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Vortragsauszüge

v
I. BABUSKA: A Posterio~l. Error Estimates in the Finite- _.

Element Method

Aposterlori error estirnates for general finite element method

based on general bilinear form will be discussed. The error
estlmates are in same sense optimal and based on eompletely

loeal analysis of the computed solution. The results will be

applied also in connection with (optimal) mesh generator.

G.A. BAKER: Finite-Element Methods for the Navier Stokes

E9~~tlon8

For 0 a bounded polyhedral domain in RN , N=2, or N=3, we
conslder the problem of obtaining via non-standard Galerkin
methods, finite element approximations for the initial boundary
value-problem, for the Navier Stokes equations. A vector valued

function u: [a,T] - RN and a scalar p : [O,TJ - R1 are sought
sat1sfylng

u t - ~~ + (u.grad)u + grad p = ·f

and div u 0 in nx(O,T], with u = ° on anx(O,T] and
u(.,O) = uO. fand uO are given vector valued functions and

v > 0 denotes the coerricient or kinematlc viscosity, ·a constant.

Using a Lagrange multiplier method the constr~int dlv v = 0 15

allvlated 1n the dlscrete problems. Both sem~discrete and f~lly

dlscrete approximations are obtalned with optimal L2 rates ~f

convergence for the rlow and the pressure. The fully discrete scheme
requires the solution of linear systems or equations at each time

level and 1s second order accurate in the time descret1zation.
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J.H. BRftMBLE: Multistep-Galerkin Methods far Parabolic Equations

Same multlstep-galerkln methods for parabolic initial-boundary
value problems are cons1dered. These methods are not in the usual

category of linear multlstep methods. Stability, accuracy and

efflc1ency of these methods is discussed.

~

F. BREZZI: Finite Element Approximations of the von Karman
Equations

The von Karman equatlons, glven by

(E)

A2~= -1/2 [w,w) 1n rr,

A2w = [ w, cp] + f 1n 0,.

2
.cp,w E Ho(n)

. A dJ Laplace operator,

with f speclf1ed and n S R2 , determlne one .of the simplest

problems cf nonlinear elast1clty ~heory and apply to the bending of

a ~h1n, elastic, isotropie plate. We prove that, if (~,w) i5 an

1so1ated solutiop of (E), the discret1sed problem, under suitable

assumptlons, has a unique solution (~,wh) 1n a neighborhood

cf (~,w), and the error (cp,w) - (~,wh) is asymptotically
optimal. Moreover, the Newton iterates converge quadratically to

(-~,wh). We show that the "suitable assumptions" cover various
kinds of finite element approximations, ineluding the H~-confOrmlng
f.e.rn., the mixed' approach cf Herrmann-Hellan-Johnson, and part

of the most used non~conform1ng methods. ~

P.G. CIARLET: Approximation cf 3-d Models by 2-d Models

Usually, a plate theory is derived fram a three-dimens1onal model

by making apriori assumptions on the form of so~e of the un~nowns

(the d1splaeemen~ vector and .the stress tensor). In.ajoint work with
Ph. Destuynder, the author has developped a method in wh1ch

(i) 00 apriori assumpt10n 15 needed, (ii) the standard two-dimensional

linear plate model and the standard a prior! assumptions are

s1multaneously obtained, (111) error estimates are systematically
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obtained. One of the motivations behind this work is to provide

a natural supplement to the'traditional error estimates relative

to finite element approximations of two~dimensional plate models.

J~ DESCLOUX: Numerical Approximation of the Spectrum of Non­

Compact Operators

Let U and V be complex Hilbert spaces with U c V (continuous
non-compact 1nject1on), a: U X U ~ C be a sesquil1near 'continuous

and coercive.form, A :' U - U be the operator defined by a

~(Au,v)= (u,v)v V u,V EU. Let Juhl be.s fam11Y.of fln1ee-dimensional
subspaces of U and Ah Uh -. Uh be defined by . a(Ahu,v) ='

(u,v)v V u,v e Uh •

The spectrum of A

Ah ir:

P1: llh' 11m Eh 0
h....Q

i5 "weIl" approximated qy the spectrum of

such that V u E Uh ' J W E Uh w1 th

P2: V U EU, '3 uh E Uh wi th o

One dlscusses PI, P2 on examples using finite element subspaces.

The fundamental exarnple i5 U = V = ~(n), 0 C Rh , where A 15'

the "mult1plicatlon'" operator. The cond1tions can be v~rified .

for some partial differential operators ar1sing from problems 1n

magneto-hydrodynarnlcs. However, they cannot Iikely be satlsfiede for general cases.

T. DUPONT: (wlth R.E. Bank):

An Optimal Order Procedure for Solvlng Elliptlc
Finite Element Equations

Two iterative methods for 'solvlng the algebraic equat10ns that

result from the applicatlon of finite element methods to el11ptic

problems will be presented. One of these methods can be shown

to give the answers (to 'an appropriate accuracy) in O(N) operations,

where N 1s the number cf unknowns. Such a method 1s sald to be

optimal order in terms of work.
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Both of these methods can be used in rather general geometrie

situations. The optimal ~rder procedure 1s related to multi­
grid methods considered by Fe~erenko, Bakhvalov, Brandt, and
athers.

R.S. FALK: Errar" Estimates far a Class of Inverse Problems

In this talk we consider the approximation of a class of inverse
problems in which the problem is to determine an unknown
coefficient in a differential equation whose general form is

known. One simple model of such problems 1s to determ1ne a· 4It
constant a and a function u(x) satisfying:

2
- a d u + cu f , 0 < x < 1 J u(o) = gl u(l ) g2 , and

dx2

- au t (0) = g3 where CJ~~gl,g2 ~ and g3

are assumed known. We give conditions under which both this
problem and a simple approximate problem are well posed and then
derive an estimate for the error between a and its approximation.

G. GEYMONAT: Spectral Approximations and Error Bounds
with Mixed and Hybrid Methods

I will report on some results obtained at Torino on the existence and
approximation of eigenvalues and eigenvectors with mixeq f.e.m.

for the abstract problem: Find. A E Rand (u,y) E V x W such
that

v v e V
V cp E W

where WeH with compact imbedding. Under the general assumptions

of Brezzi-Raviart the optimal error estimates can be proved and
the numerical tests for the plate problem confirm.the results.

I will also r~port on the approximation of the eigenvalue problem.
corresponding to the hybrid f.e.m.: Find A E R and (u,~) e V x W

{
a(u,v) + b(v,y) A(u,v)K
b(u,tn) 0 Jf qi E W

with V eH.

v v E V
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w.w. HAGER: A Mixed Method ror Variational Inequalities

Previously Brezzi, Hager, and Raviart analyzed the error in the

primal finite element approximation to two variational inequalities ­
the obstacle problem and··· the unilateral problem. We now consider

mixed finite element approximations. The mixed method, prevlously
utilized by Raviart and Thomas ror the solution of second order,

elliptic problems, 1s extended to treat a class of elliptic

variational inequalities. For both model problems, we prove

aCh) convergence in L 2 for function values ·and gradlents using
plecewise "constant" elements. Furthermore using "linear" elements,
we prove O'(h3!2- E} convergence for the obstacle problem. Finally

we show that there is no reduction in the convergence rate when

the skin between the triangulated domain and the true domaln is

-ignored.

R. HAVERKAMP: The Method of Rayleigh-Ritz for Boundary Value

Problems of Sln~lar Ordinary Differential Equ~tion~

A numerical-method is described for the solution of the boundary
value problem

u" + au' - bu + f = 0 in (0 J 1), u (0) = u ( 1 ) 0

and the assoeiated eigen-value problem where a and b have '

singularities cf first and second order, respectively. Approxlmatlng
functions in the Ritz procedure are appropriately weighted finite

elements. It i5 shown that up to a factor lo~·k on compaet sub­

intervals of (0,1J the same order of convergence i5 ach1eved
as i~ the regular case.

w. HÖHN (H.D. MITTELMANN): The D1serete Maximum Pr1nciple

for Finite Elements

A.triangulat1on cf a plane domain is said to satisfy the strong

discrete maximum pr1neiple (d.m.p.) with respect to a subspace of

diserete harmonie Lagrange finite element functions i~ it satisfies

a d.m.p. locally. Necessary and suff1cient conditions are given on

the loeal ge0rt.tetry of the triangulation for piecewise. quadratie
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funct1ons. Globally they reduce to the equilateral and the standard
rectangular mesh 1n the interior of the domain. Counter examples '
are g1ven for cub1c functions and for the'continuous d.m.p. for
p1ecewlse quadratics.

P. JAMET:

Let a(t)

Ost:ST

the type

Galerk1n-Type Approximations Which are Discontinuous
1n Time ror Parabo11c Equations in a Variable Domain

be a glven time-dependent bou~ded domaln in Rm for
and r(t) be its boundary. We consider problems of

) au
a at - A u f 1n, ~ I (x, t) x E o( t) o < t < Tl

~) b) Bu

c) u

o on 2:r = I (x, t)

in 0(0) ,

x E r(t) , 0 < t < Tl

where A 15 an eillptic operator of order 2~, B '15 a boundary

operator, r e L2,(~) and U
o EL2 (n(O») are given functions.

We div1de the 1nterval [a,T] into ,N, sub-intervals (tn , ~n+l)

and approxlmate u by a function uh wh1ch i5 continuous in each
strip t n < t s t n+l and whlch admits discont1nuities at the
times t = tn ,OS n < N ; we use an integral relation obta1ned
by multiply1ng (l.a) by a test function ~ and 1ntegrating by
parts 1n each strip t n s t s t n+1 • Unconditional stab1l1ty i5 proved
and a general error estimate 1n L2 (O, T j H~(O(t» 'and L2 (n(tn »
for each n 1s estab11shed. These results are app11ed to space-t1me~
finite element methods : each strip (tn , t n+1 ) 1s part1tioned

into (m+l)-s1mp11ces or (m+l)-d1mensional prisms.

c. JOHNSON: A Mixed Equ1librium Finite Element Method for

Problems in Cont·inuum, Mechanics

I described some joint work w1th Bertrand Mercier on equil1brium

finite element methods for problems in continuum mechanics. I presented
a mixed element based on piecewise linear approximation of stresses

and displacements and discussed its application to problems in

elasticity, plasticity, and fluid mechanics.
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A. LOUIS: Acceleration of Convergence for Finite Element
Solutions of Linear Differential Equations on

Irregular Meshes

Le~ A be a linear elliptic dlff~rential operator of order 2m
with variable coefflcients and uh be the finite element
approximation to Au = f in n with zero boundary conditlons.
In a joint work with F. Natterer the author has developped a method

tor calculating from uh for each z E 00 0= n an approximation

uh(z) to u(z) with "Iü(z)-.uh(z) I O(hk+r - 2m ) where
r = m~n(k,4m) and k "ls the order of the finite elements. In
contrast to earlier results of Bramble and Schatz we need not
work on a regular mesh but we have to compute global averages

of

F. NAr.rrERER": Ill-Posed Problems and Finite Elements

Let A be an operator in L2 (G), G a domaln 1n Rd , such that

the narms IIAxll, IIxfle-_a are equlvalent. The equatlon Ax = y
" 11

~s solved by the least squares procedure using sultable finite

elements Sh a5 trial runctions. Ir x E Ht , then the
estimate IIx-xhll:s htllxrl t + h-Slly_yll holds if the computations·
are carrled out wlth an Hpproximation y to y. As an
appl1cat10n it 15 shown that x can be calculated from

j(t1 ), •••y(tn ) and IIxll t up .to an accuracy D(n- t/d ). It 15
H

also shown that thls estimate 15 sharp. The surprise is that
this accuracy does not depend on the degree of the ill-posedness

~ as measured by the number a •

J.C. NEDELEC: Finite Element Approximations for Some Singular
Integral Equations

Let V be a Hilbert space and A e ß(V,V*) of the form
A = J +" K , 'J s~etrlc and (Jq,q) 2 o.flqll~, J-1K E O(v,w) , ,tJ c V
and compact into V. Then ir we choose Vh C V such that

Inf lIu-vh"v 5 c (h) lIullw and Ah i5 an approx1mate operator
VhEVh
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of A such that

then

I (Ahuh,wh ) - (Alh,wh ) I
IIwh llv

We then'give two applications to the equation of

/jl = 0

(}UI
00 r g

u(y)

g(y)

-An J q(x) Ix:YI d y(x) , YER3

r

-q~y) + h Jq(x) ll;x (lx:YI )dv(x)

~+k2U = 0.

ul r = U o

where we use finite element approximations of the surface and
of the unknown functions q •

.J.E. OSBORN: Approximation of E1genvalues of Differential
Equations w1th Rough Coefficients

When the eigenvalues of a differential equation are approximated
by the usual Ritz-Galerkin method, the accuracy cf the approximations
depends on the smoothness of the eigenfunctions. However, in many
problems (e.g., problems arising 1n the study of compos1te materials)
the' coefficients 1n the differential equation, and' hence the eigen­

functions, are rough. A method proposed by Nemat-Nasser which

y1elds accurate approximations to the eigenvalues of such problems
i5 discussed. Rate of convergence estima~es and numerical
computatio~s are presented.
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R. RANNftCHER: A Natural Finite D1fference Scheme Interpreted

as a Perturbed Finite Element Method

The elliptic boundary value problem on a bounded domain n c R2

(D) in 0 U = 0 on 00

aod its natural finite difference analogues

o on o~·,

are considered. It 1s observed that the schemes (Dh ) may be

. interpreted as a perturbed finite element method. Thls allows

the application of new techniques guaranteing the order O'(h1- E)
. 2 2

of global pointwlse convergence even for U EH' (0) • This

generalizes the known results derived by discrete maximum prlnciples

or discrete Sobolev and Morrey space methods. Further a reflned

boundary value approximation 1s constructed whlch leads espec1ally

for the Laplaclan to the order O(h2- E) under ·such weak conditions

on u allow1ng also discontinuous f •

P.A. RAVIART: Finite Element Approximation of First Order Systems

Let n be a bounded domain of Rn with boundary r. We consider

the first order systems.

(I) f 1n n

where the p x p
condltions

matrlces Ai' 0 ~ i Sn, satisfy Friedrich's

n
* * ~ cA i

Ai = Ai , Ao + A L oXi
~ cor , c > 0

0 0
1=1

The boundary conditions are of the form

(2 ) (B - ~)u = 0 on r· ,
0

where M + M* ~ 0
r

Ai "'1 aod ( "'I ':In) ., B L " = denotes

1=1
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the outer normal to r. In thls lecture" we present some general
results obtained by Lesa~nt and the author concerning the,finite
element approximation of problem (1) " (2) when using different
spaces ror the trial functions and for the space functions.
Appl1cations to the num~rical solution of the neutron transport
equatiqn and of the heat equation in non-eylindrieal domains
are g1ven.

A. SCHATZ: ~ Est1mates on Piecewise Smooth Domains

Consider the F.E.M. for the model problem- ~ = f in 0 4It
u = g on 00 .where for simplic1ty 0 1s a polygonal qomain
(not nece. convex). Then 1f' .s~· i5 aspace of rini te elements·
def1ned on a quasi-uniform partition of n we have

. where uh 1s. the F.E.M. solution of uh = ~ on an

11) We next discussed an a prior1 estlmate for discrete
harmonie functions. Namely Ir Uh i5 a discrete harmonie
functicn then

where the constant depends on the Lipschitz character cf

the boundary. This estimate can serve as a substitute for ~.
a maximum prlnciple 1n some problems where the nature cf
the boundary is known.

111) L~ estimates for the finite element methods were discussed
when singular functions are added to the subspace in order
to inerease the rate of convergenee near the corners. Seme
pecu11ar behavior in Loo was discussed for this methode

The results of I and II are generalizable to piecewise

smooth domains when.lsoparametrlc ~lements are used.
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R. SCOTT: Applicatlons of Banach Space Interpolation to
Finite Element Approximation

We use the real method of interpolation developed by Lions and
Peetre to derive two approximation results havlng appllcatlons 1n

finite element theory. The first is a "simultaneous approximation"
theorem proved jointly w1th J.H. Bramble that says that any sub­
space g1ving optimal approximation at one point 1n a Banach scale
does so simultaneously at that point and any lower point as weIl.

Appl1catlons for the scale of Sobolev spaces of funct10ns having
square Integrable derivatives are given. The second result uses

ascale of·such Sobolev spaces 1ncorporatjngboundary conditions
that was stud1ed by P. Grlsvard. With this scale, we study the
problem of approxlmating nonsmooth functions satisfying boundary

cond1tions fram subspaces that themselves satisfy boundary

conditlons. The scale itself incorporates a smoothing operator

preserv1ng boundary cond1tions without requirlng any expllcit

.constructlon.

E~ STEPHAN: A Finite Element Method for the Biharmon1c Equation

1n a Polygonal Domaln

Us1ng the results by Kondrat1ev the solution of the D1r1chlet

problem

can be wr1tten 1n the form

u o on the boundary 00

'\)

U=L Uk+W

k=l

w1th w E H4(0) for g1ven r E L2 (0) , where the exceptlonal

functlons uk descr1be the singular behavlor of the solution in

a neighborhood of the vertex Pk • On the other hand for f E L2 (n)

there exlsts exactly one weak solution

cf the Dirichlet problem, lf
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IBkl < ~ (~+~I-l) , Bk > -4(ss81, •.• ,A v ) , where Bk is the
. . e

k
.

angle at Pk . Therefore by. studying the rate of convergence of a
conform1ng finite element method in sUitably weighted Sobolev

spaces ~·(o) , it can be shown that the use of different spaces
of trial and test functions restriets the low rate of convergence
to a neighborhood qf each vertex of the polygonal domain o.

G. STRANG: Finite Elements and Optimization

We study, with H. Matthies and E. Chrlstiansen, an infinite
dimensional programming problem which arises in solid mechanics.

It concerns the moment of collapse for a plastlc structure whlch
is subjected to Increaslng loads. The fundamental result 1s the
duallty betweeri the statie and kinematic theorems of limit analysis,
and our contributlon is to prove that a saddle point does exist;

we can choose adrnissible sets for the stresses and ~lsplacements

within which the collapse states can be found, and the sup-inf
theorem becomes" a genuine 1t minimax". Then we diseuss the aprox­
imation of the infinite problem by a family'of discrete (finite)
problems, and describe numer1cal experiments 1n which this dis­
cretization is based on finite elements.

F. STUMMEL: .Convergenee Conditlons in Methods of Nonconforming .

Finite Elements

The lecture describes aseries of recent results. First it 1s shown
by a simple counterexample that success in Irons' patch test is ~
not sufficient for convergence of nonconforming approximations.
Neither i5 this necessary as may be seen from approximations cf
boundary value problems with variable coefficients br nonconforming
elements satisfying the required continuity conditions only
approximately or except1ng a sufficiently small subset of nodal

points. Next, a generalized and improved patch test (see Stummel,

ZAMM 58, no 5) 15 explained. Using this test, conditions are
stated ensuring the convergence of approximations cf generalized
elliptic boundary value problems with variable coeffici~nts without
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particular regularity assumptions. The improved patch test 1s

passed, for example, by the well-known nonconforming elements

of Wilson~ Crouzeit-Raviart, Adin!, Morley~ Fre~js-de Veubecke
and by Zienkiewicz's triangles in regular meshes. Finally,
condi tions are formulate'd which guarantee the fundamental discrete

and collective compactness of natural embeddings of nonconforming,
piecewise polynomial functlon spaces. On this basis, one can
establish general stability theorems under coerciveness
conditioos, basic norm equivalences and the convergence of

nonconforming app~oximations of elgenvalue problems.

v. TROMBE: Same Interior Estimates for Semidiscrete Galerkin

Approximations for Parabolic Equations

Conslder a solution U of the parabolic equation

U
t

+ Au = f in n x [O,T]

where A 1s a second order elliptic differential operator. Let

ISb ; n.smallJ denote a fam~ly of finite element'subspaces-of H~(O)

wh1ch permlts approximation of a smooth function to order Q(hr ) .

Let 00 c 0 and assurne that uh : [O,T] ~ Sh is an approximate
solution which satisfies the semid1screte interior equation

(Uh,t'X) + A(uh,X) = (f,X) V X E S~(Oo) = {X E Sh' sUPP X C 0o}'
where A(.,.) denotes the bilinear form on BI(n) associated

with A . It 15 sho~m that if the finite element spaces are based

on uniform partitions 1n a sp~ci~ic sense in -°0 ' then the
difference quotients of uh may be llsed to approximate derivatives

of .ll 1n the interior of 00 to order Qehr ) provided eertain
weak global error estimates for uh - u to this order are availabl~.

This generalizes results proved for elliptic problems by Nitsehe

and Schatz [Math. Comp. 28 (1974), 937-958] and Bramble, Nitsche

and Schatz [Math. Comp. 29 (1975), 677-688] ..

L.B. WAHLBIN: On the Finite Element Method 1n Plane Polygonal

Domains

I shall report on some results obtained jo1ntly with A. Schatz

concerning error estimates 1n the maximum norm for the finite
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element solution of the problem

- Au = f iq 0, u = 0 on 00

where n 1s a plane polygonal doma1n.

General finite element partitions are considered, in particular

both quasi-uniform subd1viS1ons and such that are ref1ned

systematically at vert1ces. For the latter kind, the arnount of

refinement necessary to obtain a desired rate cf convergenee 15

investigated in some detail.

B. WERNER: About·Seme Nenconforming Finite Elements Based

on the Complementary Energy

Some nonconformlng (dlsplacement) methads far some linear ell1pt1c

boundary value prob'lems are characterized whose solut1ons are

confarm1ng for the complementary energy prlnciple y1eld1ng lower

bounds for the energy.

The main cond1t10n wh1ch can be tested elementwise 1s a compat1bil1ty

condition between the bilinear map aC.,.) defining the boundary

value problem and the used finite elements. It is a consequence

of this conditien that the nonconform1ng method.using those

finite elements satisfles a generalized patch test.

Examples for these elements are

1. The·piecewise linear trlangular element with the

mean values along the edges as degrees ef freedom

(for ~ = 0 1n n, u = U
O on 00) •

2. The Morley element

and

3. some rectangular vers10ns of these both elements.

M.'. WHEELER: A Lecal-Res1dual-F1nite-Element-Method

P. Percell and M.F. Wheeler have def1ned and derived optimal

errar estimates far a local-res1dual-element method for ell1pt1c

boundary value problems. The procedure 1s Ioeal in the sense
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that the equations involv1ng the differential operator are of

the form

J (LU - f) ~~ dx 0,

T

where T 1s an element of the triangulation of the domain. The

remainlng equations which pena11ze jumps 1n value and normal

derivative are independent of Land rand involve only one
dimensional integrals.

J.Nitsche (Freiburg)
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