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Abstracts

: s:p E(YT) = E(Zo) = E(YD- +Y

MARTINGALES, STOCHASTIC INTEGRALS

N. EL-KAROUI : Temps .d'arrét optimaux en th&orie générale des processus

L'objet de ce travail est de caractériser les temps d'arrét "optimaux",
c'est 3 dire qui maximisent E(YT) ol T parcourt la classe des temps
d'arrét associ& & un espace filtré (12,5:,Ft,P), et o) Y est un pro-
cessus optionnel positif. . .

L'outil essentiel de ce travail est le gain optimal conditionnel défini
par ZT = P-ess sup E(YS/FT), qui est la plus petite surmartingale qhi

ma jore Y. . !
Lorsque Y est. 1ad lag, on montre qu'on ﬁeut trouver trois temps d'arrét,
1iés étroitement au début de 1l'ensemble { Y=2 ou Y=2" }tels que

;+ + YD), et que si-Y satisfait 3

Lim E(YT )< E(YT) et 1lim E(ZT ) €€(z) , il existe toujours un

CTAT e T n
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~-1-:émps d'arr8t optimal.

Nous remarquons ensuite qu'en fait, ce probléme d'optimalité admet
toqjours‘uhe solution dans un espace des formes linéaires convenable-
ment défini et que l'on sait caractériser la plus petite et la plus

grande forme optimale.’

M, METIVIER : Stochastic inteqration with respect to Hilbert valued

martingales, representation theorems and.infinite
dimensional filtering ) o .
We déscribe a béry general stochastic integral with respect to Hilbert
valued martingales, as it was introduced by M. Mstivier and G. Pistone
in Z. wahrscheinlichkeitstheorie und Verw. Gebiete 33 (1975), 1-18 .
This integral seems well suited to the study of stochastic partial
differential equations and the filtering of related systems.

The main feature of this integral, beside its isometry property, is

- that it makes possible the integration of a wide class of processes,

the values of which may be unbounded operators. It is shown that we
have to pay this price to get convenient representation theorems.

As an illustration we indicate how can be developped martingale argu-

Forschungsgemeinschaft
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ments in the infinite dimensional filtering problem, as they were devel-
opped for example by Th. Kailath, A.V. Balakrishnan, M, Fujisaki,

G. Kallianpur and H. Kunita in the finite dimensional setting.

M. YOR : On the representation of martingales as stochastic integrals

Let (L <;'°) be a measurable space, with a right-continuous filtration

(310), and X a (F ) adapted, rlght-contlnuous, real process. Note

'nl { P probablllty measure on (f’ | X is a (P ) local martlngale}
The main result I gave is :
Theorem : Let PETN. Then, (1) and (2) are equivalent: .

(1) P is an extremal point of M
(2) Every (local) martingale Z (for P) can be represented as:

Zt =c+ } Hs dxs , where ceR, and - H is a predictable
0

. t _ .
process such that (j H: d\f,x}s)1/2 is locally integrable.
. 4 2

The proof was based on a theorem due to R.G. Douglas (1964), which I recall
brlefly: if (A,CX,lp) is a probability space, and F a set of real functions
: (R,1) —> (R,B(R)), such that 1€ F, then, if V‘ =y probability

measure on (A,Ql) l for all fe F, ‘Sfdv = j—fdfb } - the integrals are
obviously supposed to be defined (e.g. FC_L (/u, ), and, if VeJ}C, FcL V) -
M is extremal in J@ iff ‘F is total in L. (01,/4) )
To apply Douglad theorem, 1 need the following stability prnp031t10n, for
stochastic integrals: .

Proposition : Let (Vt) be a local martingale, and Y~ = ) hg dv_ - h" and
o

h are predictable processes = a sequence of uniformly inte-

grable martlngales. Suppose Y ——————) Y . Then,

TR
Y Ef_vl i .

is also a stochastic integral:

Y:Shdu
(o]
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STOCHASTIC FILTERING AND CONTROL

ReS. BUCY : A priori bounds for the cubic sensor

The Ornstein-Uhlenbeck process is considered as thé signal and is observed
via the cubic sensor corrupted by white noise. Upper and lower bounds for
the error variance in estimation of the signal are given as explicit func-
tions of the generalized signal to noise ratio. In particular asymptotic
behavior of the upper bound is conjectured to be the signal to noiss ratio
to the minus three half power so that both upper and lower bounds agree

asymptotically.

M.H,As DAVIS : On a non-linear semigroup of stochastic control

'Supposa {'xt } is a controlled Markov procéss on a state space S; let

th)(x) be the maximal reward for a control problem of duration t with
terminal pay off functionq)ec(s), starting at Xg= Xe One . formulation of
Bellman's principle of optimality states that l',lt is a semigroup, i.e.
Qt*s(p(x) = Qt(Qs(b)(x) . I described .some recent work of M. Nisio in
which this semigroup (acting on C(S)) is constructed directly by consid=
ering approximating sequences of piecewise-—constant controls. I then -
iﬁdicated the possibility of treating in a similar way problems with
noisy observations, i.e. where control has to be based on observations

{ yt} of the form dy, = h(x Yt + du, (hec(s) and {u } is Brouwnian,
independent of x, ). Oanotlng a1y (f) = E {f(x ) | Yy § for f'eC(S),

Yt = O’{Y ’ s<tj s the Fu_)).saki/ Kall].anpur/ KunxtaA filtering. formula
states that Tr (f) satisfies

™R - T (F) = fw (Af)ds + f(rr (NF)= T _(h) TT_(F))aI_ , where

dI, = dy, - ﬁ;(h)dt is the "innovations process" and A the infinitesimal

generator of xt.'This means that 1Tt.is actually a Marcov process on the
state space M(S) (= set of probability measures on $). Giving M(S) the
weak topology, T' has continuous paths and is Feller, i.e. the corre-
sponding semigroup P, maps c(m(s)) into itself. Thus one can formulate
the partially obsaruabla contral problem in terms of constructing a
semigroup a; on C(M(5)), related to {TTt} in the same way that Nisio's

semigrohp Qt relates to the original process {Xt }-

Forschungsgemeinschaft
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T.E. QUNCAN : Applications of differential geometry to stochastic filtering

and _control

Since many physical systems evolve in a smooth manifold and rot in a linear
space it is natural to study problemé of stochastic f&ltering anu control

in this geometric setting. Brownian motion, as well as some other stochastic
processes; has an inherent formal differential geometric interpretation and
its natural setting is a Riemannian manifold. Some notions from differential
geometry such as parallelism of vectors slenn a curve will be used to for-
mulate and solve some stochastic filtering and control problems that are
described by stochastic differential eguations. Both continuous and dis-
continuous processes will be considered. Some differential geometric inter-
pretations of the techniques used in many stochastic filtering and control
problems in Euclidean spaces will be made as well as the generalization of

these techniques to processes in manifolds.

F. GRAEF : Optimal filtering of infinite-dimensional stationary signals

To analyse the pulse amplitude modulation (FAM) of time-discrete signals-
in freauency domain, operator-valued measures must be used. Signals will
be represented in time-domain by stationary sequences of Hilbert-Schmidt
operators, modulation is interpreted as subordination of such sequences,
and filters will be represented by elements of spaces of type 3;(3?,}C)
introduced by V., Mandrekar anq H. Salehi.

The construction of optimal filters.for PAM demands the minimization of
a nonlinear functional on such spaces. Some propositions regarding the
structure of minimizing elements are derived which allow to reduce the

. 1 : A
optimization problem to one in L (0,m), which ran be solved explinitely,

R.W. RISHEL : Fiiteripg and control of jump processes

The generalization. of filtering formulas of Rudemo to conditionally
Markov jump processes provide a mean of neneralizino a recent separation
prinbiple for jump nrocesses of Segal . A synthesis of the minimum prin-
ciple for jump nrocesses can he internreted as A "method of characteris-
tics" for sol&ing.the nartial differential eaquatinn of the seperation
principle. A solution of the nartial differential equation of the sep-
aration principle leads to a solution of the dynamic nronramminé equa-
tions, Thus these three Adifferent notimality condiftinne can be comparer

and interpreted. : -

Deutsche
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STOCHASTIC EQUATIONS

v .
V.E. BENES : Realizing a weak solution on g probability space

Let T : (X,E) —> (Y,'*) be a Borel application, y a given probability
measure on Ek , and P2 weak solution of the stochastic equation fLT-1= V.
with (Q,F,P) a probability space, and v :{) =—=>Y a random variable with
Pm;1 =y , it is of interest to know when there is a random veriable

x Q—-—) X such that Px' = p and Tx = w a.s. (P). We give a necessary
and sufficient condition for the existence of such a "realization" x :

There is a random variable £ : () —> R, .a measure isumofphism h, and a

o decomp051t10n (mod, P) Q= E,vE v Eyue.., with £ conditionally w 14‘-

atomless in w 1ld'v" 'R, and E n? n>0, dstomt condltlonal w 11& -atoms
in uw 11[ v f'-1R , such that (1) ho: (ﬂ m-1'lé.vf‘ 132) (—-?(/u,%),

(;1) hu 15 =T 18 for Be}f (iii) under (PIEO)/Q‘ED), f,[o is uniform on
[q,1] and independent .of Eofvu-1gf:. (iv).f = n ¥ 1/2 on Ep n>0.

D. DAWSON : A class of measure-valued Markov processes -

A measure-valued Narkov process is a Markov process whose state space 1s
the space of Borel measures on m . Hence at each epoch the- system 1s des-
cribed by,a random measure. Such processes arise naturally as models of
spatially'distriﬁuted populations in population biolbgy, chemical kinetics,
etc. An interesting class of mesure-valued Markov processes are obtained
as solutions of appropriaﬁe,martingale problems in the sense of Strood

aﬁd Varadhan. h{ this context we.descr;be a number of specific examples.

Of these a basic one is the multiplicative process which we describe in

.detail. Examplssbats also given of hartingale problems which have no

solution. We also discuss the problems of determining the thermodynamic

limit of the system and the limiting behavior of the system for large

~values 6f the time parameter.

K. SATO : Uniqueness for some diffusion processes and convergence of .

qenstical Marcov chains

A new class of degenerate diffusion processes is introduced. Let

d- .
K = {(x1o~--oxd_1)€-ﬁ 1 ; xp}() for p=1,...,d }, a (d-1)-dimensional

Forschungsgemeinschaft

o



oF

d-=1 .
simplex, where Xy = =) xp , and let
b=1
2
1 d=1 . d=1 2}
L=% :apq(x) St )-_ bp(x)gx , xelK
P,q=1 P g p=1 P

d
2q) = 5rgl 1o Prlde, = B0 = P} + S Bl

= g S' - 8‘ - { 1 ¢ p=q
by(x) = x% §000 0 = %), pg- L 0 :pfg °
Let I"p ={xel}( H xp:(lj for p=1,e..,d « Under the assumption that (Z)p)ﬂ
on K\ r'p and Fp , pr continuous on [K, locally Lipschitz on |K r'p 5
existence and uniqueness (in the sense of martingale problem) of a diffusion
pracess on |[K associated with L are proved. This class of'diffusions in-
cludes many processes that appear in diffusion approximation in pbpula-
tion genetics. A sequence of genetic Markov chains is introduced and its
convergence to the above aiffusiun with ﬁp and xp constant (depending
on p) is proved. This justifies and generalizes 3J.H. Gillespie's heuristic

one=dimensional argument.

GAUSSIAN PROCESSES

M. HITSUDA : Some topics on representation of Gaussian processes

Let X = (X(t); 0 €t €1) be a N=ple Markov GaNssian process which is
canonically represented in the form X(t) = 5_1 Fi(t)Bi(t) =

= [F(t)yen,F (8318 [B,(6),000,8 ()], O<tgt .

Theorem : If a N-ple Markov Gaussian process Y(t) = (Y(t); 0<t<1) is of

multiplicity N, Y(t) bas the canonical. representation

t .
Y(E) = [Fy(8)seee,P ()] §Tr, (u))Fy s(6))7 ‘[ds1_(u).;.,aaN(u)J,‘
o] . .

where ff(t) = [fij(t)] is a non-singular matrix for each t, and

the components have the Radon-Nikodym derivatives satisfying
¢ -1 2 2 22— 2
§ M Poustca (18122 &7
o o

. for A =1la,.]).
i,3=1 : ( 13

Deutsche .
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G. KALLIANPUR : Gaussian processes of'tmo parameters

Work done jointly with N. Etemadi and C. Bromley is described.

Let X t= (t1,t2) 5[0,1]2 be- the 2-parameter Wiener process and let Y

t? t

be a zero mean Gaussian process equivalent to Xt (in the sense of mutual -

abéolute continuity of measures). If Yt has a r;bresentation of the form

Ge) (1 + K)Xt where K is a Hilbert=Schmidt, Volterra operator on the
Hilbert space L(X) = linear span'{xt y 516[0.1]2} such that

KL(X5t) € L(X;t) V&, then ¥

t has a non-anticipative representation which

. is shown to be the same as the canonical representation of the type consid-
ered by Tjgstheim. In general, however, a representation of the type (¢)
is not available but a more general representation holds which depends on
a four-fold factorization of the operator S relative to tﬁe commuting
chains I, and TTZ . Here S is the positive, invertible, self-adjéint

operator whose existence is guaranteed by the equivalence of‘(Yt) and (Xt),

. X x T
l. = P, ,0¢<t. {1 ¢, and P is the orthogonal projection onto
i ti i t1 :

the linear subspace V { X, o< u, <t

x -
<y € s iy
15t 0 Su, €t, } ( P, is 51T1}af1y
defined). :

. 2 2
A consequence is the fact that not'avery Gaussian hrucess of two parameters
which is equivalent to the 2-parameter Wiener process has;a,Tjﬁstheim-can-

onical representation or a non-anticipative representation.

H. OODAIRA : Note on Freidlin-—Wentzell type estimates for stochastic

EI‘DCBSSGS

Let C be the space of real continuous functions on (0,1] with the sup norm
‘ ll.ﬂm , and let {/An}be a sequence of probability measures on C ;:onverging ‘

weakly to a Gaussian measure with mean 0 and covariance kernel 7. Let H

denote the reproducing kernel Hilbert space with kernel " whose norm is

described by “'"H . Then, under certain conditions, the following‘esti-

mates (Freidlin-Wentzell type estimates) are obtained. If 0< X(n) Tw as

n —> o, then, for any ¢6 H, 5, h>o,

Faflig = O 1 <8} exo[- (&F/2CUPNT +m] g pfa® , kp)> S <

2 ; .
Sexp(-( /2)(r2-h)) for all sufficiently large n, where K_ is the

:’I: Deutsche
Forschungsgemeinschaft ©
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closed ball of radius r in H and d is the distance in C. This is a gener-
alization of recent results of J, Girtner. Some examples of Gaussian
processes, partial sums of independent identically distributed random

variables and empirical distribution functions are given.

HOMOGENEQUS CHAOS AND MULTIPLE WIENER INTEGRALS

S. CAMBANIS : Stochastic and multiple Wiener integrals for Gaussian processes

Multiple Wiener integrals and stochastic integrals are defined for general
Gaussian processes, extending the related notions for the Wiener process.,

It is shown that every L —-functional of a Gaussian process admits an adapted

2
stochastic integral representation and an orthogonal series expansion in
terms of multiple Wiener -integrals. Some results of Wiener's theory of
nonlinear hoise are generalized to noises other than white. Also the

stochastic differential rule is given,

T. HIDA : White noise and Lévy's functional analysis

(Communicated by M. Hitsuda)
2\—- ,2 X
Let (L°)= L (3’ ) where u is the measure of uhlte noise, C(3 ) = )
= exp| —ll‘§|| /2] Sexp(l(f, ),u,(dx) }6 Y . Let & be the Hllbert space
with rsproducxng kernel C(E 7) As the .decomposition of (L ) 2 (;yt

~
we get a decemposition of F= ! QJ‘ fn is the Hilbert space ulth
n=0

-1 n ’ . A l
kernel Cn(§ " ) = (n!) c( ? )(f, vl) C(r(’) . We get an isomorphism
~ —
J{r{ﬁf U’n = \nt L (R ) . This isamorphism can be extended to the "n-ple

genaralized Brownian functional" as in t?E~EPrm:

. T T .
,,——1n!. I_in+1)/2( R s \/n'!" Lz( "™ 9\1{1,‘ H-(n+1 )/2( A"
e b2 _
E;r\ < :fn — ‘}?
b ! !

_ J — (=n)
A, S H, = A,

(-n)

n

P
) N
where ﬂn+1/2( R") is the symmetrized Sobolev space of order {(n+1)/2.

Deutsche
Forschungsgemeinschaft
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® __(-n
The members of (Lz)- =) GBJ{H should be called the "generalized
n=0

functionals", These functionals are useful to define the derivations of
- 22 - 2 .
= . .

the form W N x(t,)2 ,.-..‘ etc. ( jm dt is the Levy

Laplacian).

. SVOWIKUMSKI : Ito's integration obtzined by the second guantization

of the Wiener integration

To a Hilbert space H we assign the commutative Wick algebra fLH which is

.an algebra containing H as a linear subspace, fLH is provided with a

scalar product in such a way that it coincides on H with the original

scalar product, that every linear contraction extends uniquely to a con-

_tractive morphism of rzH'and, finally, that the class of the linear span

of .n-fold products of elements of H i§ complets.,

-We give exaﬁplss of Wick algebras essentially due to Wiener, Bargmann -and

Fock. We derive the existence of the multiple Wiener integral and, finally,

~ we build the Ito-alqebra which is a Wick algebra which incorporates time

and‘nonhanticipation into the aléebra structure and gives rise to the Ito

stochastic- integral..

OPERATOR VALUED ﬁfASﬂRES AND INFINITE DIMENSIONAL PROCESSES

W. HACKENBROCH : Some properties of operator measures related to

prediction theory

By means of spectral.representation, prediction theory of stationary operator
sequences leads to the study of "invariant subspaces" of an abstract space
L2(q>;H) with H a complex Hilbert space and q) a weakly G -additive measure
on the circle group taking values in the positiQe bounded linear operators

on H. As is weil-knumn, the crucial properties of (simple and double) in-
vafiance depend jn a delicate manner on the O-sets of (p as reléted to the
O-sets of Lebeséue measure. for gene:al(b , problems arise from the lack of
finite variation properties of (p » of "pointwise structure" of L2(4);H)

and of a Radon-Nikﬁdym derivative of (P with respect to Lebesque measure.

The talk gives i) Some general characterizatiﬁns of O=-sets for operator
measures, ii) Necessary conditions for the existence of Radon-Nikodym deriva-
tives, iii) Equivalent formulations of the probleh of decomposing self-adjoint

operator measures into positive parts.

Forschungsgemeinschaft © @
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R. 3A3TE : Spectral and ssmi=sgectrai fleascn measures

Some vector-valued measures defined on a lattice of all orthogonal projec-
tors acting in a Hilbert space ‘are considered. In particular: Hilbert space-
valued orthogonally scattered measures, projector-valued and positive opera-
tor-valued measures. ‘

The problems concerning the structure, convergence and extension in tensor

products are taken into consideration, -

HeHs KUDO : Differential calculus for measures on Banach spaces

The study -of differential calculus for measures on Banach spaces is moti-
vated by Hodge theory and distribution theory on such spaces. In the case
of infinite dimensiconal Banach spaces there is no natural way to regard.
bounded measurable functions as distributicns because the Lebesgue measure
does not exist. Thus one cannot expect to represent nice distributions, e.g.
harmonic distributions,. by smooth functions. However, finite Borel measures
can be regarded as distributions in a natural way. To be able to represént“
nice distributions by smooth measures one needs to develop differential
calculus for measures. In this expository lecture we give a brief survey

on some topics such as the chain rule, Weyl's lemma, Kolmogorov's forward
eqﬁation and prove a new result for différential operators -associated Qith

differentiable measures with logarithmic derivatives.

Ve MANDREKAR : On subordination of decomposable processes

Let (T, B) be a standard Borel space and ({},F,P) be & complete probability
space, A decomposable process is a map on 33-—-1> LD(IZ,S:,P) such that

XA ,...,XA are independent for Ai disjoint and countably additive. We
1 n ' ‘

study in genmeral the problem of subordination of X with respect to a
Gaussian process X', which is also decomposable, We show using Lz,;.intrn-
duced by the author and H. Salehi that X is a stochastic integral with
respect to X'except for a shift by arbitrary signed measure. In the above
problem we assume XA is H-valued for H real separable. We shouw that the
problem cannot be generalized to a real separable Banach space preserving

main result of J, Feldman.

Deutsche
Forschungsgemeinschaft
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P. MASANI : The frequency response Fuﬁction as_a Radon-Nikodym derivative

Theorem 1 : Let (i) A be a @’-algebra over a space /\ and pmbe a f'-Finite
countably additive measure onﬂ to [U,m]; (iii W and H be
Hilbert spaces over I (F =[Ror €) and u be separable;
(iii) 7(.) be a W-to-H c.a.q.i. measure on the & -ring
{A : el and/u.(A)<m} with control measure ,u.( )I
ide. V A, Be.f}‘, T(8Y*1(a) = MARaB)T, (Bull. Ams, 1970, p.449);
(iv) VBe A , M (8) 3 a{T(rR)(u) : he ﬁ/‘and Acs ! and
(B) be the prOJecuon on ‘MT(A) onto M (B) (v) R be a con-
| . tmuous lxnear operator on H to H which commutes with Q (B) vacA.
‘ Then R = E fn¢ I T » where X 1 is the isometry on
L2,/u. = LZ(A ,\R,/‘,M) onto .,“ (A)yen glven by

(¢) ~f‘r(d,\)(‘?(,\) y CPe L, S and ¢( ) is a function on /A
to CL(M M) ﬁ the class of all continuous linear operators on W to W
such that Y wel, 4)( Yu is - Borel (u) - measurable,and Vfe L, o

{m, f)}(A) - d {rn] a.e./u‘.

We prove th:.s theorem by showing that the set-function t_R( ) onJZ g.lven by

L (A) 3 T(A) RT(A) N Aeﬁ ,. is a c.a. measure on Jl/‘to cL(u, hJ), which
satlsfias the hypothesis of the Dunford-Pettls theorem (TAMS(47),1940, p.323).
Hence it has a Radon-Nikodym derivative 4)(.) on Auith values to CL{W,u).
This @ (.) does the job. :

Next ueAilet HsL and ¥Aed,, T(A ='ml(A)(m) = u%A( o), we easily

| 2,p
| deduce (since i =0 and @ (A) = mxn ) = .
\ B -
| 4 B .
1 Theorem 2 : Let R be a continuous linear operator on L2 “ to L2 .y which
?
i commutes with multlphcatmn by indicator functions g’ BeA .
. Then R is the multiplication nparatorm4>. Here
: X e
Q = 9%, where L_(A) =ml(A) RM(A), AcA,, .
T R x s

Next we let A= IR, A = Borel (R), /« = Lebesgue measute, let R be a time-
invariant linear filter with signals in L ([R) and R = \IRV*, where V-is the
Fourler-Plancherel transform on L (lR) Then R commutes with multlplmatlon
by the indicator functions kB’ Be Borel (lR) Hence by Theaorem 2, R -M¢.

where Q: dl’ﬁ .

°r
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Thus the frequency-response function 4’0? the filter is the Radon-=Nikodym
derivative of an operator-valued measure.

The first part of Theorem 2 is essentially due to Foures and Segal (TAMS 98
(1955),385-). The Radon-Nikodym approach is due to the writer, cf. "Vector
and operator-valued measures" , by D.H.‘Tucker and H.B. Maynard, Acad, Press

1973, pp. 217-232 .

A. WERON : QOperator valued measures related to multivariate stochastic
EI‘DCQSSBS

We consider some problems arising in coﬁnectiop with the linear prediction
of multivariate stochastic proces;es; We present the "oﬁerator model" for
- second orda; processes with values iﬁ Banéch_spaces;

- ‘For stationary processes and additively corrslated processés the spectral
representations are obtained. The meastres arising-here taking values in
the space of linear continuous operators L(8,H), (where B is a Banach space
and H is a Hilbert space) and L(B, B*).

~Rs an appllcatlon we discuss some aspects of the dllatlon theory -. e prove
that L(8,H )-valued positive definite function K over the group G may be
dilated to the unitary representation n, in L(HX)’ where Hy is a time’

domain of a stationary process (Xg)ge ) where Vo ‘Xge.L(B,H).

STABILITY

L. ARNOLD : On_the stability of stochastic linear differential equations

Let ;t = “txt s where At is "real noise" (i.e. z matrix-valued statienary,

sometimes ergodic and ilarkov stochastic process). What are conditions far
X, —> 0 (t—> @) a.s., ? Put w = Xt/lxt‘ . We get
t

. A+A" .
Ixeh = Ix,1 exﬂ(j q(AS,ws)ds) , where q(A,w) = m'(“Em.)w. Thus, the growth
0

of x, depends on the erqodic behavior of the pair z, = (At’mt)' If we

t
assume that At is. a stationary and ergcdic solution of the Ito eguation

dA F(At)dt + G(At)dwt and if we add the differential eguation for wt}
()

t
du, = (At - Q(At’wt)l)wt ,
the investigation of the stability of the original d.e. reduces to finding

stationary solutions of (). The example ¥ + fty = 0 is treated in detail.
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In this case, ()é) has stationary distributions, such that
1 t
;f q(As,ws)ds —9 R, where R is a constant. For ft>0 this constant is
o
ad (1=x {sm2o<
R = f f d/u, . mhere/.L is the(uniquely exlstlng)

x=0X =0 xcos%( +sin o(

invariant measure of ().

W, WEDIG : On the integration of sequences of moments equations in the

R stability theory of stochastic systems

A -

‘ Lmear stochastxc systems Id].th coloured noise coeff‘mlents generated from

mhlte noise by a filter equation lead to an -infinite set of moments equatlons.
In order to avuld such sequences a linear transformatlan of the state vector
1s 1ntroduced by use of Ito's calculus, where the assocleted transformatlon
matrlx is defined as.a second order elgnnvalue ptoblem on the entire range
oF the filter's process. ‘ ' B

Under the—condltxon that the transformatlon matrix is non-s1ngular and
_bounded with probablllty one the elgenvalue equatlon is 1ntegrated by means
of Hermlte polynomlals resulting in a recurs;on formula for, the determina—
tion of the assoc1ated coeff1c1snt matrlces the convergence of uhlch can be
praofed. The evaluatlon of the mean square stability condition is carried
out-in case of a single degree of freedom system and a scalar first order

filter equation..

MISCELLANIES

TH. KATLATH & Classifications of operators by their complexity of inversion

Many physieal problems lead ultimately to the solution of 1linear equations,

. say Ra = m, where R and m are NXN and NX%1 matrices determined by the physi-

oF

cal problem. To solve such eguations generally takes D(N ) operations
q(multlpllcations and additions}, which may be burdensome for large N. There-
u-f‘ore it is desirable to see if R has any special structure that might help
to reduce the number of computations. A frequently made essumption is that
we have an underlying stationarity (or shift-invariance or homogeneity)
property that allows us to take R to be Toeplitz, i.e. of the form
[‘A .] . This is nice because it is known that such Toeplitz equations

can nou be solved with U(N )} operations instead of U(N ). In many cases
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howaver R might rather be the productAof Toeplitz matrices, or the invérse
of a Toeplitz matrix, or the non Toeplitz covariance matrix of an
asymptotically stationary process, or other non Toeplitz matrices growing
out of operations on Toeplitz matrices. According to present theory, these
matrices being non Toeplitz would seem to require 0(N3) operations for
their inversion; houwever one feels that this is too high and that such

non Toeplitz but certainly nonarbitrary equations should be soluble with

a number of operations between U(Nz) and O(Ns). We shall show that with
any NXN matrix we can associate an integer o, 1 <X < N, that roughly
speak;ng gives a measure of how non—Toeplltz the matrxx is; ‘moreover the

ass001ated linear equauonscan be solved with D(N%X ) operations. UWe

present several results on this method of classifying matrices and also
integral operators (1.8. continuous kernels)

These results, which greu out of studles on the structure of the nonlinear
Riccati - and Chandrasekhar ~ type differential equatlons that arise in
linear filtering theory, wsre done JOlntly with B. Frledlander, S. Kung,

Le LJung, B. Lévy and M. Morf,

F. OSTERREICHER : On_the 6onstruction of least favourable pairs of
' distributions -

A composite testing problem (P, Q) can, in the case when P and Q are
described by 2-alternating capacities, be reduced to a testing problem

of single hypotheses (ﬁ*,u*) ( Huber and Strassen, AS 1973), (P*,Q*)

is called a least favourable pair.

This paper presents a principle of constfucting (E*,d*), which is based
on the use of the corresponding rigk sets and which works for the case
when P and Q@ are given in terms of some neighbourhoods. Both in the

€ - contamination model and the total variation mﬁdel, which were already
solved by Huber (AMS 1965), the sﬁlution is derived straight forward. .
But also Prokharov-type =neighbourhoods are treated successfully, at least
under the condition of monotone likelihood ratio. This condition, however,

may be weakened,

P. RESSEL : The continuity of (f,V ) =) M QY

For a given arbitrary (not necessarily Hausdorff) space denote by 3%.(X)

the space of all T-smooth probability measures. We prove that given/4G.Z;(X),
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Yy E ?... (Y) there exists an uniquely determxned measure & ® VE J'l’ (XX Y)
extending /,(Ol/ . The mapping (/,(. V) o-—)fi @ V is continuous and/;.@ 14

is Radon iff /Jand V are (X and Y then being Hausdorf). Extensions to in-

ol
finite products are given, too.
J.C. WILLEMS : Representations of dynamical systems
In this talk definitions ofinpuf/output dynamical systems, systems in state
space form, and recursive "white noise" representations were defined and
" their relationship discussed. The problem of finding, for a given continuous
time stationary zero mean Gaussian Rvalued process y, a continuous time
. stationary zero msan Gaussian Markov [Rn- valued process x, and a matrix C

oF

such that y(t) = Cx(t) was discussed and all y-measurable solutions x

were presented.

M. Gattinger (Erlangen)
F. Graef (Erlangen)
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