2}} & 0, \\ 0 & t^{\prime \prime 2}\end{array}\right)\right\rangle\right.$. $\pi_{h}$ porol ane
Nagion's theorem on the structure of SL(2, $\mathbb{Z}_{2}(t)$ as a perporius intor analyanatín.
sand sidhi Univerity I Brasilia

Einite subgroups of $E_{8}(\sigma)$
The question of which finite novabelian simple subgroups occur in $E_{G}(\mathbb{)}$ ) has peen completely solved /work joint with David B. Wales). She construction of a subgroup isamarphic to $\tau_{1}(2,19)$ has been treated as an example. It was found by Soling a system of 19 equations (having 42 monomials each) in $\delta$ variables. Erannooun with Robert $t$. Cries, the finite nondelian simple subgroups of $E_{8}(\mathbb{C})$ are lenown up to a Sew questions, involving $T_{1}(2,31), T_{1}(2,32), T_{1}(2,61), U(3,8)$. It has been discussed how He $4(2,61)$ case could e solved by finding. a solution to a set of 58 equations in 8 variables. Such a solution has not yet been found.

Lie: a software package for computations with Lie group representations and Weyl groups.
In the world described above, use has been made of $C$ programs for computing traces and centralizer types of elements of finite order in $E_{8}(\mathbb{C})$. Ron Sammeling and I have take these programs as ingredients for a package as described in the title. Presently it includes routines to compute degrees and multiplicities of highest weight modules of semisimple liegroups, traces and centralizer types of elements of finite order, tensor product decompositions, the orbit of a vector under the Weal group, a reduced expression of a Weyl group element.

Arjeh M. Chen, (WI, Amsterdam.

A soluble quotunt algorithom
The algorithon can compute the biggest finite saluble farter group of a finitely presentid group in case it exists. The bane idea, which is not restricted to finite or soluble groups, is as follows: Decidring, whether an eximurphion $\varepsilon$ of a pinitely prosented group os mor a gromp $H$ can be lifted to an exumaphicion of $G$ anto epurinopthion an cetersion $1 t$ of am (ividurcible) H-midule by H leads to a rystem of liniar equation. In the situation of finite soluble miages the contruction of the velevant modules and extemions is do langly, a matter of linier algelra. Findinis the relevant new prime dirism for $|\tilde{H}|$ can be approated by unig the rational representation of 11 .
12. Plesken

Aacken

The abelian goopss letermied by (i) the poit-Lyperplane inciteme mutuix $A$ and (ii) the complemere of $A$ fa a finte proseitive seometty derivid from $V_{n}(\rho)$, wher $p$ is puine and $n>1$, are described.
R.J.Lin

Collection
Giver a finite soluble group of described by a power-conjugate presentation, the elements of $G$ can be multiplied by a collection process. We give strong experimental evidence that collection from the left (always collecting the leftmost
minimal non-nomal oubword) io vastly more minimal non-normal oubword) io vastly more efficient than collection from the right, which had been the most commonly wed method of collection.
We abs describe the "deep thought" method of multiplying
elements of a polycyclic nilsotent group. The vechnipae elements of a polycyclic nilpotent group. The vechnigase involve preprocessing to determine a multiplication formula. (joint wort with C. Seedham-Creen)

Leonard Soicher
QMC, London
P.S. The fist implementation of collection from the left for soluble groups was coded at the meeting, and in a group of composition length 53, performed about 100 time faster than the existing implementation.

122
Fast Wedderburn transforms
Let $G$ be a finite group. Then, according to Wedderburn's Theorem, the complex group algebra $\mathbb{C} G$ is isomorphic to a suitable algebra $\oplus_{i \leq h} \mathbb{C}^{d_{i} \times d_{i}}$ of block diagonal matrices. Every isomophism $\mathrm{W}^{i s h}: \mathbb{C G} \rightarrow \oplus \mathrm{C}^{d_{i} \times d_{i}}$, will be called a Weddecun transform for $\mathbb{C G}$. With respect to natural $\mathbb{C}$-bases, W can be viced as a $|G|$-square matrix. The linear complexity $L_{1}(A)$ of a matrix $A \in \mathbb{C}^{r x t}$ is the minimal number of an $\begin{gathered}\text { rhaetic }\end{gathered}$ operations sufficient to compute $A \cdot x$, for an arbitray $x \in \mathbb{C}^{t \times 1}$. Since for non-abelian groups $G$ the Deddecoun transforms are not miquely determined by $G$, we define the linear complexity of the group $G$ by $L_{1}(G):=\min _{\{ }\left\{L_{1}(W) / W\right.$ a Wedderbun transform for $C G\}$. Trinally, $|G| \leqslant L_{s}(G)<2 \cdot|G|^{2}$. For cyclic gongs $G$, the FFT algorithms shore that $L_{1}(G)=O(|G| \log |G 1|)$. By remits of Atkriison ('77) and Jarpoosky (177) Ais las rents extends to finite abelian goons. Recently, Beth ( 184 ) showed that for finite soluble goons $L_{s}(G)=O\left(1 G 1^{3 / 2}\right)$. Using Wedderbern transform adapted to a tower of subgroups of $G$. Beth's remit can (with slightly greater constants") be generalized to arbitreing fine gives As a second remit, we shans that for nynuetric goys $L_{1}\left(S_{n}\right)=0\left(\left|S_{u}\right| \cdot \log ^{3}\left|S_{u}\right|\right)$. The final remit (jointly with U. Baum and $T$. Beth) states that every $p$ gory with ar abelian non al subgroup of index $\leq p^{2}$ bes a fut Weddelum trans $/ \mathrm{mm}$. E.g. $\left.\mathrm{g}_{1} L_{s}(G) \leq \frac{3}{2}|G 1 \cdot \log | G \right\rvert\,$, for all groups of order 64 . These' fast algorithms car be applied to the design of suboptimal Wiener filter, as described in the work by Trackbenberg and Karpoosky.
M. Clause
Karlsmbe

Parallel Computation in Permutation Groups
A fundamental issue in parallel computation is the determination of which problems with 'efficient' sequential solutions have arbitantially' faster solutions on a parallel machine. We loose at this question for permutation group pubbens, focusing on the problems known to have polynomial-tinae solutions. Following a current paradigm, parallel efficiency will be established by inclusion in the class NC, roughly, the class of problems solvable in 'superfarl' time $O\left(\log ^{c}, n\right)$ using a 'fasibibe' number $O\left(n^{C_{2}}\right)$ processors. Recent reculto of Bahai, Lulls, and Stress show that basic problems are in NC. (assuming, as usual, that $6 \leq S_{n}$ is specified by generating permutations) these include: finding the order of $G$, tEsting membership in 6, finding a composition series, finding a presentation $6=\langle x \mid R\rangle$, fording pointoris stabilizers of subsets. Two striking observations: (1) All Glee problems seem to demand structural information aboul the group, and timing arguments appeal to the classification of fine te simple groups; (2) The techniques have led to an order of magnitude improvement in the computational complapity of segerntial methods and all the above problems are now solvable in time $O\left(n^{4} \log ^{c} n\right.$ ) (vo. $O\left(n^{5}\right)$ for usual good approaches to finding 161 , etc).

Eugene M. Lubes
Engine, oregon

MOC: A molular chunutes sypten, some algoritho
The moc213 syplem is a colledia of prospains, wituid try to detemmene the maues churates table of a finte opoup. It was developped in Auter and Carbidey by
R, Pouter, G.H.ß and myolf. The problems stered by using the prripames as the fillowing
The Bramer thees of the sporadie gromps and ther covery gotup $(400$ trees, of whid $3 x$ thes are ditermenal up to a (geatraic conjugacy) $2 S_{p_{t}}(2)$ for the prímeo 3,5 , $2 \mathrm{~J}_{2} \cdot 2$ for all prime ${ }^{3} \mathrm{P}_{4}(2) \quad p=3,7, \quad 2 \mathrm{C}_{2}(4) \quad p=3,5$, He for $y=7$ by $A$, Rylia.

Thories to calculate the Brauk chasacter lide of a fuime group, ore proeed as follom:
The program PST dedermines the retriction of the ndisuey chenuden to the $y$ - regular clases, the distritutin of 'the veriney cheartere vints the berts ind a banés for te Broves chusaden mondele a lange omie. Using the propranis TEN, Sym and inducing oy frim subgroups we axe able to generate a lazye at $P$ y procetines and alaze so $P$ of Anmer churaten Usóy GETRAS we finit a R-bores of gemine chanates for $\beta$ and $\beta$. The propran PIMIEST cheds whithe ve have fround angy?
pros. indeinpsontel chunactes by decomposing Vein pmectios intr progectove atom. Finally RDC tries to subtract the prosectio indermporate fround sifar from thew proictioe denaters and therdy it unpooses our E-bass. Thex mettods can be itexated. and dean in geneal to several (coleally me) posibleties for the Bnmer chanants table, whid can noo be attadel ly mase soptristicatid methris.

Kurth-Bendix Algorithm and Dehu Algorithm

Let $G=\langle g, \varepsilon\rangle$ be a flite gram presentation. In the Kauth-Bendix algaithun, we restrict the computation of critical pain to the "normal" ones, i.e. Hose induced by the standard couplet set of mule for the equational theory of groups: if $k: a_{1} \cdots a_{n} \longrightarrow b_{1} \ldots b_{m}$ is a mule, $a_{i}, b_{j}$ in $g$, then these pius are $\left(a_{2} \ldots a_{n}, a_{1}^{-1} b_{1} \ldots b_{m}\right),\left(a_{1} \ldots a_{n-1}^{-1}, b_{1} \ldots b_{m} a_{n}^{-1}\right)$ and $\left(a_{n}^{-1} \cdots a_{1}^{-1}, b_{m}^{-1} \cdots b_{1}^{-1}\right)$. Then the K.B. algorithm halts on the plesertation $G$, given a reduction ordain $\delta$ which is nmlength increasuig. Call $R$ the resulting set of mb. We now ask: what one the minimal conditions that ingle the solacilility of the word perblem for $G$ by $R$. Answer: the usual condition $C^{\prime}(1 / 4)$ of small cancellation the any plus sone near condition: the mou-existerce of some diagrams (dosed ladder) in the Cayluy graph of $G$. So this is $y$ et another proof of the furdanetal result of small cancellation theory. It shapers the usual ones in the following way: 1) the usual metic conditions imply the new ones, 2) the group $G=\langle A, B, C \mid \triangle B C=C B A\rangle$ becomes a small cancellation group under these near conditions, 3) we have stuctinal hits on the Cayluy grape of smile cancel cation groups.

An application of sofos
If prop $G, G$, are given, and $\sigma: L(G) \rightarrow(C, G)$ is an tomomphisin of their selymy latices, it is well known that the inge $N^{r}$ of a arousal selpermp $N$ of $G$ weeds ant te urial in $G$, is the klikial case where $G / N$ is cyclic, $N^{\sigma}$ is creeper in $G_{1}$, and both $G$ and $G_{1}$ are finite $r$-ploys, then $N$ is atelion of $r \neq 2$. An sample (Resets. Stoncterver) shows that of $\mathrm{N}=2 \mathrm{~N}$ may be non pelion,
A. lucheriud t molt, wing SoGos to do pat if the checking, tonne one use sample:

$$
\begin{aligned}
& G=\left\langle a, h, k \mid a^{2^{7}}=h^{2^{9}}=k^{2^{4}}=1, h^{k}=h^{9}, h^{a}=h^{-1}, k^{a}=h^{-1}\right\rangle \\
& G_{1}=\left\langle a_{1}, h_{1}, k_{1} \mid a_{1}^{2^{7}}=h_{1}^{h^{4}}=k_{1}^{4^{4}}=1, h_{1}^{k_{1}}=h_{1}^{5}, h_{1}^{a_{1}}=a_{1}^{-8} h_{1}^{-1}, k_{1}^{a_{1}^{1}}=h_{1}^{-1} k_{1}^{-1}\right\rangle \\
& \text { The } N=\langle h, k\rangle \text { has. }\left|N^{\prime}\right|=2, \quad N \Delta G, N^{\sigma}=\left\langle h_{1}, k_{1}\right\rangle \text { is ane-pe in } G_{1}
\end{aligned}
$$

The imputations ron on a VAX/VAS; CPV time apprsinately $2^{h}$.
Fedici then jato
(Padova)

Computing with infinite fritely presented groups
Certain infinite groups defined by finite presentations that anise nat wally from geometry y and topology (the on Dyck groups, for example) can be shown to howe very regular properties, in a precise sense. This means that a normal form can be found for the group elements (whichuill usually consist of the shortest words for the elements) and efficient algorithms exist for putting arbitrary words into normal form. These algor thins invour computations using finite state automate, and they one expected tohowe applications to the underlying geometrical or topological.structure. Practical methods for constructing these automata were discussed. Methods that have been attempted to date include rod. Coxeter Coset Enumeration aves Knuth-Bendor reduction.

Computatem in Permutation Coups
Using Labelled Branchings
Labelled haxching are data structures fo impliatly representing the coset representatives for the point stotulzer require of a pumutation group using or $n^{2}$ space. This data stunctive was inverted by M. J enum who gave the first $O\left(n^{5}\right)$ time $O\left(n^{2}\right)$ space algnitim for finding a string genuating sot fr a permutation group We have used labeled harchinge to gie a new base change algnithm which runs in o $\left(n^{3}\right)$ tome. This improves by two alders of magnutvide the previous algenttrn. (joint with C. Brown and P. Rude). In addition, if $B$ is a complete labelled harching fo $G$, then we can construct a presentation for $G$ using of most $n-1$ generates and $(n-1)^{2}$ relations. This beads to a method for a strong generoterg test which runs in $O\left(n^{4}\right)$ tone (joint with C. Brown and G. Coopuman) This test hes hen used to give a substantial speed up of Jenumis negeval algrithen

$$
\begin{aligned}
& \text { Zany } 7 \text { eppistur } \\
& \text { Boston, MA }
\end{aligned}
$$

Constructing machines for automatic groups.
Basically a group is automatic is a forte state automaton can be used to recognise a well structured normal form for its elements (see
"Dover Holes", previous page. For many automatic gro ups (eg groups of hyperbole c isometnos) such a normal form is provided by the rectased words which are shortest and lexicographically least according to an ordenng of the generators.

In the talk David Epstein's algonthem for the construction of suca a machine was outlined. The machene is constructed un terms of a Rite set of word differences which in turn and denied from a set of knuth Bendix mules and associated long strings of reduced words. Ale these are collected within a partial cayley graph in a conslunction weighted heavily towarels those areas of the graph leading to a most rapid increase of the set of word differences.

Sarah Keas
Wanwick
Presentations of groups acting discontinuously on $\mathrm{H}^{3}$ call $\Gamma \subset S L_{2} \mathbb{C}$ algorithmic when $\Gamma=\left\langle X_{1}, \ldots, X_{m}\right\rangle$ where we have thur algorithms,
$A D(1)$ to solve the ward problem in $\Gamma$ on $\vec{X}$,
$A D(2)$ to compute the entries of each $X_{k} \in \vec{X}$ to any desired accuracy, Jorgensen's Inequality: $\left|t(x)^{2}-4\right|+\left|t_{2} x y x^{-1} y^{-1}\right|^{0}<1 \Rightarrow$
either $\langle X, Y\rangle$ is not discrete in $S \mid \mathbb{C}$ or is elementary either $\langle x, y\rangle$ is not discrete in $S L_{2} \mathbb{C}$ or is elementary (contains no free subgroup of rank 2), gives an effectively computable criterion for $\Gamma$ not to be discrete. Poincare's theorem on Fundamental Polyhedra gives an effectively computable criterion for $\Gamma$ to be discrete, and a search procedure to set up a fundamental domain $\delta \delta \subset H^{3}$ for the action of $\Gamma$ is simultainously an efficient search for elements $X, Y$ generating a
nondiscrete subgroup of $\Gamma$. When $\Gamma$ is discrete and geometrically finite a good search for $\delta O$ will eventually finish with the correct domain, and when $P$ is not discrete Jorgensen's Inequatity will eventually show that $P$ is not discrete. If $P$ is discrete and geometrically infinite we would compute forever.
\& have a file of Fortran subroutines, PNCRE $=: 8$, which search for a Ford fundamental domain $\delta \mathcal{C H H ^ { 3 } \text { for }}$ a given $\Gamma$, using either the half-space model $\mathrm{U}^{3}$ of $\mathrm{H}^{3}$ or the boll model $B^{3}$. The output of 8 is a decision: discrete/not discrete, and if $P$ is discrete \& geometrically finite a presentation fr $P$ on $\vec{T}$, the side paining tams formations of SD, together with the expressions writing $\vec{T}$ on the original generators $\vec{x}$. If a graph plotter is available it can be used to draw a diagram of 50 when $\mathrm{Ul}^{3}$ was used. There is a manual for the use of 80 , the system is available from me or other sources, and \& would be ready to respond to reports of errors in the system.

Robert F Rill
Binghamton New York
Computing in p-Groups
A number of remarks client computing in groups ferine power order ene made.
(i) Ax important source of examples comes from linear groups over local feels. We Rave programs to compute in vil grays, including a program for arithmetic in baal fields of characteristic $O$ unites by a PRD student C. Murgatroyd
(ii) The dramatic improvement in our collection algoictem over the tradtimal meted has a theoretical explanation. Theory and practice show thor the time required for our method increases exponentially in to derived long th nat her she the class of tegroxp.
(iii) Our nymbour method of multiplying elements of a $p$-group, called
'deep thought', as an alternation to collection, allows us te perform calculations very rapidly teat are completely ont of range for collection. The method requires fuister development, and we could ushers collabontiom

Thin in joint uss witt L. Soccer.
C.R. Leedkom-Gren. QueenMary College, London.

Procedures and algorithms of computational Group Theory had recent dramatic applications lu the area of Finite Geometries and Combinstorial Designs. These structures usually hove groups of automorphisms from which the geometries can be reconstructed. We can divide these algorithms into 3 broad categories. The first antegory is closest to computational group theory and is related to the construction of fused incidence unatrices such as intersection matrices, tactical decompositions and $A_{t, k}(G)$ related to a group action GIS. The second category is langely number theoretic and deals with solving large Knapsac problems $A X=B$ where $A$ is non-negative integral, $B$ integral, and $X$ subject to $0 \leqslant x \leqslant M$. Several algorithms are used for these problems including branch s bond, ALGOR, $L^{3}$-based, BUCKETS (time-spucatrade off). The third category relates to solving isomorphism and automorphism of designs and graphs problems. Algorithms in the above categories have been developed and reside in LIB 111 at the University of Nebraslea-Lincolu.

Spyros S. Magliveras
Lincoln, NE.

Supercomputer Applications
Some applications of supercomputers to group theory were considered. Specific examples were a nilpotent quotient algorithm for fie rings, Cayley, and witeger matrix dixgsolizativi.

The wilpotent quotient algoithon for fie rings (as district At that for gramps) is particularly well suited for vectirizitisi of the fie product operation (whereas collection in grows is mach more difficult). Sone results on hie algetros related to Burnside groups wee presented.

The untegh matrix diagonalization algorithm is edeal for vectorization. Vectorisation ratios exceeding $90 \%$ are readily oclueved. Use of a vector supercomputer effectively auto the calculation Aline, which is polynomial in the matrix rank, by reducing the polynomial degree by 1.
George Javas (Canberra)

Braid orbits or classes of generators of finite groups In the first section of the talk a report was giors on the vealieations of finite simple groups or Galois groups of regular field extensions over $Q^{a b}(t)$ and $Q(t)$.
In the second section the braid orbit theoreaur were appleide to prove, that the groups PSL, $\left(5^{2}\right), P S L_{2}\left(7^{2}\right)$ and $\mathrm{H}_{24}$ are Gators groups of regular field extensions over $Q(t)$. Thougove by HiCoul's irroderibicity theorem there exist in finitely many Galois extensions over $Q$ with these groups as Galois groups.
pol. Drakal (suberin)

132
The problem of Gabion groups.
Given $f \in Q[x]$ fid $G=G$ ala $f$. Lever bound $f-G$ for shapes of elomats obtamie form nod $p_{i}$ factor depress $p_{i} t$ disc $f$. Cebotoreer divinity Herman is mipractrece to use seven wilt G.R.H.. Upper braids are oftemiel pram phoning that $I\left(x_{1}, \ldots \alpha_{n}\right) \in \mathbb{Z}$ the $I$ is an vivarint $f$ G. p-ddic mettures (Darmon) have been used fo this. Sypmitui for. theory is used $k$ custouch pyrminias mites sens $\left\{\alpha_{i_{1}} \alpha_{i_{2}} \cdot \alpha_{i_{r}}\right\} \in\left\{\alpha_{i_{1}+\alpha_{i_{2}}}+\cdots+\alpha_{i_{r}}\right\}$ \& $\left\{k_{1} \alpha_{i_{1}}+k_{2} \alpha l_{2}+\cdots k_{r} \alpha_{i r}\right\} \quad k_{i} \in \mathbb{C}$ puinure distinct. The factorijatim of there pignomiaes give obit data on to action g $G$ on $r$-set k. $r$-sequences. Un ramified pries wormed give further data. A progun
 in MAPLE (mitten by Con Sommeling).
dom MCKay Concondiill., Mratiéal
meeting on:
name of speaker: V. Zaychenko
subject of talk: Computations in algebras of invariant relations
duration of talk: 25 min
short summary (not more than 15 lines): Computer algorithms are designed for the study of invariant ulations algebras. Given a group $(G, W)$, the orbits of action of $G$ cu. $W^{k}$ are represented by the $x$-paths in a tree $T_{G}$, constructed by the algorithms. The complexity of sub-algebzas study is $O$ (2 2 auks) for V -rings and it can't be reduced. Applications for the study of distance - ugular graphs, Hamming association schemes, transitive extentions of permutation groups are given.

The Knuth-Bendix Procedose
The $k$ - is proced ore attemtite to changp an astitsar fincte qrecentatias for a group $G$ into a confluent presentation. Given a contluent piresentretion one can determane the casdinality of $G$, and one can solve the wosd trotlem in $G$. There 16isci heusistic procedure for the memburh.r tsotlem, but in geveral this psotlem is onsolvole le even for confluent presentations A slight modific ution of the K-I procedure producer a procedose for enumes ating the cosetr in $G$ of a finitely gever ated sobgroup H. This proredure can wor $k$ euen when the $K$ is procedure appled to $b$ itseif faile to terminate.

R Gilman Hoboken

Computing conjugacy claster or elcenents in fiunti solubh grougs.
In a joint paper with P. Lame and K. Shoenwelder in the procerdings of the $19+2$ LMS Durham Symposium on computational group theory two generationi, ajeles year cerbit calculations were pronased: the uis homo morihisims for $G-x$-s sud the nse c) the facl that tha arbit of a nurnad subgriph $\sim N a G$ is ablock for $G$. An algoirthme for the

134
determination of the conjugacy classes of soluble grans based on these prim ciples was implemented in the SOGOS system in 1986 by M. Mecky and in CAYLEY 1987 by M. Slattery. However in this case further improvements are possible: Let iv be a minimal normal subgroup of the finite soluble group $G$, let $g_{1} N, \ldots, g_{r} N$ be remensentatives of the classes of GIN and $C_{i} / N:=C_{G I N}(g i N)$. Thun by the guerra! algorithm one has to find the orbits of $C_{i}$ on gi Nr, aud for cade representation $g_{i j}$ its stabilizer Stab $c_{i}$ ( $g_{i j}$ ). Thin can be clomp very efficiently by the following observation ('y. Pahlings IPlesken, J.f.d.r.n.a. M. $380(1987)(78-195)$ : via the mapping $g_{c} x \rightarrow x$ o) $g N \rightarrow \mathbb{N}$ the operation of $C_{i}$ on $g_{i} N$ ley conjugation $\left(g_{i n} \rightarrow\left(g_{i} n\right)^{c}\right.$ ) can be replaced by the "a/tim" action of $C_{i}$ on $N$ given by $\alpha_{c}: u \rightarrow n^{c}\left[g_{i}, c\right]$. The elements $m \in N$ act by"framslation" $\left(\alpha_{m}: n \rightarrow \operatorname{ma}\left[g_{i}, m\right]\right)$, hence 17 mefticen to consider the action of $C_{i}$ on N/[Gi;N]. This seduction, together with non suitable data structure allows to compute classes such moon efficiently. Test exaurves: For an itereeted semidiret product of extraipecial prongs of order $2^{\prime \prime} \cdot 3^{13}$ computing time (on a Mc S400) draped from 2496 rec to 96 sec ; the 52195 classes of $\left(\mathrm{S}_{4}\right.$ wo $\left.S_{3}\right) \mathrm{wr}_{3}$ (archer $2^{31} \cdot 3^{13}$ wee found in $6^{\text {h }} 38^{\text {min. }}$.

Feachim Nruluser (Aachen).

Normalizers and Intersections in Solvable Groups Using traditional or kit stabilize techniques, one can compute normalizers and intersections in a Finite solvable group. Well-known orbit reduction tricks reduce the amount of work by working down a normal series in $G$ with elementary abelian factors. Further speed ups are achieved for prese algorithms by using 5. Glasby's ideas (developed for normalizers of Hall subgroups and intersection of subgroups with coprime indices) when appropriate. In this way, orbit calculations are replaced by integer or linear algebra, thus permitting reasonable computation in some situations with very large orbits.

Michael C. Slattory
Milwaukee, Wisconsin
Galois Theory and Computing Subfield.
Let $f(x) \in \mathbb{Z}[x]$ be a monic irreducible polynomials and $\Omega:=\left\{\alpha=\alpha_{1}, \ldots \alpha_{n}\right\}$ its set of root. Consider $G:=G a l(f) a_{0}$ a permutation group on $\Omega$. Then $\mathbb{Q}(\alpha)$ is the fixed fold of the point stabilizer $G_{\alpha}$ and so
$\mathbb{Q}(\alpha)$ has a oubpied of of index $\alpha \Leftrightarrow G$ has a block of uiprinitiurts of size $d$.
If $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{0}\right\}$ is such a block, then 'generically' $F=\mathbb{Q}(\delta)$ where $\delta:=\alpha_{1} \ldots \alpha_{\alpha}$.

The theorem of Frobemiis - Che botarou shows thar if $p X \operatorname{dic}(f)$ then the degrees $n_{1}, \ldots n_{T}$ of the cricduciber factors of $f(x) \bmod p$ uniply than $G$ contains a permutation of cape $\left(n_{1}, \cdots, n_{r}\right)$. Using this technique we can often obtain evidence that $\mathbb{Q}(\alpha)$ ha a subtile of in tex $d<n$ (in the case $G$ is imporinitinie). In my treble I onelined a melt od of computing the rooks of $f(x)$ in

On extemsion fieis of $\mathbb{Q}_{p}$ (for same prine $p x d s c(f)$ ), determining a smale list of $d$-subess of there rooks which nuight form a block, and deciding whether or not the corresponding $\delta$ dos generate a subfied of cidexx $d$.

Johnd. Dixon (Caveran Uninerts, Ottawa)
Diricllet Serien Asscriated with Gromps
If $G$ is a f.g. group are define $\zeta_{G}(s)=\sum_{H \leq G}|G: H|^{-s}$, so, for example, $\zeta_{\pi}(s)=\zeta(s)$, the Remain $z^{H \frac{t a t}{f} G}$ function. If $p$ is a prinie $\zeta_{G}^{\pi}(s)=\sum_{H \leq \frac{j}{H} G,|G: H| a p \text {-power }}|G: H|^{-s}$. If $G^{8}$ is also tarision-free milpotent then $\zeta_{G}(s)=\pi \zeta_{G}{ }^{p}(s)$.
for example, $\zeta_{\mathbb{Q}^{n}}(s)=\prod_{i=0}^{n-1} \zeta(s-i t$. Methods were explainal for camputij' the jotr finetion s such a group. In particular, it was noted that for relatively small sude groyss, the formuh for $\zeta_{C}(s)$ can be congless - is exauples so for creculetited the formala wais commag a quothat of poducts of translateso O) $S(s)$, perthaps isith one very large iveducitle pdynannal * factor in $p$ \& $p^{-5}$ ( one compules are prine at a time). The couguter egebore syctur REDuce wan uned to RNfarm algbari mampulatsin and factorijations.
The perpous $Q$ thin iventigatioi is to study $S_{G}(x)=\sum_{H \leq G} 1$, Which an be bounded unig the Tamberion $|G: H|<x$ thewen if $S_{G}(s)$ is sufficicilly woll understort. The formulon are $a^{3}$ intered in theeis owon right. Contritutass tr thin wark include D. Segal (All souls, Oxtord), F. Giunemals (Ban) ad D. Grenham, a p.g. student of Segel

DFG So for alvay recuprial in $\beta^{2} p^{-s}$
Gent $\delta A$ (G.C.Smith, Bath Univerrityo, (B)

GTT
Groups and Programming (GTP) is a new system fo computatoonal gromp theog: curenstly deseloped in Nacten. Hablesses the probleme tal it tales so mud efoot to write new progans. It trup to suppoat a proyamme in the tas of wrothing a progame in the ways.

- A lamquage specially designed with goapp theary in mid. This genvally $P A S C B L$ eite connquage porides ar data types pomulathons, freck fuld dement, veclas and madicies.
- Is proganumang anwisomment, whic is an interopetes fas the lonquage CAP and procides le abldy to escamine buys, fise tiem and restati a compulation...
- Ilebrayg containing abeady wxthen funchons, ite an a schriew-Sinen algoivthn, polynomial pustions...
U is mpootand to remare that all the algarthms are witten in GAP and thes are available to the uso who can casily modify them.
The system is disbibuted from Dlacen without costs tat Stoont Incten
Cayley Vesion 4
The grouf theary syptem Cayley indudes a high level frogramming language that Das been in use for a number of years Esefervence therefy gained has led to the desugi of a new language. This language is designid araund the standard algebrard notions of algebraic structure, set, sequence and maffing. Gf farticular interest is 位le use of a set eontruclar which enables the user to desorbe sets by listing fredieates. The tyfes of the language include algebaic and combinatanal dondains (graufs, rings, fields, modules, finite geametries, linear codes', desegins and grafhs).

138
KONSTRUKTIVE ALGEBRAISCHE
ZAHLENTHEORIE
(22. Mai - 28. Maí 1988)

Zeres of the Riemamn zata function
A bew algaritlin, imunted by At Schönkage and the sponler, mates it positar to compute carge ent. of 2even of the zets function uncel fartur the. ins porirsey wire th clasicel segovith... Bunce of be Euler-Madeamin wad Rinm.... Singel /armmeas Aoymptitiadly, the wit segaitemersorget to math it parita to math th Rismo.n Hypothens
oppond to $n^{2+0(1)}$ opectation for te E-M methice and $n^{\frac{3}{2}+o(A)}$ yo th $R-5$ wethed. The now segaitem ...n impumitke niwetly ane if turn ont to a why fart in camplid amoot गo miecior zeres in th mighealsod of zeno Ht $10^{20}$ an were an semal othan lange ints of vens. Dun tions ake setiols the Rie man. legpuckess and privia xiven.a it yan of ofte wietum the link the zinen to segenven 4 M...d. Levinitir. Anfrios Andien Odlesze. ATrt Belx Lofow foim
Murrey Hile, NJ, USA

Algorithms for computing class numbers of imaginary quadratic fields.

Let $d>0, d \equiv 3(\bmod 4)$, and let $((-d)$ denote the Gauss class group with cardinality $h(-d)$. Previously the best known algorithm for computing $h(-d)$ due to Shanks, and uses $O\left(d^{1 / 5+\varepsilon}\right)$ operations under the assumption of the extended Riemann hypothesis for $L(s, x)$, when $X(\cdot)=\left(\frac{-d}{-}\right)$. A new probabilistic algorithm is described for computing $h(-d)$, whose expected running time is $O\left(L^{c}\right)$, where $L=\exp (\sqrt{\log d \log \log d})$. (A.K. Lenstra ad C.P. Schnorr have suggested that $c=\left(+C_{1}\right)$ should be possible). The idea of the algorithm is to combine an approximation to $h(-d)$ provided by Dirichlet's class number formula with a method for generating radom relations on a set of generators for $C(-d)$. The generation of random relations is closely related to an integer factoring algorithm of M. Seysen. In addition, an algorithm for computing discrete logarithms in $C(-d)$ can be described, again with expected running time $O\left(L^{c}\right)$. Both algorithms have some significance for a cryptographic key distribution scheme proposed by J. Buchan and H. Williams. In addition, it can be proved using these methods that the problem of computing $h(-d)$ and the structure of $(c-d)$ belongs to the complexity class NP. This answers a question posed by E. Bach, G. Miller, and J. Shallit.

Kevin $\mathrm{Mc}_{\mathrm{C}}$ Calla
Los Angeles, USA

Efficient, Perfect Random Number generates. joint worth with S. Micali $(M, T)$
A random number generator is an efficient algorithm that Wansforms short random seeds into bong pseudsrandom string. The concept of perfect random number generator has been introduced by Blum, Micali (1882) and A. You $(1982)$. A random number generator is perfect if it passes all polynomial time slatistical tots, i.e. The distribution of output sequence cannot be distinguished from the uniform distributions of sequence of the same length.
We extend and accelerate the RSA-genevator in various way. Let $N=p \cdot q$ be produce of two large random primes $p$ and $q$ and let of be a natheral number that is velatively prime to $f(N)$. We conjecture that the following distributions are indistinguishate by polynomial time statistical tests

- the distribution of $x^{d}(\bmod N)$ (N random $x \in\left[1, N^{2 / d}\right]$
- The uniform distribution on $[1, N]$.

This hypothesis is closely related to the security of the RSA-scheme. By the hypothesis we obtain an improved RSA - random number genvator that is almost as efficient as the linear congrmential generator.
We describe a method that wansforms every perfect random number generator incs one that can be accelerated by parallel evaluation. Using $m$ paralue processors we can speed the generation of psends-random bests by a factor $m$.
C.P. Solmow Univesilit Frankfort

Generalization of Schurf's algorithm to Abelian vanities and applications

We describe a generalization to Abeliaw varieties over finite feeds of Schurf's algorithm for elliptic curves. The algorithm computes the characteristic polynomial of the Fobbenius endomorphism of the Abelian variety $A$ over $\mathbb{E}_{p}$ in time $O_{\Delta}\left((\log p)^{\Delta}\right)$ where $\Delta$ depends only on the form of the equations defining $A$. The method, generalizing that of Schurf, is to use the machinery developed by Wert to prove the Riemann hypothesis for ounces and Abelian varieties. As applications we show how to count the rational points on the reductions mod $p$ of a fred cere in time polynomial in loge, and we show that, for ar feed prime $l$, we can compute the $l$ - th mots of unity mod $p$, whew they exist, in time polynomial in log $p$.
duwathan Fila Stanford University.

Factoring into Sparse Polynomials
A new algorithm for factoring multivariate polynomials over a field of characteristic 0 is in Produced. The algorithm tokes as input on "Oracle block wot" Anas allones to evaluate the polynomial at an arbibrory point. Pry probing Anis bot il relwons a program that allones to evaluate the irreducilele pactors of the polynomial. The program fixes once and for all the enumeration
and associates of these foclors. IA operates in a guodrotic number of probes of the ingint bor in terms of the total degree of the polynomial. If one wands to obtain the gorse ropresentotion of bore of the factors one cam apply algoriothins li Ben-or \& Jinari or Zippol to the oui t put program. We show haw this scheme is usepinl fo check conjechres on factorization pragiesties of determinants of Moufang loops tables or how to factor Aheveresultant of a system of some polynomial equofiom. These ecomples constitute r The lorgest polynomials in number of terms $(\approx 300800000)$ foctored ley computer today

Erich Walloper
Rensselores Polytechnic Institute
Representation of one by binany cubic forms with positive discriminant.

We computed the solutions of the diophantine equations

$$
\begin{array}{ll}
x^{3}-c x y^{2}+d y^{3}=1 & 0<c \leq 30 ; 46 \leq c \leq 50 \\
x^{3}+x^{2} y-c x y^{2}+d y^{3}=1 & 0<c \leq 20 ; c=50 \\
x^{3}-a x^{2} y-6 x y^{2}+y^{3}=1 & 1 \leq a \leq 60 ; 0 \leq b \leq a
\end{array}
$$

with $|y| \leq 10^{41}$ under the condition that the disminiernaut $D_{f}$ of the polynomials are positive.

Summanizicy the observations we conjecture the following connections between cubic forms $f(x, y)$ with $D_{f}>0$ and the number of solutions $\mathrm{Nf}_{f}$ of the diophantine equation

$$
f(x, y)^{\prime}=1
$$

Sivilar comection were proved by selone (1930) and vagell (1528) for cubic forms with regotive dismimimant Ottila Pethé Kornuth Lajos University, Delecen

On Computations orm Finite fields
Denote by $F_{h}$ the ficld of $p^{p k}$ elcoments, $P_{F}=$ a prime and suppose $F_{0} \subset F_{1} \subset F_{2} c \ldots$..... PLf mups $\sim \sim$ 促 mups $F$ out. itself. Let $W_{n}$ be the kernel of $S^{m}$. When $m=p^{k}, W_{m}=F_{t}$ and in ary case, $W_{m}$ is an $m$-dimensiond linen sprces We obtoin analogues of the Fast Fouricic Traestorm and reloted algnithoms, ath $W_{m}$ plogsiy the nole of the roots of unity in the irdiung FFT. The complexity of evaludingloyp (pRqis) ${ }^{2}$ amive of degrec $N<p^{m}$ on $N_{m}$ is $N(\log N)$

David Ge Cantor $U C L A-\operatorname{los}$ Angelos, $C A$

Recognizing Primes in Random Polynomial Time
A random polynomial time algorithm for recogmzing the set of primes is presented. The techrugues used are from arithmetic algebraic geometry, algebraic number theory and analytic number theory. The proof of the efficiency of the algorithm involves the classification and counting of the curves of genus $z$ and their Jacobians over finite fields. The notion of good will number is introduced. It is proved that an for any good Weil number $\pi$ for a prime $\beta$, there exists an $F_{p}$-prinapally polarised shelian variety associated wish $\pi$, with forendomurphism ring $R \mathbb{Z}[\pi, \pi]$, (2) let $V=\{R$-ideal $I$ : $I$ is prime to $p$ and the conductor of $R$, and $I \bar{I}=\alpha R$ for some neal $\alpha\}$
$\forall I, \mathcal{G}, \exists F_{p}$ pear $A_{I}$ with ring $R$ and Fisiogenow to $A$, $\forall I, J \in V, A_{I}$ is $F_{p}$-isomorphic to $A_{J}$ iff $I$ is $R$-isomorphic to J . It is proved that any 2-dim. Epppar associated will a good Weill number $\pi$ is the canonically polarized Jacobian of an $F_{p}$-ave of genus 2 . It then follows that the number of $F_{p}$-Boom classes of $F_{p}$-aves of genus 2 assoc. with ar od Waal number $\pi$ is at least the number gabion is $p$-ism classes in $l$. It is then proved that the latter is at least $p^{4 s} /$ lag g fo some constants, for most good Weill numbers.

Leonard M. Adleman Ming-Doh Ituang

$$
u, s, c,
$$

Necessary conditions for the existence of a velative power basis in Aegebraic nuumber Fields.

We use local theory of integers to find N.C. to have $Z_{E}=Z_{F}[\theta]$ por the ungss of integers in a gabois extension $E / F$. The general chseration is th pollowing: If $H$ is any cyclic subgroup of $G$, then, for all generator $\sigma$ of $H$, the ideal $\left(\theta-\theta^{\sigma}\right) Z_{E}=d_{H}$ is independent of $\sigma$ and is known by y/er ramificatioi theory (it is a purt of a veletive different); then the
 sethifyring some stang conditiain. We deduce many exauples where these is mo power basis : The less technical one is for cistance: Let $E / Q$ be abdian of deque $n$ prime to 2 and 3 ; there there exists


Mani. Nicle \& Genges Gras
Beranam.
Small discriminants for a given permutation oroup.
let $n$ be apositive iutequ. One asks to construct antensions $E / \mathbb{Q}$ with (Wobi closmef such thet (i) GNe $(F / \$)$ is is omelnic to a given timsitive quarpe of dequeen, (ii) He pematation grong 6 is afforded hy $E 1 Q$, and $(i i i)$ Re infinite roberius is a pronibed conpugayý class of ader 1022 in $a$ We recolled some result of penulation qoups, ithelading 2-dimensioural invorionts, then dicussed vorious mephods of cuslonctim (Geouetry of noubus, closs field and kuminer theory, embeclding problens), and at last gave enamples fs dequese 8. En puliulum new besults by A. - in Bergel, 中l, olivin and nysslf wen piniven, Which parvided totbe ap to dirciminnt 5.107 of totatly rell fextic fields contraininga quadhatic fueld.

SIMATH, cie. SImix MATHemalues, is a compunk ageba systime developed at Soartricicen on a fimuns PC $H X^{+}-2$.
We give the busic ideas of the system and an overnien of the puatores of SIMATH:

* developed for \#pplications in constuctior numbte Herry
* guer System, the sourres will be amailable
* higher buel sumber theny algon thons
* wriflen in "C"
* librny of functions for use ni "C"- perymanes
* dialogue syshm SIMCALC, cie. SIMrath CALCnlater. for nitherctive porthem solving
In the neme futwe SIMATH will be avilathe also an othe computers such as SUN, Ippollo and VAX:

Markus H. Reichut Sourbruickion

SUR LA CONSTRUCTION EXPLICITE DES EXTENSIONS RELATIVES
On decrit une mithode génerale qui permet de construire explicitement tontes les extensious velatives $k / k^{\prime}$ où $k$ est un corps de nom. bres de degré et riquature fixées et dout le discriminaut est, en valeur absoluse, phis petit qu'wne constante donnce.
Cette uèthode semble bien adaptée pour le calcul de tables de corps de nombrer.
F. Diaz y Diaz
unsay

A New Bound for the first Case of Fermat's Last Thenems
We present an improvement to Gunderson's function, which gives a bound for the exponent in a possible counterexample to the frost case of Fermat's "Last Theorem "assuming that the generalised Wriferich criterion is valid for the fist $n$ prime boss. The new function mirages beyond $m=29$, unlike Gunderson's. The fist case of Fermat's "Last Theorem" has been proved for all exponents up to 156442236847241729 .

Samuel 5 Wapstoff. $T_{2}$ Purdue University
Counting points an elliptic curves over finite filth
In 1987 AOL Atkins devised a practical algorithm to court the umber of point on an elliptic curve $Y^{2}=X^{3}+A X+B$ undulo a prime $P$. His algorithm in based on con potations with the $l$-torsion point of the curve and on calculations on the urodular curves $X_{0}(l)$. for small primes $l$. It seems that Athin can count the points on elliptic curves over $\mathbb{F}_{p}$ where pin a prime upto 50 decimal digits.

Rene School

Heuristics on class groups of number fields
(joint work with J. Martinet)
We generalise the C-Lenstra heuristics to arbitrary extensions $L / K_{0}$ of number fields, galois or not, and with arbitrary base field $K_{0}$. One consequence, which is surprising but in accordance with the tables, is that quartic fields of type $S_{4}$ heave a density strictly less than 1 dumanall quartics, contrary to what is believed to be true for $S_{n}$ in general.

Henri Cohen
Talence
Polylogaritims and Special Values of Zeta Functions
The diloganethm function, defined for $|z|<1$ by $L_{2}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$ and fo $z \notin[-1, \infty)$ by analyze continuation, has many surprising propentés and often occurs in unexpected connections. For instance, it can be evaluated in delved form for 8 values of 3 , and one of these $\left(L i_{2}\left(\frac{3-\sqrt{5}}{2}\right)=\frac{\pi^{2}}{15}-\log ^{2}\left(\frac{1+\sqrt{5}}{2}\right)\right.$ played a wile in analysing the bizane claim by Ramanujan that the continued fraction ia $1-\frac{9 x}{1+\frac{q^{2}}{1-\frac{q^{2} x}{1+\frac{g^{4}}{1-}}}}$ and $\frac{9}{x+\frac{q^{4}}{x+\frac{q^{4}}{x+\frac{q^{2}}{x+\ldots}}}}(0<q, x<1)$ )
are "renly equal" are "nearly equal."

The modified function $D(z)=\operatorname{Im}\left[L i_{2}(z)+\log |z| \log (1-z)\right]$ (Bloch-Wigner function) extends (real) arvalyticilly to ll of $\mathbb{C},\{0,1\}$ and has ever nicer pope ties than $\mathrm{L}_{2}$.
Theorem. The value at $s=2$ of the Dedekind zeta-function of an arbitrary number field $F$ equals $\frac{\pi^{2\left(n-r_{2}\right)}}{\sqrt{\text { disc }(F) \mid}}$ times a rational linear combination of products $D\left(x^{(1)}\right) \ldots D\left(x^{\left(s_{2}\right)}\right.$, with $x \in F$. (Here $n=[F: Q]$ $=r_{1}+2 r_{2}$ as usual and $x^{(1)}, \overline{x^{(1)}}, \ldots, x^{\left(r_{2}\right)}, \overline{x^{\left(r_{2}\right)}}$ are the images of $x$ under the non-real embeddings $F \leftrightarrow \mathbb{C}$.) For example,

$$
C_{Q(\sqrt{-7})}(2)=\frac{4 \pi^{2}}{21 \sqrt{7}}\left[2 D\left(\frac{1+\sqrt{-7}}{2}\right)+D\left(\frac{-1+\sqrt{-7}}{4}\right)\right] .
$$

The theoven is proved waving either algebraic $K$-theory of $/ \mathrm{m}$ a slightly weaker form) the interpretation of $D(z)$ as the volume of an ideal hyperbolic tetrahedron whose four vertices have crossratio $z$ and the relation of $G_{F}(2)$ to the volume of a hyperbolic 3-manifold. We conjecture a similar formula for $C_{F}(m)$ for all integers $m \geqslant 3$, with $D(z)$ replaced by the Ramaknishnam function $D_{m}$ (a modification of the polyloyanthom $\left.L i_{m}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n m}\right)$ and $r_{2}$ replaced $l_{y} r_{1}+r_{2}$ if $m$ is oed. Thus we should have

$$
C_{Q(\sqrt{5})}(3)=\frac{32}{25 \sqrt{5}} D_{3}(1)\left[D_{3}\left(\frac{\sqrt{5}-1}{2}\right)-D_{3}\left(\frac{1-\sqrt{5}}{2}\right)+\frac{1}{3} D_{3}(2-\sqrt{5})-\frac{1}{3} D_{3}(\sqrt{5}-2)\right]
$$

with $\quad D_{3}(x)=L i_{3}(x)-\log |x| L_{2}(x)-\frac{1}{2} \log ^{2}|x| \log (1-x)+\frac{1}{12} \log ^{3}|x| \quad(0<x<1)$.

Principal factors in pure cubic fields.
(joint wok Lith K.D. Mayer)
Let $K=\mathbb{Q}(\sqrt[3]{D})$, an integral $\alpha \in K$ is called a principal factor (p.f.), if $\alpha$ is primitive and ( $\alpha$ ) consists only of totally ramified primes. Various congruence conditions which are necessary for the existence of a p.f. and the connection with class numbers are discussed. If $K$ has p.f. thee at most 2 of its primitive priappl factors are minima in the geometric sense. Criteria for a p.f. to be a minimum are given and a statistics for $D \subseteq 15000$ is presented.
F. Halter-Kode, Graz

Some remarks concerning the computation of the class number of a real quadric field
Let $D \in \mathbb{Z}^{>0}$ be square free and let $K=Q(\sqrt{D})$ be the quadratic Field formed by disjoining $\sqrt{D}$ to the rationals $Q$. We describe several different methods of computing
the $c$ lass number $h$ of $K$. The best of these methods which are unconditional will determine $h$ in $O\left(D^{1 / 2+c}\right)$ elementary operations, whereas the best known Complexity result fo computing $h$ condit tonal on the truck of the Riemann (Hypothesis on $j_{K}$ is $O\left(D^{1 / 5+c}\right)$. We further discus some engescall computations that hove keen carried out by ubliziny these teetnigus and Donate generalizatins to arbitrary alqebrait number fields. Finally, it is painted out that under suitable Riemann Hypotheses the problem of evaluating $h$ and the regulator of $K$ is in complexity class NP?

Pugh Utbís v, Wiunipy
In my talk 3 presented the number theory package developped in Düsseldorf. There are move than 200 subroutines written in stander FORTRAN 77. The main algebraic topics implemented until now are: integral bares, algebraic integer arithmetic, ideal arithmetic, units (independent and fundamental), norm equations and class groups.

It. Chiüte Dusseldorf

Neue Resultak aus der Kourknktiven Galorstheone Unter Veverudeung der bekannks Ratimalitaiskriterirs Dir Greboremeritenengeq Csiche z.B. L.N.M. 1284) kounten neuerdings di Gmppes PSp (p) fir $p \equiv \pm 2 \bmod 5(n \neq 2)$ von R. Dentaer (Berlin), dii Gmpper PSU3 (p) dir $p=-1$ mod 4 ven R. Naukeim (Kactruse) und G. Malle (Belin), dii Gmeppes $F_{4}(p)$ fir $p \equiv \pm 2, \pm 6 \bmod 13(p \geqslant 15)$ ven $G$. Malle sourie dii sporadisses Gmppes $J_{3}, J_{y}, M c, R u, L y$ von $H_{1}$. Paklings (Aacher) als Galaigmppes regulairer Köpenemeitenengea ciber $Q(t)$ marjecsiesea correda. Expenimente mit den neues Bopfoasmakiviticn fihbtes fermer ensmaly en Darskellenges der Gmppes $D L_{2}\left(p^{2}\right)$ fir $p=5$ und $p=7$ scecrianc Matileugimppe $\mathrm{M}_{24}$ als Galoisgmppen negutiver Kïperevoiderengea ciber Q $Q(t)$.
J.W. Matzal ( tu berlia)

Improvements in Proudity Testing.
Reporting on jount work with M.P. lan der thulst, it was shown how theorectical simplifications of the Cohen-Lenstra version of the promality tert devised by Alleman, Pomerance and Rumely lead to practical impravements in the algorithm, currently being inplemented in Berkedey/Austerdam. In particular it a now possible to incorporate Luces-lehmer type tests (utiliang known facters of $n^{u}-1$, for swall valuer of $u$-as done by Willams) into the generd purpore Jacobisam primelity tert. Other improvements include the posisibility to work in swaller rings than in the Cohen-Lenitra version and the poisibility of combinung the necessary (but expensive) paserings of Jacobisums for several different characters.

Wieb Bosma (Bcikeley/Amsterdam).

An Overview of Canfutational grauf Theary.
The furpose of this talk was to intraduce the audience to some of the algoritims that have been develafed for camfutations wit graufs. Over the fast twenty years guite fawerful algoritims have been atevelafed for warking soluble graufs, matrese graufs due flnite fulds, tufresentation theary and colhamalagy of graufs. The talk maibly eaneerned itsedf Wraut algoritimes. After introduenig the graup algoritines. After introdueing the generating set (BSES) it was observeld that, Generall fermutation grouf al goritims foll Unto thre elasses: (1) Wose that directly defend ufon the ability to comfute a BSES (e.g. stablzer of a squence, normal elesure); (zy) iose that ulitize a backtrach search over base images (eg set stabilyer, centralyer) and (3) Thase iffat emplay flamamarfhism methods (e.g \& ylow $\uparrow$-subgraup). It was observed that we naw have techineques which enable us to ditain BSES s for granfo of degree if to $50,000.7$ inally, Ettentioni was dbawn to the impartant ralle' flayed by frababilistie. alg orithms.
fohn Cannon

Some Polynomials Associated with Pollards' "Rho" method
Define polynomial $t_{i}, i=0,1, \ldots$ by $f_{0}=x, t_{i}=f_{i-1}^{2}+y$. We how that $f_{i}-t_{j}$ factors in $\mathbb{Z}[x, y]$ into assowtely inedible polynomials. By associating a unique ci ( a factor of $f_{i}-f_{j}$ ) with each pair icj we find that for tixcl is, $p \rightarrow \infty$
$\operatorname{Pr}\left[\exists\right.$ distinct $i, j<k$ with $t_{i}(x, y) \equiv f_{j}(x, y)$ mod $\left.p\right]$

$$
=\binom{k}{2} / p+o\left(1 / p^{3 / 2}\right)
$$

when $x$ and $y$ are hotien at sundew them $\mathbb{Z} / p \mathbb{Z}$. If $p$ is the smallest prime divisor of a composite number $n$, then the heuristic assumption thar $p_{i j}=0$ is a "random wore" implies that the least in for which, gad $\left(f_{2 i+1}-f_{i}, n\right) \neq 1, n$ hes expected awe $\sqrt{\pi_{2}} \cdot T_{p}$; anubis this was found by pollard using a dillerent heuristic argument.

Eric Bach Madison, WI USA

On the construction of large amicable cumbers
The talk reports on the discovery of 526-diaph pair of amicable numbers made by H. Writhaus (Dortmund). The idle behind the construction is a new type of Thakit-rules (fallownig W. Barter (1972)). It provides sufficient conditions for tho numbers of the type

$$
m_{1}=g \cdot p^{m} \cdot \prod_{1}^{k} r_{i} \cdot\left(h_{1} p^{n}-1\right), M_{2}=q \cdot p^{n} \cdot c\left(h_{2} \cdot p^{n}-1\right)
$$ to be amicable.

£. Becker (Dortucud)

154
ALGEB - A COMPTER ALGEBRA LANGURGE
THE ALGEB LANGUBGE IS AN RLGOL DERIVATIVG DESIGNED SPECIFICRLLC TO FRCILITATE THE EXPRESSION OF THE ZASSENHBUS ROUNA 4 MINXMBL GROER ALGORITHIM. IT IS GENERBLLY APPLICBBLE TO COMPUTBTIONS IN RLGEBRA BND RLGEBRBIC NUMBER THEORY; IT IS PARTICULBRLO WELL-SUITED FOR COMPUTING IN FIWITE-DIMENSIONBL Q M BLGEBRBS. ALGEB HAS NOW HAS THREE IMPLEMENTBTIONS:

1971: POP-11
1986: VAX VMS (NATIVE MODE; VIRTURL MEMORT)
THE VAX BND IBM-PC VERSIONS RRE AVAILBBLE BT NO COST FROM THE RUTBOR.

Dhvid tord
CONCOROIA UNIVERSITT
MONTRERL QUEBEC
CPNDDA H3G $1 M 8$
Unramified extensions of fields containg many roots of unity.

This talk reported on the followins theorm (and generalizations): Suppose $L=K(3 n)$ and all the prime divisors of $n$ split completely in $K$. Then the ray class field of $K$ wint conductor $n \cdot \infty, \ldots \infty_{s}$ is an unlam, fied extension of $k\left(\xi_{n}\right)$

GARY CORNELL

The PARI libray
The PARI lihwory, decignet fy and M. Olivier in Bordeaux, and D. Bewandi in Paris, is a pechage vuniing on mectines writh a 68020 processor (presently SUN/3 ens Trainlosh 11 ). It concirls in Ircore (mare than 6000 lines of assenbly longnayy) implementing the fasic quation on unlinited integes and flocting point numbers with arbitiary precicion. II A lilrary, written in C, which give aceess to these basis types: intagens vodelo ossother ane, fraccionnd numbers (reduced or not), p-adic, complex, quabratic numbers, poly-- momisls, power series, vector, matrices, polynomisls nodulo andher, rationd functions (redected on not). The lost types are recursine. Afew fundomechal orithmetic funtions and many (red) homeudentel ones are implemeited. Ne plan to colde unre aud also p-adic transe. Juuclions. One can use the litrory from a Cor pescal program. One can also use a so.called "super-caluelutor" to use interoctirely the package.

Computing Gelois gromp
For detaies see page 132. Is Goll $f_{n}(x)$ the sylu 2 -gropp $1^{\text {the }}$
 $n \leqslant 5 \times 10^{7}$ (Cremona \& O doni, Exeter U.).

Hecke operetios on temary quadratic lorms:
The action of be Hecke dsebra in form $\&$ weist 2 on FolN) tas comidersble inpotance, ad has bea compurked in mary ways - une can comide the
 or (i the rave el Oestelle $\ell$ Meatre) on the fee modile on the set ol impesigita elestic anves e damactintic $N$. Thi lost repleseatatiin is single, tatend, and ves rapid to colalde - but \& some arly whes wher $N$ is pmise. In the talk, it was rigerted bokve should wrider a Hecke action on the heemodule on the set il ednced tenrayy quadratic form of determinat 2 N ; tristoffo this seem to te encride the sare, but
 riened as equivecx b be ochie $\&$ the rerectos tpt on form il weist $3 / 2$ ).

Congruent numbers and elliptic curves. A one parameter family of elliptic curves each of position rank and its application to the congruent number problem is discussed.

Jasbirs Chahal
Math Dept, B.Y.V,
Proor, UTAH 84602
U.S.A.

Algorithms in algebraic number theory and their complexity

We discuss the algorithms for computing maximal order, unit - and class group of an algebraic number fred F implemented in the Disselolorf library for compotational algebraic number theory.
we mention the Round 2 algor thin of Ford and zasnewhours, its analysis by Hendrick Lemstra which shows that it is polynomial time if and only if largest square factors of integers can be computed in polynomial time.
We describe methods of Polit, zasseuhans and the author for unit computation and we mention that a system of units can be computed in time $O\left(R D^{\varepsilon}\right)$, $R$ being the regulator and $D$ the dis criminant of $F$. The also discuss the infrastructure iden of shanks and its
gineraliztion to arbitrary filds by the author. Frially we study the recent work of Lustra, Polist and the authar on the analysis of the class group algorithm.

Fhamues Budimenn
On arn commulative anithmuties I
The constructive trectrment of $\mathbb{Z}$-drders 1 isth smuple contral quatient afubra $A$ in discerred - The foint task is the cmbeldeng of the armuitation onder $\Lambda_{0}=C(A) \cap 1$ into the mavimel orden $C(I X, C(A)$ of the cunter $A_{0}=C(A)$ of $A$. It rifficier to deel with the are that $\Lambda_{0}=\mathbb{Z}[t] / f(t) \mathbb{Z}[t)=1(f \mid \mathbb{Z})=\sum_{i=0}^{n=1} \mathbb{Z} \xi^{i} \quad(s=t / f(t) \mathbb{Z}(t)$ ci the quithin onder of the manic separible polynowical $f(t)=t^{2}+a, t^{2 \pi-1}+a_{2}$ over $\mathbb{Z}$. Raind 5 of the masiunel onden programme is motrictel by the desin singested by the wark of the Sarbricken graup ( Zimmer, Böffeu et al.), X. Ford. Lewstra and buchsuenm to postpone feitoritation es long es prrible. As a remele the seav are aleorittmen producer an vevorder 1 , of $x_{0}$ that in prevido-Eisenstion over separable. The maximinl mber is oblamid after nicteble fadoriotion aul spuretesting of $d(f)$.

The second terk in the itteblisument of an efficient olloulus in $A$. The new matris alculus (bard on brabing thary aud a crrmel protuct anstridtin) attecker to eede olennent a of $A$ Cirthin giocu pricivion boivudrl an el-t of N en luowninetor and $m$ retisinal intyen orvecter es icdices (dim $A / C C A)=14$. H producen aforittew for fiviniy the indcies of $a \pm b, a b(a, b \in A)$, xceding $O\left(\mathrm{ma}^{2}\right)$ steps for eachoferelion. Hens Zessenhaus

ORDERS AND THEIR APPLICATIONS

- ill memory of Irving Reive ( $29,5,-4,6,1988$ )

Representation Rings
Given a finite group $G$ and an algebraically closed find $k$ one constructs a conimutative ring $a(k G)$, whose additive group is generated by symbols $[V]$, one for each isomorphism clans of (left, finitely-generated) $k G$-modules $V$; subject to defining relations $[V]=\left[V^{\prime}\right]+\left[v^{\prime \prime}\right]$ whenever $V, V^{\prime}, v^{\prime \prime}$ are $k G$ - modules such that $V \approx V^{\prime} 巴 V^{\prime \prime}$. Multifelicalion $m a(k G)$ is given by $[v\rangle\left[v^{\prime}\right]=\left\{V \& v^{\prime}\right]$ $\left(V \otimes V^{\prime}:=V \otimes_{h} V^{\prime}\right.$, $G$ acts 'diagmally' $\left.g\left(v \otimes v^{\prime}\right)=g v \& g v^{\prime}\right)$. One defines similarly a 'representation sing' $a(R G)$ formed of $R G$-lattices $V$, where $R$ is a suitable local coefficient domain.

Early in the study of these rings arose the question: does $a(k G)[a, a(R G)]$ contain/nilmptent clements? When a Sylow p-subgroup $G_{p}$ of $G$ is cyclic ( $p=$ chari) there are no such celemem $\frac{i(k)}{} /$, , but during 1965-1973 Irving Reiner \& his pupils produced numerous examples o) nilpotent clements in $a(R G) \& a(k G)$, for $G$ sataifying various conditions. From this work (particularly that of Reciner's student J. Zemanek) it is known that (now-zers) niefotant elements exit in $a(k G)$ in following cases: (1) $p$ odd \& $a_{p}$ not cyclic, and (2) $p$ wen \& $G_{2}$ has sibyl $D_{8}, Q_{8}^{0 r}, C_{4} \times C_{2}$. The question seems to $b$ b still open ai case $(p=2) \quad G=C_{2} \times C_{2} \times C_{2}$.
Q. A. Green

University of Warwick

The Mathematics of Irung Repiner
The published works of Professor Denier (1924-1986) appeared between 1943 and 1987; there were a round one hindral including books and survey articles. We survey his work on number theory, integral representation theory, classical groups, algebraic $k$-theory and analytic noncommutative number theory.

Williain H. Gestapo
Lubbock, Texas
The Representation Ring of a Group of Prmie Order
We compute the indecomposable $\mathbb{Z} G$-lattices, where $|G|$ is prime, using a method that avoids most matrix manipulations. The invariants determining the isomorphism class of a lattice are determined. From this, the structure of the representation ring $a(\mathbb{Z} G)$ is easily computed.

Wilham IV. Gustation Lubbock, Texas

Uniqueness of Presentations of Module
If $\lambda$ is a ring and $f: P \rightarrow U$ a presentation of the finitely generated -module by a finitely generated -module $P$ (which is projective) we say $u$ is uniquely presented by $P$ if any other preractation $g: P \rightarrow 4$ is equivalent to $f=P \rightarrow U$. As a first step in studying the collection of equivalence clncues
of presentations over orders, we consider the cure A a maximal order. We prove:

Theorem (Guralnidglevy, 1985) If $f: P \rightarrow U$ is a presentation over a maximal order $\wedge$ and either the (uniform) raul of ker is $\geqslant 2$ or $\Lambda$ satisfies the ETcher condition (if $\Lambda$ is a $\mathbb{Z}$-order), then $P$ uniquely represents $U$.

Odenthe his extended this to hereditary orders This con be translated ts a statement about equivalence classes of matrices and yields a solution to Nakayama's problem
Theorem (Guralnide, Levy, Odenthal) If $\Lambda$ is a (noncommetative) PID, $A, B \quad m \times n$ matrices over 1 , then for raul $A=2 \quad A$ and $B$ are equivalent $\Leftrightarrow \quad$ cokes $A \cong$ cover $B$
If $\Lambda$ is a $\mathbb{Z}$-order, then the rank 2 condition can be dropped $\Leftrightarrow \wedge$ satisfies the Eichler condition

Robert M. Guralnick Los Angeles, CA, USA

On orders and multiple pullbacks
To every semrimimple order 1 there is associated a canonical overorder $\tilde{\wedge}$ which can be character iced as the unique inininul overoroder of 1 which is a umeliple pullback. Some basic properties of $\tilde{\lambda}$ are established; the question is heated cohen $\Lambda=\tilde{\Lambda}$.

G-oup rings of p-graups over fields of charactwistic $p$
yn connution with the modula- iso-mphism proble-, the following guestion is of interest: Let $v$ be a set of wards, $G$ a finite $y$-graep and $\Delta G$ the angmintation ideal of $\mathbb{F}_{r} G$. Under vhat conditions does $V(1+\Delta G) \cap G=V(G)$ hold? This question will be ansvered for various retes $v$ of words -anong othes. those rets $V_{i}$, which dete-nine the modulan di-cwsion subgroups series - by using the folloving Th_.: For $\quad \mathrm{H} G: \oplus \mathrm{r}_{n}(G) / m_{n+1}(G), n_{n}(G)$ the $n-$-h modular di-c.asion subyroup of 6 and analogouily $\mathrm{gr}(1+\Delta G)$, one has gr $(1+\theta G) \cong \operatorname{gr} G \oplus C$, where $C$ is a Lie-p-alyebracilcal. This The is of interest in its own right, since it shous that an abject closely relatad to $G$ admits always a corplement in an olject close to the gmany of nornaliad units of $\mathrm{F} G$.

I R R-all
Tuscaloosa, ILla, USA

Braver Invariauce II
Frur years ago the specter (jinintly inth Sulorshau K. Solugel, Surinder K. Selyal defrued Braier innariance of a fincegroup G as the properly thet ivry antomorphisar of $\$ 6$ can be comperad from an automerphiam of $G$ aud an inuer auboursphisun of 26 . It must be ditinguisued from Hignen iovariawe of ee demanaling that $\mathbb{Z} G=\mathbb{Z} H$ impher $G \simeq H$. Thy reported on pirtid results about the Braver inraviduce of solveblegroxps with all Sylonsubgroufer olemeitang abeliar. Noot it is prod that all group 6 with noly ablien Gbbor subgraup ene Braner-Higman miranont.

Mon yenerelly, if $G=1 \times B, A$ in the abelian $p$-Sylow nebgroup of $G$, B is Bramer-Higman uveriant then $G$ is Braver-Aigman morri ant. After reductane thet wex preciruly explaineh, the prorf in rducub to thitesk of showing that eong autourvplusin $\alpha$ of the groupring $R G$ ver $R=\frac{\mathbb{Z}}{\mathbb{Z} \backslash \mathbb{Z}}$. That mexly pervicter
the 6-anjugary clan sums and thet leares B clumutarin fixed, can be modified by a suntable autommplisen of $G$ orer $B$ to an inues anitoms plimn of $2 G$.

A decirire torl is the "epidennics lermma" stating that $\alpha$ is inmer if $\alpha$ fives the $G$-ningugary chan rimm for the clemaits of $a$ syitem of $G$-minariont dincet comprouts of $A$.

Ham Zarrenhaus
Columbus, Ohiv, USA

Some mew invarionts for blocks
Let $G$ be a finte grap, $2_{p}$ the $p$-adic integers. Li 1986 , Scatt asked whether the defect groyp $\delta(B)$ of a $p$ - Hock $B$ of $Z_{p} G$ is deternined up to congigation and "uomalisation" by the block, nidelpendenthy of the group $G$; weakening this, Aepens asked wheth at least the isomorplisen type of $\delta(B)$ is detrumined by $B$.
Using some new colomological invaiant, we can give a contibution to this question even for more genemel corfficient nings $A$ sud es complete discertevaluation ungs. Th residue fild of chractivistic $p$, or even fiedo of dovacturistic $p$. For certain classes of $p$-gmps $\rangle$, vicluding in purticuler abilion p-gromps, the ivaviants for $A D$ and for bocks B of $A G$ with $B$ as a elfict grops coicioide. In the ablean cese, the ivariants for AD dutermine the isomorphism type of $D$. Thes, if ve know in advance that the defect grop is alchian, we can deternine its isomophisom type from the block.
The invaiants are abo uned to give an improvement of Green's lower bound on the p-part in the renk of an AG-module.
Chistu Besovodt - Tru hat
universitat Essen

Construction of units of integral group rings of finite nilpopat grays I, II
2. Ritter and S. K. Sehgal
 of the nitegral group ring $\mathbb{Z} 6$ for mipootat groups 6 , were presaged yt a finite widex. An out line of the proof wees given. To state the theorem, same notation is required.
write $|G|=x, \varphi(x)=m$. Lot $a \in G, O(a)=d$. Choose $(i, d)=1$. Then $u=\left(1+a+\cdots+a^{i-1}\right)^{m}+\frac{1-i^{m}}{d} \hat{a}, \quad \hat{a}=1+a+\cdots+a^{d-1}$
is a unit as can be sem bs projecting to the wedebrbum Conplowarits of $Q\langle a\rangle$. The units above obtained lo varymig $a \in G$ and $i$ relatively prineto $d$, we shall call the Bass Cyclic units of $\mathbb{Z} 6$. We dense of B, the group gmentat by the. A theron of $H$. Bass says tut if $G$ is alichian then $(u \backsim G: B)<\infty$. The Bars cychi mints are not enough to garente $U \mathbb{Z}$, pt finite made, of $G$ is non ablation as can ce reaming taking $G=S_{3}$. We intro dree now units.
For $a, b \in G, \quad u_{a, b}=1+(a-1) b \hat{a}$ is a mit wite $u_{a, b}^{-1}=1-a y b a$. we call the units $k_{a, b}$ obtained by varying $a, L \in G$, the Biagediunits of $\mathbb{Z} G$ and dante by $B_{2}$ the group garroted $\operatorname{ly}$ them. Furthers, lot $B=\left\langle B_{1}, B_{2}\right\rangle$. Than our result is
Theoxm let $G$ be a nilpotent group such tot
$\mathbb{Q} G=\sum^{Q}\left(k_{i}\right)_{n_{i} \cdot x_{i}} . \quad k_{i}$ fields.
Further, suppose tet if $x_{c}=2$ them $k_{i} \neq Q$ or $Q(i)$. Them $(U \boxtimes G: B)<\infty$
The proof mes the Congunens silenof thrones of Bas-Miluor-Seore, fere and vassestecin. Cheerly, the theron apple of ell milpotet rooppof odd order. The restrictive on the sylrow 2-melymf of $C$ so gamine is sunny the following:
Example. Let $G=\left\langle a^{4}=1=b^{4}, a^{b}=a^{-1}\right\rangle$. Then

$$
(u \mathbb{Z} G: b)=\infty .
$$

We must look for more units in this car.

On a conjecture of Zassenhaus on finite group rings
Zassenhaus had conjectured that, whenever $\mathbb{Z} G=\mathbb{Z} H$ as rings with augmentation, for finite groups $G$ and $H$, then $G$ is conjugate to H by a unit of QG. The author, in collaboration with Klaus Roggenkamp, has found many positive answers to this conjecture, including all $G$ with a normal $p$. subgroup containing its centralizer. However, we believe we have row found a counterexample to the general con jectave. The group in question has order $26.3: 5$ and contains an abelian normal subgroup $C_{2} \times C_{2} \times C_{3} \times c_{3} \times C_{5}$ with quotient $c_{2} \times c_{2} x c_{2} \times c_{2}$. The central (class preserving) automorphisms of its quotients are plentiful and ill-behaved. This enables eventually the construction of unusual central autorpussins of quotientonders of $\mathbb{Z}_{\pi} G$ in the semilocal case $(\pi=\{2,3,5\})$. Passage to the global situation is facillitated by specifically looklig at units giving rise to class group obstructions

Details in the semilcal case have now been thoroughly check ked, and it is anticipated to complete similar checking of the global case in the very near fatave.

Leman forty
Charlottesville.
Some Auslander orders of finite lattice type Let $R$ be a complete deetehind domain, and let $r$ be a convected $R$-order of finite lattice typo. Let $\mathcal{O}(\Lambda)$ be the stusbunder order of 1. If $A(\Lambda)$ inagaii of finite lattice type, then denote by $A^{2}(\Lambda)$ the Auslander order of $A(I)$, et. Le give sour mores to the following questions of $M$. Anbouder:
Q.1: When exists $A^{i}(\Lambda)$ for all $i \in \mathbb{N}$ ?
Q.2: Where is $\mathcal{A}(\Lambda)$ again of finite lattice type?

The fact that Q. 1 has a positive aunver for on antic algether A if and only if $A$ is semisimple grues the follaring ans er $t_{0}$
Q. 1 enentially due to C. Munwe:

Theorem 1: For $\Lambda$ all $A^{\prime}(\Lambda)$ exist iff $\Lambda$ is a Bickstion, order with associated graph $G(\Lambda)$ a disjoint unim of Dyskiin diagramen of typen $A_{2}, A_{3}, B_{2}$ and $\mathbb{C}_{2}$.
To Q. 2 se liave answes in special rituations:
Theorem 2: If $\Lambda$ is generalized Bockstrion sith associated graph $G(\Lambda)$, then $A(\Lambda)$ in of fivite lattice type iff $G(\Lambda)$ in a dingoint unin of graphes of the form:

where " $\longrightarrow$ "stands for " $\rightarrow \rightarrow \cdots \cdot \rightarrow$ ", and the arms is bracket porvibly can be omitted.
The knnoledge of the Anslunder Reites quiven of the lozal orden of ficite lattice type allas italso to anscer Q. 2 for 1 loval. Shuttgart

Some finteness results in the higher K-theory of orders and groyp-rings

Let $R$ be the ring of witegers in a number fied $F, \Lambda$ any $R$-order in a senvismyle algebra $\sum$. It is well-unom thet $K_{0}(n), K_{1}(\Lambda)$ $G_{0}(\Lambda), G_{1}(\Lambda)$ are fintely genirated Abehan gromps and thet $S K_{0}(\Lambda), S K_{1}(\Lambda), S G_{0}(\Lambda), S G_{i}(n)$ are finte gromps. Questhois abont such finteries resiles for higher. $K$-gromps hare been open for some tnne: In this lecture, we ainswer chese queskions protively as follows.
Thearen I. For all $n \geq 1$.
lacha
(i) $K_{n}(A)$ is a fintely yererted Aschen gray (ii) $S K_{n}(\Lambda)$ is a fute gromp.

166
(iii) If $P$ is a prine coleal of $R, \hat{\Lambda}_{P}$ the complition of $\Lambda$ ut $\perp$, then $S K_{1}\left(\hat{\Lambda}_{P}\right)$ is a fute group.

We also hare simber results for $G_{n}$
Therven II: $\forall n \geq 1$.
(i) $\operatorname{G}$ In ( $\cap$ ) is a fintely goner ted Aselimi group

$$
\begin{aligned}
& \text { (ii) } S G_{2 n}(\Lambda)=S G_{2 n}\left(\Lambda_{R}\right)=S G_{2 n}\left(\hat{\Lambda}_{R}\right)=0 \text {. } \\
& S G_{2 n+1}(\Lambda) \text { is fute } S G_{2 n+1}\left(\hat{\Lambda}_{R}\right) S G_{2 m+1}\left(n_{p}\right) \text { are finte }
\end{aligned}
$$

gramps of ader reletully prore tite prome ply iy below P.
Them IV. Let $\pi$ be a finte group. The
$G_{4 n+3}(\mathbb{Z} \pi), G_{4 n+3}\left(\mathbb{Z}_{p} \pi\right)$ and
$K_{4 n+3}\left(\mathbb{Z}_{\pi}\right)$ are funte groupr.
R Kuku
Remi Moadan

Resolutions of penidic dattices.
Let A be a penodic laticic ove RG (G. finite group). Thin meaus Ext IVG $_{n+q}^{n+}\left(A_{-}^{-}\right)$ in natually equivalent to Ext $\frac{n}{T G}(A,-)$ for all $n \geqslant 1$ The minimiom such $q$ is the projective perind of $A$.

1) A has penid $q$ of $A$ has a pigectuve secolution of perid $q$; $A$ alvo has a penidic pee revolution of peind some multipie ofte pos. penid. What in the relatim betereen the free aud majective periods?
2) Two minimial projective renolutions itt th same tauk seq uences are intte same gemis as awemented conflexes ower $A$.

This faich for minimal fue recrlutions and, moserver, a periodic A need hot have a poñolic minineal pue reiolutioiz. Havever, if $2 G$ allow cancellation, all mininal free recrulition his in ore gevers; and if RG in nt a summand of the periodic $A$, then A ter a perislic miminal fee recolutisi.
3) For given $A$, we may define a sequence $\sigma_{n}(A)$ of misinaints of $A$ : these are -lements in $V$ anous factor groups of the pirgective clan guops of $\mathbb{Z} G$. They geverabire the Scuan obstuction for $\mathbb{Z}$ of projective peniod $q$ : $\sigma_{1-1}(Z)=0$ iff $q$ is aho a foe peñod. We showthat if $A$ ha, pojechive peind $q$, then $q$ is essentitly aho a fre peind iff $\sigma_{q_{1}}(A)=0$.

Kail Grueublen,
QMC, Loxden.
Factornubelity and Falver Modules
I a funde group, $A$ an Senliengrap:
$B_{\Gamma}=$ Burnside thy, $R_{T}(Q)$ ratumal dowotererg,
A memamapirsm $B_{r} \rightarrow A$ is fatonalele of if factarstenangh $B_{r} \rightarrow R_{T}(Q)$. Ausemedie aboumsh on factorsuble map, ocp. Docheond zetan. Thas is med to guin information an falasmolules (addertru, and multiperaters). If leach for as new equrualun relatiem $X_{\wedge} Y$ an TCT-laptses weake them belangiog to the same fenos. Ex. If $\Gamma=6$ cenl $(N / K)$ (number frelon), $\omega_{N}$, $v_{n}$ ter may of monlegen, then $\mathrm{N}_{N} \wedge \mathrm{M}_{n}$ T.

Coken-Macaulay appeox an'abin.
It $R$ bea cmples bral Coben Macaulay enizwhich is a firibily geurated moshaleme a requla lral ruig.
Theafor eode R-merdule $C$ then exicte a uni que (cypto comioplurii) exastrequence, colled a Goben Macouelay appuoxcinabun' of $C, 0 \rightarrow Y_{C} \rightarrow X_{C} \rightarrow C \rightarrow O$ baving the follouring popertei: a) $X_{C}$ is Crher-thacaulay, to Cras finite njectwe duniviem \& Xe has wo nidecupporstle (Jouit unkwitx Bruluveit) summade creturied in TV. The lecture war maviely devofed to showsing vaceois innequences of the exisbence aut papputies f thus sequencer in luding a way of coupsting the nueltyplicit of hyperenfaces.

Ae Anslandes
Braideir Cluvirity

Coher Macaulyy sess f wevavart medules Ifis a rejula domain (char reno) and $G$ sia veducher alch hai poup acksor $k$ the che famous Hochste Robint seeves that $R^{6}$ i Cohe Macaulay. Herwevs if $M$ si a hee M morlule with $c$ acher then $M M_{i}$ not neessauly C.M. In (he tall we gue a cullewon ure whil this holels. As applecales fa $S L_{2}(L)$ is givs. In parhculas we reeoves L. Lehuyn' s cesult that the have $x_{i j}$ of generie $2 \times 2$ mathes i C.m

Muchel Var des Beyl Univ of Aituresp (VIA) 2610 bienge Belyin.

Integral Group Rings of Groups of Square-free Order
For finite group $G$, the integral group ring $\mathbb{Z G}$ is of finite representation type if and only if $G$ is of cube-free order with oxclic Sylow subgroups. For such groups we seek a usable description of the indecomposable $\mathbb{Z}$-lattices.

In the case where $G$ is of square free order, we have such a description of the genera of indecomposable $\mathbb{Z G}$ lattices. As an example of how we might apply this description, we have the following theorem.
Theorem: If $G$ is of square-free order, then $\mathbb{Z} G$ has the property that every indecomposable left ZG-lattice is isomorphic to a left ideal of $\mathbb{Z G}$ if and only if $G$ has one of the following forms:
(1) abelian
(2) dihedral
(3) $P \rtimes H$, where $|I|$ is prime and $H$ acts faithfully on $P$ by conjugation.

Leeklingler
Boca Ration, Florida

Some tame curve singularities
Let $C$ be an sffine-agetraic complex curve, with singular point $O \in C$, Let $\Lambda=\hat{\sigma}_{c}$. Se the complete local ring of $(c, 0)$, and denote toy lat $\Lambda$ the oatgany of $\Lambda$-latices. We consider the problem of cherecturiting there cure singulasties $\Lambda$ for which lot $\Lambda$ is tame, and the problem of -herestrivining giving a compete clasuffication for lat 1 in case $\Lambda$ is tame. These question are awnsened for a special cases $C$ of canoe singelantios, namely for those which here 4 branches and whose conductor
contains the redical squared of the normalizetion.
Theorem. C consists of $16+1 \cdot \infty$ acuatitical ismoppistom danves of curve singulastics. Among these, 10 are wisd and $6+1.00$ are tame. Amry the tame onas, 3 are domeotic, the infinis famity is non-domostic of finte groath (tubular of tubules typer $(2,2,2,2))$, and 3 have simfinite growth.

Ernot Dicturch Mnivaridat Zünch
Zürch
Hall subtyroups, isomerp aic mifegral group sicys and a quertion of R. Bracer

Let $G$ be a firite group, and IVG be its ritegral group sing.
Theorem1. (jt.work with R. Saudling) Z्G determines hacuiltocrian Holl sabgroups of $G$ up to siomorplisime.
Theorem 2. The dearacter table of $G$ deleranices abliciae Sylow sulgroups up to isocuorplisce.
The proof of both theorems is based on the earlier vesult that IG deter winnes the dief senies of G (jount poper-aith R.L your and R. Soud ling). Theorem 2 aaswers an old question of R.Bracso (heps of fia groups, Lectures oa curdem weath, VoeI., pp. $135-175$, problemit2, 1963) positively. The dief senies rernat holds evea with respect to disracher tables. All rosults are proved cuaking use of the classification of the fivite sicuple groeps.
bolfang kimmeile Universitat Statyant

Rationality problem for the 8-subspoce moblem.
We want to study rationality of the quotient vomitien:

$$
X_{a}=\sum_{i=1}^{r} \operatorname{Gran}\left(a_{i}, a_{0}\right)^{s 1} / \operatorname{SL}\left(a_{0}\right)
$$

in the case that one has stable posits.
A special case of a joint result with A.H. Schopitol asserts that the functionfield is stably equivalent to the rational invariants of $n \times n$ matrices where $n=\operatorname{qcd}\left(a_{0}, a_{1,}, a_{2 z}\right)$. In thin way we obtain (1): $\operatorname{Br}\left(\tilde{x}_{a}\right)=1$; (2) $x_{g}$ is retract rational of $n$ is squarer and (3) $X_{a}$ is stably rational if $n \leqslant 4$.
leven le brume, Dpt. Mathematics univensty of Antwerp U.I.A.

On thikelleye modules for group sups.
For a finite groups $G$, $Q$-bilinear map $\angle, \forall Q R_{G} \times G G \rightarrow Q$ (where $Q R_{G}$ is tho $Q$-span of tho virtual character ing $R_{G}$ ) is defined as follows. For $\alpha \in G$ and a character $x$ of degree one, $\langle x, 2\rangle$ is defied by $0 \leq\langle x, 2\rangle\left\langle 1\right.$ and $x(2)=e^{2 n i\langle x, 2\rangle}$. For an arbitrary character $x$, res $a, x\rangle$ is a sum of eleque-one-characters of $\langle\mathcal{A}\rangle$ and we put $\langle X, R\rangle=\left\langle\operatorname{res}_{\langle\rightarrow\rangle} x_{1}, R\right\rangle$. A stibelberges map $\omega_{G}: R_{G}>(G G)$ (center of $\left.G G\right)$ is elifinied by $\theta_{G}(x)=\sum_{s \in G}\langle x, 2\rangle s$, and a stikilberges module $S_{G}=\mathbb{Z} G \cap Q_{G}\left(R_{G}\right)$. Among numerous relations between $S_{G}$ and the class group $\mathrm{Cl}(\mathbb{Z} G)$, we can show $\left[e(Q G)^{-}: S_{G}^{-}\right]=$ $=1 e l(\mathbb{Z} G)^{-1}$ when $G$ is abekion of type $\left(p, \ldots, p^{n}\right)$ or non-abelian of order $p^{3}$ (pan odd prime). (The minus" pants are with respect to the canonical involution $2 \longmapsto 2^{-1}$ of $G_{\text {. }}$ )

Leos Mn Color Chtana, Ilhivis
$\qquad$

Non-uniqueness of Presentations of Modules
(This is joint world with R. Guralnick, and is a continuation of the work described on p.p. 159-160)

Let $f: P \rightarrow U$ be a presentation of a $\Lambda$-module, where $\Lambda$ is either global order or the coordinate ring of an affine curve. What can be said when $\Lambda$ is not a maximal order? There can be many non-equivalent presentations of $U$ by $P$.

Theorem $\pm$ If $\Lambda$ is commutative or satisfies an Eichler condition, then the set pres $(P, U)$ becomes an abolian group if we define the sum, of the equivalence classes $\left[g_{1}\right],\left[g_{2}\right]$ of presentations $g_{i}: P \rightarrow U$ by $[Q]=\left[g_{1}\right]+\left[g_{2}\right] \Leftrightarrow$ $f \oplus \& \sim g_{1} \oplus g_{2}$ ( $\sim$ meaning "equivalent to").

In the absence of the Eichler condition, a "stable" version of Theorem 1 holds.

Theorem $2 \quad(\exists n=n(\Lambda)) \quad(\forall$ presentations $f: P \rightarrow U$ of $\Lambda$-modules) $\mid$ pres $(P, U) \mid<n$. $\quad$ If $\Lambda$ is $A$ global order.]

On the other hand, if $\Lambda$ is a geometric order, $\operatorname{pras}(P, U)$ can be infinite, but:

Theorem 3 If $\triangle$ is commutative and $U$ ha finitelength, then pres $(P, U$ ) is a (possibly infinite) torsion group of finite exponent.

In other words, $\left(\exists n\right.$ if such that) $f, g: P \rightarrow U$, then $f^{n} \sim g^{n}$
Example 4 To show that the group pres $(P, U)$ can be quite large, even when Theorem 1 forces it to be finite, we show: Let $G$ be a group of prime order $p \geqslant 3$. Then the set of numbers that can occur as $|\operatorname{Pres}(P, U)|$, when $P$ is free and $U$ is finite, is $\quad\{a l l$ divisors of $(p-1) / 2\}$.

Torsion units in $\mathbb{Z} G$ via permutation lattices
Given finite groups $H, G$ the goal is to classify the group homomorphisms $\varphi:$ It $\longrightarrow U_{1}(\mathbb{Z} G)$, with $U_{1}$ the augmentation 1 units, up to conjugation by units of $\mathbb{Z} G$. The 'double action' construction associates to $\varphi$ a lattice $M(\varphi)$ for the group $H \times G$, which classifies $\varphi$. In the spirit of integral representation theory it is then natural to place homomorphisms $\varnothing^{\prime}, \phi$ in the same genus precisely when they ave conjugate by $p$-adic units for all primes $p$ and to emphasize the tentative

Genus Conjecture Every $\varphi$ has a group homomorphism $\sigma: H \rightarrow G$ in its genus.
This sharper version of a conjecture of Zassewhaws holds when $G$ is a $p$-group and yields very complete information in that case. More generally it is perhaps too optimistic but is nevertheless suggestive as a model for the goal.

Al Weiss (Edmonton, Alberta, Canada)
Latteces with a condition a the exponent of $\hat{E_{X} O}(M, M)=\operatorname{Hon}(M, H)$
let $R$ tea complete discrete valuation rung with manual ideal $\pi R$, es fence, M, N R(ss-tattices. Let Hon $(M, N)$ te homomorphisms modulo projectives For $\alpha \in \operatorname{Hom}_{R G}(M, N)$ let $\operatorname{exp\alpha }=\pi^{a}$ if $\pi^{a} \alpha$ factors though a projective and $\pi^{a-1} \alpha$ does not. Let $\exp M=\exp I_{M}$.

For $M$ with $\exp M=\pi^{a}$ and almost split sequence $0 \rightarrow \Omega M \xrightarrow{\alpha} E B \rightarrow M \rightarrow 0$, the following are ogelivalent:
$1 E=\Omega\left(\frac{M}{\pi^{q-1} M}\right), 2 \operatorname{sode} \operatorname{Hom}(M, M)=\pi^{a-1} \operatorname{Com}(M, M)$
z exp $\alpha<\exp M, 4 \exp \beta<\exp M \quad \exp E<\exp M \quad 6, j \rho \gamma: N \rightarrow M$ is mot a split ese then expr<expH. it. If $\gamma: M \rightarrow N$ is mot a split mono Hen exp $\gamma<\exp H$.

The condition is conserved under Preen correspondence and undutakng sources, for absolutely indeconperafle lattices. Jacques the vena has shown that the absolutely udecen posable lattices that ratis ty this condition as e the Knorr lalteces. Tout voile with Jor Carbon saiotaulo.

Let $R$ be a Dedekind ring with quotient fred $K$ and let $A$ be a central simple $K$-algebra. Let $\Lambda$ be an $R$-oder in $A$ and let $S$ be a maximal commutative suborder of $\Lambda$. such that $K S=L$ is separable over $K . \operatorname{det} \Lambda_{1}=\Lambda, \Lambda_{2}, \ldots, \Lambda_{t}$ represent the isomorphism dosses of orders in the genus of $\Lambda$. Then

$$
\sum_{i=1}^{t} A\left(\Lambda_{i}\right) e_{\Lambda_{i}}\left(s, \Lambda_{i}\right)=h(s) e_{U(1)}(s, \Lambda)
$$

Where $H\left(\Lambda_{i}\right)$ is the two sided class number of $\Lambda_{i}, h(S)$ is the class number of $S$, $e_{\Lambda_{i}^{*}}\left(S, \Lambda_{-}\right)$is the number of equivalence danes of optimal embedding $S \rightarrow \Lambda_{i}$ modulo the action of $\Lambda_{v}^{*}$, ant $e_{U(\Lambda)}(S, \Lambda)$ is the number of local optional embedderigs $\left.\varphi=\varphi_{p}\right): \varphi_{\underline{P}}: S_{P} \rightarrow \Lambda_{P}, \underline{p} \in S$ recce $R$, modulo the action of $U(\Lambda)=M \Lambda_{P}^{*}$ (the actions by consigation). The above formula generalizes the result of Eichler in case of quaternion algebras and hereditary orders (and Viqmeras for Eichler orders). It is a special case of a combinatorial result on transitive actions of groups on pairs of sets and relations invariant with respect to these actions. A special cone is also a similar result for lattrees with tenor structure. Julien Brezindei; Goteborg, Sweden.

Let $D_{\infty}$ be the infinite dihedral group, $U_{1}\left(R D_{\infty}\right)$ - the group of norsualved wits of the group ring orth coefficients in $R$. We prove:

1) if $H$ is a fine subgroup in $U_{n}\left(\mathbb{Z} D_{\infty}\right)$ then $H=C_{2}$

2) The group $U_{1}\left(\mathbb{T}_{2} D_{N}\right)$ and $e_{1}\left(2 D_{\infty}\right)$ are not finitely generated. Zllearainiat, Warmer, Poloud.

On the Number of Solutions of $x^{p^{k}}=a$ in a $p$-group
This talk concerns a small application of the representation theory of groups to the enumeration theory in $p$-groups. For $p$ a prime divisor of $|G|(G$ a finite group), and an element $a \in G$, let $N_{a}=\#\left\{x \in G: x^{p}=a\right\}$. The following two theorems are classical: ( $A$ ) If $G$ is a $p$-group, $G \neq$ cyclic and $p>2$, then $p^{2} \mid N_{1} ;(B)$ If $G$ is a $p$-group, $G \neq$ metacyclic and $p>3$, then $p^{3} \mid N_{1}$. Here, $(A)$ is due to Miller-Blichfeldt-Dickson (1919) and Kulak off (1931), white (B) is due to Auppent and Berkovich (1967).

In this talk, a representation the orectic proof is offered for the following theorem: Let $G$ be a finite group, and $H \triangleleft G$ be an elementary abelian group of order $p^{r}$. Suppose $a \in G$ is a $p$-element in the quotient group $G / C_{G}(H)$. Then $\#\left\{x \in G: x^{p^{k}}=a\right\}$ is divisible by $p^{\min \{r} p^{\left.k^{k}-1\right\}}$. (Here $k$ is a fixed integer $\geqslant 1$.)

The proof of this theorem relies on the knowledge of the indecompcoable representations of cyclic $p$-groups over a field of characteristic $p$. By applying the theorem to $p$-groups, one gets the following refinements of the classical results stated in the first paragraph above: $\left(A^{\prime}\right)$ If $G$ is as in $(A)$ above, then $p^{2} / N a \quad \forall a \in G$, and $\left(B^{\prime}\right)$ If $G$ is an in $(B)$ above, then $p^{3} / N_{a}$ $\forall a \in G$.

Orders of finite global dimension
Let $D$ be a DVR and let $\Lambda$ be an order in $M_{n}(D)$, gldim $\Lambda<\infty$. This talk is concerned with the problem of finding an upper bound on gldim 1 . A survey of what is known about the problem is given. The diagrammatic techniques of Wiedemann and Roggenkamp are discussed. Related Artin algebras A/I and orders ene of finite global dimension are described.

Ellen Kirkman
Wake Forest University
Winston-Salem, NC 27109

Tiled orders of finite global dimension
We introduce a projective link between maximal ideals of an arbitrary ming with identity, with respect to which an idealize preserves being of finite global dimension. Lat $D$ be a local Dedekind domain with the quotient $\sin g$. When $2 \leq n \leq 5$, every tiled $D$-oder of finite global dimension in $(K)_{n}$ is obtained by iterating the idealizes w.r.t. projective links pom a hereditary order. If n26 then there exists a tiled $D$-adder in $(K) n$ which does not have the above property. Ito valued quiver is given by


This is also a counterexample to Tansy's conjecture. Using the above result, a list of the representatives of isomorphism classes of tied D-rders of finite global dimension in $(k)_{n}$ is obtained where $n=4,5$. Hisaaki Fujita

Tame and wilted generalized Bächstrion orders and sock catgeries: We describe the class of generatived siciestrion orders by using their dosed refection, to hereditary cfebires, The susie tool is a representation equívaleme found by Bigjel and Byggenteangs 1979 ff : for each gen. Border (defined by: 7 hereditary order s with red $\Gamma$ C AC $S$ and the radical of each projection 1 - lattice has as direct summand only $\Gamma$-lattice or projection 1 -lattices) the category of lattices is representation equivalent to the category of f .g. modules with protection sole over some hereditary orthinán Afyetre. For these orders we gíe a classification theorem (finite, tame or wield roger- type depends on a graph arraigned to sud e an order), also we give a complete descriptor of the husbander Reiten quivers in the tame case and some structure properties of the theslander-Reiten-quiver
 modules over hereditary algebras) and then ven's the results of Angel and Aogrentramp. Our main tool for desoritung the tustander-Autten-quives is the graph- theoretial notions of reducibility which we characterise by the exatane of a preprgéctio but not prgeetioi simple module over the hereditary algebra.

Stiffen Kong
universitat Stuttgart, D-7000 Stuttgart

Graded rings and their completions
It $k$ be a file and $T=k\left[X_{1}, \cdots, X_{n}\right]$ be $Z$-graded sing with $\operatorname{deg} X_{i}>0$, and $j: T \rightarrow \Lambda$ a $Z$-graded $T$-algebra, such that $\Lambda$ is a finitely generated free $T$-module and gl.dim. $\Lambda_{p}=$ dim $T_{p}$ when $p$ is a prime ideal in $T$ which is not maximal. $A$ is save to be of finite representation type if there is only a finite number, ep to shift, of indecomposable objects in the category $C M(g 21)_{0}$ of finitely generatedzgraded $\Lambda$-modules which are free $T$-modules, with degree $O$ maps. Denoting be $\hat{T}$ and $\lambda$ the completions at the maximal ideal $m=\left(X_{1}, \cdots, X_{n}\right)$ of $T$, we prove that if $O \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is an almost split sequence in $C M(g r A)_{0}$, then $0 \rightarrow \hat{A} \rightarrow \hat{B} \rightarrow \hat{C} \rightarrow 0$ is almost split in $C m^{( }(\hat{\Lambda})$. And $\Lambda$ is of finite representation type if and only if $\hat{\Lambda}$ is, If the group $Z$ is replaced by an alielian group $G$ (such
that $T_{0}=k$ and each $T_{i}$ is finite dimensional), we can andy conclude that $0 \rightarrow \hat{A} \rightarrow \hat{B} \rightarrow \hat{C} \rightarrow 0$ is a direct sure of almost split sequences (unless $G$ is torsionfree). But the result on finite representation type remains true.

This talk was based ar joint wok with M. Auslander, and for the last generalization we profited from conversations with M. Van den Bergh dunning the conference.

Idem Reciter, University of Truadhim, Art
A Stability Theorem for Representation-finite Orders
Let $\Lambda$ be an order over a complete d.v.r. $R$ isth quotient field $K, A=K \Lambda$, and $S$ a simple $A$-mobile. The set $\gamma_{A}(S)$ of 1 -repersentitious $I$ with $K I=S$ is a lattice w.r.t. + and $n$ on which the init groin p $G=D^{*}$ of the shewfield $D=E_{n d} A_{A}$ operates form the reyptihand nide. If $\Delta$ is the (imipine) maximal order in $D$, wee have an exact sepsience $G_{0} \rightarrow G \xrightarrow{v} \mathbb{Z}$, where $G_{0}=\Delta^{*}, G=D^{*}$, and $v$ is the discrete radiation on $D$. If $r$ is a minimal hereditary overorder of $\wedge$, define for $i \in \mathbb{Z}, I \in r_{A}(S)$,

$$
X_{i}^{r}(I):=l_{1}^{r}\left(\left(I \cap J_{i}\right)+J_{i+1} / J_{i+1}\right) \in \mathbb{N},
$$

where $r_{r}=\left\{\ldots ? J_{i} ? J_{i+1}\{\ldots\}\right.$. Then we have a mont

$$
x^{r}: \gamma_{\Lambda}(s) \rightarrow \mathbb{N}^{z}
$$

which is constant on the $G_{0}$-obits of $r_{A}(s)$. We call $r_{A}(s)$ stable of the implication $\quad X^{r}(I)=X^{\Gamma}\left(I^{\prime}\right) \Longrightarrow I, I^{\prime}$ belong to the name Go-rdet
holds for debitiacy $I, I^{\prime} \in X_{1}(S)$.
station For $A=D$ (rkerfield) the converse of Them. 3 holds.
Melfang Rump, Eidestitt

Right peak tings, voilued posets
omol indecomposable socle projective moolules A semiperfect ring $R$ with 1 is on right peak sing if $\operatorname{soc}\left(R_{R}\right)$ is essential in $R$ and it is of the fom $\operatorname{soc}\left(R_{R}\right) \cong P_{*}^{t}, t<\infty$, wiene $P_{k}$ 's indecompotable porpective module. Our main intereit is to classity indecomposoble f.g.socle projective right $R$-wwodelve. We coll $R$ sp-repre sentation-finite if othe costaypry modsp (R) of fiwitely genereated socle propective night $R$. wodellos has only tivitey monny, soclasser of indecomposerblos. To ony wight peak sing $R$ one com orssociaste om oroler 1 in a sempree oilyemse $C$ ormel a representation equivalime $\operatorname{latt}(1) \rightarrow \bmod _{\text {sp }}(R) /\left[P_{R}\right]$.

If $R$ is artinion, schuriom (iie. eRe is a division ring tor any primitive idemepotente $\in R$ ) $P I$-ring we associate a valued poset $\left(I_{R}^{*}, 01\right)$. We prove that an indecomposoble ortivien, schurioin tight peak PI-oing $R$ is sp-representation-finite itt $\left(I_{R}^{*}, d\right)$ aloes not contain the following peak subposets: $0^{\left.(6), 0^{\prime}\right)}+, 0 \alpha^{\prime}>3$,


Moreover on list of 30 right peak xings $R_{i}, i \leq 30$, oinal an lest of 82 inolecompasable socle prosective $R_{i},-$ neoolules $X_{j}, j \leq 82$. such thost if $R$ is scuerien sp-represon-tation-fivite canol $x$ is indecomposable in modsp( $R$ ) then there ore i; $j$ onvel a teina type functor $T: \bmod l_{p p}\left(R_{i}\right) \rightarrow \bmod _{s p}(R)$ scuah that $x \simeq T\left(x_{j}\right), X_{j} \in \operatorname{morssp}_{s p}\left(R_{i}\right)$.

Daniel Simson
Nicholas Copernicus University
Torin', Polomel

The isomorphism problem: Defect groups, the $Z^{*}$ theorem, and phi losophical remarks
This second talk of this conference is also joint work with Klans Raggenkamp.
I discussed briefly the ingredients of our theorem for finite groups $G$ with a normal $p$-subgroup containing its centralizer. This theorem assents that, it $\mathbb{Z} G=\mathbb{Z}$ it as angmentidd Z-alsebras, It a second finite group, then sable His conjugate to G by a unit of $\mathbb{Z}_{7} G$. This quiNes a positive answer to the Zassenhaus conjecture and the isomorphism problem in this ease. (The Zassenhans conjecture appears to be false in general see previous talk).

The ingredients of the proof include a Green correspondence theory for automorphisms of blocks stabilizing a defect group, a study of Coleman's theory of normalizers in ring unit groups of p-subgroups of $G$, and Weiss's new results on permutation modules ferp-groups.

I also discussed an application of these permutation module methods to give a positive answer to a version of the conjugacy problem. I posed, (cf. C. Bessenrent's talk at this conference) for defect gramps (coming from different groups) in blocks, in the case 3 of cyclic T.I. set Sylowp-sulgroups and the principal block. I assumed the defect groups were $D, \alpha(D)$ for $\alpha$ en augmentation preserving automorphism of the principal block though this hypothesis may be removable.

I mentioned that the general defect group cingugaly problem, but just for the case of the principal block, implies the $Z^{*}$ theorem (finite group theory), through areduction of $G$ Robinson $(p>3)$.

There was also time for some brief philosophical remarks about the pathway provided by the group ring and its a ssocciatod unit groups between the theory of arithmetic groups and modular representation theory, as well as perhaps other aspects of finite group theory.

182
Critical simply commented algdress with proa. socle.
$k$ an alg. closed field, and $S$ a fin, dim. k-algehro with poi socle. All such algebras occur in the representation-thany of lattris over R-orodes $(R=k \mathbb{I} \|$ p.e) denote te cat. of socle pigi. S-modules by $F(A)$. We should decile wetter one given algebra $S^{\prime}$ is of finite or infinite rene tyre with respect to the cat. $F(S)$. Remodel and Roggennarmen defined reductive of $'$ which does not change the rapritype with respect of $F$ for hereditary $S$. For these algebras $\sqrt{3}^{5}$ freer. finite if I can not be
 we define strong-reduction of $S$ by removing Objects $x$ in the corms pending categoric $y$ which are maximal or minimal in $y_{1}$ Soc $y$ or which are minimal in si and dime $\left(\varphi\left(x_{-}-\right)\right)=2$

For simply connected sip. algebras we have a hist of a 300 F-critival h-algeliros, such that a given S.C. SP algebra S' $B$ of Frinimite type of it can be strongrestuad to one of them or to an Alghta with extended Dyyinind diagram $\tilde{A}_{n}$ as quiver.

Thomas Weichert
Universitit Stuttgart.

ALGEBRAISCHE K-THEORIE
$5.6 .-11.6 .1988$
$O n K_{2}\left(O_{F}\right)$
Since a long time, we have known the structure of the $K$-groups $K_{1}\left(D_{F}\right)$ for rings $O_{F}$ of integers of every number field $F$ (Dirichlet). Since recently, we also know the structure of the K-groups $K_{3}\left(D_{F}\right)$ for every number field $F$ (Merkurgev, Suslin). As of today, the information about the structure of the finite abclian $K$-groups $K_{2}\left(O_{F}\right)$ is still limited.

We proposed the study of the structure of $K_{2}\left(O_{F}\right)$ modulo the knowledge of the structure of related $S$ class groups, and exhibited 4 -rank formulas for $K_{2}\left(D_{7}\right)$. This led to a characterization of all number fields $F$ with a wild kernel (Hilbert kernel) of odd order, and the determination of infinite families of number fields 7 for which the structure of the 2-primary subgroup of $K_{2}\left(O_{F}\right)$ can be determined.

Jürgen Hürrelbrink, LSU

Hilbert'n Sab 90 in Milan K-Theory
Tor a quachatic extension $L=F(\sqrt{a}), \quad(h a F \neq 2$, thilbest! Sab 90 states that the lolloung sequaree in exact:

$$
U_{m}^{M} L \xrightarrow{1-6} U_{m}^{h} L \xrightarrow{N_{4 F}} U_{m}^{n} F
$$

Here $U_{m}^{M}$ dentate Miles 4 -Thea ad 6 nile generates of Gall (LF). Hillbet'n 1 ah 90 for quadratic extasion in proved for $n \in 4$. the method of proof is to un e specialization arguments relating The he din Sat go to He ce tain homology groups of the localization sequence in Milan 4 -Thong par quadrics defined by Pfinteforms. In computing these groups one is led to consider the complex

$$
\oplus_{v \in X_{(n)}} U_{m+1}^{M} K(v) \xrightarrow{d} \underset{V \in X_{(0)}}{\oplus} U_{n}^{M} K(v) \xrightarrow{N} U_{n} F
$$

for (projective) quachics (where $d$ in give by the tame symbol and $N=\sum_{V} N_{\text {kivilif }}$ ). The exaction of thin complex is proud for $n \leq 1$ if the fam defining $X$ is of type $\psi \oplus \subset \psi(\otimes<d\rangle$, where $\psi=\psi^{\prime} \oplus 4^{n}$ is a Pfruta) om ad for $m=2$, $\operatorname{dim} X \leq 2$
(whir leach to a proof for tithed'? fate 90 for $m \leq 3, m=4$ spectively) ad for $m=3, \operatorname{dim} x=1$.

Mar hus Posit, Regensburg

The Structure of Classical Groups below the Stable Range and Nonabelian K-Theory

Let $A$ denote an assariatiote ring which is finite over a commutative ring with 1 . Let $G_{n}(A), n \geqslant 3$, denote a classical group over $A$, ie. either $G_{n}(A)=G L_{n}(A)$ or $G_{n}(A)$ is the automaphism group of a nonsingular form of $W_{i}+t$ index $\geqslant n$. Let $E_{n}(A)$ denote the elementary subgroup of $G(A)$. Algeloric $K$-theory treats the groups $G(A)=\lim _{\rightarrow \rightarrow} G_{n}(A)$ and via stability theory, one candy $k \frac{k}{k}$-thorny to britain information about certain subquotient of $G_{n}(A)$, for example $G_{n}(A) / E_{n}(A)$, providing $n>$ $\operatorname{sr}(A)=$ stable range of $A$. Until recently, burst withing was known about $G_{n}(A) / E_{n}(A)$ when $n \leq \operatorname{ser}(A)$, one reason being that there is no $K$-Theory for these groups. The following results close the gaps.
THEOREM $A$. There is a filtration $G_{n}{ }^{-1}=G_{n} \supset G_{n}{ }^{0} \supset \cdots G_{n}{ }^{i} \supset . . E_{n}(1)$, functorial in $A$, satisfying:
(1) $G_{n}{ }^{1}(A) \triangleleft G_{n}(A)$.
(2) If $A$ is commutative and $G_{n}=G L_{n}$ then $G_{n}{ }^{0}(A)=S L_{n}(A)$.
(3) $G_{n}^{-1}(A) / G_{n}^{0}(A)$ is abelian.
(4) $G_{n}^{0}(A) \supset G_{n}^{1}(A) \supset \cdots G_{n}{ }^{2}(A) \supset \cdots$ is a descending central series.
THEOREM $B$. If $\operatorname{Ar}(A)$ is finite then $G_{n}{ }^{i}(A)=E_{n}(A)$ whenever $i>s$ sh $(A)$.
Theorem $B$ says that $G_{n}{ }^{0}(A) / E_{n}(A)$ is milpotent of class $\leq \operatorname{sr}(A)$. This result can be improved to the following: If $z \in \mathbb{Z}$, lat $[z]=z$ if $z \geqslant 0$, and 0 if $z \leqslant 0$.
THEOREM $C$. If $s(A)$ is finite then $G_{n}{ }^{0}(A) / E_{n}(A)$ is milpotent of class $\leqslant 1+[\operatorname{sr}(A)+2-n]$.

The results above are proved by introdering 'monabelian $K$-cherry'. For each functor $G_{n}{ }^{i}$ above an algehaic $K$-cherry with $K$ - theory groups $K_{j} G_{n}{ }^{i} \quad(j \geqslant 1)$ is defined such that $K_{1} G_{n}{ }^{i}(A)=G_{n}{ }^{i}(A) / E_{n}(A)$.

Whereas, $K_{j}$ for $j \geqslant 2$ is always abelian, $K_{1}$ is not verssarily abelian, hence the rubtric 'monabelian $K$-therry.' The main theoremsare dedued with the help of cortain soct Mayes-Vietoris sequences for thp $K$-therry obove, in particular the M.-V. sequene astrciated to
a localization-completion square.
Anthory Bah, Buelfell

Structure of gauge groups
Let $G=G(\mathbb{R})$ be a simple Lie group. E.Cartan and van der waerden proved that $G(R)^{0} /$ center is simple as abstract group. Let $A$ be a ring of continious functions $X \rightarrow \mathbb{R}$ on a topological space $X$, Assume that $A \supset R$ and $G L, A$ is open in $A$. We define $G(A)$ as a subgroup in the group of continious maps $X \rightarrow C_{t}$. When $x=s^{\prime}$, these groups are known as loop group. In geneal, they appear in mathematical physics as gauge groups. Assume that $G$ is of Classial type or splits (e., $G$ is conpex) (this condition prodobly is nut necessary) and that there are $N$ toots ion I fur clements of $A_{1}^{\text {ovA Alice }}$ ios to $1 /$ (where $N$ is a certain number dependiy on $C_{T}$ ). Then a subgroup $H$ of $G(A)$ is normalized by $E(A)^{\circ}$ if t $G(B)^{\circ} C H C C(B)$ for an ideal $B$ of $A$.

When $X=$ \{point $\}$, this is the Car tan wander Waerden result. When $X=5$, the maxima now nd sulgrops of $G(A)^{\circ}$ were described by de la Havpe and (twosome $G_{\text {}}$ ) Segal-Prestly (they they are $C_{F}\left(B_{3}\right)$ with muximed ideals is of $(t)$.
L.VASERSTE/N penn state University.

188
Traces and Fixed Points
The main point of the talk was to give a particular description of Dennis' trace map from the $K$-then $K(A)$ Of a ring $A$ to the Hochscenled homology $H(A X)$. The description is as follows:
Define $K(A)$ by the Waldhansen method, so $K(A)=\Omega|B i s . C|$
where $C$ a category of $A$-modules (finitely gomented prof)

$$
\begin{aligned}
& S_{k} \varphi=\text { categny of filtered objects in } C \\
& 0=P \cdot \subset P, c \ldots c P_{k}=P
\end{aligned}
$$

iS $S_{K} Q=$ categny with these same objects, but only
$B=$ nerve
Then Dennis' map can be described as the composition
个~

$$
H(A)
$$

Here $\Lambda$ is "cycle nerve" (whereas a $\rho^{- \text {-simplex of } B C}$ is a diagram $I_{0} \rightarrow \ldots{f_{0}-1}^{f_{0}} P_{p}$ in $e^{\infty}$, a $p$-simple

$$
\begin{array}{r}
\text { of } \wedge \varepsilon \text { is a dragrmar } \\
\qquad f_{0}, P_{0}, P_{R},
\end{array}
$$

The ump 2 is the based on the fact that $B C \hookrightarrow \Lambda E$ when every arrow in $E$ is invertible

$$
\left.\begin{array}{cc}
\left(f_{0}, \ldots f_{p-1}\right) \\
\end{array}\right) \longmapsto\left(f_{1}, \ldots f_{p}\right), \quad f_{p} \cdot f_{p-1} \cdot \ldots \cdot f_{0}=1
$$

The map $\beta$ figgets the requirement that maps are invertible. The map $\gamma$ takes products of Hom-sets to tensor priduts of Hom-gromps. Its target is afinel like its somee except that in the forming gecic newes a p-simplex is an eloment of

$$
\text { (f) } \operatorname{Hom}\left(P_{0}, P_{1}\right) \otimes \ldots \operatorname{Hom}\left(P_{p}, 1, P_{p}\right) \otimes \operatorname{Hom}\left(P_{p}, P_{0}\right)
$$

$P_{0}, \ldots p_{p}$
rathen tham

$$
\sum_{P_{0}, \ldots P_{p}}^{11} \operatorname{Hom}\left(P_{0}, P_{1}\right) \times \ldots \times \operatorname{Hom}_{0}\left(P_{p}, P_{0}\right)
$$

The inclusion 事 $H(A) \rightarrow \Omega \Sigma H(A) \rightarrow \Omega \Sigma H S_{1} C$

$$
\rightarrow \Omega / H S . C 1
$$

(anologons to meluxion $B G L_{1}(A) \rightarrow K(A)$ ) is an equivalunce, $L y$ a theown Randy $M_{c}$ Carthy. (H(A) here is the "tensos prothet cyche newe" of the one-object categry. $A$; it is isomorpline to the usmel model fr y esic homology.)
Ore point of the constructinn is that the circle gromp ates on the diagin $(*)$ becanse yohe nerves are yygire ofjeots in the sense of conmes.

The intermesinte terms can be intiffid as follows:
(i) $\Omega|\Lambda S ., \varphi|=\Omega \mid B$.iAnte $\mid$, the $K$-thery of $A$-motules - with-antomoryhuin.
(2) $\Omega|\Lambda S, E|$ semm to be equiralent to the K. Herng of A.mobhles-with-eudonoviplisn, minus $K(A)$, that is

$$
K\left(E_{n l}|=\Omega| B . i E_{n d}|\simeq K(A) \times \Omega| \wedge S . C \mid\right.
$$

(The idea of proving (2) only cane oy ofter the telk, in regionse to a question of Thomason. With A litle help from Grayson a notwo looks like it com be prone)

Thomes Goodwillie Brown Univ.

Algebraic vector bundles aver real algebraic varieties and applications. J. Bochnak (Amsterdam).

Let $X$ be an affine nonsingular, compact connected real algebraic wriety and let $R(X)$ be the sing of regular functions from $X$ into $\mathbb{R}$.
The groups $P_{i c}(R(x))$, $P_{i c}\left(R(x) \odot_{R}^{\mathbb{C}}\right)$, $K_{0}(R(x)), K_{0}\left(\mathcal{R}(x) \oplus_{R}^{\mathbb{C}}\right)$ conto in precious informations about the geometry and topology of $X$, Each of these groups is a subgroup (in a natural say) of the corresponding group of the sing $C(X)$ of continuous functions from $X$ into $\mathbb{R}$ (embedding is induced by the inclusion $\operatorname{map} R(x \mid c C(x))$.
Pic $(R(X))$ is naturally isomorphic to a subgroup $H^{1}(X, Z / 2)$ of $H^{1}(X, Z / 2)$, where $H_{\text {alg }}^{1}(X, Z / 2)$ is the image of
$H_{n-1}^{a \operatorname{atg}}\left(X_{1} \mathbb{Z} / 2\right)=\left\{\right.$ homology class in $H_{n-1}(X)$ represented by algebraic hypersuntoes of $X\}$
by the Poincare duality isomorphism $H_{n-1} \rightarrow \mathrm{H}^{\prime}$; $n=\operatorname{dim} X$.
Theorem. Let $M$ be a compact connected $C^{\infty}$ maniple of dimension $\geqslant 3$, and let $G$ be a subgroup of Pic $(M){ }_{\text {containing the first Sticfel-LShitney class }}$ of $M$. Then there is an algebraic model $X$ of $M$ and a diffomarptism $\varphi_{:} X \rightarrow M$ mon that $\varphi^{*}(G)=\operatorname{Pic}(R(X))$.
(here $\varphi^{*}: P_{i c}(C(M)) \rightarrow P_{i c}(C(X))$ is the isomorphism induced by $\left.\varphi\right)$.
Remark. A slightly weaker version of this theorem is valid apo forsurpaces.
Corollary. For each compact connected $C^{\infty}$ mamifed $M$, orientable of $\operatorname{dim} \geqslant 2$, there exist an algebraic model $X$ of $M$ with $R(X)$ factorial.
$K_{0}(R(X))$ of real affine surfaces and 3-flas.
Define the following invariants of anonsingular veal algebraic surface $X$.

$$
\begin{aligned}
& \beta(x)=\operatorname{dim}_{-42} H_{d g}^{1}(x, 1 / 2) \\
& \delta(x)=\operatorname{dim}_{742}\left\{v \in H_{d g}^{1}(x, z / 2) \mid v u v=0\right\} .
\end{aligned}
$$

Theorem (i) Let $X$ be a compact connected affine real algebraic surface. Then

$$
K_{0}(R(x))=\mathbb{Z} \oplus(\mathbb{Z} / 4)^{\beta(x)-\delta(x)} \oplus(\mathbb{Z} / 2)^{\beta(x)+1-2(\beta(x)-\delta(x))}
$$

(ii) As $X$ runs through all algebraic models of a compact connected smooth surface $M$ of genus $g$, the groups $K_{0}(R(x)$ ) take (up to isomorphism) precisely $q(M)$ values, where

$$
q(M)= \begin{cases}2 g+1 & \text { if } M \text { orientable } \\ g & \text { if } M \text { nonorientable, god } \\ 2 g-2 & \text { if } M \text { nomarientable, } g \text { even. }\end{cases}
$$

(Remark. Similar result holds true for algebraic 3-folds).

Theorem. Let $M \subset \mathbb{R} P^{k}$ be a $C^{\infty}$ compact huppersunface. Then there exists a diffeomorptrism $h: \mathbb{R} P^{k} \rightarrow \mathbb{R P}^{k}$ (which can be chosen arbitraniy close to the identity), such that:
(l) $X=h(M)$ is an algebraic nonningular subset of $\mathbb{R} P^{k}$ (wavultyturdedidyddM.
(ii) $\widetilde{K}_{0}(R(X))$ and $\widetilde{K}_{0}\left(R(X) \otimes_{\mathbb{R}} \mathbb{C}\right)$ are finite groups.
(iii) If $H^{\text {even }}(M, \mathcal{Z})$ is tomion free, then $\left.\widetilde{K}_{0}(R(X) \otimes C)\right)=0$
(iii) If $M$ is orientate, and $\operatorname{dim} M=k-1$ is even, then each regular mapping $X \rightarrow S_{\text {(standard } k-1 \text { sphene) }}^{k^{k-1}}$ is homotopic to a constant.

There are many applications of these and similar results to the study of the structure of the set of regular mappings from affine real algebraic varieties (into $S^{k}$ ( $=$ the standard pptreve).
A sample of results:
Theorem. Seven a compact connected $C^{\infty}$ surface $M$, the filowing conditions are equivalent:
(c) For each algebraic model $X$ of $M$, the set $R\left(X, S^{2}\right)$ is dense in $C^{\infty}\left(X, S^{2}\right)$ ( $=$ set of $C^{\infty}$ mappings from $X$ into $S^{2}$ equipped with the $C^{\infty}$ topologrs).
(ii) $M$ is mamorientable of odd genus.
(with $R\left(x, s^{2}\right)$ Not tense in $C^{\infty}\left(x, s^{2}\right)$ )
Remark. In particular one) gets an algebraic model $X$ of the Klein bottle by constructing a model with $\left.\widetilde{K}_{0}(R(X) \otimes C)\right)=0$.

Theorem. Let $\sum_{k}^{2}$ be a Fermat sphere i.e.

$$
\sum_{k}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2 k}+y^{2 k}+z^{2 k}=1\right\}
$$

Then $R\left(\Sigma_{k}^{2}, S^{2}\right)$ is dense in $C^{\infty}\left(\Sigma_{k}^{2} S^{2}\right)$.
Remark. The Fermat spheres are quite exceptional , since for "mast" algebraic surfaces X in $\mathbb{R}^{3}$, the set $R\left(X, S^{2}\right)$ contains only mappings hamotopic to a constant!

Theorem. Given a compact connected ovientable $C^{\infty}$ manifold $M$, dim $M=4$, the following conditions are equivalent:
(i) then enlists algebraic model $X$ of $M$ sump, each regular map $X \rightarrow S^{4}$ is hamotopic to a constant.
(ii) The signature of $M$ is 0 .

Theorem. Let $C$ be a nonsingular complex projective curve, and let $C_{\mathbb{R}}$ be the underlying veal algebraic variety. Then $R\left(C_{\mathbb{R}}, S^{2}\right)$ is dense in $C^{\infty}\left(C_{\mathbb{R}}, S^{2}\right)$.

References:
BochnakJ. - Coste M., Roy M. - SÉOMÉtrIE ALGÉBRIquE REELLE, (Ergebmisse der Math. Vol 12) SPRINGER 1357
Bochnah - Buchner - Kucharz - Algebraic vector bundles aver real algebraic varieties (to appear)
Bochnah - Kucharz - Algebraic morptrisms into even-dimemional spheres, (Annals of Math. to appear)
Bochnah - Kuchare - Algebraic models of $C \infty$ manifolds (Invent. Math.)
-11- -11- On homotopy classes represented by elgaoroic mapping p - J. reline anger. Math. 377 , 159-169 (1587)

Connections between $\left|\mathrm{K}_{2} \mathrm{O}_{F}\right|$ for real quadratic fields $F$ and class numbers of appropriate imaginary quadratic fields

I gave some connections between the order of the group $K_{2} \mathrm{O}_{\mathrm{F}}$ for real quadratic fields F and class numbers of appropriate imaginary quadratic fields. I applied an old series Cree the paper of M. Kerch in Acta Mathematica, 1905). From the obtained formula) we got some congruences for $\left|K_{2} O_{F}\right|$ modulo powers of 2 . These congruences are more general and modulo langer powers of 2 than ones of Shias (see Manuscripte Math. 57(1987),373-415). We pot the exact divinibilities of $\left|K_{2} O_{F}\right|$ by power of 2 from them. They answer questions (conjectures) of Candiotti (Acta Anithm., to appear).

Jemmy Uhbanowicr
Instinct of Math., Polish Accad. of Sciences,
Warnawa, POLAND

Some Remarks on $H^{\prime}\left(X_{1} K_{2}\right)$ of Curves Let $X$ he a smooth, projective, geometrically corrected cone over a number field $k$ and set

$$
V(X)=: \operatorname{Ker}\left(H^{\prime}\left(X, K_{2}\right) \xrightarrow{N} k^{*}\right) \text {. }
$$

A conjecture of Bloch and a more general conjecture of Vaserstein say that $V(X)$ should he a torsion group. Let now $\bar{k}$ he an algebraic closure of $k$ and $\bar{X}=X x_{k} \bar{k}$. Then one can easily show that $V(X)$ is torsion if and only if

$$
V(\bar{X})^{G a l(\bar{k} / k)}=0 .
$$

In this lecture I stated and attired the proof of the following
Theorem: Let $X$ be cos above with $X(k) \neq \varnothing$. Then the natural map.

$$
V(X) \rightarrow V(\bar{X})^{G_{a}(\bar{k} / k)}
$$

is surjective.
Since $V(\bar{x})^{\sigma_{a}(k / k / k)}$ is uniquely divisible, the theorem states that either $V(X)$ is a torsion group or it is quite large.
the proof of the thavem uses results of Saito to prove the corresponding local statement and then a recent theorem of Jannsen to pass from the local to the global.

Wayne Raskind Harvard University

Operations in cyctiz homology of commutative algebras.
Jean-lonis LODAY.
The notion of Leocent for a permutation $\sigma \in \delta_{n}$ permits us to de fine the Eulerian partition of $S_{n}: S_{n}=S_{n, 1}, \ldots \cup S_{n, n}$. the elements $l_{n}^{k}=(-1)^{k-1} \sum_{\sigma \in S_{n, k}} \operatorname{agn}(\sigma) \sigma$ of the group algebra $K\left[S_{n}\right]$ have very mize pompertico. ${ }^{\sigma \in S_{n, k}}$. They lead to $\lambda_{n}^{k}=\sum_{i=0}^{k-1}(-1)^{i}\binom{n+i}{i} l_{n}^{k-i}$. Let $S_{n}$ act $m$ the left on $A \otimes A^{\otimes n}$ where $A$ in a commutative $K$-algebra. Denote by $b$ the Hochschild boundary and by $B$ the map defined by Conies.

PROP. $b e_{n}^{k}=\left(e_{n-1}^{k}+e_{n-1}^{k-1}\right) b$ and $e_{n}^{k} B=B\left(k e_{n}^{k}+(n-k+1) e_{n-1}^{k-1}\right)$.
Cor. $b \lambda_{n}^{k}=\lambda_{n-1}^{k} b$ and $\lambda_{n}^{k} B=B k \lambda_{n-1}^{k}$.
Therefore these $\lambda^{k}$ maps permit us to endow Hochschild homology and cycle homology with a special A. ring structure.

In the rational case it implies a natural splitting:
$H H_{n}=H H_{n}^{(1)} \oplus \cdots \oplus H H_{n}^{(n)}$ and $H C_{n}=H C_{n}^{(1)} \oplus \ldots \oplus H C_{n}^{(n)}$, with $H H_{n}^{(n)}=\Omega^{n}, H C_{n}^{(n)}=\Omega^{n} / d \Omega^{n-1}$ and $H H_{n}^{(1)}=\operatorname{Harr}_{n}=H C_{n}^{(1)}$ ( $n \geqslant 3$ for this last equality) where tarn is Harrism homology.

All these properties are valid for any functor $F$ in $\rightarrow$ (K.moduls) where Fin is the category of finite sets. In fact, the relations in PROP and cor above may be seen as relations in the universal ring $\mathcal{L}=K[$ inn $]$.

Ref. I-L. LODAY, Partition euleriienne et opérations en homologre eyclique, Spies Rend. Acad.Sni. Pain (1988).

SK of punctuated Spec of 2-dimensional boal rinys Shaji Souto (Uneversity of Tokyo) Let $A$ be a 2-dimensional normal local domain Let $F=A / m_{A}$ its residue fiel $K=Q(A)$ its quobrat fiall, $P$ the sit of all prime colals of larght 1 in $A$ and put

$$
X=\operatorname{Spec}(A)-\left\{m_{A}\right. \text { ? }
$$

Let

$$
S K_{1}(x) \stackrel{\operatorname{det}}{=} \operatorname{Ken}\left(K_{1}(x) \rightarrow A^{x}\right)
$$

B, the localigation theory in $X$ we fnow

$$
\operatorname{si} G_{1}(x)=\operatorname{Coken}\left(K_{2}(k) \xrightarrow{2} \underset{p \in p}{\infty} k(p)^{x}\right)
$$

where 2 ogiven by tame symbule. The hoceligation seguence

$$
k_{2}(k) \rightarrow \underset{\rho \in P}{\otimes} k(p)^{x} \rightarrow \mathbb{Z}
$$

gives vise to

$$
\delta: S \operatorname{Sk}(x) \rightarrow \mathbb{Z}
$$

and we pat

$$
\operatorname{sk}(x)^{0}=\operatorname{Ken}(\delta)
$$

Bloch proves
Th If $A$ is regular. $\delta$ is an simamphism
988〕.
In tho talte $d$ give the fellowng therrem whire treet $\delta K_{Q}(x)$ in gererel case but assuning $F$ is firuti

Th Assume that $F$ is finite
(1) $S K_{1}(x)^{0}$ is torsion
$\Leftrightarrow$ Let $D(x) \subset S K_{2}(x)$ be the maximal divisible subyp. Then $S K_{1}(x) O / D(x)$ is fimil.
(3) There exist a canonical isomorphism

$$
\operatorname{si}_{1}(x)^{\circ} D(x) \simeq \operatorname{Gac}\left(\hat{K}^{u r} / \hat{K}\right)_{\text {tor }}
$$

Here $\hat{F}$ is the quotient field of the completion $\hat{A}$ of $A$ $R^{u r}$ is the maximal abel extension of $K C$ which is unnamified over any $\rho \in P$.
We conjecture $D(x)=0$. Concerning this we have
Prop Assume that A has rational singularity.
Then the prome-to-ch(F) port of $D(x)$ is trivial

As a corollary of the and Prop we get.
Con Let $B$ be a 2-dimensional regular local veiny with finite residue field $F$. Let $G$ be a finite yous acting on $B$ such that
(1) Ion an $^{0} \in G$-lid

$$
\text { length } B / I_{\theta}<\infty
$$

where $I_{a}=\left\langle b^{n}-b \mid b \in B\right\rangle$.
(2) any $\sigma \in G$ acts trivially on $F$

Put $A=B^{G}$ which is a 2 -dimensional nounal local rimy
Then we have
$\delta K_{1}(x)^{0} \simeq G^{a b} \oplus$ (p-primary torsion divisith group). $(P=\operatorname{ch}(F))$.

Higher Algebraic K-theory of schemes and of derived categories.
Robert $W$ Thomason and Thomas F. Trobaugh $(t)$
Let I be a quasiseporated scheme. Recall from SGAG Grothendieck's notion of a perfect complex on $\mathbb{X}$. This is a complex of $O_{E}$-modules which is locally quasi-isomorphic to a bounded complex of algebraic vector bundles. Using quasi-isomorphisms as the weak equivalences, this is a category with cof.b-ations and weak equivalences in the sense of Waldhausen. His work then defines a K-theory spectrum $K(X)$. When $\nabla$ has an ample family of line bundled, for example when $\bar{\nabla}$ is quasiprojective over an affine or is regular noethorian, then this $K(X)$ is homotony equivalent to Quillon's $K(X)$.

Key Lemma: Let $U$ be a quasicompact oren is $X$. A perfect complex $F^{\prime}$ on $U$ is the restriction of some perfect complex on $\mathbb{Z}$ up to quasi-isomorphism of the class $\left[F^{\prime}\right] \in K_{0}(U)$ is in the image of $K_{0}(\Sigma)$.

Using this, and techniques of Waldhausen K-theory, we prove:
(Buss Fundamental Thu)
Thy 1: There is a functorial spectrum $K^{B}(\bar{X})$ such that
a) $K_{n}^{B}(\nabla)=K_{n}(\nabla)$ for all integer, $n \geq 0$
b) there is an exact sequence for all $u \in \mathbb{Z}$

$$
\begin{aligned}
& 0 \rightarrow K_{n}^{B}(\mathbb{Z}) \rightarrow K_{n}^{B}(\mathbb{Z} \otimes Z[T]) \oplus K_{n}^{B}\left(\mathbb{Z} \otimes Z\left[T^{-1}\right]\right) \rightarrow K_{n}^{B}\left(\mathbb{X} \otimes \mathbb{Z}\left[T, T^{-1}\right]\right) \rightarrow K_{n-1}^{B}(\mathbb{Z})-0 \\
& \text { with } \partial \text { natural, split } b \text {, multiplication } b,{ }^{Z} T \in K,\left(\mathbb{Z}\left[T, T^{-1}\right\rangle\right)
\end{aligned}
$$

(Quillon Projective Syce Thu)
Thu 2: If $\mathcal{E}$ is a rank $r$ vector bunale over $X$, there is a homotory equivalence

$$
K^{B}\left(\mathbb{P} \varepsilon_{X}\right) \simeq \prod_{1}^{n} K^{B}(\bar{X})
$$

For $Y \leqslant \mathbb{C}$ closed, define $K(\mathbb{X}$ on $Y)$ as the $K$-theory of the
category of those perfect commplexes on $I$ which are acyelic on $Z-Y$. There is a $K^{B}(\mathbb{X}, Y)$ satisfying the analog of the "Bass fundanental theorem", Thm 1 .
(Localization)
Thm 3: For $U \leq \mathbb{Z}$ a quasicompect oren, there is a homotory fibre sequence

$$
K^{B}(\nabla \text { on } \nabla-u) \rightarrow K^{B}(\Sigma) \rightarrow K^{B}(u)
$$

Hence there is a long eract sequence

$$
\cdots \rightarrow K_{n}^{B}\left(X_{0+} X(u) \rightarrow K_{n}^{B}(\Sigma) \rightarrow K_{n}^{B}(u) \xrightarrow{\partial} K_{u-1}^{B}(X \text { on } \Sigma-u) \rightarrow \cdots\right.
$$

(Excision)
Thm 4 : If $i: Y \longrightarrow \nabla$ is a finitoly priesenter closed immonion and $f: X^{\prime} \longrightarrow \mathbb{B}$ is a map such that

1) $\theta_{8_{1}^{\prime} Y^{\prime}}$ is flat ove, $\theta_{8, Y}$ if $f\left(y^{\prime}\right)=y \in Y$
2) $f$ inaures an isomorrhism $f^{-1}(Y) \stackrel{\cong}{\rightrightarrows}$
then $f^{+}: K^{B}\left(X_{\text {on }} Y\right) \xrightarrow{\sim} K^{B}\left(X^{\prime}\right.$ on $\left.Y^{\prime}\right)$ is a homotors equivalonee.
(May...Vidori)
Thm 5: If $U$ and $V$ ore quasicompact orens in $I$, there is a homotors cortesian Maye--Vietoris squore

$$
\begin{aligned}
& K^{B}(u \cup v) \rightarrow K^{B}(u) \\
& \downarrow \\
& K^{B}(v) \longrightarrow K^{B}(u \cap v)
\end{aligned}
$$

(Brown-Ge...ton)
Thn 6 : If $X$ is noetherion of finite Krull dimension, thece is cohomological descent for the Zariski ... Nisnevich topulosies

$$
\begin{aligned}
& K^{B}(X) \sim H_{Z_{0}}\left(X ; K^{B}\right) \\
& K^{B}(Z) \sim H_{N}^{\prime}\left(X ; K^{B}\right)
\end{aligned}
$$

hence srectral sequences $\quad H_{z_{o r}}^{D}\left(X ; \widetilde{K}_{q}^{B}\right) \Rightarrow K_{q-b}^{B}(X)$

The Nisnewich descent port of Thm 6 allows one to comove the hypothesis that $X$, eopulor in $m$, old thearem that

$$
K / l^{n}(X)\left[B^{-1}\right] \simeq K^{\text {Ton }} / l^{-1}(X)
$$

Generalized Trace Map for K-Thery of Spaces, and Applications Crichton Ogle

A conjecture due to $T$. Goorlivilie asserts that

$$
\bar{A}(\Sigma x) \simeq \widetilde{D}(|x|)=\prod_{q \geq 1} \tilde{D}_{q}(|x|), \tilde{D}_{q}(|x|)=\text { def. } \sec ^{\infty} \Sigma^{\infty}\left(\Sigma\left(E \mathbb{U}_{q}+\frac{\sum_{q}}{}|x|^{\text {Day }}\right)\right) \text {, }
$$ where $A(Z)$ denote the haldhausen $k-$ theory of the space: inipdicialset $Z$, $\bar{A}(Z)=$ twofibre $(A(Z) \rightarrow A(*))$. A proof of this conjecture has been [C CG] announced by $\mathbb{Z}$ G.Carlsson, R.Ciker, T. Goodurilie +W.C.H kiang ane independently by my elf. Both previous proofs are incorrect. We correct thin.

We follow the techniques used by Woldhausen in his proof of the pitting $A(Y) \simeq W^{\operatorname{Pil}}(\mid Y) \times J^{\infty} \Sigma^{\infty}\left(M I_{+}\right)$, and the outline of the proof of Croodurillie's conjecture given in [CCGH] in showing

Thun 1 There exists a trace map $\bar{T}_{r_{x}}(Y)$ natural in $X$ and $Y$, ( $X$ a convected simplicial set, $X$ and $Y$ tasepomibel):
$\bar{T}_{+_{x}}(Y): \lim _{\omega} \Omega^{n}$ fibrin $\left.\overline{\bar{A}}\left(\Sigma\left(X \vee \Sigma^{n} Y\right)\right) \rightarrow \bar{A}(\tau X)\right)$

$$
\rightarrow \Omega^{\infty} \Sigma^{\infty}\left(Z\left(V_{q=1}|X|^{[q-1} n|Y|\right)\right) \simeq \prod_{q} \Omega^{\infty} z^{\infty}\left(z\left(|X|^{[q-a} \wedge|Y|\right)\right)
$$

The decomposition on the right decomposes ${\overline{T_{r_{x}}}}(Y)^{q \eta_{1}}{ }_{\infty} \prod_{q \geq 1} T_{r_{x}}(Y)_{q}$.
There exist maps $\tilde{\rho}_{q}: \tilde{D}_{q}(|x|) \rightarrow F(\Sigma x)$ as constructed in $[C C G H]$ and [O]. These constructions, as well as the entire proof It he above Thoren, admit and require a precise sinp-licial foumbation. This we do. We then get

Thur $(T+)_{x}(Y)_{q} \circ\left(D_{1} \tilde{\rho}_{P}\right)_{x}(Y) \approx\left\{\begin{array}{l}* \text { if } p * q \\ (-1)^{q-1} \text { i } p=q\end{array}\right.$
This houstopy is natural in $X$ and $Y$. Here $\left(D_{1} \tilde{\rho}_{p}\right)_{X}(Y)$ denotes the $1^{\text {* }}$ derivative of the map $\rho_{r}$ at $X$, evaluated at $Y$ in the sense of Gooduritie. It now follows from the fundamental results of Gradurithe and Waldeausen , who have computed $\left(D_{1} \bar{A} \Sigma\right)_{x}(Y)$ that Cor. $3 \bar{A}(\Sigma X) \approx \tilde{D}(|x|)$ by a homsoory natural in $X$.

202
Naturalist of $P i c, S K_{0}$ and $S K_{1}$
This talk reports on gut work with C.A. Weabel.
Transfer maps are constructed for $S K_{0}$ and $S K_{1}$. From These it follows that if $A=A_{A}$ is a graded commutative ring with $A_{+}=\underset{i>0}{\oplus} A_{r}$ and $A_{0}=R$ then $S K_{0}\left(A_{1}, A_{+}\right), S K_{c}\left(A, A_{+}\right)_{3}$ $P\left(C\left(A, A_{+}\right)\right.$, NSKo(R), $N S K_{1}(R)$, $N P C(R)$ are all modules over the rung $\omega(R)$ of Witt vectors over $R$. Various consequences of these module structures are discussed. In particular we consider the case where $A=\oplus_{i \geqslant 0} A_{i}$ is reduced, aradeof and finitely generated as an algebra over the field $A_{0}=$ de. Let $B=\underset{1 \geqslant 0}{(1)} B_{1}$ be the seminormalization of $A, \quad G \omega(B)=\left\{f=1+b_{1} t+\cdots \in \omega(B) \mid b_{1} \in B_{1}\right\}$

- There is an in jection $\gamma: \operatorname{Prc}(A) \rightarrow G \omega(B) / G \omega(A)$ of $\omega(B)$-modules. If $A_{n}=B_{n}$ for $n \gg 0$ then $\gamma$ is an isomorphism. If char $(B)=0$, composing $\gamma$ with the ghost map ques an isomorphism of le-modules $P_{C} C(A) \longrightarrow B / A$.

Mam Dayton
Norbeestern Illinars, Chicago

Io The $K A B I$ conjecture TRue?
Sue seller
(This is joint work with chuck wibil)

KABI CONJECTURE: Let $A$ and $B$ be rings, I an ideal of $A$, and $f: A \rightarrow B$ such that $f(I)$ is an ideal of $I$ and $I \simeq f(I)$. Then for all $x \geqslant 1$

$$
K_{n}(A, B, I) \not H_{n-1}(A, B, I) \otimes Q
$$

Previously, the conjecture was known to be tire for
a) $n=1$ (Geller-weibel)
b) I rilpotert (soodwillio)
c) $B=A / v$ (ogle-weibel)
also, it is sufficient to prove that
$K_{n}(A, B, I) \simeq H C_{n-1}(A, B, I)$ for Q-algebcas $A \subseteq B$ with I an ideal of both rings.

In this talk, for $\mathbb{Q} \subseteq A \subseteq B$ and $I$ an ideal of both rings, triple relative groups $K_{n}(A, B, I, J)$, $J$ an ideal of $A$, were defined, a module structure over the ring of witt vectors $\omega(\mathbb{Q})$ was discussed and the following results. were announced with some profs given.

For $Q \subseteq A \subseteq B$ and I an ideal of both $A+B$

1) KABI conjecture $\Leftrightarrow N K_{n}(A, B, I) \simeq N H C_{n-1}(A, B, I) \quad \forall n \geqslant 1$
2) $K A B I$ Conjecture $\Leftrightarrow K_{n}\left(A[t], B[t], I[t], t^{k}\right) \longleftrightarrow H C_{n-1}(A[t], B[t], I[t], t]$
3) KABI conjecture $\Rightarrow$ the weight $\Rightarrow$ summand of $K_{n}\left(A[t], B[t], t^{k} I[t]\right)$ is zero for $s<k$ and $\forall n \geqslant 1$ (here, if the weight $s$ sunimand of $K_{n}\left(A[t], t^{h} I[t]\right)=0$ for $x \geqslant 2$, then the $K A B I$ conjecture is tine).
4) $K_{2}(A, B, I) \rightarrow H C,(A, B, I)$ is onto. Hence, for $A, B, I$ as in the conjecture $K_{2}(A, B, I) \otimes Q \rightarrow H C,(A, B, I) \otimes \mathbb{Q}$ is onto.

204
Higher $K$-theory of orders and wite gral gromprny
Thiss talk gives ar exportion of the speake's recent results on the Kigher K-tweory of arders and group-riji. Fris soluctions were gwè to recent questuons on finte gereration of $K_{n}, G_{n}$ of ondes as well as finiteners of $S K_{n}$ and $S G_{n}$ of orders ar followr: More precisely we prere the follonny erulto (I). Ler $R$ be the ring of integes in a umber feld, $F, \Lambda$ any $R$-omer in a semi-sumple F-aleebra $\Sigma, E$ ary prime ded of $R$, then form $l l \geq$,
(i) $K_{n}(n)$ is a firitely genented Abslein gnorp
(ii) $K_{n}(n) \rightarrow K_{n}(\Gamma)$ is an is omorplasom mod tortwon If $\Gamma$ is the meximel Reorder contanneng $\Lambda$
(iiv) $S K_{n}(\Lambda)$ is a funte group.
(iv) $\operatorname{SKn}\left(\hat{\Lambda}_{R}\right)$ is finte whec $\hat{\lambda}_{R}$ it ine compection of
$\wedge$ at P
(II) Let $R, n, F, \sum$ be as in (I). The $\forall n \geq 1$
(i) $G_{n}(N)$ is a fintely yeneruted Aschai grong
(i) $Q_{2 n+}\left(n_{\mathcal{L}}\right)$ is a funtily gerevited Alseliangros
(n). $S G_{m}\left(n_{p}\right)=S G_{m}(\Lambda)=S G_{m}\left(\Lambda_{\underline{p}}\right)=0$
(iv) $S G_{2 n-1}(n)$ is fite; $S G_{2 n i}\left(n_{p}\right), S G_{2 n}\left(A_{p}\right)$ we fute groups of adeler relatively prinito the prine $p$ ly if below p.

We alss har-the folloniry results on
Couton meps. For all $n \geq 1$
III (i) If $k$ is a feld of chentenstei $P$ and
$\pi$ any fite gromp, the $K_{2 n}(k \pi)$ is a finte $p$-gin

(ii) $K_{n}(N)-Q G_{n}(N)$ induces a sugectan $S K(N)+$ SG $(N)$
-i(1) $G_{4 n+3}(\mathbb{Z} \pi), K_{4 \pi+3}\left(\mathbb{Z}_{\pi}\right), G_{4 r+3}\left(\mathbb{Z}_{p} \pi\right)$ are

Fually we shor thet induction thery can be used to reducie the strdy of K-theory of sitegrel gromp-nip of finte grayp to the stidy of the Kthory of gronph ijs ore the $p$-hyperelementary subyonps of $\Pi$

Aderemi - 0. Auter
Tbadan, Nigerlal

Whitahead grongea of firite groupo
This tet woul summary of acrseno knowledy of the grompe $K,(Z Q)$ and Wh $(G)$ fo finita grompu $G$. By reviet of Bans, they are fiiitely generated and their ionkware knowns. Aln, by theoren of Wall, the toviou subgrong of Wh $(\sigma)$ i preciely the grong

$$
S K_{,}(Z G)=K_{n}\left[K_{1}(Z \mathbb{Z}) \rightarrow K,(Q G)\right]=K \operatorname{Kn}\left[n r: K,(Z G) \longrightarrow Z(Q G)^{*}\right] .
$$

Loedigatim equene are neaded to make systematic computations of the $S K,(\mathbb{Z})$. Qre way to see thene in to considen the relative $K$-chang exsect segueren

$$
K_{2}(2 \ln [G]) \rightarrow \$ K_{1}(2 G, n 2 G) S K_{1}(2 G) \longrightarrow K_{1}(2 \ln [G]) .
$$

Upontaking the inverse hinit overallen, zhigivie awefoctaquane

$$
\Pi_{p} K_{2}^{c}\left(\hat{U}_{r} G\right) \longrightarrow \underset{\lim _{n}}{ } S K_{1}(\mathbb{Z} G, n \mathbb{Z}) \longrightarrow S K,(\mathbb{Z}) \xrightarrow{l} \prod_{p} S K_{1}\left(\hat{Z}_{r} G\right) \rightarrow 1
$$

For any Z-oden $O$ in afinite dimencional semisimple Q-algaba $A, L=S K,(U, n(R)$ variihes iff the congruance subgroug problen holde Yo Cs; i.e., iff anysubgroup of finite index in $S L_{r}(U R)(r \geqslant 3)$ cont ines some congruence sublgiony $S L_{r}(U,, n O R)$. Thegroup

$$
C(A)=\lim _{\curvearrowleft n} S K_{1}\left(U, n(\Omega) \cong \operatorname{Cohen}\left[K_{2}(A) \longrightarrow \oplus K_{2}^{c}\left(\hat{A}_{p}\right)\right]\right.
$$

is independen of $O$; and in many cases- including the care $A=Q G$ - haw bean completely dercribed in wash of Bun, Milnos, Serre; Bah, Relman, Proand, Rughanath, andothen.

$$
\text { The } S K,(2 G) \text { an thun deresibed by } 2 \text { exatseguenern }
$$

$$
1 \rightarrow C C_{1}(2 G) \longrightarrow S K,(Z \sigma) \xrightarrow{e} \pi_{p} S K,\left(\hat{u}_{r} \sigma\right) \rightarrow 1 \quad(c e,(2 G):=\operatorname{Kan}(e))
$$

and $\Pi_{f} K_{2}^{c}(\hat{2}, 6) \longrightarrow C(Q 6) \longrightarrow C,(26) \rightarrow 1$.
The $S K,\left(\hat{e}_{r} G\right)$ canbedoneribed previncly, tor any firita $G$, interm of tha furnton $H_{2}(-)$ applied ti antquatin toof $G$. The mpel i nativally pplit inodd thaion. Formulanfor the rded toiniou in $C P\left(Z_{C}\right)$ ore hnoum. For esangles if $G$ is a p-group for oold $p$, if $Q_{G} \cong \prod_{i=1}^{h} A_{i}$ 意 $A_{i} \cong M_{r_{i}}\left(F_{i}\right)$ hasisseduaibewrepresentation $V_{i j}$ and $F_{i}=Q\left(\mu_{i}\right)$ whare $\mu_{i}$ is a gsoup of p-power sootiv of unitg, then,

$$
\begin{aligned}
& \left.C l(Z G) \cong\left[\prod_{i=1}^{h} \mu_{i}\right] /\langle\psi(g \otimes h): g ; h \in G, \text { ghah }\rangle\right\rangle \text { where } \\
& \psi(g \otimes h)=\left(\alpha a t_{F_{i}}\left\langle g, V_{i}^{h}\right)\right)_{i=1}^{h} \quad\left(V_{i}=\left\{x \in V_{i} \mid h x=x\right\}\right)
\end{aligned}
$$

Bob Ohies
Anh wo Univenity
(temp. SFB Göttingen)

Bivariant Chern character.
 fam algebraic $K$-theory to negative oyclic homology can be extended to
e)) a bivariant Chern charactor oh: $K^{+}(A, B) \rightarrow \mathrm{HC}^{*}(A, B)$ fom a ruitably defined bivariant algebreic $K$-theorg to a bivariant veunion of cyclic cohomology. Both bivaniant theories are covariant in $B$ and contravariant in $A$. One secovers the unval Chens choracter when $A=\mathbb{Z}$. As an inmediate consequance of the multiplicativity of the bivariant cham barecter, two Morite-equivalent algebras have DRannghic (bivaniaut) ayclic (co)harmology groups.

The bivariaut $K$-gromp are oftanied from the exact catgory of A-Bbimodules which are finitely genenated projictive voen B.

The bivariaut ayclic chomolyg goups hoar the following propertios
i) (Product) There imists a graded moduct

$$
H C^{*}\left(A_{1}, B_{1} \otimes C\right) \otimes H C^{*}\left(C \otimes A_{2}, B_{2}\right) \rightarrow H C^{*}\left(A_{1} \otimes A_{2}, B_{1} \otimes B_{2}\right)
$$

ii) (Bitariant Comber exact osyple) There axists an exact conple

$$
H C^{*}(A, B) \xrightarrow{S} H C^{*}(A, B)
$$

where $\operatorname{deg}(S)=2, \operatorname{dgg}(I)=0, \operatorname{dgg}(B)=-1$ and $H H^{*}(A, B)$ is a bivariant varnion of Hochachied hamolagy.
iii) Fir ay extarsion of alyebras $0 \rightarrow I \rightarrow R \rightarrow S \rightarrow 0$ such that $I$ io H-unital in the serve of Wodzicki, one hoo the mact triangles

$$
H C^{*}(A, I) \longrightarrow H C^{*}(A, R) \text { and } H C^{*}(I, A)=H C^{*}(R, A)
$$

2) If $S A$ is the nupension of the afecbere $A$, one has the following isomsphim

$$
H C^{n}(A, B)=H C^{0}\left(A, S^{n} B\right) \text { and } H C^{-n}(A, B)=H C^{0}\left(S^{n} A, B\right) \quad(n \geqslant 0) \text {. }
$$

Chnistian Kassel,

Absolute stable rank and witt cancellation for non commutative rings

In a ring $A$, a list $a_{0}, \ldots, a_{n}$ "can be shortened" if there are $t_{i} \in A$ with $a_{0}+t_{0} a_{n}, \ldots, a_{n-1}+t_{n-1} a_{n}$ lying in exactly those maximal left ideals containing $a_{0}, \ldots, a_{n}$; if every such list in $A$ can be shortened, we say $A$ has absolute stable rank $\operatorname{asr}(A) \leqslant n$. This condition is designed to imply transitive action of $u(q)$ on all nonsingular vectors $v(\operatorname{in} \operatorname{a}(\Lambda, \varepsilon, \alpha)$-quadratic space $(M, q))$ of equal length. By a standard argument it implies $(M, q)$ is cancellative when $q$ has witt index $\geqslant \operatorname{asr}(A)+2$ (or $\operatorname{asr}(A)+1$ provided the involution a on $A$ is trivial). In general $\operatorname{asr}(A) \geq \operatorname{sr}(A)$ $=$ the stable rank of $A$. By a recent theorem of J.T. Stafford, $\operatorname{asr}(A) \leqslant \operatorname{Kdim}(A X \operatorname{rad} A)$ +1 , where $k \operatorname{dim}(A)$ is the Krull dimension of a left noetherian ring. So witt cancellation (for sufficiently large index) applies to quadratic spaces over $\mathbb{Z} G$ when $G$ is polycyclic by finite.

Bruce Magurn
Miami University oxford, Ohio USA

C-theory of integral group rings.
Let $G$ be a finite group, and consider $G_{*}(\mathbb{Z} G)$ cor mure generally, $G_{*}(R G)$, for a Noetherian ring $R$ ). We first deduce a Lenstra-type decomposition for $G$ nilpotent Prop.: Let $G$ le finite nilpotent, and write $Q G \equiv \prod Q(\rho)$, where $\rho$ ranges over irreducible rational representations and $Q(\rho)$ i simple; let $\mathbb{Z}(\rho)$ be a maximal $\mathbb{Z}$-order in $Q(\rho), \mathbb{Z}\langle\rho\rangle=\mathbb{Z}(\rho)\left[\frac{1}{|\rho|}\right]$, where $|\rho|=[G: \operatorname{ker} \rho]$. Then $G_{*}(\mathbb{Z} G) \cong \oplus G_{\psi}(\mathbb{Z}\langle\rho\rangle)$.
I. Jambleton, L. Saylor, and B. Williams prove this result independently, and they conjecture a general answer:
Corferture (HTW): Let $G$ be a finite group, and write $Q G \cong \prod_{g} M_{n_{g}}\left(D_{g}\right)$, $D_{s}=\operatorname{End}_{\text {COG }}\left(V_{S}\right)$ the division algebra associated to the irreducible rational representation $\rho_{\rho}: G \rightarrow G L\left(V_{\rho}\right)$. Let $k_{\rho}=\left|\operatorname{ker} G \xrightarrow{\rho} G L\left(V_{\rho}\right)\right|, \ell_{\rho}$ the degree of any the irreducible constituents of $\mathbb{C} Q_{Q} V_{\rho}, W_{\rho}=\frac{|G|}{k_{\rho} l_{\rho}}, \quad D_{\rho}$ a maximal $\mathbb{Z}$-order in $D_{\rho}$. Then $G_{*}(\mathbb{Z G}) \cong \underset{\rho}{\oplus} G_{*}\left(D_{\rho}\left[1 / w_{s}\right]\right)$.
Prop.: The HTW conjecture holds for dihedral extensions of finite abelian groups.
Prop.1 The HTW conjecture holds for $|G|$ square-free.
The proofs use Lenstra-type techniques; one defines the Lenstra functor, a self lumotopy equivalence of $B Q M(O), ~ M$ a $\mathbb{Z}$-order in $Q Q$ containing $\mathbb{Z} G$; this induces a map of the himotipy flue sequence $\underline{M}^{\text {tor }}\left(\mathbb{Z}(G) \rightarrow M(\mathbb{Z} G) \rightarrow \underline{\underline{M}}(Q G)\right.$ to the sequence $\underline{M}^{\text {tor }}(O) \rightarrow \underline{=} M(R) \rightarrow \underline{\underline{M}}(Q Q)$, where $O$ is a ring whose $G_{X}$ is the desired answer.

David WeOb
Washington University
St. LOUis, MO 63130 USA

Trivializing Milnor's K-theory
Let $F$ be a field. The talk defined two series of grows $\hat{K}_{n}(F), \widetilde{K}_{n}(F)$, "lifting" the Mil nor K-grous $K_{n}^{H}(F)$. $\hat{K}_{n}(F)$ (resp. $\tilde{K}_{n}(F)$ ) is olefined as $\mathbb{G}_{m}^{\infty}\left(\right.$ rex. $\left.\Lambda^{n}\left(G_{m}\right)\right)$ in the category of Mackey functors. $S_{0}$, loosely speaking, $\hat{K}_{n}(F)$ is defined by generators $\left(O_{E F}\left(x_{1} \otimes x_{\ldots} \ldots x_{n}\right)\right.$, $[E: F]<+\infty, x_{i} \in E^{*}$, witt relations given by the projection formula. Same thing for $\tilde{K}_{n}(F)$ witt $x_{1} 1 \ldots x_{n}$. There are surjective ham amorghisms:

$$
\hat{K}_{n}(F) \rightarrow \tilde{K}_{n}(F) \rightarrow K_{n}^{M}(F),
$$

and $\operatorname{Kor}\left(\tilde{K}_{n}(F) \rightarrow K_{n}^{M}(F)\right)$ and $\operatorname{Ker}\left(\tilde{K}_{n}(F) \rightarrow K_{n}^{M}(F)\right)$ are divisible.
Thess the Milnor-Kato conjecture may be phrased as follows: the natural maps $\hat{K}_{n}(F) / m \rightarrow H^{n}(F, \mathbb{Z} / m(n))\left(\right.$ ness. $\tilde{K}_{n}(F) / m \rightarrow H^{n}(F, \mathbb{Z} / m(n))$ ) are iso . moyhims.
Conjecture 1. There are canamial isomoy his ms:

I am able to construct such maps for $n=2,3$ (at least, away from


Assume l that $F$ is perfect; define $\mathbb{Z}(1)$ as $\mathbb{E}_{m}[-1]$ (as a complex of Gal ( $\bar{F} / F)$-macules) and $\hat{\mathbb{Z}}(m)$ as $\mathbb{Z}(1)^{\frac{1}{\phi} x}$ (in the corresponding derived category). Set $\hat{K}_{n}^{\prime}(F)=\mid H^{n}(F, \hat{Z}(n))$. Then cup-product induces a homomoyhism

$$
\hat{K}_{n}^{\prime}(F) \xrightarrow{\sigma} \hat{K}_{n}^{\prime}(F),
$$

and
\{Conjecture\} $V_{\alpha}$ is an isomorphism.
The link between conjectures 1 and 2 is the following (easy) theorem.

Theorem 1. a) There is a canonical isomorphism

$$
H^{n-1}(F, \varphi / \mathbb{L 2}(n)) \leadsto \hat{K}_{n}^{\prime}(F)_{\text {tors }} \text {. }
$$

b) There is a canonical injection

$$
\hat{K}_{n}^{\prime}(F) / m \Longleftrightarrow H^{m}(F, \mathbb{Z} / m(n) \text {. }
$$

If the Galois symbol in degree $n$ is surjective, this injection is an isomorphism.

It is easy to see that Kura and Coper 4 are torsion. On the other hand, there is the following result:

Theorem 2. a) a is surjective iff the Galois symbol in degree nos surjectrie.
b) Assume $n=2$ or 3. Then the restriction of a to $\hat{K}_{m}(F)_{\text {tors }}$ is split surjective, with divisible kernel.

Bruno Kahn Paris 7.

Groturnhick - Riemann-Roch for general schemes
Let $S$ be a base selene, Noctheien and of finite Krill dimension, sppanaed. Hell be a prime number, final one e for all so that is $l^{-1} \in V_{s}$ as Alt all residence field of $s$ have bounded imiformilly, $l$-étalechomological dimension. egg. a $\left.f \ell \neq 2, \mathbb{C}, \mathbb{F}_{\text {dg g }}, \mathbb{Z} \subset \frac{1}{x}\right], \ldots$.
'Schemes we consider are essentially of finite type over $\$$ s.
Theremin There exists a topological $G$.theory ipecturm $G^{\frac{1}{( }}(x)$ to that

a) Grothendich-Riemann-Rocl: When $f: X \rightarrow Y$ is proper morph.,

$$
\begin{aligned}
& G^{\log }(x) \xrightarrow{z_{x}} G^{t}(X) \\
& \xi_{t} \downarrow \downarrow_{t}^{t} \\
& G^{d_{Y}}(Y) \xrightarrow[Z_{Y}]{ } G^{t}(Y)
\end{aligned}
$$

under $G^{d y}(X)$ is the ipecctum associated to coherent showers on $X, f_{*}$ is instated byes alternative sun of higher direct image sheaves.

And it indues the Hingehuch-Riemann-Roch formula, the main theorem of Baum-Filton-MacPherson and it generalization to higher K-throy, the theorem of Gillet.
The proof and the construction is based on the facts that 1) $f_{*}$ can be localized with respect tod the tale topology on $Y$. 2) $K^{d g}()_{l}$ is locally constant on the étale topology. -
The projection formula $f_{*}\left(x \cap f^{*} y\right)=\left(f_{*} x\right) \cap y$ is formulated as the comm, diagram of spectra

$$
\begin{aligned}
& G^{\operatorname{ld}}(X) \otimes K^{\operatorname{dg}}(Y) \xrightarrow{1 \otimes f^{*}} G^{\operatorname{dy}}(X) \otimes K^{\operatorname{dg}}(X) \xrightarrow{n} G^{\operatorname{dg}}(X)
\end{aligned}
$$

The facts gives us


When $X$ and $Y$ are pepper over $S$, compose the Gysin mapping to $S$

and taking the adjunction as $k^{*}(s)_{e}^{\lambda}$-module, we get the thenem 2).
To prove the theorem 1), we look at the Patrikiov filtration on them.
Masan Harada
Department of Mach.
Kyoto University, Kyoto 606 Japan
Acyclic groups

Acyclic groups are those groups whose homology (trivial $\mathbb{Z}$ coefficients) is that of the trivial group. This survey attempts to indicate the importance of acyclic groups and examine their group-theoretic structure.

Examples
Acyclic groups are to be found in work of G Higman (1951), Mc lain (1954), Baumslage Gruenberg (1967), Epstein (1968), J Mather (1971), Wagoner (1972), Kane Thucston (1976), Baumslag, Dyers Heller (1980), dele Harped Mc Duff (1983), and elsewhere. Many examples have few normal subgroups.
Ubiquity results

For a group extension $N \rightarrow G \rightarrow Q$ with $Q$ acting trivially on $H_{*} N$,

$$
\text { (i) } N \text { acyclic } \Leftrightarrow H_{*} G \stackrel{\cong}{\rightrightarrows} H_{*} Q \quad \text { (ii) } Q \text { acyclic } \Leftrightarrow H_{*} N \stackrel{\cong}{\rightrightarrows} H_{*} G \text {. }
$$

[KeT 1976]: $\forall$ group $G, G \$ D \$$ acyclic.
This prompts the study of normal-in-acyclic groups, eeg. abelian groups [BDEH 1980, B1983], GR ( $R$ ring) [W 1972].

Group structure $\Rightarrow$ acyclicity
Techniques used to prove acyclicity include Moyer-Vietoris sequences, preservation of dirlim by homology, and binate structure: $G=U G_{n}$ where $G_{1} \leqslant G_{2} \leq \ldots$ and $\forall n \exists \varphi_{n}: G_{n} \rightarrow G_{n+1}$ and $a_{n+1} \in G_{n+1}$ s.t. $\forall g \in G_{n} \quad g=\left[\varphi_{n}(g), a_{n+1}\right]$. Binate groups are acyclic $[B$, to appear in Proc. Singapore Group Theory Conf,, de Gruyter $]$.

$$
\text { Acyclicity } \Rightarrow \text { group structure }
$$

$I$ : Any fid. complex representation of an acyclic group restricts trivially to all finite subgroups.
ci: Finite normal-in-acyclic groups are abelian.
C2: A (non-central) normal subgroup $N$ of a torsion-generated acyclic group has $N / N^{\prime \prime}$ f.g. Af $N$ is (infiniteperfect) by-f.g.abelian. (Possible example GLR $4 G L C R \because G L R$ is ER-by-K,R.)

C3: If perfect $N<$ torsion-gen'd acyclic $A$ and Out $N$ has a series with factors residually Finite and/or hypoabelian and/or torsion-free, then $A \cong N \times A / N$, so $N$ also fors.gen'd acyclic. Jon Berwick

MATBERIC 』 NUSVM.BITNET
Dept of Math, National U. of Singapore, Singapore 0511

Cyclic and Hochschild Homologies of an Exact Category $k$ - a comm. ring
For $e$ a small $k$-linear category, we define the cyclic nerve of $e, C N(e)$ to be the cyclic h-module:

$$
\begin{aligned}
& \qquad N_{n}(e)=\not c_{0, 八} c_{n} \operatorname{Hom}\left(c_{n}, c_{0}\right) \otimes_{h} \ldots \theta_{k} \operatorname{Hom}\left(c_{0}, c_{n}\right) \\
& \text { i.e. } c_{0} \sigma_{0}^{n_{0}} c_{1} \stackrel{a_{1}}{a_{n}}+c_{2} \leftarrow c_{n} \quad\left(a_{0} \otimes \cdots \otimes a_{n}\right) .
\end{aligned}
$$

Face and degeneracy operators are like those of Hochsciild homology.
The: If $A$ is a unital k.alghia, and $Q_{A}=$ cat. of f.g. projective modules, then $A^{G} \bumpeq C N\left(P_{A}\right)$ [by def. retract].

For $M 1$ an exact category, which is also h. liners we can form CN.S.m, where $5 . m$ is Waldhausen singlicial categang for a cofibenad category.

Def: $H H_{2}(m)=H H_{++1}(C N .5 .9)$

$$
H C_{+}(m)=H C_{k+1} \quad(C N . S . m)
$$

Thu: $C N \cdot S_{m} Q_{A} \bumpeq C N \cdot Q_{A}^{m}$

Core The map $C N, Q_{A} \rightarrow \Omega C N, S . Q_{A}$ is a hometogy equivalence.

Cur: We hare trace map (by Goodwillie earlier)

$$
\Omega N \text { is. } P_{A} \longrightarrow \Omega \subset N \text { S. } Q_{A} \rightleftarrows \subset \quad C N, P_{A}
$$

SI
SI

$$
\Omega N \cdot Q Q_{A}
$$

CW, A
residually
nd acyclic.
ck

- Randy McCarthy, Cornell Math Dost. Ithaca, N4. 14050

Motivic Cohomology

It would be highly desirable to have an algedvic cohomolosy theory bearing the same relation to algebraic $K$. theory as ordinary singular eohomolosy bears to topological $K$-theory. This theory should also have serious applications to the study of spacial values of zeta. Functions and to arithmetic duality theorems.

Such a theory should be the kypercohom.logy (in the étale and Zariski sites) of a complex of sheaves $\mathbb{Z}(r) \quad(r=0,1,2 \ldots)$ on a. neetherian regular scheme $X$ satisfying (ot least) the following properties
(0) $\mathbb{Z}(0)=\mathbb{Z} \quad \mathbb{Z}(1)=G_{m}[-1]$
(1) For $r \geq 1, Z(r)$ is acyclic outside of $\{1, r\}$
(2) There is a product pairing $Z(r) \stackrel{Q}{\otimes} Z(s) \rightarrow Z(c+s)$
(3) a) If $n$ is invertible an $X$, there is a distinguished triangle in the étele site

$$
\mathbb{Z}(r) \xrightarrow{r} \mathbb{Z}(r) \rightarrow \mathbb{Z} \ln \mathbb{Z}(r) \rightarrow \mathbb{Z}(r)[1]
$$

b) If $X$ has chameteristic $P$, there is a distinguished triangle in the etale site

$$
\mathbb{Z}(r) \xrightarrow{P^{m}} \mathbb{Z}(r) \rightarrow V_{m}(r)[-r] \rightarrow \mathbb{Z}(r)[1]
$$

(4) If $\alpha$ maps the étale site to the Zaniski site,

$$
\alpha^{*} \mathbb{Z}(r)_{2 a r}=\mathbb{Z}(r) \text { et, } \quad t \leq r R \alpha_{*} \mathbb{Z}(r)_{e t}=t_{\leq r+1} R \alpha_{*} \mathbb{Z}(r)_{e t}=\mathbb{Z}(r)_{2 a r} .
$$

In particular, $R^{r+1} \alpha_{*} Z(r)=0$ (Hilbert Theorem 90)
(5) $R^{r} \alpha_{x} \mathbb{Z}(r)=K_{r, 2 a r}^{M}$
(6) The homology sheaves $A^{i}(\mathbb{Z}(r))$ should be isamorphive to the sheaves $g r_{r}^{\gamma} \underline{\underline{K}} 2 r-i\left(O_{X}\right)$, up to $p$-torsion for prime's $p<r$.

For $r=2$, we have constructed a cohomolosy theory satisfying al of these properties, with the exception that wa do not know, for


A possible candidate fore motivia cohonelosy complex in the case of o field $F$ is the following:

Let the isth term of the complex $Z Z(r) \quad(0 \leq i \leq r)$, be

$$
{\underset{V, S}{ }}_{\operatorname{Lim}_{i, S}} K_{i}^{\prime, H}\left(V-S, I_{1}, I_{2}, \ldots . I_{n}\right)
$$

where $V$ runs or all reduced $i$ - dimensional subschemes of $\mathbb{A}_{F}^{r}$ whose intersection with all Faces of the hypercube $X_{i}\left(X_{i}-1\right)=0, i=1, \ldots$ r is proper. S ans over all finite subsets of $V$ whose intersection coth the $(r-i)$-skeleton of the hypercube is empty, and $I_{j}$ is the ideal defines dy $X_{j}\left(X_{j}-1\right)$. $K_{i}^{\prime, r}$ here denotes multirelative Milnor $K^{\prime}$-theory.

Stephen Lichtenboum
Cornell University (visiting I.H.E.S and Paris VII).

Relative Chow Groups
S. Landoburg

Let $Y \subset X$ be a closed inclusion of regular schemes of finite type over a field. (Regularity can be relayed in much of what follows) We was to define a relative Chow Theory $C_{h}^{p}(x, y)$.

To see what this theory should look like, consider the usual absolute Chow theory ${C h^{p}}^{p}(x)$. We have

$$
g^{p} K_{0}(x) \underset{\substack{\text { isouptotosisoc. }}}{\leftrightarrows} a_{2}^{p}(x)=z^{p}(x) / \nu=H^{p}\left(x, \underline{k}_{p}\right)=E_{2}^{p,-p}(x)
$$

where $Z^{P}$ is cycles, $\sim$ is rational equivalence, $K_{P}$ is sheafified $K$-theory, and $E_{2}^{P,-P_{x}}$ is from the Quallen spectral sequence.

Here are the relative analogue of sane of these objects:
(1) Let $\tilde{Z}^{p}(x)$ be free abelian on cycles meting $Y$ properly. Then $Z^{p}(x, y)$ is define by $0 \rightarrow z^{p}(x, y) \rightarrow \tilde{z}^{p}(x) \rightarrow z^{p}(r)$.
(2) $X_{p}(x)$ is the complex $\underline{\underline{K}}_{p}(x) \rightarrow i_{*} \underline{K}_{p}(x)$.
(3) We get a spectral require for relative $k$-theory $t g$ taking fibers vertically in the diagsone

$$
\begin{aligned}
& \begin{array}{cc}
F^{m+1} \longrightarrow F^{m} \\
\downarrow & \downarrow \\
F^{m / m+1} \\
\downarrow
\end{array} \\
& K \eta^{\prime+1}(x) \rightarrow K \eta^{m}(x) \rightarrow K \eta^{m / 2+1}(x)
\end{aligned}
$$

Here $M^{\prime \prime}(x)$ is the category of $X$-nodules of cod $\geqslant \mathrm{m}$. The spectral sequence is $E_{1}^{p q}=\pi_{-p b}\left(F^{p /(+1)} \Rightarrow K_{p_{b}}(x)\right.$.

The construction of the spectral seqaice leads immediately to maps

$$
\begin{aligned}
& E_{2}^{p,-p} \longrightarrow H^{p}\left(x, \alpha_{p}\right) \\
& \downarrow \\
& z^{p}(x, y) / \sim
\end{aligned}
$$


 components of $z$.

Before defining $\mathrm{Cl}^{M}(X, Y)$, we realbleloke generalize sone of this to higher Chow groups. There is a may from Bloch's higher Chow complex to the Geisten-Quillen complex induced by $Z^{m}(X, n) \longrightarrow \frac{\|}{x \varepsilon X^{m-n}} K_{n} k(x) \quad$ v/a $z \longmapsto\left(p_{*} z_{,},\left\{\frac{N t_{1}}{\sum N t_{i}^{-1}}, \ldots, \frac{N t_{n}}{\sum N t_{i}^{-1}}\right\}\right)$ where $N=N_{\text {ormp }}^{2 / p^{*} z}$ and $\{\xi$ is the stembery symbol. This giver $C^{m}(x, n) \longrightarrow H^{m-n}\left(X, \underline{K}_{m}\right)$; this is 150 for $n \leq 1$.

Now define $\left.C_{h^{m}}^{m}(x, y, u)=\pi_{n}\left(\operatorname{Cone}\left(Z^{m}(x, \cdot) \rightarrow z^{m}(x, \cdot)\right)[-1]\right]\right)$.
(To define the map, first replace $Z^{m}(x$,$) by the quasi-1sourph is$ copley cassuting of thingies that restrict popery to $Y$.)
Define $C_{h}^{m}(x, y)=C_{h}^{m}(x, y, 0)$. Then we get a Bloch Formula

$$
C_{h}^{m}(X, y) \Longrightarrow H^{M}\left(x, \not X_{m}\right)
$$

Finally, to get a cycle map, note that an element of $C h^{m}(X, Y)$ is reprerontad $b y$ a cyclez on $X$ with a choice of trivialization of $z l_{Y}$. This gives data consisting of compatible cycles on two copies of $X$ and one of $Y \times / A^{\prime}$ (namely $Z^{+}, Z^{-}$ard the trivialization). Under favorable circumstances, these can be "patched" to give a class in $K_{0}\left(X\left\|_{x_{00}}\left(Y \times A^{1}\right)\right\|_{Y \times 1} X\right) \approx K_{0}(X, Y) \oplus K_{0}(x)$.

GRAPHENTHEORIE 12.-17. Juni 1988

Some Results on Well-covered Graphs M.D. Plummer

The maximum independent set probem for grapes is well-knoionto be NP-ciomplete. But suppose one has agraph in which the qreedy aloprithm for an midependent set alwayo yelds a mayuinum indep. set. In other worde, every maximal indep. Aet in mavimum. We call auch qvaphs welt-corered $(\omega-c)$.

The strudure of $w-c$ graphs is not completely understood. In tris talk we ferrt convider the cave of cubric graphe (i.e, requlor of degree 3), hu joint work with stephen Campberll, we prenent completo characterniptions of 1-(but not 2-), 2-(lout not 3-) and 3-connecteds cubie w-c. graphs, the last of these only for the planar case. The firat two families are infunite, but the third contains but four nemvers.

We alvo discues another approach takens by Denbow, Hartinell and Nowalkowsti who have recently charactervied all $\omega-c$ graphs of girth at least 5 .

Decomposition of graphs on surfacer
A. Schrijeer

We discoss the following two theoremn
Theorem. Let $G=(V, E)$ de a groph embedded on a compact surface $S$. Let $C_{1}, \ldots, C_{h}$ be cloced curver on $S$. Thens there exist pairwire dijpars simple cirwits $\tilde{C}_{1}, \ldots, \tilde{C}_{h}$ in $G$ where $\tilde{c}_{i}$ is frech homolopic to $c_{i} \quad($ for $i=1, \ldots, h)$, if and only if:
(i) there exict painvire dirjoint simple corred currer $\tilde{C}_{1}, \ldots, \tilde{C}_{h}$ on $S$ so that $\tilde{c}_{i}$ is frech homotopic to $C_{i}$ (fier $\left.i=1, \cdots, h\right)$;
(ii) fore each clored curre D.n S: $(G, D) \geqslant \sum_{i=1}^{h} \operatorname{minar}\left(C_{i}: D\right)$;
(iii) for ench "dowbly odd" clored curer $D_{m} S: \quad \sigma(G, D)>\sum_{i=1}$ miner $\left(C_{i}, D\right)$.

Theornm. Led $G=(r, E)$ be an edenim graph on the Klan bottle Then the maximimm number of painire edge-dingount orientation reversing circuire in $G$ is equal to the minimim number of edger interruaing ale orrentation-Neversing circuitr.

The fint theormn is notivated by resiler of N. Rolectom and P.D. Seymar on geaph minoar, and hy VLSI-derign algunthmicr. The secund theormen har applicatoun to multi-commedily flowr.

Gruphs not containing certain subgraph,
1t. I. Promal (Bonn)
For a finite graph $K$ let Fab ( $k$ ) denate the class of all finite graphs which do not contain $K$ as a (weah) subgrapt. In the present talk
we give a complete characterization of all those graphs $K$ with chromatic number at leait 3 which have the property that al most all graph, mi Forb $(K)$ are biputite. This extend ear leer results of Erdois, Whitman and Rathshical (1976) showing that almost all Arian jle-free graph. are bipartite and of Lamken and RoAhrhiCl(19+5) el el showirig that almost all graphs in Fab ( $C_{2 k i 3}$ ) are bipartite for every odd by de $C_{2 k+3}$.

Hamilton Surfaces
Nona Aarbfued (Santa Cuy;-Bellizham)
The two-dimensional analog of a Hamilton cycle in a graph is a gems embedding of the graph, composed of polygons. In appropinatey 1960, Ringel showed that the set if squares in the $n$-dimensional cube graph dan be partitioned isis Classes so that each class from a genus embedding of the graph after appropriate edgeidentifications have bun made In 1987, Hantpued, B. Jackson, id b.Rnigie showed that the set of squaws in $K_{2 n, 2 n}$ cen be partitioned into classes $C_{i, j}$ such that $C_{i, j} \cup C_{k, e}$ is a Hamilton surface if aid only if $(k-i, 2 n-1)=1$ and $(l-j, 2 n-1)=1$.

* finite undirected go apb $\varphi=\left(v_{T}, E\right)$ without burps and unbiple edges es is did to be aluirst aubiddder ni of where if is an arbitrary orientable surface

Ip (perNo) or an arbitiary wou-or arfable supace $\tilde{F}_{q}$ (gGN) or bae sfryidle-senface di - if ig is uob eubeddable un I and for eacle bermei vel the graph cy-v is eubidelabee ui 7 . Ju cate of $\mathrm{I}=\mathrm{F}_{0} \rightarrow$ oppue Haus Waguer gave a cleracterition
 un. Afty If aboyf 2.5 yelars ago. By means of the spriedle-suface $J_{1}$ ald the proyer parfial arderin Hielation $\frac{e}{0}$ we obfaui tholotab, dearactericarens of $1\left(\xi_{0}\right)$ whieh are ohorfer and hove elegants Hhoorem 1: $\Delta(t) \bigcup_{i=1}^{4} \Gamma_{i}$, where $\Gamma_{i}=\left\{g \in \Delta\left(F_{0}\right) \mid\right.$ gg $\left.\delta S\left(K_{s}\right)\right\}$
 cg is $r_{1}$ gaph $\}_{1} \Gamma_{4}=\Delta\left(t_{0}\right)-\left(\bigcup_{i=1}^{3} \Gamma_{i}\right)$.
Theorem 2: $M_{03}^{e}\left(\Delta\left(z_{0}\right)\right)=V_{i=1}^{v} \bar{V}_{i=1}$, where $\bar{r}_{1}=\left\{k_{s}\right\}, \bar{F}_{2}=\left\{\bar{F}_{1}, \bar{F}_{2}, K_{3,3}\right.$
 $\frac{T_{1}}{l_{4}}=\left\{T_{3}, 1 * P_{3}\right\}$. Rainer budeneluede, Aliel

Clean Triangulations
Gouhurd Rimge Santa Gouz Caiformien
In a triaugnestion $T$ of a surface $S$ each face is a triangle. If also each triangle in a face then $T$ is called clean. If the number of triangles in $T$ is minimal for a giveen $S, T$ is called mimimal. The picture is a mimimal clean triangulation of the projective plane.


Denote by $\tau(S)$ the number of triangles in a minimal clean triangulation of $S$. Let $S_{\mathrm{g}}$ be the onientalle surface of gimis $g$. We can prove that $\tau\left(S_{1}\right)=24$ and that $\lim _{g \rightarrow \infty} \frac{\tau\left(S_{g}\right)}{g}=4$. This was joint work with Nora Hartofield.

Applications of Connectivity
The unique capabilities of fiber optic technology have made it necenory to implement new communication netiorosts. One of the most important practical probes in this area is the design of minimun-cost survivable networks. This problem leads to interesting new connectivity concept in grape theory. We show in thin talk how "survivability" cam be permed in terms of connectivity parameters, we formulate integer programming models of the conerpmading optimization problems, and present optimum notions of some real-woed problems. Thin talk is boxed on joint work with Clyde Mona and Mecithild Stor.

Marti Orötiged (Angsberng)
Decomposing a complete bipmatik graph inf apis of
a k. regular graph
The purpose of this commuriviction is to present some theorem varying the following themeti"For every sintinal number $k$ there exists a smallest suatural member $c_{k}$ such that every $k$-ruler $2 n$.order bipartite graph $B$ decomposes $K_{K_{k} n}$

If s lear that $c_{k}$. if it exists, is a multiple of $k$. Here are came the rems.
Theorem 1: Every $k$-regular bipartite graph on $2 n$ vertices

Theoum 2: Let 6 be a 3-regular bipartite graph on $2 n$ vertices without any component a Jlemword graph. Then $6 G \mid K_{6 n, 6 n}$. Moreover, if $n$ is even $G \mid K_{3 n, 3 n}$ and if every vertex belomps fo a 4 -cycle 3 © I K ${ }_{3 n, 3 n}$.

Roland Häggkinst
Enki Combinatorial Mages
br recent years, there has been much inter vest in study sing inbedbinge of graphs in unfaces from a combinstoinl point of views. for example, such imbedding have been modelled by means of cubic combinatorial maps, i.e., cubri graphs with a proper edge colouring in three colour. He discuss the Jordan eave theorem mi this contort.

Charles state
groups and graph
Let $G$ be a finite grape.
A triple $(x, y, z)$ of elements $x, y, z \in G$ is said to be regular if $x \neq y \neq z \neq x$ and $x y z=e$. Will $x y z=e$ abs $y z x=e$ and $z \times y=e$. If $(x, y, z)$ is a regular triple them $\left(y, x, z^{\prime}\right)$ with $z^{\prime}=(y x)^{-1}$ is regular foo.
Co end regular triple $(x, y, z)$ an oriented triangle $O(x, y, z)$ with ares $(x, y),(y, z),(z, x)$ and westien
 $x_{1}, y, z$ is assigned or that $D(x, y, z) \equiv$ $O\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ inf $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in\{(x, y, z)$, $(y, z, x),(z, x, y)\}$; otherwise $D(x, y, z)$, $D\left(x^{\prime} y^{\prime}, z^{\prime}\right)$ are disjoint. In the set $\Sigma$ of all so obtained triangles an are $(x, y)$ occurs at most ance. If $(x, y)$ is in some triangle of $\Sigma$ then $(y, x)$ is in a triangle of $\Sigma$ for.
In the sene of combinatorial topology opposite directed ares $(x, y),(y, x)$

are identifíd so thed an effe $\left[x_{i} y\right]$
is oftained. Sedetifyiry step by step all opposaste direted efoe tringulation of areined surpoes are oftsined. Thus At ead group $G$ a selSof hriangu-
letions of orented surfeces is asaigned.
Ohe generel portlem is to firil the imberomections between the (group - Hewtiel) pappetion of $G$ and the (tupelfyial, gropl-theratical) papetion of $S$.
Whe main reall presented to the conpermee wes a chameterization of
lange dess of trinanglations of oriented surferes currecpending to some group.
Steim - Jingen Nass
Trausformationen Eleencher Livien
(Transformations of Élerion Trail, "II paree frop ralgun Fälepobevcex numen)
Using the comept of $x$-trampommations A, llotip showed in The 60-ás that any theo erbivion traih of a councted aculerian fropeciean be traen : formed into eash oter by a requence of $x$-tramporma toin. Howeor, thin comept doen not inffice if one comides she ret ef all echerion traih $G$ ratisfsing certain restrictions. Forexample, if $f$ is plave, then on may comide the ret of all uovintersecting eulvian trach; if $G$ is orbititany and satisfiè $\delta(G) \geqslant 4$, ore may comide all evlriain trail conspatitle wite a qiee znten of trans itions. In wol cares one hes to introduce additioinal trampormatioess. These ore: 1) $x$-detoduent $x^{\prime}$ : Thin operation Frown forms an ewlerion frail into two ruthosh $T^{\prime}, T^{\prime \prime}$ nue that $E\left(T^{\prime}\right) \cap E\left(T^{\prime \prime}\right)=\varnothing, E\left(T^{\prime}\right) \cup E\left(T^{\prime \prime}\right)=E(G)$.
2) $x$-abrontioin $c^{\prime \prime}$ : Here, two mbitiaih $T^{\prime}, T^{\prime \prime}$ an ahove are beimp tromperaers into en culevian trail of $G$
3) Denote $x^{*}=x^{\prime \prime} x$ '

Infoct, is the eore of nominterectiny /compatible enlerion tricits, $x^{*}$-ham $=$ formation ar the qperpinate tool thotranform any theo ouberian trach of the repectaic type intocadother.

$$
\text { xoul } \stackrel{\text { shine }}{\rightarrow}
$$

Functions on Graph Languages Generated by Edge Replacement Systems
This is work done in collaboration with A. Habel and Be.-]. Jreowshi, Bremen.

A graph grammar is a finite system for the generation of graphs, the generated set of graphs is called a language. We have studied a specific type of grammars, namely hyperedge replacement systems, which include edge replacement systems.

Given a graph function of into the natural numbers the problem is the following: Decide whether for given graph grammar 66 f. is unbounded on the language of 66 ? This decision problem can be solved for edge replacement systems, if 9 is compatible with the derivation process in a specific way, involving addition and maseimum taking only. Eseamples of such functions are the number of edges, the masainum degree and the maseinum path length.

Walter Vogler
$f$-factors of countable graph n
Let $G=(V, E)$ be a graph and $f: V \rightarrow E$ be $a$ function such that $0<f(x) \leqslant d_{G}(x)$ for each $x \in V$. A subgraph $F=\left(V^{*}, E^{*}\right)$ of $G$ is said to be an $f$-factor if $d_{F}(x) \leqslant f(x)$ for all $x \in V^{*}$. An $f$ - factor $F=\left(V^{*}, E^{*}\right.$ ) is called perfect if $v^{*}=v$ and $d_{F}(x)=f(x)$ for each $x v^{-v}$. Let is be pred vertex and $F$ be a fixed $f$-factor of $G$. A vertexes $v$ in called an outer vertex if there is an F-alternating trail
from s to $v$ starting with an edge of $E=F$ and ending with an edge of $K$. Wo show that a countable graph $G$ has no perfect f-pactor if and only if there exist an $f$-pacfor $F$ of $G$ an unsaturated vertencs a set $\theta$ of outer vertias with sE $\theta$ and a set $L(v)$ of edge incident with $v$ fer each $v \in \theta$ such that
(i) $E(F) \cap L(v)=\varnothing$ for each $v c \theta$,
(ii) $|L(v)|=f(v)-d_{F}(v)$ for each $v \in \theta-\{s\}$ and $|L e \rho|=f(0)-d_{F}(\rho)-1$,
(iii) there is no $f$-angminenting trace
$\left(v_{i}: i<k \leq w\right)$ starting at s such that $\left.t v_{2 i}, v_{2 i+1}\right\} \notin L\left(v_{2 i}\right)$ for sad $i$ with $2 i+1<k$.
K. Steffens

Perfect Graphs with additional min-max Properties
a system $L$ of linear inequalities in the variables $x$ is called totally dual integral (TDI) if for wry linear function $c x$ such that $c$ is all integers, the dual of the linear program: maximize $\{c x: x$ satisfies $L\}$ has an integral optimum solution or no optimum solution. a system $L$ is called box TDI if $L$ together with any inequalities $l \leq x \leq u$ is $T D I$. It is a corollary of work of Fulkerson and Loving that: where $A$ is a 0-1 matrix with the 1-columns of any now not a proper subset of the 1 -columns of any other row, and with no all-0 column, the system $L(G)=\{x: A x \leq \underline{1}, x \geq 0\}$ is TDI if and only if $A$ is the matrix of maximal cliques (rows) versus nodes (columns) of a perfect graph.

We will describe a class of graphs in a graph-Oheretic way, and characterize them as the as the graphs $G$ for which $L(G)$ is box TDI. We thus call these graphs box perfect. We also describe some classes of box perfect graphs.

Kathie Cameron

Let $x^{c}$ deceste the incidence vector of a simple cycle $C$ in an undirected graph $G$. The code cone $C(G)$ is the cone generated by all these vectors and the cycle polytope $P(C A)$ is their convex hull. Seymour $[1979]$ gave a linear system sufficient to define $C(G)$ for general graphs. For any $\hat{x} \in C(G)$, let

$$
\lambda_{\hat{x}}=\min \left\{\sum_{1} \lambda_{c}: \hat{x}=\sum_{1}\left(\lambda_{c} x^{c}: c \text { a cycle in } G\right), \lambda_{c} \geqslant 0\right\}
$$

$\mu_{\hat{x}}=\max ^{2}\left\{\lambda^{\prime}=\left\{x \in C(G): \lambda_{x} \leq 1\right\}, U(G)=\left\{x \in C(G): \mu_{x} \geq 1\right\}\right.$.
We let $L(G)=\left\{x \in C(G): \lambda_{x} \leq 1\right\}, U(G)=\left\{x \in C(G): \mu_{x}>1\right\}$ Then $C(G)=L(G) \cup \cup(G)$ and $P(G)=L(G) \cap \cup(G)$.

For the case of Haling graphs, we descuitse min max relations for $\lambda_{x}, \mu_{x}$ which enable us to give explicit linear formulations of $L(G), U(G)$ and hence $P(G)$.
this is joint work with Colette Coulland, If Purdue uniressity


On Well-Quasi-Ordering Jufinite Graphs
Robertson \& Seymour proved that given an infinite sequence $G_{1}, G_{2}, \ldots$ of finite graphs there are indices if such that $i{ }^{<} j$ and $G_{i}$ is isomorphic to a minor of $G_{j}$. We are interested in extending this result to infinite graphs. The infinite analogy is fake in general, but holds for example if $G$, is finite and planar.

Rosie Thomas
Prague, Grechoslovatia \& Colum bes, Chis
On Seymour's self - minor conjecture
Paul Seymour conjectured that every infinite graph isomontic to a proper minor of itself. A counter-example to this conjecture presented in the tall, is hosed on the conuter-example to the Wagner coeyjective about well- quasi-ordering of infinite graphs due to Rosin Thomas. The rabidity if the conjecture for graphs with an isolated planar end has teen showmen and the implications, if Seymour's caryecture in the still open sonutarre case is tree, have lee desicusced.

Bogetan Opeonoust: Columbus, Ohio, USA

Cai Nung's solution of the extremal problem for diameter 2 over the 3 element alphabet.

In his dissertation (Bulefeld 88) Cai proved:
$\ln \{-1,0,1\}^{n}$ a set of diameter $\leq 2 r$ (taxi metric $d(x, y)=\sum\left|x_{i}-y_{i}\right|$ has at most as many elements as thermit ball around $0 .(n \geqslant 2 r+1)$
(m) Tuber Bielefeld

Absolute retracts in graph theory
Both absolute retracts of reflexive graphs and absolute retracts of $x$-chromatic graphs ( $x \geqslant 2$ ) admit characterizations involving telly type conditions, leading to polynomial time recognition procedures; for the bipartite case see Discrete Appl. Math. 16 (1987) 191-215, and for a survey see Mathematical Systems in Economics 110 (Athenäum Verlag, 1988).
This is joint work with E.Pesch, A. Dah mam \& H. Schuitte, reap.
Hog. Bandect, Bielefeld

Upper bounds of the chromatie number of graphs via clique number with restrictions to graphs' structure. It's a small review of results on coloring of graphs from family $y_{i}(i=1,2,3,4)$ with given dique number on girth, where $\xi_{1}=\{G \mid \Delta(G) \leq k\}, \xi_{2}=\{G \mid G$ is $k$-degereenate $\}$, $\zeta_{3}=\left\{G \mid G d \xi_{2} \& \forall e \in E(G) \quad G \cup e \in \mathscr{y}_{2}\right\}$, $\zeta_{4}=\left\{G \mid G \notin \xi_{2} \& \forall v \in V(G) \quad G 1 v \in G_{2}\right\}$. The main result is a description of $\{G \in G 3 \mid \times(G)>k\}$ A. .V.Kostochke, Novosibirsk

ON SUM OF CIRCUITS OF GRAPHS
Let $G$ be an undirected graph and $w: E \rightarrow \mathbb{Z}_{+}$a non-nequative integral vector on the edges such that $\sum(W(e)$ : e incident to $v)$ is even for every node $v \in V$. Assume furthermore that there are no 5 painkise dispint edges of $w$-value bigger than 1.

THEOREM It is possible to assign non-negolive integers $z(C)$ to the cinmith of $G$ so that $w=\sum(z(C)$ : Caciruit ) if and only if $w(e) \leq \frac{1}{2} w(B)$ holds lon every cut $B$ of $G$ and for every edos $e \in B$.

The Petersen graph (when w is defined to be 2 on a specified perfect matching and 1 on the other 10 edos) shows that the thew rem does not hold if 5 is replaced by 6 is the assumptions.

Anti FRANK
Budapest, Ejxüös University
The Tree Gate and The Arborescenge Gan
The Tree Game on a graph is a variant of the Shannon Switching Game solved by A. 6 han in 1964 in terms of matroids. The Arborescence Game is a directed version of the Tree Game.

In the Arborescence Game, two players, Black and white, plays alternately edges of a connected undirected graph $a$ with a distinguished ratex $z_{0}$. A move of Black resp. White consists of deleting resp. directing an unplayed edge. White wins if he forms a spanning arborescence of $G$ rooted at $x_{1}$. we charactenje winning positions in the $c_{a s e}$ when $G$ is
a union of two edge-dhjjoint spanning trees. A general strategy follows. (join twinK with Y.O. Hamidoune)

Michel LAS VERGNAS.
C.N.R.S., Paris

CLUMPS, MINIMAL ASYMMETRIC GRAPHS, AND INVOLUTIONS
A graph $G$ is minimal asymmetric [minimal bilaterally asymmetric] If it has no non-thivial automorphism [no inv olntion] bet every proper non-hivial induced inferach of $G$ does. A useful parameter for classifforg such graphs is the induced length, ie., the length of a longest i-anced path. Denote by $A_{n}$ the class of all minimal asymmetric graphs of induced length $n$; similarly Dr for bilateral symmetry. With J. Nesethil we conjechne that there are only finitely many minimal asymmetric graphs, and that these are also the only minimal bilaterally asymmetric graphs. In fact, we believe there are only 18 such graphs ( 9 complementary pairs). We can prove that $A_{n}=\mathcal{D}_{n}=\varnothing$ for $n \geqq 6$, $A_{5}=\mathscr{D}_{5}$ consists of two graphs, $A_{4}=\mathscr{D}_{4}$ of seven. That $A_{n}=\mathscr{B}_{n}=\varnothing$ for $n=1,2$ is trivial. The only open case is $x=3$. These results follow from the following considerably shonger theorem dealing with the stmetrue of graphs stich contain no mi mimal asymmetric surra chs.
THEOREM. Let $G$ be a finite graph of induced length $\geqq 4$, and suppose that $G$ has no induced minimal asymmetric subegraph (actually, none of a list of 13 minimal asymmetric graphs). Then $G$ contains a non-trivial clump (homogeneous set), or $G$ has an involution.
d white, hG
white
Gut SABIDUSSI
White
Univensité de Mousuíal at $x_{1}$.
$G$ is

Girth and Face-width of Embedded Graphs
Let $G$ be a graph embedded on an oruntable surface. The face-width of the embedding is the minimum valve $|C \cap G|$ taken over all noncontractible cycles $C$ in the surface. The face-width measures how densely the graph embeds on the surface; an embedding with large face-width represents a surface well. Robertson and vitray conjectured that if the face-width $>10^{10}$ then the embedding was a minimum genus embedding for $G$. We present canterexamples to this conjecture. Specifically, we construct a graph with two embedding in different oruntable surface, each of tace-width $>10^{10}$. An essential ingredient is the construction of an embedded graph where both the graph and its dual are of large girth.

Dan Archdeacon (Burlington)
Gitically connected digraphs
A digraph is called critically connected, if it is conneded, hut the deletion of any venture olistrays the carne chirr ty MA is proved that very critically canreded, finite digraph has the vertices of autdelegnee one.
M. Mach (Harmowen)

Distance－Reguler Digraphs with Q－pulgnominal property

Let $\left(X,\left\{R_{i}\right\}_{0} \leqslant i \leqslant d\right)$ be a commutative nonsymmetrir association selene．
Let $A_{0}, A_{1}, \cdots, A_{d}$ and $E_{0}, E_{1}, \cdots, E_{d}$ be the adjacency matrices and the primitive idempotent of the Bose－Mesner algebra over $\mathbb{C}$ ． Assume the association scheme is of $(P$ and $Q$ ）－phnomial，ie．， there exist polynomials $v_{i}(x)$ and $v_{i}^{*}(x)$ of degree $i(i=0,1, \cdots, d)$ such that $A_{i}=v_{i}\left(A_{1}\right)$ wr．r．t．The ordinary multiplication and $\left.n E_{i}=v_{i}^{*}\left(n E_{1}\right) \quad i n=|X|\right)$ w．r．t．The Halamand product（entrywies product）．Than $t$ is shown that the association scheme is self－dual，i．e．，$v_{i}(x)=v_{i}^{*}(x)$ for all $i$ ．This result is obtained by $D$ ．Leonard，independently．

The $P$－polynomial property is equivalent to the distance－regularity of the graph $\left(X, R_{1}\right)$ ．Notice that $v_{i}(x), v_{i}^{*}(x)$ of symmetric （ $P$ and $Q$ ）－polynomial association schemes are Askey－Wilson polynomials （Leonard theorem）．We expect that $v_{i}(x)$ ，$v_{i}^{\text {＂}}(N)$ of nonsymmetix （Band Q）－polynomial association schemes are a kind of Askey－Wileon polynomials with weight $w(x), x \in \mathbb{C}$ ．

Tatauro ito（Joetsu）

Covering the Vertices of a Graph with Cycles
Our main result is：Let $G$ be a 2－connected graph with $n$ vertices and $k$ an integer such that $n>k \geq 1$ ． If the minimum degree of a vertex of $G$ is greater than or equal to $n / k+1$ ，then there exist $k$ cycles in $G$ which cover all the vertices of $G$ ．

We conjecture：Let $G$ be a graph and $k$ a positive integer．If the maximum size of an independent set of vertices in $G$ is less than or equal to $k$ times the vertex connectivity of $G$ ，then there exist $k$ cycles which cover all the verticis of $G$ ．Where $k=1$ ，this is a theorem of Endive and Chwátal．

On the number of distiuct induced supgraples of a graph
Let $i(G)$ denote the nember of distincel subgroples of a graph $C$.
$G=\langle V, E\rangle$ is $l$-conorical if there is oporitition
$\bigcup_{i<l} A_{i}=V$ such that for $x x^{\prime} \in A_{i}, y, y^{\prime} \in A_{j}$
$i<l$

$$
\{x, y\} \in A_{i} \Leftrightarrow\left\{x^{\prime}, y^{\prime}\right\} \in A_{j} .
$$

$G_{1}$ is $l, m$-almostcallomical if there is a canorical groph $S_{0}=\left\langle V, E_{0}\right\rangle$ such that the symmetric difference $G \Delta G_{0}$ has only components of sixe of vecost $m$.
Theoren Assume $b \geq 1$ and $i\left(c_{n}\right)=0\left(x^{k+1}\right)$ frr a segrence $G_{n}=\left\langle V_{n}, E_{n}\right)$ of groples with $\left(V_{n} \mid=x\right.$. Tren there ere $W_{n} \subset V_{n},\left|W_{n}\right|=0(n)$ and $l_{n}, m_{n}$ such theat

$$
l_{n}+m_{n} \leq k+1 \text { end } G\left[V_{n}, w_{n}\right] \text { is } l_{n}!m_{n}-
$$

dresod conomical.
Tuis is a joict worte with Poul Erdös.
Andrós Ferinal

On Aronsitive graples with polynounial grorth
Resules of Goimor and Trofimor imply that Aramistive, connected, beally fimite imfinite gnaphs of polynomial grooth ar closely related bo layly graphs of virtually milpotent gomps. This suggests that the antomophiom goonpos of such graphs retain some of the propertion of
ples
milpotent gromps
At survey of resuls and open priblems in this area is presented.
Wiynied IMRICH
Morbianmiversitait Lesben

End-gakteul sparís trees in infinite gaph
Lat $e$ he on in 二ite canectiol graph. Swo varzs R.QCG ar end-equivalet if orere exsis a -ay RCG which weets both Pad G infintely offin. Let E(G) denotr the set of the carrspad en eqmivaluce dnesus, the ends of $G$. If $T$ in an Spe $=$ s tru $f G$, ad if $R Q$ ar al eq. vans int, thin deal? Daed $B$ ar also end - eq. in $G$. We thins Lince? nabual map $y: \varepsilon(T) \rightarrow \varepsilon(G)$ mappis ench and of $T$ to the ed of $G$ ande - $-\lambda 7$. De zowal, y need $h^{2}$ weithe $1-1$ ner a fai if io is bobit, then $T$ is called end fintg gul. Thi folloun-s question was raised by talin in 1966:
Rrable. Does evwy a uted graph have on end-fa 7iful rpe- - tree?
Hali retshed Bhis questian in the effisimative far ca balle grephe G. Ue da the sase for any $G$ not eanfors ap enbelividud inf ite eanplebe graph as a sulyreph. The ginewal puoler rinais ape.
Reiharal Dustal. Calvidge

Paths and cycles in $k$－edge－connected graphs．
For a graph $G=(V(G), E(G)), \lambda(G)$ denotes the edge－connectivity of $G$ ．We call a graph $G$ weakly $k$－linked，if for every $k$ pairs of vertices（ $s_{i}, t_{i}$ ）， there are edge－disjoint paths $P_{1}, \ldots, P_{r}$ such that $P_{i}$ joins $s_{i}$ and $t_{i}(1 \leq i \leq k)$ ．Let
$g(k):=\min \{n \mid$ if $\lambda(G) \geq n$ ，then $G$ is weakly $k$－linked $\}$ It is known that

$$
g(2)=g(3)=3, \quad g(4)=5 \text { and } k \leq g(k) \leq 2 k-3 \quad(k \geq 5) \text {. }
$$

Our results are
Theorem 1．If $\lambda(G) \geq 2 k(k \geq 2)$ and $f_{1}, f_{2} \in E(G)$ ， then there is a cycle $C$ suck that $\left\{f_{1}, f_{2}\right\} \subset E(C)$ and $\lambda(G-E(C)) \geq 2 k-z$ ．
Theorem $z, \quad g(5) \leq 6, g(6) \leq 8, \quad g(7) \leq 9$
$g(3 k) \leq 4 k$ and $g(3 k+1) \leq g(3 k+2) \leq 4 k+2\left(k \geq^{2}\right)$
Haruko Cakamura 周村治子 （OSAKA）

Watchings，monotone path systems and some selected applications

Eire Reich grapthentheoretincher Probleme hainof eng mit limearer Algebra zusommeen：So kömuen z．B． die Anzouke der Gerviste Blictigiger Śaphen and the Anzake der Linearfoikhoren gewisser（instusondere：efuner）Eraphen durch che Determinombe emir Ml arix aungedrricks．verdun，the
sich in einfacher Weine aus der Aefjazeuz unatrix des bmphen gewinmen laipt (Solz von Kirchabfe/TuTte Gqu. Taitze orin MASTELEYN und LITLLE). Der Verfasser gith eine graphimHeoretische Mthede zur Redutzion von linearen Gleshmepsystawen and Determiminantun an and bemulzt diese zur Bestiminuung der Anzahe der Limearforktoren an Ansschanitten oun chenew Gitter praphen. Dic entsypringeuden Algonithmien - besonders diejenigun, thic lich auf mo oriotome Wege thitzen - e-wesisen sich abs sehr effizient. Dic Resultole haben Anwendmugon in dor Ahenice dor aromotiochen kohien wassershotfe (Bindungiontiming) and ins dur Physite der Kristalle oterflioichen (Dimer - Protiem) (Triswerin- geminimionen mit K. Al-kamaifes.)

Host Jachs (Thmenan)
Eutropy spliting and perfect grephs
The eutropy of a groph $G$ can be defined combinatorially as
台 子

$$
H(p, G)=\operatorname{mix}_{a}\left[-\sum_{i \in v} p_{i} \log a_{i}\right]
$$

where $p_{1}$ is a probability distribution on $V$ and a vauges througli the verker packing polytope of $G$. In a joint work with Ciistion, Kormer, Marton and Simonyi we prove that

$$
H(p, G)+H(p, \bar{G}) \geqslant H(p)=-\sum_{i \in V} p_{i} \log p_{i}
$$

where equality loolds if and suly if the gnafoh is perfect. This yields a rather strong covering properfy of perfect propls by clique and independert sets. La'ulo' Loukt (Budopest)

240

An algoithm Related to readwiger's shaph colouring conjectiod Nus Robutsom (Reportiag on joint work with Pane Sermom.)

We haut deurloped an algouthm, which in polymomias-tiin for fised $t$ aceupts a finitr graph $G$ and ither $k$-wlors $G$ or eshitits a non- $k$ - whorable minor $H$ of $G$. This is based on an locluded minen theorem which states that if tho complite graph $K_{k+1}$ is not a minor of $G$, then one of form alternatives must hold: $(1)$ for a givm fumetion $f, G$ has tres-widot $\leqslant f(k)$,
(2) G has a unter $x$ of valoncy $\leqslant k,(3)$ has a so-called " one-sided clique separation", or $(4)$ for some $X \subseteq V(G),|X| \leq k-4$, th qraph $G-X$ is plenar. 2 is hnown that graphs with thar-wideh bornded haur linear algoitthins for computing chromatic munbo and mateing optinal wlotrinex. Were ploman qraphs may be efficienthy whorned in 4-whours. The alqoithos for Maduign colourinep cyples thoufh (2) and (3) redueing thx sije of qaphe considered, Taking minoos in boch cases, leaving a recipe of $k$-coloning is the pieces formed ars all $k$.wlorable. Conelition (4) gives a $k$-wlorine, ; and conditions (1) quirs a $k$-coloring on lozatex a non- $k$-colorable minos. By finitenes tor alqoithm terminats in a desired way. The pereo that all non-kwloraber minous hau bounded thar-width means theri sije can be bounded and hevee they can be efbectionly detornined. 29 vecliviger's confiectove is thas, tho only non-k-wlorable minor is Das obriour one, $k_{k+1}$. itself.
nad Robrison, ohis stet unuirsita colembre, ond 43210

Complex Graphs With a Large Guth

We state the following results:
(1) For every $N$, there exists a graph $G$ and two linear orderings $\leq_{1}, \leq_{2}$ of $V(G)$ such that:

1) $\chi(G) \geq N$
2) there is no edge $\{x, y\}$ and $z$ such that $z$ lies between $x$ and $y$ in both orderings $\leq 1$ and $\leq_{2}$.
(2) For every graph G, there exists a graph $H$ such that:
3) grits $H=$ girth $G$
4) for very partition $E(H)=E_{1} \cup E_{2}$ a copy of $G$ is contained in either $E_{1}$ or $E_{2}$.

Several relwant results are considered.
Davis Reseal Charles Uni., Prague
A Binary Search Problems far Graphs
We counicler a search problem which generalises the bound group testing problems studied in papers of Chang/ Shang

- conand ehang/Yewang/Lin. In its general form for arbitrary $K_{k+1}$.

C graphs, this problem was proposed by signer. Les $G=\left(V_{1} E\right)$ be a finite simple graph, and let $e^{*} \in E$ be an unknown edge. Tn order to finch $e^{*}$ we choose a sequence of test - sets $A \subseteq V$ where after every test we are told whether or not $e^{*}$ is an edge of the subyraph induced by $A$. Find the unnimum $b(G)$ (G) tests required. We relate $c\left(C_{T}\right)$ to the coloring number $k(G)$. (The colerning number was introchuced by Erclos and Ylajinal in about $1965 \% ~ k\left(C_{T}\right)$ is the smallest number $h$ snug that there exists an ordering $x_{n}, \ldots, x_{n}$ of the

242
vertices of $G$ such that $x_{i}$ has at moot hem $k-1$ neighbors among $x_{1}, \ldots, x_{i-1}(i=1, \ldots, n)$.)

Thomas Andreace
FU Berlin

Variations rechnung
19. -2 4 . JUNI 1988

Line Singularities in Liquid Crystals - Robert M. Hand
Here we discuss results concerning a model for nematic liquid crystals that admits the possibility of 1 dimensional singularities. The standard static model for a liquid crystal miobver a unit vectorfild $n$ defined on a spatial region $\Omega$. This $n$ can be thought of as a statistical average of direction vectors of liquid crystal molecules and an order parameter $s \in[0,1]$. Critical points for the Oseen-Frank energy $\int_{\Omega} W(n, \nabla n) d x$ may admit point singularities and energy minimizes have been studied by Horst, Kinderehrer, and F.H. him (Comm. Math. Physics 105 (1986) 547-570) However their result that the singular set has dimension less than one rules ont line singularities, as observed in expermients. C. Dafermos, following practices of physicists formulated a 2-phare model in 1969 . Erucksen suggested in 1986 that a more tractable model was possible using s as well as $n$ as avaruble, J. Maddock found some planar critical pouts for Ericheni functional. In joint work with FIll. Lin we show that weak solutions $(n, s)$ are Holder Conlinious ard exhibit specific examples where point and line singularities occur as $s^{-1}\{0\}$, This work is related to harmonic maps into cones and the notion of frequency.

Curvature estimates and existence of minimal sinfaces - Rugary Ye
Consider stable minimal surfaces (of dimension 2). The followers two themes are known:1) (strong) curvature estimates imply theorem of Berstem type. 2) Berstein theorems imply curvature estumates. Here we add one more theme; 3) curvature estimates Cor Berstim theorems) for stable immersed minimal surfaces imply exiteme of embedded minimal surfaces. The real content of this theme is a parametric approach to (the existence problem for) embedded minimal surface. The main ingredearts of this approach are: 1) Douglas' theorem which asserts the existence of numimal surfaces of a given topological type (satisfying some boundary condition) under the so-called douglas' condition, 2) Immersion thenens which guarantee the immersed character of the minimal suffres provided by Douglas' theorem, 3) a classical cut-paste argument which leads to the Douglas conditions in case the above immersed surfaces are not embedded, thereby providing minimal surfaces of higher topology 4) curs. estimates. We apply this approach to minimal suffices with free boundary. The immersion theory is delicate,
non-immersed surfaces lend to new Douglas conditions. a general existence theorem for emt. nummal surf with free boundary is proved.

An existence result for quasilinear elliptic equations [ $\left[\begin{array}{l}\text { Giuseppe Burtnzzo } \\ \text { Unix. of Ferrara }\end{array}\right]$ Quasibinear elliptic equations of the former (*) $\left\{\begin{array}{l}-\operatorname{div}(a(x, u))(u)=f(x) \text { in } \Omega \\ u=0\end{array}\right.$ on $\partial \Omega \quad$ in are considered. Here $\Omega$ is a bounded open subset of $R^{n \prime}$, $f_{\in} H^{-1}(\Omega)$, and $a(x, 3)$ is an n xn matrix sati offing the mad delipiticity sued boundedness conditions $\left\{\begin{array}{l}\left.\langle | z\right|^{2} \leq\langle a(x, s) z, z\rangle \\ |a(x, s)| \leq c\end{array}\right.$ for were $x \in \Omega, s \in \mathbb{R}, z \in \mathbb{R}^{n}$. The existence for problem ( $*$ ) is zaduried when $a(x, s)$ does ut necessarily salifify the Contheídory continuity coudititiou. An example of wou-existence for problem (*) is shown, with $2(x, s)$ highly discocitimnous in $(x, 5)$.

Clobal existma and partial regularity for the heat Llow for larmonic maps
Given two compact maniffloss $M$ and $N, \partial M=\phi=\partial \mathscr{N}, N \subset \mathbb{R}^{4}$ consider the evolution problem for harmonic meps from ill iote ir (1) $\quad \partial_{t} u-\angle_{H} u=-\Gamma_{W}(u)\left(\nabla_{u}, \nabla_{u}\right)_{m} \in\left(T_{u} N\right)^{+} \subset \mathbb{R}^{u}$ with mitial data
(2) $\left.\quad u\right|_{t=0}=\mu_{0}: M \rightarrow \mathbb{N}$.

Here, $\Delta_{u l}$ is the laplace-Bettrami operato on ith and $\Gamma_{V}(a)\left(R_{1}, \nabla_{u}\right)_{u}$ is a term sovolving the Christafel symbols of the iadicad mitic:

The following results extend the clevical Eells-Samprom rroult to assitiary target manifolds $\mathcal{N}$ as above:
 esists a glosal week solution $u$ of $(1),(2)$ with foritte anergy and whurl is regatar with exaption of at most fruitry many posints $(F, F)$ where mon-constant harromic mopo en: $S^{2} \leadsto \overline{\mathbb{R}}^{2} \rightarrow \mathcal{N}$ separatos, $u$ is nuigue in thar class. Frnally, as tow surtably, u(t) converges to a regular harmonic map $u_{\infty}: l l l l_{\rightarrow} \mathcal{N}_{\text {, }}$ waekly in $H^{\prime 2}(\mu, N)$.
 (1) (2) adnaits a glosel weak solution u, converging to e weately: hermonic mop $u_{\infty}: \mu \rightarrow N$ as $t \rightarrow \infty$ suitably, $\mu$ and $u_{\infty}$ are regular off cloedsoigular iets of co-dimension $\geqslant 2$ (ric the parabbic metric).

Therrmi 2 is based on a conbinatime of a monotonicity fomula for (1), कp. Struine, 88 , with a purelty apprradi to (1), op. Chen, 88 .

Mriclual Jtruwe, 22.688

Harmonic maps between spheres and ellipsoids
[Andrea $R_{A T T O}\left(u_{n}\right.$ of Warwicrs) $)$
I would like to resent the results of a paper by James Gels and me (to appear in Publ. MATH. I.H.E.S.) : in particular, we moved that classical homotopy groups of spheres (such as $\pi_{n}\left(s^{n}\right), n \in N, \pi_{3}\left(s^{2}\right)$ ) can be represented by a harmonic map provided that suitable ellipsoidal metric are introduced.
I will also discuss the following problem, which is lovely related to the above results: how does the choice of the metric influences the existence of certain harmonic maps?
The poof of the results is based on the study ff an anociated 1-dimen $=$ sional variational problem, according to a nee method recently intro deuced by Ding.

Surfaces of Gan k Curvature 1 and arbitrary gem ns
We look at a new type of Plateau problem: For a given curve $\Gamma_{c} \mathbb{R}^{3}$ and fixed gums, $g$ we look for a 2-surface $\rho \subset \mathbb{R}^{3}$ with boundary $\Gamma$ and genus $g$, and with Gamp curvature $K(\varphi)=1$.
If $\Gamma$ is sufficiently close to a moth curve $\Gamma_{0} C$ Which' winds arron twice' and $\Gamma$ is in a sutmanifob of curves of finite codimension, then we can even fix the branch points of $f$ and solve the problem. The Gauk curvature 1 is defined at the branch prints even as the spherical image infinitesimally. But the result is not expected against the theorem of Gaus-Bonnot, since the integrals of the curvature and along the boundary $\partial \rho$ are positive, and the Euler characteristic is very negative. We have therefore to assume that the branch points are carrying a negative mast, even if the spherical image is positive.

The existence proof depends essentially on an explicit calculation of the commutator between the singular term of the metric at a branch point and all the terms of the Gauß. curvature operator in polar coorsdinates of $\mathbb{R}^{3}$. The Taylor development of the Gaur curvature at $\{r=1\}$ has a leading term beicy the trace of the curvatures and the leading term "mean curvature" behaves nicely.

Reuntiobd Fítume 226.88

Existence of closed convex hypersurfaces with prescribed Gauss in Curvature.

Let $f: R^{n+1} \rightarrow[0, \infty)$ be a contivious function. When $f$ is the Gauss curvature of some closed convex hyperseerface in $\mathbb{R}^{n+1}$ ? A possible approach is to look for a solution among graphs of functions over $S^{n}$. Then the problem can be formulated as a problem of solvability of a special equations of Monge-Ampere type on $S^{n}$. Forasmoath woven it is possible to formulate conditious for solvability of this equation (V.Oliker, comm. on PDE, 1984). We consider now a different approach via variational methods. Namely we construct a fienctional
for which the above nientinened
equation is the Euler-Lagrange equation in a certain weak sense. It is shown tut this functional admits the first variaLion and the sobetion to the "Gauss curvatueve" probleur can be foeend as nimimirers of the furnctincial. The asseneptiens on the data in tui approach are geometrically nateeral bend simple. Eosin particular. $f$ is required to be only nonnegative cold coutimious + a condificu assiering existence of $C^{0}$-bounds. The corresponding results appeared in Trans. AMS, 86.
VladimiR OlikeR, 23.6.88

On the Expansion of Convex Hypurwopeces by Symmehic Funchans of Their Principal Radii of Curratwe.
Let $M_{0}$ be a smooth closed uniformly convex hypersurfoce in $\mathbb{R}^{n+1}$ given by an embedding $X_{0}: S^{n} \rightarrow \mathbb{R}^{n+1} \neq$ and consider the initial value problem

$$
\begin{aligned}
\frac{\partial x}{\partial t}(x, t) & =k(x, t) v(x, t), \\
X(; 0) & =X_{0},
\end{aligned}
$$

where $\gamma(, t)$ is the outer unit normal vechorfiell to the hyperserfeces $M_{t}$ parametrized $b x(; t)$ and $k(; t)>0$ is some curvature function of $M_{+}$. Under some reasonable conditions it can be show that a solution of this problem exists for all time, for each $t \geqslant 0, X(1, t)$ is a parametrization of a smooth cored uniformly convex hyprsuffce $M_{t}<\mathbb{R}^{n+1}$, ad $M_{t}$ becomes round as $t \rightarrow \infty$. this problem car he reduced to the initial value problem

$$
\begin{gathered}
\frac{\partial h}{\partial t}=F\left(\nabla_{i,} h+\delta_{j j} h\right) \quad \text { on } S^{u} \times[0,0) \\
h(; 0)=h_{0}, \quad\left[\nabla_{i j} h+\delta_{j, h}\right]>0
\end{gathered}
$$

where $t$ is the apart fiction of the lyposerpace repreubel $y(; t)$, and $F$ is a fichu defined by the curvature fiction' $k$. This problem las a unique smoope solution for all time, and after a mutable rescaling $h$ carnerges to a arstant $h^{*}$ as $t \rightarrow \infty$. The corresponding arwhias for the first problem follow from this.
A rimilar result concerning the expoussion of convex lyprseerpaces has recently been proved by Gerhard Huishen usingadifferent method.

John Ushas 23/6/88

Mean Curvature Evolution of Entire Graphs and a New Bernstein Type Result

The following represents joint work with $G$. Hursken, Canberra.
Mean curvature evolution of hypersurfaces in Euclidean space has attracted considerable interest over the last years. However, only compact surfaces have been studied so for. Ne present methods suitable to deal with the evolution of entire graphs. An interesting feature is that linearly growing initial graphs become asymptotically self similar during the evolution.

We furthermore apply our techniques to establish new curvature estimates for mean curvature graphs. Apart from providing a natural interior curvature bound for capillary surfaces, they lead to a new Bernstein type result for minimal graphs. We show in fact, that any entire solution of the minimal surface equation satisfying

$$
|0 \mu(x)|=o(|x|)
$$

has to be an affine function.
Klaus Ecker $23 / 6 / 88$

REGULARITY OF MINIMIZERS OF integrals of the CALCULUS OF VARIATIONS WITH NON STANDARD GROWTH CONDITIONS
P. Marcellini
(Firenze)
Let $f \in C^{2}\left(\mathbb{R}^{n}\right)$ be a function satisfying the following properties:
(i) $m \sum_{j=1}^{n}\left|\xi_{j}\right|^{q_{j}} \leqslant f(\xi) \leqslant M\left(1+\sum_{j=1}^{n}\left|\xi_{j}\right|^{q_{j}}\right)$
(ii) $m \quad \lambda)^{2} \leqslant \sum_{i=1}^{n} f_{F_{i} \xi,}(\xi) \lambda_{i} \lambda_{j} \leqslant M\left(1+\sum_{j=1}^{n}\left|\xi_{j}\right|^{q_{j}-2}\right)|\lambda|^{2}$
for some positive constants $m, M$, for every $\xi, \lambda \in \mathbb{R}^{n}(n \geq 2)$ enl for some exprents $q_{j}$ such o that

$$
2 \leqslant q_{j}<\frac{2 n}{n-2}, \quad \forall j=1,2, \ldots, n .
$$

Let $\Omega$ be a bonested opes set of $R^{3}$. Then, it con be proved that every mimimitien $u$ of the integral

$$
F(u)=\int_{\Omega} f(D u) d x
$$

in the Sobolev chess

$$
\left\{v \in H^{1,2}(\Omega): v_{x_{j}} \in L^{q_{j}}(\Omega), \forall j=1,2, \ldots, n\right\}
$$

has the gecbrient Du locally bounoled in $\Omega$. It follows that, if $f \in C^{k, \alpha}\left(\mathbb{R}^{n}\right)$ for some $k \geq 2$, then $u \in C_{\rho o x}^{k, \alpha}(\Omega)$.
Watorenullu- 23.6.88

Calculus of Variations Pr Elastic Guptals - 4. Chipot (Metz)
The energy density of au clastic crystal is a function $W$ satifynig

$$
W(Q F H)=W(F) \quad \forall F \in M^{+}, \forall Q \in O_{3}^{+}, \forall H \in H
$$

$M^{+}$is the set op matrices with positive determuniaut,

$$
\begin{aligned}
& O_{3}^{+}=\left\{Q / Q^{\top} Q=I d, \operatorname{det} Q=1\right\} \text {, } \\
& H=L G L^{+}\left(z^{3}\right) L^{-1}, G L^{+}\left(z^{3}\right) \text { is the set of matrices with integer cutis } \\
& \text { with determumiant } 1, L \text { is the basis op the lattice op the Gyptal. } \\
& \text { under certain conditions we prove } \\
& \operatorname{In}_{A_{z}(\varphi)} \int_{\Omega} \phi^{* *}(\operatorname{det} \nabla v) d x=\operatorname{In}_{A_{\Omega}(\varphi)} \int_{\Omega} W(\nabla v) d x
\end{aligned}
$$

where $A_{2}(\varphi)=\left\{u: \Omega \rightarrow \mathbb{R}^{3} / u \in\left(\omega^{\prime, 6}(\Omega)\right)^{3}, u=\varphi\right.$ oud, $\operatorname{det} \nabla u>0$ a.e $\}$ and $\phi^{+2+}$ is the convex mivorant of the subenergy defused by V. Erickson as

$$
\phi(t)=\operatorname{In}_{\operatorname{det} A=t} W(A)
$$

This raw ult is part of a gout work with D. Kuidertehrer.

The motion of convex hyperousfaces along symmetric curvature functions

Let $F_{0}: M^{\mu} \longrightarrow \mathbb{R}^{\mu+1}$ be the smooth embedding of a closed, uniformly convex hyperourface in Euclidean space. We consider the evolution equation

$$
*\left\{\begin{aligned}
\frac{d}{d t} \neq(p, t) & =\left(f^{-1} \cdot \nu\right)(p, t) \\
F(p, 0) & =F_{0}(p),
\end{aligned} \quad p \in M^{M}\right.
$$

where $\gamma$ is the exterior unit normal to the hypersurface and $f$ is a smooth, positive and symmetric functions of the principal curvatures on $M^{n}$. We give natural structure conditions for $f$ which ensure the existence of a longtime solution to $\otimes$, which becomes more and more round as it expands. We also show that the same structure conditions imply an analoguous behaviour for contracting hypersuitaces moving in direction $-\gamma$ with speed $f$.
A similar result was recently obtained by John Lerbas using different techniques involving the mpportfunction of the hypersurfaces.

Gerhard Huisken

Regularity of harmonic mappings at a free boundary
This is a report on joint ward with Fran\& Duzaar at Dusseldorf. We consider the following situation: $M^{m}$ is a Riemanuian manifold of dimension $m$ ( $m \geqslant 3$ is the case of interest) called the parameter domain and $\Sigma \neq \phi_{1}$ the free boundary of $M$, is an open subset of $\partial M$; the target manifold $N^{n}$ is a Riemanuian mamfold which is isanctically embedded as a closed submanifold of some $\mathbb{R}^{n+k}$ and the supporting manifold for the free boundary values is a closed submanifold $S^{s}$ of $N$. There are no restrictions on the dimentians $n, k, s$. The Sobolev space $H^{1,2}(M, N)$ consists of mappings $v: M \rightarrow \mathbb{R}^{n+k}$ in the usual linear Sobolec space $1^{1,2}\left(M, \mathbb{R}^{n t h}\right)$ such that $v(x) \in N$ for almost all $x \in M$. Fer such mappings the energy $E(v)=S_{M}|D v|_{M}^{2}$ d vol $X_{M}$ is defined where the norm $|D \cup|_{M}^{2}=$ irece $(S v)^{*} D_{D}$ is harem with respect to the Riemannian metric on $M$. We say that $u \in \mathcal{H}^{1,2}(M, N)$ is energy minimizing (locally on MUE) with respect to the free boundary condition $u(\Sigma) \subset S$ (to be understood in the sense of the trace of $u$ an $\Sigma$ a.e.) if $\varepsilon(u) \leqslant \varepsilon(v)$ for all $v \in \mathbb{H}^{1,2}(M, N)$ such that $v(\Sigma) \subset S$ and $v=u$ outside sane (sufficicithy small) compact subset of Mu E.

Existence of energy minimizing maps is easily obtained with the direct method of the calculus of variations by minimizing $E$ in a class $\mathcal{F}=$ $\left\{v \in H^{1^{2}}(M, N): v(\Sigma) \subset S, v \mid \Gamma=g\right\}$ where $\Gamma=\partial M \backslash \Sigma$ has positive $(m-1)$-measure and $g: \Gamma \rightarrow N$ is prescribed. (One then calls $v / \Gamma=g$ an additional fixed boundary condition; of course, $F$ should be nonempty.) In the interesting case $\Sigma=\partial M$, i.e. only a free boundary condition is prescribed, the minimizes of $\xi$ on $\left\{H^{11^{2}}(M, N) \geqslant v: v(\Sigma) \subset \$\right\}$ will be constant mappings $u: M \cup \Sigma \rightarrow S$, havever, and the problem of finding nontrivial mappings which are locally energy minimizing an Mu $\Sigma$ remains.

Regularity of energy minimizing mappings $u$ in the interior Maud at a fixed boundary $\Gamma$ has been studied by Schoon b Uhlmber in the general situation described above. We are able to extend their results to the free boundary situation and obtain the optimal estimate for the size of the singular set of $u$ in $\Sigma$.

Theorem $A$ Suppose $u \in H^{1,1^{2}}(M, N)$ is locally on MUS energy minimizing with respect to the free boundary condition $u(\Sigma) \subset S$ and $u$ is bounded. Then the Hausdorff $(m-2)$-measure of the singular set in the free boundary $\Sigma \cap \operatorname{Sing}(u)$ vanishes. On the regular set Mn Reg $(u)$, $u$ is as smooth up to the boundary $\Sigma$ as the data $M, \Sigma, N, S$ allow, $u$ saris hes the differential equation for hamanic mappings from $M$ into $N$ and the natural boundary condition $\partial_{v(x)} u(x) \perp \operatorname{Tan}_{k(x)} S$ for $x \in \sum \cap \operatorname{Rog}(u)$.

If $u$ is unbounded we have the same result provided we assume same global curvature bounds on $N \subset \mathbb{R}^{\text {nth }}$ and $S \subset N$. The natural boundary carcition as corresponds, in suitable local coordinates on $N$, to $n-s$ conditions of Dirichlet type $u_{i}=0$ and $s$ conditions of Neman type $\partial_{\nu} u_{j}=0$ an $\Sigma$. The major difficulty in the proof of theorem $A$ is that one cannot localize the problem in the target manifold as long as one does not know continuity of $u$ nor can one use reflection across $S$ in $N$ since the image $u(M)$ meed not be bounced away from the focal set of $\sin N$. We overcame this problem by combining the methods of SchomR Uhbondecr with a novel "partial reflection construction" to prove continuity of $u$ on a set of full $(m-2)$-measure is Nu $\Sigma$. We then can use reflection methods to prove higher regularity of $u$ on Regu up to In Pegu as in the work of Gulliver. Jost. We also can reduce the dimension of the singular set to obtain the optimal

Theorem B If $u(\Sigma)$ is bounded then Hausdorff-dim $(\Sigma \cap \operatorname{Sin} g(u)) \leq m-3$. (And $\Sigma \cap \operatorname{sing}(u)$ is discrete in Sing (u) in case $m=3$ )
One can further reduce to $\operatorname{dim}\left(\sum n \operatorname{sing}(u)\right) \leq m-\ell-1$ if one knows that all "blow-up-tangent-maps" in dimasisions $s e$ are trivial.

Examples show that singularities at the free boundary can be consed by the geaneting or by the topology of the data. We can construct a domain $M \subset \mathbb{R}^{3}$ with 2 boundary components $\Gamma, \Sigma$ and Dirichlet data $g: \Gamma \rightarrow \mathbb{R}^{3}$ such that the minimizer $u$ in $\left\{v \in H^{1,2}\left(r, \mathbb{R}^{3}\right): v_{T \Gamma}=g, v(\Sigma) \subset S\right\}$ for $S=S^{1} \times\{0\}$ or $S=S^{1} \times \mathbb{R}$ must have isolated singularities on $\Sigma$. ( $u$ is classical harmonic function). If $M=[0,1] \times T^{m-1}, \Gamma=\{0\}-T^{m-1}, \Sigma=\{1\} \times T^{m-1}, N=T^{n}\left(T^{l}\right.$ flat tori, $\left.m \geqslant 3, n \geqslant m-1\right)$ then we can find $S \subset N, g: \Gamma \rightarrow N$ such that $\mathcal{G}^{0}\left(M \cup \Gamma \cup \Sigma_{,} N\right)$ contains no admissible map but Fabove is nonempty, hence minimizes $n \in \mathcal{F}$ exist and have singularities (only) on $S$.

On the Holomanphic and Seodesin Convexity of
$\frac{\text { Dirichlet's Energy on Sichmalti's Moduli Space }}{\text { A.J. TroHBA }}$
Let $J(M)$ be Jich mithers moduli space of a sonfact M fixed gonus p. $p>1$. Lit $g_{0}$ be a fisged mente of Atour cunvatine -1 , and $g$ on arbingy metue carth the some curvatuvo. Let $S(g)$ be the unigue hagmoxic map from $(M, q)$ to $(M, 2$, homatupic to the identry and lot E/g) be its Dirichlet energy. Ohen E'gg ogn be considued as a jrop ou Jeich puatlir moduli space. Now Jeechyullu'́ ynoduli space carror a natural complex stuoturg and e notural metuic, colfid the Coel-Deforsor metic. With respect to the complex structus we have the result:
shorem $A$. $E ; J(M) \rightarrow R$ is proper and holmouphally convex, i.e. w.r.t. the natural complex stuucturo

$$
\frac{\partial^{2} E}{\partial z \partial \bar{z}}>0
$$

Let $\sigma(t)$ be any W,P. geadsic ther we have Thenem B. E is convex along WiP. geodesees, ie

$$
\frac{d}{d t^{2}}(E(\sigma(t))>0
$$

These convexit propenther yuld a shont provf of Vielsen's faspris corysclue, on the exco onco of fied point for tho a tim of the sakgrops If Fiunte obder of tho suifece moduter group.

Regulaity of viscointy solutions of second order, nonlinear elliprie equations. (Nail Tridage $)$

We are concerned with the regularity of week
in the vecosity seme \& lrandell and Lioms solutions in the viecosicty sence of lraendell and Looms, if secund order, elleptec equatiois of the general form,

$$
F[u]=F\left(x, u, D_{u}, D_{11}^{2}\right)=0
$$

Here, $F \in C^{0}(\Gamma), T=\ell \times R \times \mathbb{R}^{n} \times 母^{n}, \Omega$ is a domain in $\mathbb{R}^{n}, \$^{n}$ denotes' she lineer space of real nxing symmetric matrices.

For uniformly elliptri operators, satiffying natural antimisty and etructure conditions, we praved thet continuous vincurity alutions are contimonly' differentiable with Holder contmiason derivatues $[1],[2]$ and moreover are Anice differentieble almoet evorgubere 3$]_{r}$ The technique inuolve semi-concave approximation (as introduced by Jomen for comparion principles), witroductern of new variabtes and the Kuglor-Safomor 'ectimetes, (parteularls the weeh Harnach inequality) for linear equations. second result depuch on an idea of Madirinchiris - the bachorersb we of the Aleheandror macimume primeiple, the $C^{1 K}$ vegulanity was ahs obtained independently 1y 'laffardli. Furtha vegulairts is an open puttlen except when $F$ is concar (on comva) with reegect is $D^{2} u$ or $n=2$.
Reforences: [1] Holder churiates for fully nonhinear dleptic eqse. Proe Foy Soe Elintugh. 108 A , $1988,57-65$.
[2] On recularity and erintence of vacosity alutions of malincar ad arier eth, ethi eqm. to appea in Volume deduites to te kuagi, $60^{\text {th }}$ berthday.
[3] Stll in preparation.

SURFACES OF MINIMAL AREA ENCLOSING BODIES IN $\mathbb{R}^{3}$. Roberta MUSINA - SISSA Trieste-
(with Gianni MANCINI - Bologna)
We are interested in the problem of finding a closed (namely: $S^{2}$-type) surface having minimal area among all surfaces which ave parametrized by $S^{2}$ and which "endorse. a given connected body $\Omega$ in $\mathbb{R}^{3}$.

We prove the existence of such a surface for every regular dostade $\Omega$, by showing that there exists a harmonic map from $S^{2}$ into $\mathbb{R}^{3}, \Omega$, which is not homotopic to a constant.

In case of unconnected destades, we give a sufficient condition for the existence of such a surface. We also study the Plateau's Problem for disk. type minimal surfaces with obstructions, and We prove that a suitable "Douglas criterion" is a sufficient condition for existence.

$$
\begin{array}{r}
\text { Robercturive Conan } \\
24.6 .88
\end{array}
$$

ASYMPTOTIC BEHAVIOUR OF MINIMAL SURFACES WITH OBSTACLES miami DAL MASO (SISSA riels)
(with M. Canines, (I).Leaw, E. Parcali)
The asspuptotic behanom, as $h \rightarrow+\infty$, of the solutions of obstade problems of the form

$$
\left(P_{h}\right) \operatorname{mix}_{\mu \geqslant \psi_{a}\left[\int_{\Omega} \sqrt{1+|D u|^{2}}+\int_{\partial \Omega}|u-\varphi| d H^{m-1}\right]}
$$

canbe sometimes described in terms of a limit problem

$$
(P) \quad \min _{\mu}\left[\int_{\Omega} \sqrt{1+\|\left.\Delta u\right|^{2}}+\int_{\partial \Omega}|\mu-\varphi| d H^{n-1}+G(\mu)\right]
$$

Molech satisfies the following eondivient:
(1) the minnmm nalues of $\left(P_{b}\right)$ canrege to the mimimumis salue of $(P)$ as $h \rightarrow+\infty$;
(2) if, fer every $h \in \mathbb{N}, M_{h}$ is a minimum point of $\left(P_{h}\right)$ in $B V(\Omega)$ then up to a mblseqpence, $\left(\mu_{q}\right)$ converges $m L^{\prime}(\Omega)$ te or mimimum peiat u of problem ( $P$ )'

Let $\varphi \in L^{1}(\Omega A)$ and let $\left(\psi_{h}\right)$ be an achinary sequence of ebysocles (i.e. fundtions from $\Omega$ to $\sqrt{R}$ ) Mhich satishies the folloming compatilibity condizow: there arsts we $W^{1 /}(\Omega)$ Anch that $w=\varphi$ and $\Omega$ and $w \geqslant \psi_{h}$ in $\Omega$ for every $h \in \mathbb{N}$ Chen there exists a mbsoovenge ( $\psi_{\text {G}}$ ) ) sf $\left(\psi_{a}\right)$ for mhich the corresponding segpence of proplems $\left(P_{h k}\right)$ admits on limit problem (P) in the sease corssidered in (1) anol (2). The functional $G$ which appears in (P) does not depend on $\varphi$ anol can be represental in the fom

$$
G(n)=\int_{\Omega} g(x, \pi(x)) d \mu\left(x^{\prime}\right)
$$

STACLES
where
(a) $g: \Omega \in \mathbb{R} \rightarrow[0,+\infty]$ is $n$ Bond function, with $g(x, 0)$ cowree, mon-increasing, end lower semicentiomous on $\mathbb{R} f$ forery $x \in \Omega$;
imtacle
(b) $\mu$ is a mon-negative Booal mearne an $\Omega$, absolntely centinnews mith respect be $\mathcal{H}^{m-1}$;
(c) $\bar{n}(x)$ dendes the appocrimate spper limet of $n$ at the porat $x$.

$$
\text { Grimmin }_{24.6 .88}^{24 \text { mard }}
$$

258
Geometry of level sets of entire solutions of senilivear elliptic equations

Luciano Modica CPisal
Consider a smooth real function $F$ and let $\mu$ be a smooth solution on the while of $\mathbb{R}^{n}$ of the equation $\Delta u=F^{\prime}(u)$. Assume that $F$ is nox-negative and $\mu$ is enviformly bounded on $\mathbb{R}^{n}$. Note that our equation is the Euler-fagraupe equation of the follonning non-negative energy integral.

$$
E(v ; \Omega)=\int_{\Omega}\left(\frac{1}{2}|\nabla v|^{2}+F(v)\right) d x
$$

Theorem. Suppose $n<8$. If $u$ is locally minumiting energy, i.e.

$$
\varepsilon(u ; A)=\varepsilon(u+q ; A) \quad \forall A c c \mathbb{R}^{n}, \forall q \in C_{0}^{1}(A)
$$

then all level sets of $u$ are parallel hyperplanes.

$$
\begin{aligned}
& \text { Auer No dea } \\
& 94.6 .88
\end{aligned}
$$

Minimil sunfaces with a Are boundain on a polghedron
jürgen jost
Thm. Ld $\Sigma$ be a couvex polghedron in $E^{3}$. Then there exists an embedded minimal dish M meeting Eotthojonally lo-g its boundary. $M$ is nontrisinl i: the cense that it is not containced in a face $f \varepsilon$, no dres it contai- an edfe of $\Sigma$ : its boundary.
The proof nases aproxintion $\sum$ by smosth sufores her pevious results of the ourteor are a vailable, burriec comstenctioes utilizi.g catenoids, a blow-up tilleique airl a rejularily thesern of the autco.

Mathematical foundatioes of string thiory
Jing jost
D. this sevis of lectues, a uateruatical "proach to the quantization of Platenn's problem is described, the physical astivation is discussed. and the wecessary mothematiol tools' soon Rienam.... jeonetry, fobal a-lysis, nollitea ellipti PDE, Rimann sufaus, teihmille theooy, ant elformic prometry are presented.

$$
J=j-J_{24.4}
$$

Variational Convergence of Minimal Submanifolds to a Singular Variety $\qquad$ Robert Gulliver, Minneapolis

Suppose a Lipschitz Riemannian manifold $M_{h}$ is represented by a mapping $\Phi_{h}: \Omega_{h} \longrightarrow M_{h}$, where $\Omega_{h}=\Omega \backslash E_{h} \subset \mathbb{R}^{n}$, and $\Phi_{n}$ is locally bi-Lipschitz and one-to-one except on $\partial E_{h}$, where it is two-to-one: $\Phi_{h}(x)=\Phi_{h}\left(T_{x}\right)$ for $x \in \partial E_{h}$. Here $T: \Omega \rightarrow \Omega$ is a lipschitz involution and corresponds to an isometry of $M_{h}$. The Dirichlet integral on $M_{h}$ is represented in $\Omega b_{y}$ the functional

$$
D_{h}(u)=\int_{\Omega_{h}} g_{h}^{i j} \partial_{i} u \partial_{j} u \sqrt{\operatorname{det}\left(g_{i j}^{h}\right)} d x+\frac{1}{4} \int_{\sqrt{\Omega}}\left(u(x)-u\left(T_{x}\right)\right)^{2} d \nu_{h}
$$

Here $\nu_{h}: B(\bar{\Omega}) \rightarrow[0, \infty]$ is the measure defined by $\nu_{h}(A):=+\infty$ if $\operatorname{cap}\left(A \cap \partial E_{h}\right)>0$, and zero otherwise. The second term has the effect of enforcing the periodicity condition $u(x)=u\left(T_{x}\right)$ for $x \in \partial E_{h}$, which implies that $u$ is equivalent to an $H^{1}$-function on $M_{h}$. Let $b \in L^{\infty}(\Omega)$ be the weak- $L^{\infty}$ limit of the volume functions $\sqrt{\operatorname{det}\left(g_{i j}^{h}\right)}$ as $h \rightarrow \infty$ (after passing to a subsequence). Then we may consider $D_{h}$ as defined on $L^{2}(\Omega, 6)$ by defining $D_{n}(u)=+\infty$ if $u \notin H^{1}(\Omega)$.
Theorem (Dat Maso-Mosco-G.) Suppose that (1) The domains $\Omega_{h}$ are uniformly strongly connected in $\Omega$, that is, for some extensions $\pi_{h}: H^{1}\left(\Omega_{h}\right) \rightarrow H^{\prime}(\Omega)$ there holds $\left\|\pi_{n} u\right\|_{H^{\prime}(\Omega)} \leq c_{0}\|u\|_{H^{\prime}\left(\Omega_{n}\right)}$; (2) $T\left(E_{h}\right)=E_{h}$; and (3) $\lambda|\xi|^{2} \leqslant g_{h}^{i j}(x) \xi_{i} \xi_{j} \leqslant \Lambda|\xi|^{2}, x \in \Omega_{h}$.

Then for some subsequence $D_{h^{\prime}} \stackrel{\Gamma}{ } D$, where

$$
D(u)=\int_{\Omega} a^{i b}(x) \partial_{i} u \partial_{j} u b(x) d x+\frac{1}{4} \int_{\Omega}\left(u(x)-u\left(T_{x}\right)\right)^{2} d v
$$

for some $a^{i j} \in L^{\infty}(\Omega)$ satisfying (3) with $\lambda$ replaced by $\lambda c_{0}^{-2}$ and for some positive Bore measure $\nu$.

The notion of $\Gamma$-convergence requires that if $u_{h} \xrightarrow{L^{2}} u$ then $D(u) \leq \lim _{n \rightarrow \infty} \inf _{h}\left(u_{h}\right)$, and for every $u \in L^{2}(\Omega, b)$ there are $v_{n} \in L^{2}$ with $v_{h} \xrightarrow{L^{2}} u$ and $\lim _{h \rightarrow \infty} D_{n}\left(v_{n}\right)=D(n)$. With somewhat stronger hypotheses, we show that the spectrum of the Laplace operator (with Dirichlet conditions on the boundary of a fixed compact set)
on $M_{h}$ converges to the spectrum of $D$ with the weight function b. Examples show that $\operatorname{det}\left(a^{i j}\right)$ need not equal $6^{-1}$. We give an explicit example in the convergence of Scherk's "second" surface to its tangent cone at $\infty$. Consider

$$
M_{h}=\left\{(x, y, z) \in \mathbb{R}^{3}: \quad \sin (h z)=\sinh (h x) \sinh (h y)\right\}
$$

with its isometric involution $T(x, y, z):=(y, x, z)$. As $h \rightarrow \infty$, $M_{h} \rightarrow M$ in the weak-vavifold and Hausdorff senses, where $M$ is the union of the $(x, z)$-plane and the $(y, z)$-plane. Let $M$ be represented isometrically by two copies of $\mathbb{R}^{2}: \Omega=\mathbb{R}^{2} \cup \mathbb{R}^{2}$ where one component $\mathbb{R}^{2}$ is mapped to $M \cap\{x \geqslant y\}$ and the other to $M \cap\{x \leq y\}$. Each point of $M_{h}$ is required to correspond to the nearest point on $M$, which allows one to define $E_{h} \subset \Omega$ and $\Phi_{h}: \Omega_{h}=\Omega \backslash E_{h} \rightarrow M_{h}$ which is locally bi-Lipschitz. In this case, it can be shown that the $\Gamma$-limit of $D_{n}$ is the Euclidean Dirichlet integral on $\Omega$, plus the penalty term with $\nu(A)=\infty$ if $A$ meets the $z$-axis in either component in a set af positive measure, and $O$ otherwise. We also construct examples of the same (unbounded) topological type, a sequence of minimal surfaces bounded by four lines parallel to the $z$-axis which converge as varifolds to a doubly-covered plane, and with limit measure $\nu=c \mathcal{H}^{1}(z$-axis $)$ for $c<\infty$, including the possibility $c=0$. 20. June 1988

PREBABIITV IN BANACH SPACES
26. Tum - 2. Tui 1988

Measures of dependence involving B-valued random variables

This talk concerned measures of dependence between pairs of $\sigma$-fields in a probability space, with special emphasis on certain measures of dependence involving $B$-valued random variables. One particular measure of dependence can be made equivalent to either that for "strong mixing" ar that for "absolute regularity", depending on appropriate choices of a Banach space B, but it seems to be an open question whether these are the only two possible equivalence classes, a similar open question was also posed for another closely related measure of dependence,

Richard, C, Bradley
Indiana University,
27. June 1988

264
Rearrangements of sequences of random variables
and exponential inequalities.
Briard HEINKEL, SPas bourg
Exponential bounds are stuctied for $\rho\left(\left\|X_{1}+\ldots+X_{h}\right\|>t\right)$ where $\left(x_{1}, \ldots, x_{n}\right)$ denotes a sequence of independent random variables with values in a real separable Banach space ( $B, \| / 1)$ ). In our results the usual boundedness assumptions on $\left\|X_{1}\right\|, \ldots,\left\|X_{n}\right\|_{\text {, are replaced by }}$ hypotheses on the weak $l_{p}$ norm of the sequence $\left(\left\|X_{1}\right\|, \ldots,\left\|x_{n}\right\|\right)$.

$$
28.6 .1988
$$

A remark on Gaussian isoperimetry and
logarithmic Sobolev inequalities
Michel LEDOUX, Strasbourg
We use isoperimetric inequality to show that a function on $\mathbb{R}^{n}$ whose gradient is in $L^{1}$ of the canonical Gaussian measure belongs to the Orlicz space $L^{1}(\log L)^{1 / 2}$ of this measure. This complements the logarithmic Sobolev inequality of $L$. Gross.

Nonlinear functionals of empirical measures and the bootstrap

Let $(X, a, P)$ be a probability space and $\bar{\xi}$ a class of functions on $X$ such that the central limit theorem for empirical measures $\nu_{n}=\sqrt{n}\left(P_{n}-P\right) \underset{\mathcal{L}}{ } G_{p}$ holds in $l^{\infty}(F)$ for the sup norm $\|1\|_{5}$. Let $T$ be a functional on a class $p$ of laws on $(x, a)$ which is

Fréchet differentiable for $\|\cdot\|_{5}$, so that

$$
T(Q)-T(P)=\int_{b p} d(Q-P)+\sigma\left(\|Q-P\|_{F}\right), P, Q \in P
$$

where fo $\in \mathcal{F}$ for all $P \in P$. Then $\sqrt{n}\left(T\left(P_{n}\right)-T(P)\right)$ is asymptotically normal. This is extended to suitable equi-C classes of functionals and to a bootstrap form.
R.M. Duly, MIT, Cambridge, Mass,

Rates of convergence in the central limit theorem in the space $D[0,1]$
The estimate of the rate of convergence in the CLT for iicid. summand with values in separable metric spare $D[0,1]$ is obtained. We consider the convergence on balls (with respect to sup norm) and under rather natural conditions we get non-uriform (with respect to radices of ball) estimate of order $n^{-1 / 6}$. As a corollary we get the estimate for convergence for weighted empirical process:
V. Paulauskas, Vilnius university, Vilnius ussR

Gaussian measure of translated balls Werner Linde, Jena

Let $E$ be a Banach space and hel $\mu$ be a Gaussian measure on $E$. Then we define a function $F:(0, \infty) \times E \rightarrow \mathbb{R}$ by $F(s, z):=\mu\{x \in E ;\|x-z\|<s\}$. Normally this function is studied as function of $s>0$ ( $z \in E$ fixed). We prove that $z \rightarrow F(s, z), s>0$ fixed, is Gateaux differentiable at every point $z$ belonging to the support of $\mu$.

$$
29.6 .88
$$

Necessang raditions fo he bootiten If the unean
We show that it a rey wied bom of the brotsthen of he arean holds a.s. Hen $E X^{2}<\infty$, and hat if it holds in protutitity, then $x$ is in the dovernin of atturuction of a anmal law. In perticular thei ihous that wome, remets in the litimanne can not he impuoved. Join woik with Jinkertinh.

Evanist Giné, Cillege Sthion $7 x$ 28-立-88
The Aspmptotic Distribution of Magnitude - Winerorized Sums
For $x_{1} x_{1}, x_{2}, \ldots$, iid, arrange $\left\{x_{1}, \ldots, x_{n}\right\}$ in descending order of magnitide, denoting theresults $\left|x_{1}^{(n)}\right| \geqslant\left|x_{2}^{(1)}\right| \geqslant \cdots \geqslant\left|X_{n}^{(\omega)}\right|$. Take integers $0 \leqslant r_{n} \leqslant n$ with $r_{n} \rightarrow \infty$ but $a_{n} / n \rightarrow 0$. Put $\hat{b}_{n}=\left|x_{5_{n}+1}^{(n)}\right|$, and then

$$
\begin{aligned}
& S_{n}\left(r_{n}\right)=\sum_{j=r_{n}+1}^{n} x_{j}^{(n)}+\sum_{j=1}^{r_{n}} \hat{b}_{n} \operatorname{sgn}\left(x_{j}^{(-)}\right)=\sum_{j=1}^{n}\left(\left|x_{j}\right| \wedge \hat{b}_{n}\right) \operatorname{sgn}\left(x_{j}\right) \\
& V_{n}^{2}=\sum_{j=1}^{n}\left(x_{j}^{2} \wedge \hat{b}_{n}^{2}\right) .
\end{aligned}
$$

If $\mathcal{f}(x)$ is symnetric and nondegenerate, then $\mathcal{Z}\left(S_{n}\left(r_{n}\right) / V_{n}\right) \rightarrow N(0,1)$, we usethis resnit tostudy, the asym, ptotic distribation of $S_{n}\left(c_{s}\right) / c_{n}$, for snitable constants $c_{n}$. A univeral law (â la Doeblin) is constracted having all the allowable subsegneential limit laws for $\left\{S_{n}\left(r_{2}\right) / c_{n}\right\}$, This work was joint with M. Hetn \& J.Kerlls.

Daniel Ch. Weiner, Boston Univesity 27 vine 1988
Rates of convergence in the CLT in $\mathbb{R}^{k}$ vic Stein's Methed It $X_{1}, \rightarrow X_{n}$ denote $i i_{i} d$, randon vectos taking values in $\mathbb{R}^{k}$ srith mean 2ar, idutith corarionce and finite third abounte moment, say $\beta_{3}$.

Using solution of the Emstain-Uhlembede diffusion equation as a substitute for Stan's equitation in one dimension the error in the CLT for a solnft and scale invariant class of sets a Berry. Essen estimate can be proved by induction on $n$.
Arruming that the Gaussian probability of the Eboundary of sets of this class is uniformly bounded by E $\triangle$ the error in the CLT over this dam of sets is boomed by $(5,4+23 \Delta \sqrt{k}) \beta_{3} n^{-1 / 2}$. This method can be applied similar as Bergotrion's method to prove rates of convergence in Bamech spaces. Further application are to exchangeable $r . v$, and statistics of indyoent r,r. with normal distribution under minimal moment conditions on the remainder of Hgiele's projection like egg. multivariate rank statistics and ron thous statistics.

Friedrich Goitre Fakultait fir Mathematics Univeritat Bielefeld, 4800 Bicefeld 1

A LAW OF THE ITERATED LOGARITHM
Let $T: X \rightarrow X$ be a pointwiese dual ergodic, measure preserving transformation on the infinite $(\sigma$-finite) measure space $(x, F, m)$. Denote by $\mathcal{T}$ its dual operator on $L^{1}(m)$ and assume that $\frac{1}{n^{2} h(m)} \sum_{k \leq n} \hat{T}^{k} f \rightarrow \int f d m \quad\left(t f \in L^{1}(m)^{+}\right)$, where $O<x<1$ and $h$ is slowly varying. Define reausisiely $1(0, t) \equiv 1(t \geqslant 0)$ and $\Lambda(p+1, t)=\frac{\Gamma(1+\alpha(p+1))}{P(\alpha) \Gamma(1+\alpha p)} \int_{0}^{1} u^{\alpha-1}(1-u)^{\alpha p} \frac{h(u t)}{h(t)}\left(\frac{h(1-u) t)}{h(t)}\right)^{p} n(p,(1-u) t) d u$ and set $p^{*}=p^{*}(n)=\left[\frac{-1}{1-\alpha} L_{n} n\right]\left(L_{2}=\log \log \right), \Lambda(n)=\Lambda\left(p_{1}^{*} n\right)^{2 p^{*}}$,

268
The following results are amounced:

1) $f \in L^{1}(m)^{+}$then
(*) $\lim _{n \rightarrow \infty} \sup _{n-\alpha} \frac{1}{n^{\alpha} h(n)\left(L_{2} n\right)^{1-\alpha} n(n)} \sum_{k \leq n} f_{0} T^{t} \leq \frac{\Gamma(1+\alpha)}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}} \int f d m$ ace.
2) Assume that T admits a Davling-Lar Set $A$ for which the retum time process is uniformly mixing. Then for $f \in L(m)^{+}$ equality in ( $*$ ) holds.
3) Let $m(A)=1, \beta^{\prime}<1<\beta$. There exist contents $H, C(p, n)$, $C^{\prime}(p, n) \sim 1(p, n)$ such that for all $n, p \geqslant 1$

$$
\frac{S_{k}}{\int_{A}}\left(\sum_{k \leq n} 1 A^{\circ} T^{k}\right)^{p} d m\left\{\begin{array}{l}
\left.\leqslant C(p, n) \beta^{p} M \text { exp }\right) H M \frac{p^{\alpha+1}}{n+h(n)} \\
\geqslant C^{\prime}(p, n) \beta^{\prime p}
\end{array}\right\} \frac{p^{\prime P}(1+\alpha)^{p}}{P(1+\alpha p)^{p}} h(n)^{p} n^{\alpha p}
$$

where " $\geqslant$ "holds if $A$ is a Dasling-kac set. The results are obtained jointly with Jon Aaromon.

Maned Dealer
Jnotikut \&. Mather. Stochastic, Lotze it. 13, 3400 Gottingen, FRE
Bootstrapping General Empirial Measures
The almost sure central limit theorem for
The bootstrap of empirical meaumes is characterized big the central limit theorem for the empincal measure and the sinituvess of the cecond moment of the envelope function. Joint with E Giné. Tace ${ }^{\text {texas }}$ and $M$ univ.

Sudakov's minoration for Radomacher Processes

Consider a musset $T$ of $\mathbb{R}^{n}$; Let $\left(\varepsilon_{i}\right)_{i \leq n}$ be a Bermourli sequence, and set.

$$
r(T)=E \operatorname{sip}_{t \in T}\left|\sum_{i \leqslant n} \varepsilon_{i} t_{i}\right|
$$

For a set $D \subset \mathbb{R}^{n}$, denote thy $N(T, D)$ the minimum number of tranalates of $D$ needed to cover $T$. We prone the existence of a unviesal constant $K$ much that tor $\eta$ oo
$\left.\eta \sqrt{\log N\left(T, K_{2}(T) B_{1}+\eta B_{2}\right.}\right) \leqslant K_{2}(T)$
where: $B_{2}$ is the evicliden ball, $B_{1}=\left\{\left(\left.t_{i}\right|_{i \leqslant n} ;\left|t_{i}\right| \leqslant 1\right\}\right.$ and $A+B=\{t=u T v ; u \in A, v \in B\}$.
M. Talagrand

Some Aspects of the Bootsmap
Let $z_{1} x_{1}, x_{2}, \ldots$ be ind $\}$ we study also $z_{1}^{*}, x_{11}^{*}, z_{2}^{*}, x_{21}^{*}, x_{22}^{*}, \ldots$ and assume that given $\left\{x_{1}, \ldots, x_{i}\right\},\left\{x_{i j}^{*} \mid i j j \leqslant n-1\right\}$, and $\left\{z_{c}^{*}: i s n-1\right\}$, the random variables $Z_{n}^{*}, X_{n i}^{*}, \ldots x_{n n}^{*}$ ard cid $P_{n}=\sum_{1}^{n} \delta_{x_{i}}$, write $P^{*}\{\cdot\}$ for $P\left\{\cdot \mid x_{1,1}, x_{n}\right\}$. For $0<\alpha<1$ define $t_{\alpha}, t_{\alpha}^{*}$ by $P\left(\frac{\bar{x}_{n}-z}{\sigma} \leq t_{\alpha}\right)=\alpha, P^{*}\left\{\frac{\bar{x}^{*}-z^{*}}{5_{n}} \leq t_{2}^{*}\right\}=\alpha+O_{p}\left(n^{*}\right)$, where $0=\sqrt{\operatorname{Varz}}, S_{n}=\left(n^{-1} \sum_{1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)^{1 / 2}$. Then under some regularity $t_{\alpha}-t_{\alpha}^{*}=O_{p}\left(n \frac{1}{2}\right)$, A plausibility argument wees given that nit withstanding, $P\left(\frac{\bar{X}_{n}-z}{\sigma} \leq t_{\alpha}^{*}\right)-\alpha=O_{p}\left(n^{-1}\right)$. At present, rigorous arguments prove only that the cited difference is $o_{p}\left(n^{-\alpha}\right) \forall \alpha<1$. These results on prediction intervals are in contrast to those for confidence interns insofar as $t_{\alpha}-t_{\alpha}^{*}$ is concerned. This work is joint with Chongen Mai and Peter Bichl.

In addition, mention was made of an almost sure $\sqrt{\frac{\operatorname{logn}}{n}}$ vale $y$ convergence to The sopprenern of differevene between the and bootstrapped average pabbbbilites in a
 protean concerning Vapril-Cherrmenkit doses wis give

270
The Concentration of partial sums in Small Intervals：Improvements on Berry－Esseen

This talk is based on joint work with M．J．Klass． Let $X_{1} x_{1}, x_{2}, \ldots$ be i．i．d．mean zero random variables with $P(-a \leqslant X \leqslant b)=1$ for some $a, b>0$ ． Let $S_{n}=\sum_{1}^{n} X_{i}$ and let $I$ be a closed interval． If $|I| \geq \dot{b}+a$ and $I$ is not too for into the tails of the distribution，then

$$
P\left(S_{n} \in I\right) \propto\left(\frac{I I \mid}{\sqrt{\nu_{a r} S_{n}}} \wedge 1\right)
$$

The result is optimal in two senses：it and fail if either $|I|<b+a$ or if I is located tod far into the tails．Explicit conditions specify how for is too for．The proof is derived from first principles modulo one application of the Berry－Esseen Theorem， which could in fact be circumvented．
maj pie $D$ ．Hahn
Tufts University，Medford，MA，USA
An inequality on two dimensional Gaussian random variables
Let $(X, Y)$ be two dimensional Gaussian 1．v＇s．with mean vector 0 ，coor．matrix $\left(\begin{array}{l}1 \\ 1 \\ r\end{array}, \begin{array}{r}r\end{array}\right)$ ．Set $\varepsilon=\sqrt{E\left[(X-Y)^{2}\right]}=\sqrt{2(1-r)}$ ．
Assume that $r \geq 0$ ．Then $\forall x>0, \forall y>0$

$$
\begin{aligned}
P(X \geq x+\varepsilon y, Y & \leqslant x)
\end{aligned} \leq 2 e^{-y^{2} / 2} \int_{x}^{\infty} e^{-u^{2} / 2} d u / \sqrt{2 \pi}
$$

One application is given．
N．Kîno（Kyoto Univ）河里予敬厷速

Mn modile pres que sî pom la couvajence enloi (X. Fernique, strasbong)
Dans les aunucus 50, Skorohod prouvait que toute suite de merunde probabilitís sur un esprace polon ais couvejeantétwiterment

Klass.
$>0$.
e est la suite des lois de cestaine suite de variables aliatoius couvereant pres pre sûrement. L'exposé a éti consacrí à l'ènonci et à la dimsuntratron du thiorème suivant qui étend et pricise le risultat de fkowohod:

Soit E un espare polonoin, il exinte um espace d'éprewes $(\Omega, a, P)$ et fom tonte probabriti fe sm $E$ une vainalle aliatoine $x(\mu)$ дum $\Omega$ à valuus dan $E$ aims qu'ume parti niflifeable $N(\mu)$ $d e \Omega$ telles $\mu u$ :
(1) $X(\mu)$ ait fom $l_{0} i \mu$,
(2) Jom tout fietur I sm l'ensembl M(E) des pobablitis sme converjeant itroitement ven une probabiliti $\mu$ et poms tout wr'ap portenant pas à l'ensemibl $N(\mu)$, $e^{\prime}$ fictre im a ge $x(\Phi)(\omega)$ woverje ver $x(\mu)(\omega)$.

The empirical process of long - range dependent observations

Let $X_{i}, i \geqslant 1$, be a stationary Gaussian sequence with $E X_{i}=0, v_{a r} X_{i}=1$ and $r(k)=E X_{j} X_{j+k}=h^{-3} L(k)$ for $0<D<1$ and a slowly varging function $L(x)$. Let $G=\mathbb{R} \rightarrow \mathbb{R}$ be measurable. We study the e.d. $\rho$. of $y_{i}=G\left(X_{j}\right)$, c.e. $F_{n}(s)=\frac{1}{n} \sum_{j=1}^{n} 1\left[y_{i} \leqslant s\right)$. Define $J_{q}(s)=\int\left(1_{\mid x \in s]}-F(s)\right) H_{q}(x) \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$ where


Theoren: Assume $D<1 / m$. Then

$$
\sup _{\text {sulf }} \sup _{0 \leq t \in 1}\left(n^{2-m D} L^{m}(n)\right)^{-1 / 2}\left|[n t]\left(F_{[n t j}(s)-F(s)\right)-\frac{y_{m}(s)}{m!} \sum_{j=1}^{[n t]} H_{m}\left(X_{j}\right)\right| \rightarrow 0
$$

As a corollary of this and resulb of Taggu, Dobrushin /Major we obtaik the weah convergence of the empirical proces $\left(n^{2-m D} L^{m}(n)\right)^{-1 / 2}$.
niv). $[n t]\left(F_{[n t]}(s)-F_{(s)}\right)$ ine $D(\mathbb{B} \times[0,1])$ to $\frac{J_{m}(s)}{m!} Z_{m}(t)$ where $Z_{m}(t)$

272
Low and thigh Density Approtianalione of the Reaction. Diffusion Equation If is shown that a nonlinear raction-diffation equation can be approximated by stochastic space-time fiélds with local interaction (lowdenrity) and by fields with whedrum rluteraction (hist deunity).

Peter Kotelenez, University of Utrecht, The Netherlands
Embedding and approximating vector-valued martingales
Results of Morrow and Philip (TAMS, 1982) suggest that the canonical process to embed $\mathbb{R}^{d}$-valued martingales is an $\mathbb{R}^{d}$-valued Gaussian process $\{G(C), C \in \mathscr{C}$ ) (where $e$ is the collection of all positive semiolefinite $d x d$ matrices) with the following properties:
(i) $G(0)=0$
(ii) $G(C)=N(0, C)$
(iii) $G\left(C_{1}\right), G\left(C_{1}+C_{2}\right)-G\left(C_{1}\right), \ldots, G\left(C_{1}+\cdots+C_{n}\right)-G\left(C_{1}+\cdots+C_{n-1}\right)$ are independent for $G,-, C_{n} \in C, x \geq 1$.

A simple argument shows that for $d>1$ rich processes do not exist.

Other possibilities to obtain streng approximation theorems fer vector-valued martingales and counterexamples to some natural conjectures are also discussed.

Walter Philipp, Univ of Illino is, U-bana, Il

Self-normalizal laws of the iterated logarithm

Using suitable self-normalizations for partial sums of i.i.d. random variables, a law of the iterated logarithm, which generalizes the classical LIL, is proved for all distributions in the Feller class. A special ese of these results applies to any distribution in the domain of attraction of some stable law. This work 1. joint with Phil Griffin.

Games kuelbs, University of wisconsin, Madison, WI.

Stochastic iterations for linear problems in a Banach space
For recursive estimates in linear filtering and prediction theory, problems of convergence and rate of convergence appear which can be reduced to corresponding problems with limit 0 for a sequence $\left(X_{n}\right)$ of random elements in a real separable Banach space is (especially $C\left([0,1]^{2}\right)$ and Hilbert space) iteratively defined by $X_{n+1}=X_{n}-a_{n}\left(A_{n} X_{n}-V_{n}\right)$ with $a_{n} \in[0,1)$, $a_{\mu} \rightarrow 0, \sum a_{\mu}=\infty$. Here $A_{\mu}, V_{\mu}$ are $L(B)$ - and $B$-valued randoms variables, resp, with a.A. convergence of weighted or arithmetic means of the $A_{n}$ 's to $A \in L(B)$ which satisfies a certain spectral condition. A.A. convergence of $X_{n}$ (investigated jointly with L. Zsid $\bar{\sigma}$ ) and in the case $a_{n}=1 / \mathrm{n}$ rates of convergence (functional central limit theorem and loglog invariance principle) are obtained from corresponding assumptions on weighted and arithmetic means of the $V_{n}{ }^{\prime} ' s$, resp. , under weals additional assumptions.

Horror Wale, Universität Stuttgart

Series representations of ind. random vectors with applications to $0-1$ laws.
A general form of LePage-type series representations for infinitely divisible (i.d.) random vectors without Gaussian components sirs given and some special cases are discussed. As an application of such representations it is shown that the zero-one laws for i.d. measures (Jannsen (1984), LNM1064) follow directly from basic zero-one laws (Hewitt-Savage, Borel-Cantellilemma) and from a generalized version of a theorem of P. Lévy.

Jan Rosinski, Univ. of Tennessee, Knoxville, TN.
Statistical mechanics on graphs
Random tree-type partitions for finite sets are used as a model of a chemical polymerization procen when ring formation is forbidden. The study rigorously establishes theovehcally the existence of three stages of polymernation and of acritical pout dependent upon the ratio of association and dissociation rates. Distributors on Banade spaces related to arising in the study are also analyzed (joint work with Pittel and Mann)

Wojbor A. Woyczynski, Case Western Reserve University, Cleveland, Ohio

Continuity properties of diffusion semigromps in thilber space.
Let $\left(P_{t}\right)$ belf the semigroup of transition probabilities of a diffusion process in a real separable Hilbul space, the diffusion proees given as the solution of a stochastic
differential equation.
We consider $P_{t}$ aching as $\not \approx$ linear opepplons $P_{t}: V \rightarrow V$ for difference spaces Vol continuous functions on $H$ and derive continuity properties of these experalors from bounds on the growth of the diffusion and drift coefficient of the mderlying diffusion process.

Gotllieb Lela, University of Passan, FRG

Rates for the CLT via ideal metrics
Let $(B,\|1\|)$ be a separable Banach spare and $X=X(B)$ the vector space of all random variables defined on a probability space and taking values in B. It is shown that new ideal metrics for $A$ may be used to obtain refined rates of convergence of normalized sums to a stable limit law. The rates are expressed in terms of a variety of uniform metrics on $\mathcal{A}$. In the $B$-space setting, the rates hold w.r.t. the total variation metric and in the Enclidean space setting the rates hold w.r.t. uniform metrics between density and characteristic functions. The mon result provider a sharp order estimate of the rate of convergence in local limit theorems w.s.t. the uniform distance between densities. The method is based an the theory of probability metics, especially those of convolution type.

Joseph E. Yukich, Lahigh University, Bethlehem, Pa. space.
hes
ace,
fochashic

Characterization of the Cluster set of the LIL Sequence in Banach space
Let $S_{n}=X_{1}+\ldots+x_{n}$, where $X_{1}, x_{2}, \ldots$ are fid Banach-space-valued random variables with weak mean 0 and weak second moments. Let $k$ be the unit ball of the reproducing kernel Hilbert space associated to the covariance of $X_{1}$. We show that the cluster set (set of limit points) of $\left\{S_{n} /(2 n \log \log n)^{1 / 2}\right\}$ either is empty or has the form $\alpha k$, where $0 \leq \alpha \leq 1$. A series condition is given which determines the value of $\alpha$. For each such $\alpha$ there exist examples in which ak is the cluster set.

Kenneth S. Alexander, University of Southern California, Los Angeles.

The decomposition theorem for functions ratestying' the haw of large mumblers

Suppose that $B$ is a Banach space with the Rowlon Nikodym property. Then $f \in L L N(\mu, B)$ if and only if there exists $f_{1} \in L^{1}(\mu, B)$ (Bochner $\mu$-milegrable) and $f_{2} \in L_{p}^{p}(\mu, B)$ (Pettis $\mu$-iterable), with $\left\|f_{2}\right\|_{G C}=0$ (" $u_{G C}$ - the Glivenko-Cantelli norm) such that $f=f_{1}+f_{2}$. Moreover, if $f \in L L N(m, B)$ mech a decomposition is unique. The necessary condition holds if "" "Oc is selblituted by the Petition norm II $u_{p}$, but then the sufficiency tails. Namely, there is a example of a function that is Pettis $\mu$-integrable,
has the Pettis norme 0 , but it does not salisty the strong low of large numbers.

Vhahinir Duberic, Lehigh University, Bethlehan, Pennsplvamia

A law of the iterated loganithm for timmed seems
Let $x_{2}, x_{2}, \ldots$ be a sequence of non-negative indepandent and iolentically distriluted randan variables with commen distribution function $F$ in the domain of attraction of a non-normal stable law. Ue dixcuss the law of the iterated logarithm behavior of tirmmed sums of the form $\sum_{i=1}^{n-2} X_{i, n}$, where $X_{1, m} \leq \ldots \leq X_{m, n}$ are the order statistics of $X_{1}, \ldots, X_{n}$ for $n \geq 1$ and where ( $R_{n}$ ) $n \geq 1$ is a sequener of intyers with $\mathrm{Kn}_{n} \rightarrow \infty$ and $\mathrm{K} / \mathrm{m} \rightarrow 0$ as $n \rightarrow \infty$.

Enir Haunsler, Univensity of Mumin
Relatwishi) Letween Cauesciai Processes and the lieal time of Markn Pnceesses

Dyukin's Leumarphism theorem gives a relationship
Cearssian puresses and thelecal triene a killed Letween Ceanssin frumesses andthelecal trane f a killed tied domer right Manker prucess with syminetui transtipn pribplibity density. The therem shows that if the toont tha Cranssian pirress is cuntinicum so it the local timie. Ie frict of the Canssian preeass is antianioss the lieal time satis dies the central liment thesom in itn
 - Zum.

Michael B. Marms The lity College I CUNY

278
Uniform Convergence of Martingales
Let $\left\{I_{n}(t), \Im_{n} \mid n \geq 1\right\}$ le e mardingale for each $t \in T$, and let $\{\Sigma(t) \mid t \in T\}$ be a Bochner measurable stochastic process (i.e. $\Sigma(0,4)$ takes values in a $\|\cdot\|_{T}$ separable subset of $\left.\mathbb{R}^{T}\right)$, such blat $\Sigma_{n}(t) \rightarrow \Sigma(t)$ ais $\forall t$ Now suppose that $T$ 's a serer sear able topological space once (i) $\sup _{n} E \sup _{t \in D}\left|I_{n}(t)\right|<\infty \quad \forall s$ countable $\subseteq T$
(ii) $X(c, i)$ is eontinucues for a.c. $\omega$

Let $\Delta_{n}(\omega)=\sup _{t \in T}\left\{\inf _{u n_{g} \operatorname{tiost}}\left\{\operatorname{serp}_{s \in u}\left|E_{n}(t)-K_{n}(s)\right|\right\}\right\}$, and suppose that
$\Delta_{n} \rightarrow 0$ a.s., Stem $\Sigma_{n}\left(t^{\prime}\right) \Longrightarrow I(t)$ uniformity in $t$ a.s. Moreover If $T$ is heredidavily separable, then this holds wen if we drop condition (ii)
J. Hoffmann-Jorgensen Mad. Lust. Arhus Universitet

Large deviation result for a clues of Marleor chains
Let $\left\{X_{n}^{(N)}\right\}_{n \geq 0}$ be an array of stationary Marlear chains in $\mathbb{R}^{d}$. Suppose that with scaling $t=n \beta, \beta \rightarrow 0$, the chain $\left(X_{n}\right)$ resembles a diffusion that solves a stochastic differential equation of Newtzell-Freidlii type. That is, the doffurin is a small random perturbation of a dynamical system. The tome it takes the chain to escape a neighbor hood of a stable fired point of a dynamical system in discrete too is evaluated along an exponential scale as roughly the sameamrunt of time it takes the corresponding diffusion to leave thin neighborhood. The Marker chain ane motivated by modes of population genetics.

Gregory J. Morons, Unmersity of Colorado, Coloradssprings

Representations of Banach space valued martingales as stochastic integrals
If $M=\left(M_{(t)}\right)_{t \geqslant 0}$ is a real-valued, continuous local martingale shone quadratic variation is absolutely contimanans relative to berespe measure, than by a theorem of Dob, $M(t)$ is the stochastic integral of a chain function relatives to a Brownian union Con a possibly cxtunded probability moace). Thin senate is also well-known in the $\mathbb{R}^{d}$-case. The classical muthol of proof is restricted to the case that M take values in a Itilbut space. For contimums, leal varstingahs with values in a real separable Bowach space, we give a complete different prof of Job's thaven. One application is a uniqueness theormn for the so-celled martingale problem (in the unsex of Stork and Vavadhan) on Banach spaces.

Eglot Dutwrils, Univanty of Tribingn
Strong invariance principles and stability results for sums of Banach-valued random variables

We present a strong approximation theorem for sums of li.i.d. d-dimensional riv's with possibly infinite second moments. Using this result, one obtains strong invariance principles for Bonoch-valued a.r.'s in the domain of attraction of a Gaussian law generalizing the known strong invariance principled for r.v.'s satisfying CLT. These new strong invariance principles immediately imply compact as well as functional laws of the iterated logarithms. We also mention a related stability result for sums of i.i.d. B-valued Avi's.

Use Einmahl, Universität Köln

280
Atrong appoximation of continuour time steghanice precerres

pprcorer. We xudy afficriul condibour cendex whis an aluork ate approxicuation

$$
\left|x^{2}(A)-\sum_{n}(t)\right|_{n}<c_{4}
$$

Goldr, ahev En/ni, is a gioen approvimatiou order, Ctahur a croudicrosing requmce of cmubir and IIIt curaor the Papremumenorver on the internal [0,t].
Kioo deffercit approadier are divcurred. The firt one ir bared on a Serho- Prieps type therwe, he krood one - ciper cencalercisk celections.
Euct Esoctio, Lumentiot Fraving

E

