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Abstracts

MARTINGALES, STOCHASTIC INTEGRALS

N. EL·KAROUI : Tamps .d'arret opt1maux an theorie generale des processus

L'objet da ce trauail est de caract~riser les temps d'arret "optimaux",

c'ast a dire Qui maximisent E(Vr ) ou T parcourt 1a classe des temps

d I errat aSf?ocie a un Bspace f i1tre (fl, f ,Ft ,p), et ou V est un pro­

cessus optionnel positif.

Llouti1 essential da ce travail es~ 18 gain optimal conditionnel defini

par Zr = P-ess sup E(VS/r
T

), qui est 1a plu~ petite surmartinga1e qui

majore Y.

l:orsque Y est. lad lag, on montre qu 'on peut trouver trois temps d 'arrat,

lilts Eltroitement au debut de l' ensemble { Y= Z ou Y-= Z- J tels que

sup E{VT) = E(Zo) = [(Y~~ +- Y~+ + Yo)' et que si-'V satisfait cl
T

. 'ii~ E(VT )~ [(YT) et lim [(ZT) ~ E(Z) , il existe toujours un
Tri~T - n Tn

'

T n

~temps d'arrat optimal.

Nou~ ~~marquons ensuite qu'an fait, ce probldme d'optimalite admet

to~jours'u~e solution dans un espace des formes lineair~s convenable­

ment defini et que llon' sait caracteriser la plus petite et la plus

grande forme optimale.

Stochastic integration with respect to Hilbert valup.d

martingales, representation theorems and infinite

dimensional filterino

We describe a very general stochastic integral with respett to Hilbert

valued martingales, as it was introduced by M. Metivier and G. Pistone

i~ Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33 (1975), 1-18 •

This integral seems weIl suited to the study of stochastic partial

differential equations and the filtering of related systems.

The main feature of this integral, beside its isometry property, is

that it makes possible the integration of a wide class of proc~sses,

the values cf which may be unbounded operators. It is shown that we

have to pay this pries to get convenient representation theorems.

As an illustration we indicate how can be developped martingale argu-
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ments in the infinite dimensional filter~ng problem, as thay ware devel­

opped for example by Th. Kailath, A.V. Balakrishnan, M. Fujisaki,

G. Kallianpur and H. Kunita in the finite dimensional setting.

M. VOR : On the representation of martingales as stochastie integrals

Let (fl,~o) be a measurable spaea, with a right-continuous filtration

('3= ~), and X a (~~). adapted, right-eontinuous, real proeess. Note

m = { p probabil i t y. measure on (fl /J 0) I X is a (p, .?~.> loeal martingal eJ.
The main result I gave is :

Theorem : Let PEm. Then, (1) and (2) are equi.v-alent: •

(1) p i5 an extremal point of 111
(2) Every (loeal) martingale Z (far p) ean be represented as:

Zt = c + ft H dX ,where C EtA, and" H is a predictable
s s

o· - t

process such that (J" H2 d [x , X] ) 1/2" is loca11y in.tegra ble.
s s "o

The proof was based on a theorem due to R.G. Douglas (1964), which I recall

briefly:. if (A ,0{ , p.) i5 a prebability spaca, and Faset of real functions

f : (A,m) ~ (fR/ß(rn», such that 1E. F, then, if ~V; =~Y probability

measure on (A, Cl.) l. fer all FE. F, 5fd ~ = f fdf'} - the integrals ere

obviously supposed to .be defined (e.g. Fe L1~ ), and, if Vf:.~, Fe L1-(v» -

.jA. i9 extremel in JIf iff .F is total in L ~ (Ot '.ft ). .
Ta apply Douglad theorem, I nsed- the following stability proposition, for

stochastic integrals:

Proposition Let (U
t

) be a loeal martingale, and yn hn dV _ hn and
5 S

h are pred~ctable processes - a sequence of uniformly inte-

grable martingales. Suppose yn ~ Y. Then,
mo(L1-,L~ (I)

E [Y lrt J - i8 also a stochastic integral:
t m

5 h dVs s
o
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STOCHASTIC fILTERING AND CONTROL

R.S. BUCY : Apriori bounds for the eubie sensor

The Ornstein-Uhlenbeek proeess is eonsidered as the signal and is observed

via the cubic sensor corrupted by white noise. Upper and lower bounds for

the error varianes in estimation of the signal are given es explicit func­

tions of the generalized signal "to noise ratio. In partieular asymptotie

behavior of the upper bound is conjectured. to be the signal to noiS8 ratio

to the minus three half power so that both upper and lower bounds agree

asymptotically.

~.H.A. DAVIS : On a non-linear semigroup of stoehastic contral

SUppOSB t xt l 1s a controlied l'Iarkav proeess on astate space- S; "let

C
t

ep (x) be the maximal rBward far a contro1 problem of duration t wi th

terminal pay off function ~€C{S), sterting at xc= x. One.formulation of

Bellman's ~rinciple of optimality.statesthat Ct is ~ semigroup, i.e.

Qt+s~(x) = Qt{Qs<P){x) • I described -some r~cent work cf 1'1. Nisio in

which this semigraup (acting on C(S)} i~ eonstructed directly by eonsid-

_ eringapproximating sequenees af piecewise-eqnstant .cantrols. 1..then .

indicated the p~ssibilityof treating in a similar way problems w~th

noi9Y observations, i.e. where control has ta be based on observations

{ Yt \ of the form dYt = h(xt)dt + dWt (hE C(S) and t ~tf is Brownian,

independent of·x
t

). Denoting Il"t(f). = E if(xt ) I Yt ! for f EC(S),

Yt = f1 { ys' s ~ t i·, the Fu jisaki/ Kallianpur/ Kuni ta f ilter ing. formula

states that Trt(f) satisfies
t t

TI" t(f) - 1i o{f) = JlTs(Af)ds + feTTs(h'f) - 1T s(h) Trs(f»dl s where
a 0

dl t =dY t - TTt(h)dt is the "innovations ·process" and A the infinitesimal

generator of xt • ·This means that lTt-is actually a Marcov process on the

stete space M(S) (= set of probability measures on 5) •. Giving M(S) the

weak top~logy, lT t has continuous paths and is FeIler, i.e. the corre­

sponding semigroup Pt maps C{M(S)} into i~self. Thus ane can formulate

the partially observable control problem in terms of .constructing a

semigroup Qt on C{~(S}), related to t~ tl in the same way that Nisio's

semigroup Qt relates to the original. process {xt } •
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Applications or rlifferential geo~etry to stoehastic filterino

and control

Since many physical systems evolve in a smooth rnanifold and not in a linear

space it is natural to study problems of stoehastic filterin0 and contral

in this geometrie setting. Brownian motion, as weIl as same other stochastic

proeesses, has an inherent formnl differential geometrie interpretation and

its natural setting is a Riemannian manifold. Same notiöns from differential

geametry ~uch as parallelism of vectors ilong a Gurve will b~ userl t6"for­

mulate and salve same stochastie filt~ring anri eontral problems that are

described by stochastic differential equations. 80th eontinuous and dis­

continuous processes will be considered. Some differential geometrie inter­

pretations of the techniques used in many stochas.tic filtering and contro-l

problems in E~clidean spaces will be made aq ~ell as the generalization of

these techniques to processes in manifold~.

F. GRAEF : Optima1 filterino of infinite-dimensional stationary signals

To analyse the pulse amplitude modulation (PAM) of"time-diserete signals·

in frequency domain, opArator-valued measures rnust be used. Signals will

be represented in time-domain by" stationary sequences of Hilbert-Schmidt

operators, modulation is interpreted as subordinE!tion of such sequences,

and filters will be represented by elem8nts cf spaces cf type ~x(Je,1{)

introduced by" V. r'1andrekar and H. 5a1ehi.

The construction of optimal fi.l~ers.for PAM demands the minimization of

a nonlinear functianal on such spaces. Same propositions regarding the

structure of minimizing elements are derived ,~hich allow to reduce the

optimization problem to ane in L'(O,m), which ~an be solved exp]i~jte1y.

R.~. R1SHEL : Filterino and control of jump processes

The generalization. of filtering formulas of Rudemo to conditionally

Markov jump processes prouide 8 mRan of ~eneralizing arecent sp.paration

prin~iple for jum~ nrocesses of 5egal • A synthesis of the minimum prin-

cip18 for ~ump nrocesses C~n he inter~rp.ted ~~ A "method of charact~ris­

tics" far solving t.h8 partiAl di fferelltial equatinn of the separation

principle. A solution of the ~artial differential equation of the sep­

aration principle leads to a solution of the dyn~mic Qronramming equa­

tions. Thus th~S8 three rlifferent 00ti~aljty c~nditi~n~ ~~n be comparqrl

'3nd int.p.rpreted.

•
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STOCHASTIC EgUATIONS

v
V.E. 8ENES : Realizing a weak solut~~_~n B~obability_~a~~

Let T : (X,?f)~ (V,1t) be a,.Borei application, V a given probability

measure on 1t, and f' a weak sO,lution of the stochastic equation fA. T-
1= V •

With (.Q,'j=' ,p) a probabi~ity space, and w : n~ V a random variable with

Pw~1 = V , it is of interest to know when there is a random v~riable

x : (2~ X such that Px-
1 =JA' end Tx = w a.·5. (p). We give a necessary

and sufficien,t con~ition for the existence of such a "realization" x :

Ther's is a random variable f : n~ CA, .8 measure. fsomorphism h, and a ..

, '. ~ecomp?·siti'~n. (m~d. p) n. = Eov [,,,,,.. [2 u ••• , ~i th Eo~.onditionally w-1~ ~

atom1.e,ss in w-111vf-''3l, an~ [n'. n) 0, ~isjoint con9it.io,!~1 w-1-y.. -atoms
-11L -1'l) . II -11L -1'1') '''Y

i~. W . 'I v f .~ ., such that (1) h :.( ~ w 0 V f. CI\.) <E--7' (f ' X.'.,
tii) hw-

1
.B = 1:-

1
B far B€lf.. (i:~) under (P)Ea)/'=',(Ea ). flE a is uniform on

[0.,1] and independent .of [on w. .1f!, (iv) .:f =.n :f 1/2 on ~n' ">0 •..

b. DAWSON : A class of measure-valued Markov'processes .

A· measure-valued Markov proeess i5 a Markov process whose state space is

the space of Borel measures on ffid. Henee at each epoch th~'system'is des­

cribed b~.a random measure. Sueh processes arise naturally es models ot

spatially 'distributed populations in population biology,ehemical kinetics,

ete. An interBsting class nf mesure-valued Markov processes are obtained

as solutions cf appropria~~ ,martingale problems in the sense of Strood

and Varadhan. In~ thiscont~xt we deseribe a number-~f specific examples.

Gf these a basic ans is the multiplieative process which WB describe in

detail. Examples are also given cf martingale problems which have no

solution. ~e also discuss the problem~ of determining th~ thermodynamie

limit of the system and the limiting behavior of the system for large

valu~s of the time parameter.

K. SATG Unigueness for same diffusion processes and convergence cf.

genetical Marcovehains

A new class of degenerate diffusion proeesses is introduced. Let

It< {(X1 ••••• Xd_1)E.fld-1; xp?--O far p=1 ••••• d j. a (d-1)-dimensional
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d-1
simplex, where

-,- and letx
d - .1...- x

p=1 P

1 d-1 'd 2 d-1 7J
L ='2 I::: a (x) aa 'a + L b (x)~ x EIl<pxp, q=1 pq Xp Xq p=1 P

d

6pq ~p(x)xp 11a (x) x x ( I: ~ (x)X- - 0p(x) ~q(X» +pq p q r=1 . r r

bp(x) =xt r r(X)( Spr xr )· 8pq ={ ~ : ~t~
Let p- = f XeU< ; x =0 t far p=1, ••• ,d • Under the assumption that R ;> 0

p 1 p J . tP •
on iJ<., rand R ,~ continuous on IK, locally Lipschitz on IK' r ,~

p t~p Op P
existence and uniquenes~' (in the sense of martingale problem) of a diffusion

process on ~ associated with L are proved. This class cf 'diffusions in­

cludes many processes that appear in diffusion approximation in popula-

tion genetics. A sequence of genetic'Markov chains is introduced end its

conv~rgence ~o the above ~iffusion wit~ ßp and t
p

constant (depending

on p) Is proved. This justifies and generalizes J.H·. Gi~lespiB's heu~istic

one-dimensional argument.

GAUSSIAN PROCESSES

~. HITSUDA : Same topfcs on representation of Gaussian pfocesses

Let X = (X(t)~ o't '1) be aN-pIe Markov Gawssian process which is

canonically represented- in the form X( t) = L F . (t)8. (t)
i=1.1 1.

= [r1(t), •• ~ ,FN( t ). ] t [8, ( t ), ••• ,8
N

( t ) ] 11. O~· t ~ 1 •

Theorem: If a N-ple Markov Gaussian process V( t) = (v( t); 0" t ( 1) is cf

multiplicity NI y(t) has the canonical-representation

y ( t) = er1 ( t ) , • •• , FN( t )J S\ f i j ( U )J [ f i / t )r1
t ldB1 ( u ) , ~ • , d B~J ( u )] ••

o .

where if (t) = [f ..(t)] is a non-singular matr ix far aach t, and
~J

the components have the Radon-Nikodjm derivatives satisfying

51 st 1 2 2 ~J 2
'-if(u)--{f(t}11 dudt<m (lAI = 1-- 8 .. far- A [aijJ).

o 0 i,j=1 1J -
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G. KALLIANPUR : Gaussian processes of two parameters

Work dons jointly with N. Etemadi and C. Bromley is described.

~et Xi' i = (t
1
,t

2
).E[O,1]2 be-the 2-parameter Wiener process and let Yt

be a zero mean Gaussian process equivalent to Xt (in the sense of mutual

ab~olute continuity of measures). If V~ has a r;presentation of the form

6*) (I + K)X t where K is a Hilbert-Schmidt, Voltsrra operator on the

Hilbert apace-L(X);;: 'linear span-{x
i

• i E [0.1]2 } such that

KL(X;i) ~ L(X;!.) Vi, then Vi has a non-anticipative representation which

is shown to be the same as the canonlcal representation cf the type consid­

ered by Tjpstheim. In general, however, a· representation af the type (~)

i8 nat available but a more general representation holds whieh· depends on

a four-fald faetorization of the operator ~ relative to the ~ommuting

ehalns lT
1

and Tf
2

• Here 5 is the positive, invertible, self~adjöint

operator whose existenc"s 1s guaranteed by the equivalence of (Vi) end (Xl)'

11i = {P:.. 0 (ti"" i". and: P: is the. orthogonal projection onto
1 1

'X
P i5 similarly
.t

2
the linear subspace V {x~

defined).

A consequence 1s the fact that not every Gaussian process of two parameters

which is equivalent to the 2-parameter Wiener process has··s. Tjp5theim- can-

anlcal representatian or a. non-anticipative repres~ntation.

H. OODAIRA Note on F'reidlin - Wentzell type estimates ror stochastic

processes

Let C be the space of real continuaus functions on [O,1J with the sup-narm­

U•~, and let ~rn i be a sequence of probability measures on C ~onverging

weakly to a Gaussian measure with mean 0 and covariance kernel Tl. Let H

denate the reproducing kernel Hilbert space with kernel rwhose no~m is

described by U."H. Then, under certain con~itions, the following esti­

mates (Freidlin-Wentzell type estimates) are obtained. I f 0 < OC( n) tm as

n ~ CD, then, far any 4>6 Hf S, h /' 0,

rJ"~- <P /I m<Sh exp[-( o(2/2){ 1Ilf111~ +h)J end tn{d(~. K.r );> sI ~
2 . 2

~exp(-( 0. /2)(r -h» for all sufficiently large n, where Kr 1s the
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closed ball of radius r in H end d i5 the distance in C. This is a gener­

alization of recent results of J. Gärtner. some examples af Gaussian

processes, part~al sums of independent identica~ly distributeQ random

variables and empirical distribution functions are given.

HOMOGENEOUS CHAOS AND MULTIPLE WIENER INTEGRALS

5. CAMBANIS : Stochastic end multiple Wiener integrals för Gaussian processes

Multiple Wiener integrals and stochastic integrals are defined far general

Gaussian processes, extending the related nations for the Wiener process.

It 1s shown that'every ~2-functional of a Gaussian process admits an adapted

stochastic integral representatian and an orthogonal series expansion' in

terms of multiple Wiener'integrals. Some results of Wiener's theary cf
nonlinear haise 'are generalized ta naises other than whiie. Also t~e

stochastic differential rule i5 given.

T. HIOA White naise and Levyt s functional analysis

(Communicated by M. Hitsuda)

Let (L
2
):: L

2
( '3*, f'; ), where f< is t~e measure ef whi te neise, c(~.> =

= exp [ -111 112/ 21= 5exp( i <r ,x /) fl"< dx) ,1 E. f . let '.:f be the. Hilbert. space
~ I . rn

wit,h reproducin9..kernel c( I -tl). As the .decamposition of. (L 2) =,L@!in '
(D ~ . n=O

we get.8 decompos"i tion ·of T= L ® F , 1-n is the Hilbert space with
n=O n

)
-1 n

kerneI Cn( I ' ~ ~) c( j )~ j , ~ ) c~'l..) • We get an isamorphism

]( .~ g: ~ v;;! L2(Rn) • This isamorphism can be extendeq to the tIn-pIe
n n

genaralized Brownian functional rt as in the form:
~ ,...-....... ~

v;;!! ~n+1)/2( Rn) 4- \{;! L2( Rn) ~~ H-(n+1 )/2( Rn)

1· t t
-1 (n}'J c-/ :F (-n)

n 4 n ' n

J(n) j{t } (-n)
.Jt n ~ n '--> J1. n .

~';;-V2 n .
where ~ (R llS the symmetr ized Sobolev space of order (n+1)/2.

L...-_~ ~ _
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(J) (-n)
The members of (L 2 )- =L@Jl should b.e called the "generalized

n=O n

d 2
~2 , ••• ~ ete.• (

r"\-,
the form C);(t) ,

functionals". These funetionals are useful to define the derivations of
J2

S~ dt is the Levy'dx(t)

Laplacian).

w. S~OWIKOWSKI Ito's ~nte9ration obteined by the seeond guantization

cf the Wiener integration

Ta a Hilbert space H ws assign .the eommutative Wiek algebra ~H which ise .an algebra containing H as a linear subspace.. r:H is provided with a

sealar- product in such a way that it eoincides on H with the original

sealar produc~,' that every linear contra.etion extends uniquely. to a con­

,traetive morphism of r-H- and, finally, that the class of the linear span
w '.

of _~~fold products of elements of H 1s complete.

-We give exa~~les of .Wick algebras essentially due to Wiener, Bargmann-and

r~~k. We derive tMe existence of the multiple Wiener integral and, fina-lly,

we build the Ito al~ebra which is a Wiek algebra which incorporates time

r;!nd .non-an~icipation into th8 algebra- structure and gives rise to the I to­

st09hastic-iritegral~.

OPERATOR VALUEO MfASURES AND INFINITE DIMENSIONAL PROCESSES

WO. HACKE~JBROCH Same properties of operator measures related to

prediction theory

By means cf spectral rep-resentation, prediction theory 9f stationary operator

sequences leads to th~ study of "invar~ant subspaces" of an abstract space
2 . ~

L <CV jH) wit!l H a complex Hilbert space and 't' a weakly 6'-additiva measure

on the circle group taking values in the positive bounded linear operators

on H. As is '1ell-known, the crucial properties of (simple and double) in­

variance depend ~n a delicate manner on the O-sets cf ep as rel~ted to the

O-sets of Lebesgue measure. ror gene~al ~, problems arise from the lack of

finite variation properties of <1> ' of "pointwise strueture ll of L2( <p ;H)'

and of a Radon-Nikodym derivative of ~ with r~speet to Lebesgue measure.

The talk gives i) Same general characterizations of Q-sets far operator

measures, ii) Necessary conditions far the existence of Radon-Nikodym deriva­

tives, 1ii) Equivalent formulations cf the problem of decomposing self-adjoint

operator measures into positive parts.
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n. JAJT( : Spectral and s~mi=spectral Gleascn measures

Same vector-ualued measures defined on a lattice of all orthogonal projec­

tors aeting in a Hilbert spaee 'are eonsidered. In p.articular: Hilbert space­

ualued orthogonally seattered measures, p~ojector-valu8q and positive opera­

tor-ualued measures.

The problems concerning the str~cture, eonvergence and extension in tensor

products are taken into consideration•.

H.H. KUO : Differential caleulus for measures on Banach spaces

The study ·cf differential calculus for measures on Banach spaces ·is moti- ~
vated by Hodge theory and distribution theory on suc~ space~. In the ease

cf infinite dimensional Banaeh spaces there is no natural way to regard.

boundsd msasurable functions as distributions because the Lebesgue measure

dass not exist. Thus ans cannot expect to reprssent niee distributions, "e.g.

harmonie distributions,. by smooth functions. However, finite Borel measures

can be regarded BS distributions in a natural'way. Ta be able to represent

niee distributions by smooth measures ene needs to develop differential

calculus .far measures. In this expository lecture ws give 8. brief survey.

on same tepics such as the ehain rule, Weyl's lemma, Kolmogorov's forward

equation end proue a new result far differential operators associated with

diffsrentiable measures with lagarithmie derivatives.

v. MANDREKAR : On subordination of decemposable processes

Let (T, 'ß) be a standard Borel spacB and (0, ]="-, p) be a Gomplete probabili ty

spaeB. A decomposable praeess is a map on 'J3~ LO(lLt~,P) such that

X
A

, ••• ,X
A

are independent for Ai disjoint and eountably additive. We
1 n

study in general the problem of subordination cf X with respect to a

Gaussian proeBss X', which is also decomposable. We show using L
2

,F' intra­

duced by the authar and H. Salehi that X is a stachastic integral with

respeet to X'exeapt for 8 shirt by arbitrary signed measure. In the above

problem ws assume X
A

is H-valued far H real separable. We show that the

problem eannet be generalized to areal separabls Banach space preserving

main result ar J. feldman.
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P. MASANI The freguency response function es a Radon-Nikodym derivative

Theorem 1 Let (i) Jl be a fY-algebra over aspace 1\ and JA.. be a I)-finite

countably additive 'measure on JL to [O,m]; (ii)W end H be

Hilb~rt spaces over Ir (r =(R or ce) end W be separable;

(iii) TC.) be a w-to-H c.a.q.i. measure on the er-ring

vq = {A : AE Jt and u( A) < m1with contral measure jA.. (. ) I w,
r.~ .

i.e. 't/ A, B€.1t T(Bl-.T(A) = f/.(AI1B)I
W

(Bull. AfYlS, 1970, p.449)j

(iv) VB~.J! , ~T(B) = cr{T(A)(W) : A E A}..(and A~B 1 and
cl.. JI l

Qr(S) be" theprojection on Vt'\. T(l\J onto AT(s); (v) R be a con-

tinuous lin~ar operator .on 'H to H which commutes with 0T<.8), VBt::A.
Then R = 1: T .rnq -L ~. , where L T i8 the isometry on

l2.f- il l 2(A .JI.'.f ;w) onto J.(T(A)!:H gi~en by

:r: T (~) = - IT(dA )<p(~)', 4' e L
2

u·' and Av • )- iso a function on.ll
d. .i\.. .., 'f~

to CL(W,W) "ä the class of all continuous linear operators on W- to W

. such that· :V 1lI €W, ~(.)w is 1..11- Borel (W) .- measurable,and V-f~ l2.r

{1Yl.(f l I O ) = <P(;.IHf(;l)J ·.a·~·f ~ .
We prave this theorem by showing that the'set-function t R(.) onJlrgiVen by

lR(A) ~ T(A)A'RT(A) • A€Jt,. ,. is a c.a. measure on ..Ar to Cl(W.W); which

satisfies the hypothesis'of tha Ounford-Pettis theorem (TAMS(47),1940, p.323).

Hence it has a Radon-Nikodym derivative qJ(.) on J\with values to CL(W,W).

This Q> ~ _). doss the job.

Next WB ',let H 3..L2 ,ft- end 'V AEJir , T( A)w =m;t(A )(w) d Id XA(. ) j WB easily

deduce (since 1- T = I L and QT(A) = -1ny } ~
2, r "R

Theorem 2 Let R be a continuous'linear operator on L2t~ to L
2

, " which

commutes llIith multiplication by indicator functions iB' BEO Jt •
Then R is the mul tlplication operator m4>. Here "

q> =dlR • blhere lR(A) =lrU A)*R1Yl;t< A). AE:J[r •dr ~
Next WB let 1\. = IR , <A = Borel (IR) , t = Lebesgue measure, 1e t R be a t ime-

invariant linear f ilter with signals in L
2

([R) and ~ = VRV~, where V' is the
. /' "-

Fourier-Plancherel trans form on L2(~)- Then R commutes with multiplication
A

by the indicator functions i 8' B€ Borel (fR) - Hence by Theorem 2, R =m41 '

where ~ = dL'R •dr

                                   
                                                                                                       ©



-14-

Thus the frequency-response function~ of the· filter is the Radon-Nikodym

derivative of an operator-valued measure.

The first part of Theorem 2 is essentially due to Foures and Segal (TAMS 98

(1955),385-). The Radon-Nikodym approach is due ta the ldriter, cf. "Vectar

and operaior-valued measures" , by O.H. Tucker and H.B. Maynard, Acad. Press

1973, pp. 217-232 •

A. WERON Operator valued measures related to multivariate stochastic

processBs

WB cOQsider same problems arising in co~nection with the linear prediction

of multivariate stochastic processe~~ ~e pre~ent the "operator modeln for

second order proceases with v~lues in Banac~.spaces.

For stationary proc~sses and additively correlatej processes the spectral

representations are obtainerl. The meaSllres arising her~ takina values in

the space of linear continuous operators L(B,H), (where B .is a Banach space

and H is a Hilbert space) and L(8,B*)~
As an ~pplication WB discuss same aspects cf the dilation theory •. We prove

that L(8,S*)-valued positive definite function K over the grau,? G mey b~

dilated to the unitary representation 0
0

in L(Hx)' where H
X

i8 a ·time'

d-omain of asta. t ionary process (X ) . G; where V 9 X E. L(G, H).
9 g€. ' 9~

STA8ILITY

L. ARNOLrr : On the stability of stochastic linear differential eguations

.Let ';t = AtX t ' wher8 At is ureal noise" (i.8. 2 matrix-valued stntio.,ary,

sornetirnes ergodic and j'larkov stochastic pracess). What are cond i tions for

Xi:~ 0 (t~oo) 8.'S. ? Put w
t

= xt/l xtl • We get _

t A+A' ~
Ixti = Ix 1 8X:J<J q(A ,1.1-' )ds)., where Q,(A,hl) w'(-··2-~-·)w. Thus, the growth

ass
o

of x
t

depends on the ergodie b8havior of the pair Zt = (At,w
t

}. If we

assurne that At iso a stationary and ergcdic solution of the Ito equation

dA
t

r(At)dt + G(At)dw t and, if we add the differential equation for wt }
(*)

dW t (At - q(At,wt)I)wt

~ investigation of the stability of the original d.e. reduces to finding

stationary solutions of <*). The example y + fty = 0 is treated in detail.
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In this ease, (~) has station~ry distributio~s, such thRt

1 t
t J q(As'w

s
)ds -) R, where R is a eonstant. For f t> 0 this constant is

o

R J j~
x:OO< =0

(1-x )si02 0(

2 . 2xeos 0( +S1.n 0(

d jL", where f is the (unique.ly existing)

invariant measure of (~).

w. WEDIG

. ~: .

On the inte9ration of seguenees cf moments eguations in the

stability theory of stoehastic systems

Linea~. stoehastic systems wi~~ coloured noise eoeffieients generated from

w~i~e noise by a filter equation lead to an ~nfinite set of moments equations.

In order to ~void sueh.sequences a linear tr~nsformation cf the'state vector

is introduced by usa of Ito' s calc~~us t whare ~he associated transfo'rmation
_... -..... ~ .
ma~rix is defined as·a second order eigenvalu~ problem on the entire ra~ge

o~.~he filter~s proeess~

U~der th~ condition that the transformation matrix is non-singular and

.briunded with ~robability one tha eigenvalue equation ~s integ~ated by means

of Her~ite: p~lynomials resul ting in a recursion ~ormula for ..t~e determina­

tion o~ t~e ~ssociat~d eoefficient'mat~ices the .bon~e~gence of whieh ean.be

proofed. The evaluation of the ~ean square stability c~ndition is earried

ou~·in ease of a single degres of freedorn system·~nd ~ ~ealar first order

fil ~~~ ~q·uatiön.

MI-SCELLANIES

TH~''K"A'ILATH Classifications of operators by their'complexity of inversion

Many physieal problems lead ultimately to the solution of ~inear equations,

say Ra =.~' where Rand mare NXN and NX1 matrices determined by the physi­

cal.problem. Tosolve such equations general~y takes O(N3 ) operations

J.:(mul~ipl~ca~ions and additions), whieh may be burdensome for la!ge N. There~

fore it is desirable to see if R has any special strueture that might help

to reduce the number of eomputations. A frequently made assumption is that

we h~ve an underlying stationarity (ar shift-invariance or homoge~eity)

property that allows us to take R to be Teeplitz, i.e. of'the form

R = [A.. .]. This is niee because i t is known that such Teeplitz BQuations
l.~J 2 . 3

ean now be solved with D(N } operations instead of D(N ). In many cases
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however R might rather be the product of Toeplitz matrices, or the inverse

of a Toeplitz matrix, or the non Toeplitz covariance matrix of an

asymptotically stationary proce?s, or other non Toeplitz matrices growing

out of operations on Toeplitz matrices. According ,t'o present theory, these

matrices being non Toeplitz would seem to require O(N3 ) operations for

their inversion; however one faels that this is tao high and that such

non Toeplitz but certainly nonarbitrary equations should be soluble with

a number of 'operations between O(N 2 ) end O(N3 ). We shall show that with

eny NXN matrix we can 'assoeiate an integer 0<., 1 "0< ~ Nt that roughly

speaking gives a measure of how non-Toeplitz the matrix i8; 'moreover the

associat·~d linear equatians can be ~alved with O(N~) operations. We e
present severel results on this method of classifying matrices and also

integral operators (i.e~ continuous kerneIs).

These results, which grew out of studies on the structure of the nonlinear

Riccati - end Chandrasekhar - type differential equations that arise iri

linear filtering theory~ were done jointly with B. Friedlander, S. Kung~

L. Ljung, B. levy end M. Morf.

f. ÖSTERREICHER On the construction of least favourable pairs of

distributions

A composite testing problem (p, Q) ean, in the ease when P end aare

described by 2-alternating capaeities, be reduced to a testing problem

of single hypotheses (p*,Q*) (Huber and Strassen, AS 1973). (p*,O*)
is called aleast favourable pair.

This paper presents a prineiple of const~ueting (~,Q*). which fS based

on the use of the corresponding risk sets and which works far the ease

when P and Q are given in terms of same neighbourhoods. 80th in the

( - contamination model end the 'total variation model, whieh were already

solved by Huber (AMS 1965), the solution is derived straight forward.

But also Prokhorov-type -neighbourhoods are treated suceessfully, at least

under the condition of monotone likelihood ratio. This condition, however,

may be weakened.

P. RESSEL : The continuity of (JA.,Y ) t---t t..J, tZiY
;

Far a givsn arbitrary (not necessarily Hausdarff) spaee denote by Ji(X)
the space of all r-smooth probability measures. We prove that givsn~ E Ji.( X},
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A
V E :P'[ (V) thare exists an uniqualy determined measure I-~ ~ J1E ,'P", (X x V)

~ ~

extending f- ®}I • The mapping <r' V) ~ jJ- @ V is continuous and}'C& V

is Radon iff f' and J,I are (X and V then being Hausdorf ). Extensions to in­

finite products are given, tao.

J.C. WILLEMS Representations ofdynamical systems

In this talk definitions ofinput/output dynamical systems, systems in state

spacB form, and recursive "white noisa" representations were defined and

thair relationship discussed. The problem of finding, for a given continuous

time stationary zero mean Gaussian m~valued process y, a continuous time

stationary zero mean Gaussian Markov ~n-valued process x, and a matrix C

such that y(t) =Cx(t) was discussed end all y-measurable salut ions x

were presented.

M. Gatt"inger (Erlangel:1")

F. Graef (Erlangen)
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